A CNN-RNN Framework for Crop Yield Prediction
Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 1750 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
24.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-462X 1664-462X |
DOI | 10.3389/fpls.2019.01750 |
Cover
Abstract | Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields. |
---|---|
AbstractList | Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields. Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields.Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields. |
Author | Archontoulis, Sotirios V. Wang, Lizhi Khaki, Saeed |
AuthorAffiliation | 1 Industrial and Manufacturing Systems Engineering Department, Iowa State University , Ames, IA , United States 2 Department of Agronomy, Iowa State University , Ames, IA , United States |
AuthorAffiliation_xml | – name: 1 Industrial and Manufacturing Systems Engineering Department, Iowa State University , Ames, IA , United States – name: 2 Department of Agronomy, Iowa State University , Ames, IA , United States |
Author_xml | – sequence: 1 givenname: Saeed surname: Khaki fullname: Khaki, Saeed – sequence: 2 givenname: Lizhi surname: Wang fullname: Wang, Lizhi – sequence: 3 givenname: Sotirios V. surname: Archontoulis fullname: Archontoulis, Sotirios V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32038699$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEcxYNUbK09e5M5epntN78nF6EsrRbKKqKgp_CdTFJTZydrMqv435vt1tIK5pKQvPd54fuek4MpTZ6QlxQWnHfmNGzGsmBAzQKolvCEHFGlRCsU-3Lw4HxITkq5gbokgDH6GTnkDHinjDki7VmzXK3aj6tVc5Fx7X-l_L0JKTfLnDbN1-jHofmQ_RDdHNP0gjwNOBZ_crcfk88X55-W79qr928vl2dXrRPSzC0djOi1CEF0TqJhve_UAJR32kvJe-y9AHQMgTkWAkophBd9j5pxzt3Q82NyuecOCW_sJsc15t82YbS3FylfW8xzdKO3ASRVWjkjOy68VkgNUhgko4Z3Nbmy3uxZm22_9oPz05xxfAR9_DLFb_Y6_bR1PlwBq4DXd4Ccfmx9me06FufHESeftsUyLjmAVkpX6auHWfchf-ddBad7gcuplOzDvYSC3ZVqd6XaXan2ttTqkP84XJxxV0b9bBz_6_sDIV-knQ |
CitedBy_id | crossref_primary_10_1038_s41598_022_25797_9 crossref_primary_10_1038_s41598_021_81652_3 crossref_primary_10_1016_j_fbio_2024_104821 crossref_primary_10_1080_07060661_2023_2290039 crossref_primary_10_1590_1678_4324_2023220781 crossref_primary_10_1088_2515_7620_adb9c0 crossref_primary_10_1016_j_jafr_2023_100776 crossref_primary_10_1109_JSEN_2024_3488085 crossref_primary_10_1038_s41598_021_87870_z crossref_primary_10_3390_agronomy14102264 crossref_primary_10_1016_j_eswa_2023_121399 crossref_primary_10_1016_j_agrformet_2024_110123 crossref_primary_10_1016_j_compag_2024_109019 crossref_primary_10_3389_fpls_2022_834938 crossref_primary_10_1038_s42003_023_04833_y crossref_primary_10_1016_j_compag_2023_107807 crossref_primary_10_1051_shsconf_202419602004 crossref_primary_10_3389_fpls_2022_706042 crossref_primary_10_1038_s41598_022_13232_y crossref_primary_10_3389_fpls_2020_01120 crossref_primary_10_3390_agriculture11090832 crossref_primary_10_1016_j_compeleceng_2024_109227 crossref_primary_10_1016_j_agrformet_2023_109670 crossref_primary_10_3389_fpls_2023_1138479 crossref_primary_10_1016_j_heliyon_2024_e36754 crossref_primary_10_1080_08839514_2024_2421687 crossref_primary_10_1371_journal_pone_0233382 crossref_primary_10_1088_1748_9326_acf50e crossref_primary_10_3389_fpls_2022_1048479 crossref_primary_10_1016_j_indcrop_2022_115762 crossref_primary_10_1038_s41598_024_65322_8 crossref_primary_10_3390_rs14215443 crossref_primary_10_3390_rs13224668 crossref_primary_10_3390_agronomy14030432 crossref_primary_10_3390_agriengineering7020047 crossref_primary_10_1109_JSTARS_2024_3435699 crossref_primary_10_3390_agriculture11060509 crossref_primary_10_1007_s00122_021_03943_7 crossref_primary_10_3390_land11101752 crossref_primary_10_1109_ACCESS_2023_3271410 crossref_primary_10_1007_s10666_024_09978_6 crossref_primary_10_1175_AIES_D_22_0002_1 crossref_primary_10_1051_e3sconf_202130901162 crossref_primary_10_1016_j_engappai_2024_109940 crossref_primary_10_1016_j_eja_2024_127496 crossref_primary_10_1093_comjnl_bxaa093 crossref_primary_10_1002_env_2772 crossref_primary_10_1109_ACCESS_2024_3418139 crossref_primary_10_1371_journal_pone_0316682 crossref_primary_10_3389_frai_2024_1312115 crossref_primary_10_1016_j_eswa_2023_122220 crossref_primary_10_1016_j_rico_2024_100489 crossref_primary_10_1016_j_compag_2023_108439 crossref_primary_10_32604_cmc_2024_050240 crossref_primary_10_1016_j_jafr_2024_101321 crossref_primary_10_1016_j_isprsjprs_2024_09_038 crossref_primary_10_1016_j_jag_2024_103834 crossref_primary_10_7717_peerj_16538 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_1007_s11042_023_17327_0 crossref_primary_10_1007_s44279_024_00066_7 crossref_primary_10_15201_hungeobull_72_4_4 crossref_primary_10_1007_s42979_025_03672_4 crossref_primary_10_3390_electronics13214273 crossref_primary_10_1016_j_agsy_2021_103345 crossref_primary_10_3390_rs13163069 crossref_primary_10_1117_1_JRS_18_014507 crossref_primary_10_1016_j_compag_2024_108978 crossref_primary_10_1109_ACCESS_2024_3383309 crossref_primary_10_3389_fpls_2023_1289692 crossref_primary_10_1016_j_atech_2021_100017 crossref_primary_10_3390_agriculture14040513 crossref_primary_10_4236_jdaip_2024_123018 crossref_primary_10_3390_app112210973 crossref_primary_10_1016_j_aiia_2021_11_004 crossref_primary_10_1016_j_indcrop_2025_120623 crossref_primary_10_1002_csan_21132 crossref_primary_10_1007_s10462_022_10266_6 crossref_primary_10_3390_rs13224560 crossref_primary_10_1016_j_eswa_2023_122847 crossref_primary_10_1007_s11104_024_06503_2 crossref_primary_10_1515_geo_2022_0756 crossref_primary_10_3390_agronomy15010171 crossref_primary_10_1080_15481603_2024_2349341 crossref_primary_10_2139_ssrn_3959386 crossref_primary_10_1007_s11831_022_09761_4 crossref_primary_10_1038_s41598_025_93417_3 crossref_primary_10_3390_land10060609 crossref_primary_10_3390_plants11151925 crossref_primary_10_1080_08839514_2021_1976091 crossref_primary_10_1016_j_ins_2022_10_112 crossref_primary_10_1109_ACCESS_2024_3455892 crossref_primary_10_3389_fsufs_2025_1551460 crossref_primary_10_3390_agriculture13040795 crossref_primary_10_3390_s21113758 crossref_primary_10_1007_s11760_024_03094_4 crossref_primary_10_3390_rs14091990 crossref_primary_10_1002_cpe_7775 crossref_primary_10_1016_j_eja_2024_127498 crossref_primary_10_1016_j_eja_2022_126727 crossref_primary_10_1111_ajae_12446 crossref_primary_10_1002_agj2_20729 crossref_primary_10_1016_j_jclepro_2024_142381 crossref_primary_10_1093_jrsssb_qkae118 crossref_primary_10_34133_plantphenomics_0086 crossref_primary_10_1016_j_tplants_2023_08_001 crossref_primary_10_1371_journal_pone_0258677 crossref_primary_10_1016_j_agrformet_2024_110340 crossref_primary_10_1080_01431161_2021_1993465 crossref_primary_10_3389_fpls_2023_1120826 crossref_primary_10_1016_j_compag_2021_106648 crossref_primary_10_3390_seeds2030026 crossref_primary_10_3390_w14050689 crossref_primary_10_1371_journal_pone_0312444 crossref_primary_10_1002_agj2_21393 crossref_primary_10_1111_ppl_70011 crossref_primary_10_3389_fpls_2021_721512 crossref_primary_10_1002_cpe_7310 crossref_primary_10_1016_j_compag_2022_107367 crossref_primary_10_1111_coin_12629 crossref_primary_10_1002_int_22620 crossref_primary_10_1007_s11277_021_08712_9 crossref_primary_10_1016_j_measen_2024_101277 crossref_primary_10_1088_1742_6596_2571_1_012013 crossref_primary_10_3390_plants11131697 crossref_primary_10_1007_s00521_024_10226_x crossref_primary_10_1016_j_molp_2022_11_004 crossref_primary_10_54365_adyumbd_1075265 crossref_primary_10_1016_j_sca_2024_100099 crossref_primary_10_2196_48535 crossref_primary_10_1016_j_matpr_2022_03_115 crossref_primary_10_1016_j_compag_2020_105709 crossref_primary_10_33003_fjs_2024_0801_2220 crossref_primary_10_3390_s22176609 crossref_primary_10_1016_j_compag_2023_107663 crossref_primary_10_1016_j_eswa_2023_120098 crossref_primary_10_1007_s44163_024_00209_1 crossref_primary_10_3389_fsufs_2024_1428466 crossref_primary_10_48084_etasr_9247 crossref_primary_10_3390_rs14092256 crossref_primary_10_1016_j_geoen_2024_213380 crossref_primary_10_1007_s12517_023_11754_x crossref_primary_10_3390_min13010128 crossref_primary_10_1016_j_isci_2020_101890 crossref_primary_10_1007_s10666_023_09920_2 crossref_primary_10_1142_S0218001422570075 crossref_primary_10_1016_j_jag_2024_104172 crossref_primary_10_3389_fpls_2023_1128388 crossref_primary_10_3390_agronomy14040777 crossref_primary_10_1007_s11227_022_04738_3 crossref_primary_10_1007_s42979_023_02259_1 crossref_primary_10_1007_s11738_024_03754_5 crossref_primary_10_1109_ACCESS_2024_3390581 crossref_primary_10_3390_agronomy14020361 crossref_primary_10_3390_cli13020033 crossref_primary_10_34133_plantphenomics_0178 crossref_primary_10_1016_j_heliyon_2023_e15245 crossref_primary_10_1016_j_cj_2021_03_015 crossref_primary_10_1016_j_compag_2022_107119 crossref_primary_10_3390_agronomy14081760 crossref_primary_10_1016_j_seta_2023_103263 crossref_primary_10_1016_j_seta_2024_104057 crossref_primary_10_1038_s41598_022_06249_w crossref_primary_10_1080_01431161_2024_2368930 crossref_primary_10_3390_agronomy11122576 crossref_primary_10_1038_s41598_024_80327_z crossref_primary_10_1186_s12859_024_05940_1 crossref_primary_10_3390_su17062662 crossref_primary_10_3390_agriculture11030222 crossref_primary_10_3390_rs15235551 crossref_primary_10_3390_agronomy9120833 crossref_primary_10_1080_15481603_2024_2367808 crossref_primary_10_3390_f14010026 crossref_primary_10_3390_app132413305 crossref_primary_10_1016_j_atech_2024_100718 crossref_primary_10_1016_j_jag_2023_103269 crossref_primary_10_3390_rs15123075 crossref_primary_10_1016_j_ecoinf_2024_102595 crossref_primary_10_1109_ACCESS_2023_3331762 crossref_primary_10_1007_s00521_021_06033_3 crossref_primary_10_1007_s11042_023_16807_7 crossref_primary_10_3390_rs15030799 crossref_primary_10_1016_j_suscom_2021_100577 crossref_primary_10_1007_s11356_024_32430_x crossref_primary_10_1016_j_infrared_2023_104960 crossref_primary_10_3390_agriculture12101707 crossref_primary_10_2478_plua_2024_0015 crossref_primary_10_1007_s00521_023_08644_4 crossref_primary_10_1002_ppp3_10568 crossref_primary_10_1007_s11119_023_10069_x crossref_primary_10_1016_j_compag_2022_107217 crossref_primary_10_1038_s41598_021_97380_7 crossref_primary_10_1007_s11600_022_00854_z crossref_primary_10_3390_plants10122707 crossref_primary_10_61186_jgst_14_1_1 crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_3390_agriculture10070277 crossref_primary_10_1016_j_aiia_2022_09_007 crossref_primary_10_1007_s12652_024_04848_1 crossref_primary_10_1016_j_ecoinf_2022_101805 crossref_primary_10_1155_2023_6675523 crossref_primary_10_1016_j_aiia_2022_09_003 crossref_primary_10_1038_s41598_020_80820_1 crossref_primary_10_1016_j_agsy_2024_104099 crossref_primary_10_3390_rs15204935 crossref_primary_10_1007_s11042_022_13919_4 crossref_primary_10_1016_j_compag_2023_108034 crossref_primary_10_3390_agriculture12030318 crossref_primary_10_3390_agriculture13030661 crossref_primary_10_1016_j_compag_2021_106578 crossref_primary_10_1109_JSTARS_2024_3361556 crossref_primary_10_1088_2515_7620_ad85c5 crossref_primary_10_1016_j_jag_2024_103965 crossref_primary_10_1007_s41870_024_01762_9 crossref_primary_10_1002_agj2_70012 crossref_primary_10_3389_frsen_2022_1010978 crossref_primary_10_3390_rs13224605 crossref_primary_10_3390_rs13193976 crossref_primary_10_1109_ACCESS_2022_3196784 crossref_primary_10_3389_fpls_2023_1130659 crossref_primary_10_1007_s42853_023_00209_6 crossref_primary_10_1016_j_geoen_2023_212528 crossref_primary_10_3389_fpls_2021_709008 crossref_primary_10_3390_plants13040526 crossref_primary_10_3389_fpls_2021_701192 crossref_primary_10_1080_01140671_2024_2409775 crossref_primary_10_1111_ppa_13988 crossref_primary_10_1093_hr_uhad286 crossref_primary_10_3390_jmse11010200 crossref_primary_10_26898_0370_8799_2021_5_11 crossref_primary_10_3390_rs13214486 crossref_primary_10_3390_agriculture13061195 crossref_primary_10_1016_j_dajour_2023_100311 crossref_primary_10_2139_ssrn_4157416 crossref_primary_10_1016_j_ecoinf_2025_103011 crossref_primary_10_3390_agronomy11102068 crossref_primary_10_1002_advs_202204269 crossref_primary_10_1007_s11042_023_16754_3 crossref_primary_10_1016_j_jag_2022_102764 crossref_primary_10_1016_j_scitotenv_2021_149726 crossref_primary_10_1016_j_inpa_2024_04_004 crossref_primary_10_7717_peerj_cs_1104 crossref_primary_10_1007_s11042_023_16113_2 crossref_primary_10_1016_j_atech_2024_100671 crossref_primary_10_1016_j_chemolab_2024_105064 crossref_primary_10_3389_fpls_2023_1272049 crossref_primary_10_1007_s10994_023_06455_1 crossref_primary_10_1016_j_isprsjprs_2020_09_015 crossref_primary_10_3389_frai_2022_1040295 crossref_primary_10_1016_j_isprsjprs_2024_02_008 crossref_primary_10_3389_fpls_2023_1217448 crossref_primary_10_1016_j_compag_2020_105791 crossref_primary_10_3390_agronomy10050718 crossref_primary_10_3390_s24082432 crossref_primary_10_3389_fgene_2022_822173 crossref_primary_10_1007_s13201_023_01942_1 crossref_primary_10_1016_j_kjs_2023_11_009 crossref_primary_10_54097_hset_v50i_8489 crossref_primary_10_3390_make6020054 crossref_primary_10_3390_drones7020131 crossref_primary_10_1016_j_compag_2023_107930 crossref_primary_10_1088_1755_1315_1278_1_012004 crossref_primary_10_3390_su141711086 crossref_primary_10_1111_tpj_16790 crossref_primary_10_1016_j_atech_2022_100048 crossref_primary_10_3390_app142412020 crossref_primary_10_1007_s11042_025_20747_9 crossref_primary_10_1007_s00500_023_09110_y crossref_primary_10_3390_rs13224632 crossref_primary_10_3389_fpls_2023_1070699 crossref_primary_10_1016_j_aiia_2023_05_001 crossref_primary_10_1093_bioinformatics_btad336 crossref_primary_10_1109_ACCESS_2021_3103903 crossref_primary_10_1038_s41598_021_89779_z crossref_primary_10_1038_s41598_024_65140_y crossref_primary_10_30605_perbal_v12i1_3173 crossref_primary_10_1016_j_compag_2024_109501 crossref_primary_10_1093_g3journal_jkad006 crossref_primary_10_1016_j_compag_2020_105785 crossref_primary_10_1109_ACCESS_2021_3075159 crossref_primary_10_3390_app11104499 crossref_primary_10_1016_j_est_2023_106645 |
Cites_doi | 10.1371/journal.pone.0156571 10.1111/j.2517-6161.1996.tb02080.x 10.1016/0168-1923(92)90003-m 10.1109/ICASSP.2019.8682194 10.1088/1748-9326/ab5268 10.1162/neco.1997.9.8.1735 10.2135/cropsci1999.0011183x0039000200026x 10.2135/cropsci1989.0011183x002900010023x 10.1111/gcbb.12314 10.3390/agronomy9120833 10.3390/agriculture9030054 10.1016/j.compag.2013.05.006 10.2134/agronj2010.0303 10.1109/tie.2016.2582729 10.3389/fpls.2019.00621 10.1016/j.jag.2005.06.002 10.1016/j.compag.2019.104872 10.2134/agronj2018.04.0297 10.1016/0893-6080(89)90020-8 10.1109/ICFHR.2014.55 10.3390/ijgi8050240 10.1023/A:1010933404324 10.1016/j.agwat.2012.07.003 10.1145/3209811.3212707 10.1016/j.fcr.2019.02.022 10.13031/2013.6097 10.1038/nature14539 10.1016/j.wace.2015.08.001 10.1080/0143116031000150068 10.13031/2013.12541 10.1007/s10584-017-1997-x 10.1016/0308-521X(92)90022-G 10.1109/72.279181 10.1007/978-94-017-3624-4_3 10.1038/ncomms13931 10.1109/CVPR.2015.7298594 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Khaki, Wang and Archontoulis. Copyright © 2020 Khaki, Wang and Archontoulis 2020 Khaki, Wang and Archontoulis |
Copyright_xml | – notice: Copyright © 2020 Khaki, Wang and Archontoulis. – notice: Copyright © 2020 Khaki, Wang and Archontoulis 2020 Khaki, Wang and Archontoulis |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.01750 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_f051676c95834e76a19a10d5219382be PMC6993602 32038699 10_3389_fpls_2019_01750 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-1d94b74ff48c5a92be86d01387e553babe40ac2a02c2ffa5544e4bba72333cdb3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 00:54:11 EDT 2025 Thu Aug 21 17:53:02 EDT 2025 Thu Sep 04 19:04:14 EDT 2025 Thu Jan 02 22:37:22 EST 2025 Tue Jul 01 02:06:26 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | deep learning crop yield prediction convolutional neural networks recurrent neural networks feature selection |
Language | English |
License | Copyright © 2020 Khaki, Wang and Archontoulis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-1d94b74ff48c5a92be86d01387e553babe40ac2a02c2ffa5544e4bba72333cdb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Plant Science Edited by: Madhuchhanda Bhattacharjee, University of Hyderabad, India Reviewed by: Milind B. Ratnaparkhe, ICAR Indian Institute of Soybean Research, India; Hao Wang, University of Georgia, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.01750 |
PMID | 32038699 |
PQID | 2353007667 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f051676c95834e76a19a10d5219382be pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993602 proquest_miscellaneous_2353007667 pubmed_primary_32038699 crossref_primary_10_3389_fpls_2019_01750 crossref_citationtrail_10_3389_fpls_2019_01750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-24 |
PublicationDateYYYYMMDD | 2020-01-24 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hornik (B21) 1989; 2 Kiranyaz (B31) 2019 Srivastava (B45) 2014; 15 You (B52) 2017 Ince (B22) 2016; 63 Glorot (B12) 2010 Romero (B39) 2013; 96 Baum (B5) 2018; 111 LeCun (B32) 2015; 521 Hatfield (B17) 2018; 146 Borovykh (B7) 2017 Goodfellow (B13) 2016 Wang (B50) 2018 Shahhosseini (B41) 2019 Springenberg (B44) 2014 Awad (B4) 2019; 9 Kingma (B30) 2014 Schauberger (B40) 2017; 8 Yang (B51) 2019; 235 Pham (B35) 2014 Ng (B34) 2004 Thornton (B47) 2018 Abadi (B1) 2016 He (B18) 2016 Ransom (B37) 2019; 164 (B49) 2019 (B14) 2019 Hochreiter (B19) 1997; 9 Horie (B20) 1992; 40 Ritchie (B38) 1998 Egli (B10) 1992; 62 Hatfield (B16) 2011; 103 Khaki (B28) 2019 Jiang (B25) 2004; 25 Fukuda (B11) 2013; 116 Andrade (B2) 1999; 39 Breiman (B8) 2001; 45 Khaki (B26) 2019 Jeong (B24) 2016; 11 Kim (B29) 2019; 8 Archontoulis (B3) 2016; 8 Tibshirani (B48) 1996; 58 Prasad (B36) 2006; 8 Liu (B33) 2001; 44 Sinclair (B43) 1989; 29 Szegedy (B46) 2015 Bengio (B6) 1994; 5 Hatfield (B15) 2015; 10 Ioffe (B23) 2015 Sherstinsky (B42) 2018 Drummond (B9) 2003; 46 Khaki (B27) 2019; 10 |
References_xml | – volume: 11 year: 2016 ident: B24 article-title: Random forests for global and regional crop yield predictions publication-title: PloS One doi: 10.1371/journal.pone.0156571 – volume: 58 start-page: 267 year: 1996 ident: B48 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 62 start-page: 19 year: 1992 ident: B10 article-title: Planting date and soybean yield: evaluation of environmental effects with a crop simulation model: Soygro publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(92)90003-m – year: 2017 ident: B7 article-title: Conditional time series forecasting with convolutional neural networks – volume-title: Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS year: 2019 ident: B14 – start-page: 770 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: B18 article-title: Deep residual learning for image recognition – start-page: 8360 volume-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2019 ident: B31 article-title: 1-d convolutional neural networks for signal processing applications doi: 10.1109/ICASSP.2019.8682194 – start-page: 265 volume-title: 12th USENIX Symposium on Operating Systems Design and Implementation year: 2016 ident: B1 article-title: TensorFlow: A system for large scale machine learning – year: 2019 ident: B41 article-title: Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms doi: 10.1088/1748-9326/ab5268 – volume: 9 start-page: 1735 year: 1997 ident: B19 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 39 start-page: 453 year: 1999 ident: B2 article-title: Kernel number determination in maize publication-title: Crop Sci. doi: 10.2135/cropsci1999.0011183x0039000200026x – volume: 29 start-page: 90 year: 1989 ident: B43 article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review publication-title: Crop Sci. doi: 10.2135/cropsci1989.0011183x002900010023x – volume: 8 start-page: 1028 year: 2016 ident: B3 article-title: A model for mechanistic and system assessments of biochar effects on soils and crops and trade-offs publication-title: GCB Bioenergy doi: 10.1111/gcbb.12314 – year: 2015 ident: B23 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – year: 2019 ident: B26 article-title: Classification of crop tolerance to heat and drought: A deep convolutional neural networks approach doi: 10.3390/agronomy9120833 – volume-title: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3 year: 2018 ident: B47 – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: B12 article-title: Understanding the difficulty of training deep feedforward neural networks – volume-title: Source Code year: 2019 ident: B28 – volume: 9 start-page: 54 year: 2019 ident: B4 article-title: Toward precision in crop yield estimation using remote sensing and optimization techniques publication-title: Agriculture doi: 10.3390/agriculture9030054 – volume: 96 start-page: 173 year: 2013 ident: B39 article-title: Using classification algorithms for predicting durum wheat yield in the province of buenos aires publication-title: Comput. Electron. In Agric. doi: 10.1016/j.compag.2013.05.006 – volume: 103 start-page: 351 year: 2011 ident: B16 article-title: Climate impacts on agriculture: implications for crop production publication-title: Agron. J. doi: 10.2134/agronj2010.0303 – volume: 63 start-page: 7067 year: 2016 ident: B22 article-title: Real-time motor fault detection by 1-d convolutional neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/tie.2016.2582729 – year: 2014 ident: B30 article-title: Adam: A method for stochastic optimization – year: 2014 ident: B44 article-title: Striving for simplicity: The all convolutional net – start-page: 78 volume-title: Proceedings of the Twenty-first International Conference on Machine learning year: 2004 ident: B34 article-title: Feature selection, L1 vs. L2 regularization, and rotational invariance – year: 2018 ident: B42 article-title: Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network – volume-title: USDA - National Agricultural Statistics Service year: 2019 ident: B49 – volume: 15 start-page: 1929 year: 2014 ident: B45 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 10 year: 2019 ident: B27 article-title: Crop yield prediction using deep neural networks publication-title: Front. In Plant Sci. doi: 10.3389/fpls.2019.00621 – volume: 8 start-page: 26 year: 2006 ident: B36 article-title: Crop yield estimation model for iowa using remote sensing and surface parameters publication-title: Int. J. Appl. Earth Observation Geoinformation doi: 10.1016/j.jag.2005.06.002 – volume: 164 start-page: 104872 year: 2019 ident: B37 article-title: Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104872 – volume: 111 start-page: 1 year: 2018 ident: B5 article-title: Planting date, hybrid maturity, and weather effects on maize yield and crop stage publication-title: Agron. J doi: 10.2134/agronj2018.04.0297 – volume: 2 start-page: 359 year: 1989 ident: B21 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – start-page: 285 volume-title: 14th International Conference on Frontiers in Handwriting Recognition year: 2014 ident: B35 article-title: Dropout improves recurrent neural networks for handwriting recognition doi: 10.1109/ICFHR.2014.55 – volume: 8 start-page: 240 year: 2019 ident: B29 article-title: A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern united states, 2006–2015 publication-title: ISPRS Int. J. Geo-Information doi: 10.3390/ijgi8050240 – volume: 45 start-page: 5 year: 2001 ident: B8 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 116 start-page: 142 year: 2013 ident: B11 article-title: Random forests modelling for the estimation of mango (mangifera indica l. cv. chok anan) fruit yields under different irrigation regimes publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2012.07.003 – start-page: 50 volume-title: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies year: 2018 ident: B50 article-title: Deep transfer learning for crop yield prediction with remote sensing data doi: 10.1145/3209811.3212707 – volume: 235 start-page: 142 year: 2019 ident: B51 article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using uav-based remotely sensed images publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.02.022 – volume: 44 start-page: 705 year: 2001 ident: B33 article-title: A neural network for setting target corn yields publication-title: Trans. ASAE doi: 10.13031/2013.6097 – volume: 521 start-page: 436 year: 2015 ident: B32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 10 start-page: 4 year: 2015 ident: B15 article-title: Temperature extremes: Effect on plant growth and development publication-title: Weather Climate Extremes doi: 10.1016/j.wace.2015.08.001 – volume: 25 start-page: 1723 year: 2004 ident: B25 article-title: An artificial neural network model for estimating crop yields using remotely sensed information publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000150068 – volume: 46 start-page: 5 year: 2003 ident: B9 article-title: Statistical and neural methods for site–specific yield prediction publication-title: Trans. ASAE doi: 10.13031/2013.12541 – volume-title: Deep Learning year: 2016 ident: B13 – volume: 146 start-page: 263 year: 2018 ident: B17 article-title: Vulnerability of grain crops and croplands in the midwest to climatic variability and adaptation strategies publication-title: Clim. Change doi: 10.1007/s10584-017-1997-x – volume: 40 start-page: 211 year: 1992 ident: B20 article-title: Yield forecasting publication-title: Agric. Syst. doi: 10.1016/0308-521X(92)90022-G – volume: 5 start-page: 157 year: 1994 ident: B6 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.279181 – start-page: 41 volume-title: Understanding Options for Agricultural Production year: 1998 ident: B38 article-title: Soil water balance and plant water stress doi: 10.1007/978-94-017-3624-4_3 – start-page: 4559 volume-title: Thirty-First AAAI Conference on Artificial Intelligence year: 2017 ident: B52 article-title: Deep gaussian process for crop yield prediction based on remote sensing data – volume: 8 start-page: 13931 year: 2017 ident: B40 article-title: Consistent negative response of us crops to high temperatures in observations and crop models publication-title: Nat. Commun. doi: 10.1038/ncomms13931 – year: 2015 ident: B46 article-title: Going deeper with convolutions (Cvpr) publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition, doi: 10.1109/CVPR.2015.7298594 |
SSID | ssj0000500997 |
Score | 2.67013 |
Snippet | Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1750 |
SubjectTerms | convolutional neural networks crop yield prediction deep learning feature selection Plant Science recurrent neural networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na-MwEBWl9LCXZb_autstLvTQixJZkvVxbEND2YMppYX0ZCRZogvBCSE57L_fGTsJSdmyl73aEpLfk603zPiJkKtQqMhCY6mOylNpuKQmMkO1bbjWHi3EumqLSt0_y5-TcrJz1BfWhPX2wD1wwwSrRmkVbGmEjFq5wrqCNbDrWGG4j_j1ZZbtBFO9qzdKH917-UAUZodpPkV37sIOYA3iX_Y721Dn1v83ifm2UnJn6xl_Ih_XmjG_6ef6mRzE9gs5up2Brvv9ldCbfFRV9LGq8vGm0ioHKZqPFrN5_oIVavnDAvMxyME38jy-exrd0_UhCDTI0i5p0VjptUxJmlA6C09sVIPpRR3LUnjno2QucMd44Ck5UAcySu-d5kKI0HhxTA7bWRtPSc4aAwFeSMk6IwvPnTM2GYAVOkXmZEYGG0zqsHYIx4MqpjVECghijSDWCGLdgZiR622HeW-O8X7TWwR52wxdrbsLwHW95rr-F9cZudxQVMNbgKkN18bZCgYSpcCkotIZOekp2w4lOBNGWZsRvUfm3lz277S_XjunbeglFONn_2Py38kHjrE6KyiX5-RwuVjFHyBolv6iW7t_AEb0738 priority: 102 providerName: Directory of Open Access Journals |
Title | A CNN-RNN Framework for Crop Yield Prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32038699 https://www.proquest.com/docview/2353007667 https://pubmed.ncbi.nlm.nih.gov/PMC6993602 https://doaj.org/article/f051676c95834e76a19a10d5219382be |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQwoEL4k14rILEgYuLYzt-HBDarSgrDhFCVCqnyHYcQKqSEroS---ZcdJCUZG45JB4YnvGjr_JjL4h5EUoVGShsVRH5ak0XFITmaHaNlxrjxRiKduiUhdL-X5Vrn6XA5oU-OOoa4f1pJbDevbz-9Ub2PCv0eOE8_ZVu1kj8XZhZ7C80H-_noJFmMc3Yf2R6BvRUCq2opSkUvHVSPVz7B0Hp1Qi8z-GQP9OpPzjZFrcJrcmSJmfjWvgDrkWu7vkxnkPsO_qHqFn-byq6Meqyhe7RKwckGo-H_pN_hkT2PIPA4Zr0ET3yXLx9tP8gk41EmiQpd3SorHSa9m20oTSWe6jUQ1GH3UsS-Gdj5K5wB3jgbetA_Ago_TeaS6ECI0XD8hJ13fxEclZY8D_C21rnZGF584Z2xojJAhF5mRGZjud1GEiEMc6FusaHAlUYo1KrFGJdVJiRl7uBTYjd8a_m56jkvfNkPQ63eiHL_W0h-oWPiBKq2BLGFTUyhXWFawBAGKFgZln5PnORDVsEox8uC72l9CRKAXGHJXOyMPRZPuuBGfCKGszog-MeTCWwyfdt6-JiBukhGL88f_P8wm5ydFhZwXl8ik52Q6X8Rmgmq0_TX8D4PpuVZymlfsLP5PzLw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-RNN+Framework+for+Crop+Yield+Prediction&rft.jtitle=Frontiers+in+plant+science&rft.au=Khaki%2C+Saeed&rft.au=Wang%2C+Lizhi&rft.au=Archontoulis%2C+Sotirios+V.&rft.date=2020-01-24&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.01750&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2019_01750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |