A CNN-RNN Framework for Crop Yield Prediction

Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 1750
Main Authors Khaki, Saeed, Wang, Lizhi, Archontoulis, Sotirios V.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 24.01.2020
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2019.01750

Cover

Abstract Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields.
AbstractList Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields.
Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields.Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices, and their interactions. This paper presents a deep learning framework using convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for crop yield prediction based on environmental data and management practices. The proposed CNN-RNN model, along with other popular methods such as random forest (RF), deep fully connected neural networks (DFNN), and LASSO, was used to forecast corn and soybean yield across the entire Corn Belt (including 13 states) in the United States for years 2016, 2017, and 2018 using historical data. The new model achieved a root-mean-square-error (RMSE) 9% and 8% of their respective average yields, substantially outperforming all other methods that were tested. The CNN-RNN has three salient features that make it a potentially useful method for other crop yield prediction studies. (1) The CNN-RNN model was designed to capture the time dependencies of environmental factors and the genetic improvement of seeds over time without having their genotype information. (2) The model demonstrated the capability to generalize the yield prediction to untested environments without significant drop in the prediction accuracy. (3) Coupled with the backpropagation method, the model could reveal the extent to which weather conditions, accuracy of weather predictions, soil conditions, and management practices were able to explain the variation in the crop yields.
Author Archontoulis, Sotirios V.
Wang, Lizhi
Khaki, Saeed
AuthorAffiliation 1 Industrial and Manufacturing Systems Engineering Department, Iowa State University , Ames, IA , United States
2 Department of Agronomy, Iowa State University , Ames, IA , United States
AuthorAffiliation_xml – name: 1 Industrial and Manufacturing Systems Engineering Department, Iowa State University , Ames, IA , United States
– name: 2 Department of Agronomy, Iowa State University , Ames, IA , United States
Author_xml – sequence: 1
  givenname: Saeed
  surname: Khaki
  fullname: Khaki, Saeed
– sequence: 2
  givenname: Lizhi
  surname: Wang
  fullname: Wang, Lizhi
– sequence: 3
  givenname: Sotirios V.
  surname: Archontoulis
  fullname: Archontoulis, Sotirios V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32038699$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEcxYNUbK09e5M5epntN78nF6EsrRbKKqKgp_CdTFJTZydrMqv435vt1tIK5pKQvPd54fuek4MpTZ6QlxQWnHfmNGzGsmBAzQKolvCEHFGlRCsU-3Lw4HxITkq5gbokgDH6GTnkDHinjDki7VmzXK3aj6tVc5Fx7X-l_L0JKTfLnDbN1-jHofmQ_RDdHNP0gjwNOBZ_crcfk88X55-W79qr928vl2dXrRPSzC0djOi1CEF0TqJhve_UAJR32kvJe-y9AHQMgTkWAkophBd9j5pxzt3Q82NyuecOCW_sJsc15t82YbS3FylfW8xzdKO3ASRVWjkjOy68VkgNUhgko4Z3Nbmy3uxZm22_9oPz05xxfAR9_DLFb_Y6_bR1PlwBq4DXd4Ccfmx9me06FufHESeftsUyLjmAVkpX6auHWfchf-ddBad7gcuplOzDvYSC3ZVqd6XaXan2ttTqkP84XJxxV0b9bBz_6_sDIV-knQ
CitedBy_id crossref_primary_10_1038_s41598_022_25797_9
crossref_primary_10_1038_s41598_021_81652_3
crossref_primary_10_1016_j_fbio_2024_104821
crossref_primary_10_1080_07060661_2023_2290039
crossref_primary_10_1590_1678_4324_2023220781
crossref_primary_10_1088_2515_7620_adb9c0
crossref_primary_10_1016_j_jafr_2023_100776
crossref_primary_10_1109_JSEN_2024_3488085
crossref_primary_10_1038_s41598_021_87870_z
crossref_primary_10_3390_agronomy14102264
crossref_primary_10_1016_j_eswa_2023_121399
crossref_primary_10_1016_j_agrformet_2024_110123
crossref_primary_10_1016_j_compag_2024_109019
crossref_primary_10_3389_fpls_2022_834938
crossref_primary_10_1038_s42003_023_04833_y
crossref_primary_10_1016_j_compag_2023_107807
crossref_primary_10_1051_shsconf_202419602004
crossref_primary_10_3389_fpls_2022_706042
crossref_primary_10_1038_s41598_022_13232_y
crossref_primary_10_3389_fpls_2020_01120
crossref_primary_10_3390_agriculture11090832
crossref_primary_10_1016_j_compeleceng_2024_109227
crossref_primary_10_1016_j_agrformet_2023_109670
crossref_primary_10_3389_fpls_2023_1138479
crossref_primary_10_1016_j_heliyon_2024_e36754
crossref_primary_10_1080_08839514_2024_2421687
crossref_primary_10_1371_journal_pone_0233382
crossref_primary_10_1088_1748_9326_acf50e
crossref_primary_10_3389_fpls_2022_1048479
crossref_primary_10_1016_j_indcrop_2022_115762
crossref_primary_10_1038_s41598_024_65322_8
crossref_primary_10_3390_rs14215443
crossref_primary_10_3390_rs13224668
crossref_primary_10_3390_agronomy14030432
crossref_primary_10_3390_agriengineering7020047
crossref_primary_10_1109_JSTARS_2024_3435699
crossref_primary_10_3390_agriculture11060509
crossref_primary_10_1007_s00122_021_03943_7
crossref_primary_10_3390_land11101752
crossref_primary_10_1109_ACCESS_2023_3271410
crossref_primary_10_1007_s10666_024_09978_6
crossref_primary_10_1175_AIES_D_22_0002_1
crossref_primary_10_1051_e3sconf_202130901162
crossref_primary_10_1016_j_engappai_2024_109940
crossref_primary_10_1016_j_eja_2024_127496
crossref_primary_10_1093_comjnl_bxaa093
crossref_primary_10_1002_env_2772
crossref_primary_10_1109_ACCESS_2024_3418139
crossref_primary_10_1371_journal_pone_0316682
crossref_primary_10_3389_frai_2024_1312115
crossref_primary_10_1016_j_eswa_2023_122220
crossref_primary_10_1016_j_rico_2024_100489
crossref_primary_10_1016_j_compag_2023_108439
crossref_primary_10_32604_cmc_2024_050240
crossref_primary_10_1016_j_jafr_2024_101321
crossref_primary_10_1016_j_isprsjprs_2024_09_038
crossref_primary_10_1016_j_jag_2024_103834
crossref_primary_10_7717_peerj_16538
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1007_s11042_023_17327_0
crossref_primary_10_1007_s44279_024_00066_7
crossref_primary_10_15201_hungeobull_72_4_4
crossref_primary_10_1007_s42979_025_03672_4
crossref_primary_10_3390_electronics13214273
crossref_primary_10_1016_j_agsy_2021_103345
crossref_primary_10_3390_rs13163069
crossref_primary_10_1117_1_JRS_18_014507
crossref_primary_10_1016_j_compag_2024_108978
crossref_primary_10_1109_ACCESS_2024_3383309
crossref_primary_10_3389_fpls_2023_1289692
crossref_primary_10_1016_j_atech_2021_100017
crossref_primary_10_3390_agriculture14040513
crossref_primary_10_4236_jdaip_2024_123018
crossref_primary_10_3390_app112210973
crossref_primary_10_1016_j_aiia_2021_11_004
crossref_primary_10_1016_j_indcrop_2025_120623
crossref_primary_10_1002_csan_21132
crossref_primary_10_1007_s10462_022_10266_6
crossref_primary_10_3390_rs13224560
crossref_primary_10_1016_j_eswa_2023_122847
crossref_primary_10_1007_s11104_024_06503_2
crossref_primary_10_1515_geo_2022_0756
crossref_primary_10_3390_agronomy15010171
crossref_primary_10_1080_15481603_2024_2349341
crossref_primary_10_2139_ssrn_3959386
crossref_primary_10_1007_s11831_022_09761_4
crossref_primary_10_1038_s41598_025_93417_3
crossref_primary_10_3390_land10060609
crossref_primary_10_3390_plants11151925
crossref_primary_10_1080_08839514_2021_1976091
crossref_primary_10_1016_j_ins_2022_10_112
crossref_primary_10_1109_ACCESS_2024_3455892
crossref_primary_10_3389_fsufs_2025_1551460
crossref_primary_10_3390_agriculture13040795
crossref_primary_10_3390_s21113758
crossref_primary_10_1007_s11760_024_03094_4
crossref_primary_10_3390_rs14091990
crossref_primary_10_1002_cpe_7775
crossref_primary_10_1016_j_eja_2024_127498
crossref_primary_10_1016_j_eja_2022_126727
crossref_primary_10_1111_ajae_12446
crossref_primary_10_1002_agj2_20729
crossref_primary_10_1016_j_jclepro_2024_142381
crossref_primary_10_1093_jrsssb_qkae118
crossref_primary_10_34133_plantphenomics_0086
crossref_primary_10_1016_j_tplants_2023_08_001
crossref_primary_10_1371_journal_pone_0258677
crossref_primary_10_1016_j_agrformet_2024_110340
crossref_primary_10_1080_01431161_2021_1993465
crossref_primary_10_3389_fpls_2023_1120826
crossref_primary_10_1016_j_compag_2021_106648
crossref_primary_10_3390_seeds2030026
crossref_primary_10_3390_w14050689
crossref_primary_10_1371_journal_pone_0312444
crossref_primary_10_1002_agj2_21393
crossref_primary_10_1111_ppl_70011
crossref_primary_10_3389_fpls_2021_721512
crossref_primary_10_1002_cpe_7310
crossref_primary_10_1016_j_compag_2022_107367
crossref_primary_10_1111_coin_12629
crossref_primary_10_1002_int_22620
crossref_primary_10_1007_s11277_021_08712_9
crossref_primary_10_1016_j_measen_2024_101277
crossref_primary_10_1088_1742_6596_2571_1_012013
crossref_primary_10_3390_plants11131697
crossref_primary_10_1007_s00521_024_10226_x
crossref_primary_10_1016_j_molp_2022_11_004
crossref_primary_10_54365_adyumbd_1075265
crossref_primary_10_1016_j_sca_2024_100099
crossref_primary_10_2196_48535
crossref_primary_10_1016_j_matpr_2022_03_115
crossref_primary_10_1016_j_compag_2020_105709
crossref_primary_10_33003_fjs_2024_0801_2220
crossref_primary_10_3390_s22176609
crossref_primary_10_1016_j_compag_2023_107663
crossref_primary_10_1016_j_eswa_2023_120098
crossref_primary_10_1007_s44163_024_00209_1
crossref_primary_10_3389_fsufs_2024_1428466
crossref_primary_10_48084_etasr_9247
crossref_primary_10_3390_rs14092256
crossref_primary_10_1016_j_geoen_2024_213380
crossref_primary_10_1007_s12517_023_11754_x
crossref_primary_10_3390_min13010128
crossref_primary_10_1016_j_isci_2020_101890
crossref_primary_10_1007_s10666_023_09920_2
crossref_primary_10_1142_S0218001422570075
crossref_primary_10_1016_j_jag_2024_104172
crossref_primary_10_3389_fpls_2023_1128388
crossref_primary_10_3390_agronomy14040777
crossref_primary_10_1007_s11227_022_04738_3
crossref_primary_10_1007_s42979_023_02259_1
crossref_primary_10_1007_s11738_024_03754_5
crossref_primary_10_1109_ACCESS_2024_3390581
crossref_primary_10_3390_agronomy14020361
crossref_primary_10_3390_cli13020033
crossref_primary_10_34133_plantphenomics_0178
crossref_primary_10_1016_j_heliyon_2023_e15245
crossref_primary_10_1016_j_cj_2021_03_015
crossref_primary_10_1016_j_compag_2022_107119
crossref_primary_10_3390_agronomy14081760
crossref_primary_10_1016_j_seta_2023_103263
crossref_primary_10_1016_j_seta_2024_104057
crossref_primary_10_1038_s41598_022_06249_w
crossref_primary_10_1080_01431161_2024_2368930
crossref_primary_10_3390_agronomy11122576
crossref_primary_10_1038_s41598_024_80327_z
crossref_primary_10_1186_s12859_024_05940_1
crossref_primary_10_3390_su17062662
crossref_primary_10_3390_agriculture11030222
crossref_primary_10_3390_rs15235551
crossref_primary_10_3390_agronomy9120833
crossref_primary_10_1080_15481603_2024_2367808
crossref_primary_10_3390_f14010026
crossref_primary_10_3390_app132413305
crossref_primary_10_1016_j_atech_2024_100718
crossref_primary_10_1016_j_jag_2023_103269
crossref_primary_10_3390_rs15123075
crossref_primary_10_1016_j_ecoinf_2024_102595
crossref_primary_10_1109_ACCESS_2023_3331762
crossref_primary_10_1007_s00521_021_06033_3
crossref_primary_10_1007_s11042_023_16807_7
crossref_primary_10_3390_rs15030799
crossref_primary_10_1016_j_suscom_2021_100577
crossref_primary_10_1007_s11356_024_32430_x
crossref_primary_10_1016_j_infrared_2023_104960
crossref_primary_10_3390_agriculture12101707
crossref_primary_10_2478_plua_2024_0015
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_1002_ppp3_10568
crossref_primary_10_1007_s11119_023_10069_x
crossref_primary_10_1016_j_compag_2022_107217
crossref_primary_10_1038_s41598_021_97380_7
crossref_primary_10_1007_s11600_022_00854_z
crossref_primary_10_3390_plants10122707
crossref_primary_10_61186_jgst_14_1_1
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_3390_agriculture10070277
crossref_primary_10_1016_j_aiia_2022_09_007
crossref_primary_10_1007_s12652_024_04848_1
crossref_primary_10_1016_j_ecoinf_2022_101805
crossref_primary_10_1155_2023_6675523
crossref_primary_10_1016_j_aiia_2022_09_003
crossref_primary_10_1038_s41598_020_80820_1
crossref_primary_10_1016_j_agsy_2024_104099
crossref_primary_10_3390_rs15204935
crossref_primary_10_1007_s11042_022_13919_4
crossref_primary_10_1016_j_compag_2023_108034
crossref_primary_10_3390_agriculture12030318
crossref_primary_10_3390_agriculture13030661
crossref_primary_10_1016_j_compag_2021_106578
crossref_primary_10_1109_JSTARS_2024_3361556
crossref_primary_10_1088_2515_7620_ad85c5
crossref_primary_10_1016_j_jag_2024_103965
crossref_primary_10_1007_s41870_024_01762_9
crossref_primary_10_1002_agj2_70012
crossref_primary_10_3389_frsen_2022_1010978
crossref_primary_10_3390_rs13224605
crossref_primary_10_3390_rs13193976
crossref_primary_10_1109_ACCESS_2022_3196784
crossref_primary_10_3389_fpls_2023_1130659
crossref_primary_10_1007_s42853_023_00209_6
crossref_primary_10_1016_j_geoen_2023_212528
crossref_primary_10_3389_fpls_2021_709008
crossref_primary_10_3390_plants13040526
crossref_primary_10_3389_fpls_2021_701192
crossref_primary_10_1080_01140671_2024_2409775
crossref_primary_10_1111_ppa_13988
crossref_primary_10_1093_hr_uhad286
crossref_primary_10_3390_jmse11010200
crossref_primary_10_26898_0370_8799_2021_5_11
crossref_primary_10_3390_rs13214486
crossref_primary_10_3390_agriculture13061195
crossref_primary_10_1016_j_dajour_2023_100311
crossref_primary_10_2139_ssrn_4157416
crossref_primary_10_1016_j_ecoinf_2025_103011
crossref_primary_10_3390_agronomy11102068
crossref_primary_10_1002_advs_202204269
crossref_primary_10_1007_s11042_023_16754_3
crossref_primary_10_1016_j_jag_2022_102764
crossref_primary_10_1016_j_scitotenv_2021_149726
crossref_primary_10_1016_j_inpa_2024_04_004
crossref_primary_10_7717_peerj_cs_1104
crossref_primary_10_1007_s11042_023_16113_2
crossref_primary_10_1016_j_atech_2024_100671
crossref_primary_10_1016_j_chemolab_2024_105064
crossref_primary_10_3389_fpls_2023_1272049
crossref_primary_10_1007_s10994_023_06455_1
crossref_primary_10_1016_j_isprsjprs_2020_09_015
crossref_primary_10_3389_frai_2022_1040295
crossref_primary_10_1016_j_isprsjprs_2024_02_008
crossref_primary_10_3389_fpls_2023_1217448
crossref_primary_10_1016_j_compag_2020_105791
crossref_primary_10_3390_agronomy10050718
crossref_primary_10_3390_s24082432
crossref_primary_10_3389_fgene_2022_822173
crossref_primary_10_1007_s13201_023_01942_1
crossref_primary_10_1016_j_kjs_2023_11_009
crossref_primary_10_54097_hset_v50i_8489
crossref_primary_10_3390_make6020054
crossref_primary_10_3390_drones7020131
crossref_primary_10_1016_j_compag_2023_107930
crossref_primary_10_1088_1755_1315_1278_1_012004
crossref_primary_10_3390_su141711086
crossref_primary_10_1111_tpj_16790
crossref_primary_10_1016_j_atech_2022_100048
crossref_primary_10_3390_app142412020
crossref_primary_10_1007_s11042_025_20747_9
crossref_primary_10_1007_s00500_023_09110_y
crossref_primary_10_3390_rs13224632
crossref_primary_10_3389_fpls_2023_1070699
crossref_primary_10_1016_j_aiia_2023_05_001
crossref_primary_10_1093_bioinformatics_btad336
crossref_primary_10_1109_ACCESS_2021_3103903
crossref_primary_10_1038_s41598_021_89779_z
crossref_primary_10_1038_s41598_024_65140_y
crossref_primary_10_30605_perbal_v12i1_3173
crossref_primary_10_1016_j_compag_2024_109501
crossref_primary_10_1093_g3journal_jkad006
crossref_primary_10_1016_j_compag_2020_105785
crossref_primary_10_1109_ACCESS_2021_3075159
crossref_primary_10_3390_app11104499
crossref_primary_10_1016_j_est_2023_106645
Cites_doi 10.1371/journal.pone.0156571
10.1111/j.2517-6161.1996.tb02080.x
10.1016/0168-1923(92)90003-m
10.1109/ICASSP.2019.8682194
10.1088/1748-9326/ab5268
10.1162/neco.1997.9.8.1735
10.2135/cropsci1999.0011183x0039000200026x
10.2135/cropsci1989.0011183x002900010023x
10.1111/gcbb.12314
10.3390/agronomy9120833
10.3390/agriculture9030054
10.1016/j.compag.2013.05.006
10.2134/agronj2010.0303
10.1109/tie.2016.2582729
10.3389/fpls.2019.00621
10.1016/j.jag.2005.06.002
10.1016/j.compag.2019.104872
10.2134/agronj2018.04.0297
10.1016/0893-6080(89)90020-8
10.1109/ICFHR.2014.55
10.3390/ijgi8050240
10.1023/A:1010933404324
10.1016/j.agwat.2012.07.003
10.1145/3209811.3212707
10.1016/j.fcr.2019.02.022
10.13031/2013.6097
10.1038/nature14539
10.1016/j.wace.2015.08.001
10.1080/0143116031000150068
10.13031/2013.12541
10.1007/s10584-017-1997-x
10.1016/0308-521X(92)90022-G
10.1109/72.279181
10.1007/978-94-017-3624-4_3
10.1038/ncomms13931
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Copyright © 2020 Khaki, Wang and Archontoulis.
Copyright © 2020 Khaki, Wang and Archontoulis 2020 Khaki, Wang and Archontoulis
Copyright_xml – notice: Copyright © 2020 Khaki, Wang and Archontoulis.
– notice: Copyright © 2020 Khaki, Wang and Archontoulis 2020 Khaki, Wang and Archontoulis
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.01750
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_f051676c95834e76a19a10d5219382be
PMC6993602
32038699
10_3389_fpls_2019_01750
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-1d94b74ff48c5a92be86d01387e553babe40ac2a02c2ffa5544e4bba72333cdb3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 00:54:11 EDT 2025
Thu Aug 21 17:53:02 EDT 2025
Thu Sep 04 19:04:14 EDT 2025
Thu Jan 02 22:37:22 EST 2025
Tue Jul 01 02:06:26 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
crop yield prediction
convolutional neural networks
recurrent neural networks
feature selection
Language English
License Copyright © 2020 Khaki, Wang and Archontoulis.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1d94b74ff48c5a92be86d01387e553babe40ac2a02c2ffa5544e4bba72333cdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Plant Science
Edited by: Madhuchhanda Bhattacharjee, University of Hyderabad, India
Reviewed by: Milind B. Ratnaparkhe, ICAR Indian Institute of Soybean Research, India; Hao Wang, University of Georgia, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.01750
PMID 32038699
PQID 2353007667
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f051676c95834e76a19a10d5219382be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993602
proquest_miscellaneous_2353007667
pubmed_primary_32038699
crossref_primary_10_3389_fpls_2019_01750
crossref_citationtrail_10_3389_fpls_2019_01750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-24
PublicationDateYYYYMMDD 2020-01-24
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hornik (B21) 1989; 2
Kiranyaz (B31) 2019
Srivastava (B45) 2014; 15
You (B52) 2017
Ince (B22) 2016; 63
Glorot (B12) 2010
Romero (B39) 2013; 96
Baum (B5) 2018; 111
LeCun (B32) 2015; 521
Hatfield (B17) 2018; 146
Borovykh (B7) 2017
Goodfellow (B13) 2016
Wang (B50) 2018
Shahhosseini (B41) 2019
Springenberg (B44) 2014
Awad (B4) 2019; 9
Kingma (B30) 2014
Schauberger (B40) 2017; 8
Yang (B51) 2019; 235
Pham (B35) 2014
Ng (B34) 2004
Thornton (B47) 2018
Abadi (B1) 2016
He (B18) 2016
Ransom (B37) 2019; 164
(B49) 2019
(B14) 2019
Hochreiter (B19) 1997; 9
Horie (B20) 1992; 40
Ritchie (B38) 1998
Egli (B10) 1992; 62
Hatfield (B16) 2011; 103
Khaki (B28) 2019
Jiang (B25) 2004; 25
Fukuda (B11) 2013; 116
Andrade (B2) 1999; 39
Breiman (B8) 2001; 45
Khaki (B26) 2019
Jeong (B24) 2016; 11
Kim (B29) 2019; 8
Archontoulis (B3) 2016; 8
Tibshirani (B48) 1996; 58
Prasad (B36) 2006; 8
Liu (B33) 2001; 44
Sinclair (B43) 1989; 29
Szegedy (B46) 2015
Bengio (B6) 1994; 5
Hatfield (B15) 2015; 10
Ioffe (B23) 2015
Sherstinsky (B42) 2018
Drummond (B9) 2003; 46
Khaki (B27) 2019; 10
References_xml – volume: 11
  year: 2016
  ident: B24
  article-title: Random forests for global and regional crop yield predictions
  publication-title: PloS One
  doi: 10.1371/journal.pone.0156571
– volume: 58
  start-page: 267
  year: 1996
  ident: B48
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 62
  start-page: 19
  year: 1992
  ident: B10
  article-title: Planting date and soybean yield: evaluation of environmental effects with a crop simulation model: Soygro
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(92)90003-m
– year: 2017
  ident: B7
  article-title: Conditional time series forecasting with convolutional neural networks
– volume-title: Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS
  year: 2019
  ident: B14
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B18
  article-title: Deep residual learning for image recognition
– start-page: 8360
  volume-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2019
  ident: B31
  article-title: 1-d convolutional neural networks for signal processing applications
  doi: 10.1109/ICASSP.2019.8682194
– start-page: 265
  volume-title: 12th USENIX Symposium on Operating Systems Design and Implementation
  year: 2016
  ident: B1
  article-title: TensorFlow: A system for large scale machine learning
– year: 2019
  ident: B41
  article-title: Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms
  doi: 10.1088/1748-9326/ab5268
– volume: 9
  start-page: 1735
  year: 1997
  ident: B19
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 39
  start-page: 453
  year: 1999
  ident: B2
  article-title: Kernel number determination in maize
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1999.0011183x0039000200026x
– volume: 29
  start-page: 90
  year: 1989
  ident: B43
  article-title: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1989.0011183x002900010023x
– volume: 8
  start-page: 1028
  year: 2016
  ident: B3
  article-title: A model for mechanistic and system assessments of biochar effects on soils and crops and trade-offs
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12314
– year: 2015
  ident: B23
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– year: 2019
  ident: B26
  article-title: Classification of crop tolerance to heat and drought: A deep convolutional neural networks approach
  doi: 10.3390/agronomy9120833
– volume-title: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3
  year: 2018
  ident: B47
– start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: B12
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume-title: Source Code
  year: 2019
  ident: B28
– volume: 9
  start-page: 54
  year: 2019
  ident: B4
  article-title: Toward precision in crop yield estimation using remote sensing and optimization techniques
  publication-title: Agriculture
  doi: 10.3390/agriculture9030054
– volume: 96
  start-page: 173
  year: 2013
  ident: B39
  article-title: Using classification algorithms for predicting durum wheat yield in the province of buenos aires
  publication-title: Comput. Electron. In Agric.
  doi: 10.1016/j.compag.2013.05.006
– volume: 103
  start-page: 351
  year: 2011
  ident: B16
  article-title: Climate impacts on agriculture: implications for crop production
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0303
– volume: 63
  start-page: 7067
  year: 2016
  ident: B22
  article-title: Real-time motor fault detection by 1-d convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/tie.2016.2582729
– year: 2014
  ident: B30
  article-title: Adam: A method for stochastic optimization
– year: 2014
  ident: B44
  article-title: Striving for simplicity: The all convolutional net
– start-page: 78
  volume-title: Proceedings of the Twenty-first International Conference on Machine learning
  year: 2004
  ident: B34
  article-title: Feature selection, L1 vs. L2 regularization, and rotational invariance
– year: 2018
  ident: B42
  article-title: Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network
– volume-title: USDA - National Agricultural Statistics Service
  year: 2019
  ident: B49
– volume: 15
  start-page: 1929
  year: 2014
  ident: B45
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 10
  year: 2019
  ident: B27
  article-title: Crop yield prediction using deep neural networks
  publication-title: Front. In Plant Sci.
  doi: 10.3389/fpls.2019.00621
– volume: 8
  start-page: 26
  year: 2006
  ident: B36
  article-title: Crop yield estimation model for iowa using remote sensing and surface parameters
  publication-title: Int. J. Appl. Earth Observation Geoinformation
  doi: 10.1016/j.jag.2005.06.002
– volume: 164
  start-page: 104872
  year: 2019
  ident: B37
  article-title: Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104872
– volume: 111
  start-page: 1
  year: 2018
  ident: B5
  article-title: Planting date, hybrid maturity, and weather effects on maize yield and crop stage
  publication-title: Agron. J
  doi: 10.2134/agronj2018.04.0297
– volume: 2
  start-page: 359
  year: 1989
  ident: B21
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 285
  volume-title: 14th International Conference on Frontiers in Handwriting Recognition
  year: 2014
  ident: B35
  article-title: Dropout improves recurrent neural networks for handwriting recognition
  doi: 10.1109/ICFHR.2014.55
– volume: 8
  start-page: 240
  year: 2019
  ident: B29
  article-title: A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern united states, 2006–2015
  publication-title: ISPRS Int. J. Geo-Information
  doi: 10.3390/ijgi8050240
– volume: 45
  start-page: 5
  year: 2001
  ident: B8
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 116
  start-page: 142
  year: 2013
  ident: B11
  article-title: Random forests modelling for the estimation of mango (mangifera indica l. cv. chok anan) fruit yields under different irrigation regimes
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2012.07.003
– start-page: 50
  volume-title: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies
  year: 2018
  ident: B50
  article-title: Deep transfer learning for crop yield prediction with remote sensing data
  doi: 10.1145/3209811.3212707
– volume: 235
  start-page: 142
  year: 2019
  ident: B51
  article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using uav-based remotely sensed images
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.02.022
– volume: 44
  start-page: 705
  year: 2001
  ident: B33
  article-title: A neural network for setting target corn yields
  publication-title: Trans. ASAE
  doi: 10.13031/2013.6097
– volume: 521
  start-page: 436
  year: 2015
  ident: B32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 10
  start-page: 4
  year: 2015
  ident: B15
  article-title: Temperature extremes: Effect on plant growth and development
  publication-title: Weather Climate Extremes
  doi: 10.1016/j.wace.2015.08.001
– volume: 25
  start-page: 1723
  year: 2004
  ident: B25
  article-title: An artificial neural network model for estimating crop yields using remotely sensed information
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000150068
– volume: 46
  start-page: 5
  year: 2003
  ident: B9
  article-title: Statistical and neural methods for site–specific yield prediction
  publication-title: Trans. ASAE
  doi: 10.13031/2013.12541
– volume-title: Deep Learning
  year: 2016
  ident: B13
– volume: 146
  start-page: 263
  year: 2018
  ident: B17
  article-title: Vulnerability of grain crops and croplands in the midwest to climatic variability and adaptation strategies
  publication-title: Clim. Change
  doi: 10.1007/s10584-017-1997-x
– volume: 40
  start-page: 211
  year: 1992
  ident: B20
  article-title: Yield forecasting
  publication-title: Agric. Syst.
  doi: 10.1016/0308-521X(92)90022-G
– volume: 5
  start-page: 157
  year: 1994
  ident: B6
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.279181
– start-page: 41
  volume-title: Understanding Options for Agricultural Production
  year: 1998
  ident: B38
  article-title: Soil water balance and plant water stress
  doi: 10.1007/978-94-017-3624-4_3
– start-page: 4559
  volume-title: Thirty-First AAAI Conference on Artificial Intelligence
  year: 2017
  ident: B52
  article-title: Deep gaussian process for crop yield prediction based on remote sensing data
– volume: 8
  start-page: 13931
  year: 2017
  ident: B40
  article-title: Consistent negative response of us crops to high temperatures in observations and crop models
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13931
– year: 2015
  ident: B46
  article-title: Going deeper with convolutions (Cvpr)
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition,
  doi: 10.1109/CVPR.2015.7298594
SSID ssj0000500997
Score 2.67013
Snippet Crop yield prediction is extremely challenging due to its dependence on multiple factors such as crop genotype, environmental factors, management practices,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1750
SubjectTerms convolutional neural networks
crop yield prediction
deep learning
feature selection
Plant Science
recurrent neural networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na-MwEBWl9LCXZb_autstLvTQixJZkvVxbEND2YMppYX0ZCRZogvBCSE57L_fGTsJSdmyl73aEpLfk603zPiJkKtQqMhCY6mOylNpuKQmMkO1bbjWHi3EumqLSt0_y5-TcrJz1BfWhPX2wD1wwwSrRmkVbGmEjFq5wrqCNbDrWGG4j_j1ZZbtBFO9qzdKH917-UAUZodpPkV37sIOYA3iX_Y721Dn1v83ifm2UnJn6xl_Ih_XmjG_6ef6mRzE9gs5up2Brvv9ldCbfFRV9LGq8vGm0ioHKZqPFrN5_oIVavnDAvMxyME38jy-exrd0_UhCDTI0i5p0VjptUxJmlA6C09sVIPpRR3LUnjno2QucMd44Ck5UAcySu-d5kKI0HhxTA7bWRtPSc4aAwFeSMk6IwvPnTM2GYAVOkXmZEYGG0zqsHYIx4MqpjVECghijSDWCGLdgZiR622HeW-O8X7TWwR52wxdrbsLwHW95rr-F9cZudxQVMNbgKkN18bZCgYSpcCkotIZOekp2w4lOBNGWZsRvUfm3lz277S_XjunbeglFONn_2Py38kHjrE6KyiX5-RwuVjFHyBolv6iW7t_AEb0738
  priority: 102
  providerName: Directory of Open Access Journals
Title A CNN-RNN Framework for Crop Yield Prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/32038699
https://www.proquest.com/docview/2353007667
https://pubmed.ncbi.nlm.nih.gov/PMC6993602
https://doaj.org/article/f051676c95834e76a19a10d5219382be
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQwoEL4k14rILEgYuLYzt-HBDarSgrDhFCVCqnyHYcQKqSEroS---ZcdJCUZG45JB4YnvGjr_JjL4h5EUoVGShsVRH5ak0XFITmaHaNlxrjxRiKduiUhdL-X5Vrn6XA5oU-OOoa4f1pJbDevbz-9Ub2PCv0eOE8_ZVu1kj8XZhZ7C80H-_noJFmMc3Yf2R6BvRUCq2opSkUvHVSPVz7B0Hp1Qi8z-GQP9OpPzjZFrcJrcmSJmfjWvgDrkWu7vkxnkPsO_qHqFn-byq6Meqyhe7RKwckGo-H_pN_hkT2PIPA4Zr0ET3yXLx9tP8gk41EmiQpd3SorHSa9m20oTSWe6jUQ1GH3UsS-Gdj5K5wB3jgbetA_Ago_TeaS6ECI0XD8hJ13fxEclZY8D_C21rnZGF584Z2xojJAhF5mRGZjud1GEiEMc6FusaHAlUYo1KrFGJdVJiRl7uBTYjd8a_m56jkvfNkPQ63eiHL_W0h-oWPiBKq2BLGFTUyhXWFawBAGKFgZln5PnORDVsEox8uC72l9CRKAXGHJXOyMPRZPuuBGfCKGszog-MeTCWwyfdt6-JiBukhGL88f_P8wm5ydFhZwXl8ik52Q6X8Rmgmq0_TX8D4PpuVZymlfsLP5PzLw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-RNN+Framework+for+Crop+Yield+Prediction&rft.jtitle=Frontiers+in+plant+science&rft.au=Khaki%2C+Saeed&rft.au=Wang%2C+Lizhi&rft.au=Archontoulis%2C+Sotirios+V.&rft.date=2020-01-24&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.01750&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2019_01750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon