Optimal trajectory planning for trains – A pseudospectral method and a mixed integer linear programming approach
► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance. The optimal trajectory planning problem for trai...
        Saved in:
      
    
          | Published in | Transportation research. Part C, Emerging technologies Vol. 29; pp. 97 - 114 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier India Pvt Ltd
    
        01.04.2013
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0968-090X 1879-2359  | 
| DOI | 10.1016/j.trc.2013.01.007 | 
Cover
| Abstract | ► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance.
The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach. | 
    
|---|---|
| AbstractList | The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach. ► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance. The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach.  | 
    
| Author | van den Boom, Ton J.J. De Schutter, Bart Ning, Bin Wang, Yihui  | 
    
| Author_xml | – sequence: 1 givenname: Yihui surname: Wang fullname: Wang, Yihui email: yihui.wang@tudelft.nl organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands – sequence: 2 givenname: Bart surname: De Schutter fullname: De Schutter, Bart email: b.deschutter@tudelft.nl organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands – sequence: 3 givenname: Ton J.J. surname: van den Boom fullname: van den Boom, Ton J.J. email: a.j.j.vandenboom@tudelft.nl organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands – sequence: 4 givenname: Bin surname: Ning fullname: Ning, Bin email: bning@bjtu.edu.cn organization: State Key Laboratory of Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, PR China  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27159333$$DView record in Pascal Francis | 
    
| BookMark | eNqFkc1qVDEYhoNUcFq9AHfZCG7mmJ85yQRXpWgrFLpRcBe-Sb4zzXBOckwyYnfeg3folZjD1I2Luggh4X2ekO89J2cxRSTkNWcdZ1y9O3Q1u04wLjvGO8b0M7LiW23WQvbmjKyYUds1M-zrC3JeyoExxk2vVyTfzTVMMNKa4YCupvxA5xFiDHFPh5SX-xAL_f3zF72kc8GjT2VuwdyYCet98hRiW3QKP9DTECvuMdMxRIRM55z2GaZpscHcTuDuX5LnA4wFXz3uF-TLxw-fr27Wt3fXn64ub9du05u65q6Xu50Xu8F4ZYR2oIVx2ilkHHrkUoPyW9htBiU0DJ4prpjGwaNisJFaXpC3J2979tsRS7VTKA7H9jtMx2K50rznvTTy_1EppFDM9KJF3zxGoTgYhwzRhWLn3KaYH6xoziZclPqUczmVknGwLlSoIcVloqPlzC7F2YNtxdmlOMu4bcU1kv9D_pU_xbw_MdgG-j1gtsUFjA59yK0s61N4gv4DomG1Ww | 
    
| CitedBy_id | crossref_primary_10_1016_j_ejor_2024_10_005 crossref_primary_10_1016_j_trc_2018_08_008 crossref_primary_10_1109_TITS_2016_2577037 crossref_primary_10_1016_j_trc_2018_08_009 crossref_primary_10_1007_s42524_021_0173_1 crossref_primary_10_1016_j_conengprac_2022_105430 crossref_primary_10_1016_j_trb_2016_08_002 crossref_primary_10_1080_23249935_2017_1332113 crossref_primary_10_1007_s00170_016_9466_7 crossref_primary_10_1016_j_trc_2024_104626 crossref_primary_10_2139_ssrn_4183580 crossref_primary_10_1109_TSMC_2020_3000073 crossref_primary_10_1109_TITS_2020_2970000 crossref_primary_10_23919_cje_2022_00_189 crossref_primary_10_1061_JTEPBS_0000473 crossref_primary_10_1016_j_cie_2018_09_024 crossref_primary_10_1109_TITS_2015_2445920 crossref_primary_10_1016_j_trc_2020_102680 crossref_primary_10_1016_j_jrtpm_2023_100391 crossref_primary_10_1109_TITS_2014_2334061 crossref_primary_10_1155_2018_7308058 crossref_primary_10_1016_j_trc_2016_06_008 crossref_primary_10_1016_j_trc_2021_103249 crossref_primary_10_1109_TCST_2022_3140805 crossref_primary_10_3390_en12183573 crossref_primary_10_1007_s10479_018_2877_0 crossref_primary_10_1016_j_ejor_2016_09_044 crossref_primary_10_1016_j_jrtpm_2023_100393 crossref_primary_10_1109_TTE_2024_3389960 crossref_primary_10_1016_j_trb_2018_06_006 crossref_primary_10_1002_atr_1441 crossref_primary_10_1016_j_conengprac_2023_105605 crossref_primary_10_1016_j_apm_2016_04_015 crossref_primary_10_3390_eng5030086 crossref_primary_10_1016_j_est_2024_113498 crossref_primary_10_3390_a17050190 crossref_primary_10_1016_j_trc_2023_104059 crossref_primary_10_1016_j_trb_2018_06_011 crossref_primary_10_1016_j_knosys_2019_105173 crossref_primary_10_1016_j_jclepro_2022_135773 crossref_primary_10_1177_0954409718772133 crossref_primary_10_1177_0361198120938052 crossref_primary_10_1016_j_trb_2021_10_010 crossref_primary_10_1016_j_trc_2016_05_019 crossref_primary_10_1016_j_trc_2023_104170 crossref_primary_10_1109_TTE_2021_3050470 crossref_primary_10_1177_0361198118776508 crossref_primary_10_3390_en11030478 crossref_primary_10_1109_TTE_2020_2983855 crossref_primary_10_1007_s43069_023_00248_x crossref_primary_10_3390_en10060794 crossref_primary_10_3390_en13051115 crossref_primary_10_1109_TVT_2021_3099529 crossref_primary_10_1109_TITS_2019_2939358 crossref_primary_10_1080_00207179_2015_1025430 crossref_primary_10_1109_TTE_2021_3059111 crossref_primary_10_1049_itr2_12482 crossref_primary_10_1016_j_isatra_2021_04_036 crossref_primary_10_1016_j_trc_2023_104202 crossref_primary_10_1109_TITS_2021_3105380 crossref_primary_10_1016_j_apm_2023_12_002 crossref_primary_10_1007_s11768_020_0001_x crossref_primary_10_1016_j_jfranklin_2017_07_004 crossref_primary_10_1016_j_trb_2016_12_016 crossref_primary_10_1016_j_cor_2023_106198 crossref_primary_10_1016_j_jrtpm_2013_10_001 crossref_primary_10_3390_a12080173 crossref_primary_10_1016_j_trb_2017_05_008 crossref_primary_10_2139_ssrn_4184574 crossref_primary_10_1016_j_simpat_2018_01_006 crossref_primary_10_15302_J_FEM_2017042 crossref_primary_10_1016_j_conengprac_2017_02_006 crossref_primary_10_1109_TITS_2015_2391831 crossref_primary_10_1049_itr2_12509 crossref_primary_10_1109_TITS_2013_2263532 crossref_primary_10_1016_j_trc_2016_08_011 crossref_primary_10_1109_TSMC_2019_2957299 crossref_primary_10_1299_mej_22_00360 crossref_primary_10_1109_TITS_2018_2846480 crossref_primary_10_1016_j_trc_2015_04_016 crossref_primary_10_1080_03081060_2025_2457048 crossref_primary_10_1109_TITS_2019_2912038 crossref_primary_10_1016_j_ejor_2020_10_018 crossref_primary_10_1109_TITS_2014_2320757 crossref_primary_10_1049_itr2_12193 crossref_primary_10_1541_ieejias_144_102 crossref_primary_10_1109_TITS_2023_3345739 crossref_primary_10_1016_j_conengprac_2013_09_011 crossref_primary_10_1109_TITS_2023_3277452 crossref_primary_10_1109_TIA_2021_3102881 crossref_primary_10_20295_1815_588X_2025_1_75_84 crossref_primary_10_1109_TITS_2020_3040730 crossref_primary_10_1109_TITS_2023_3331901 crossref_primary_10_3390_axioms12050489 crossref_primary_10_1002_eej_23114 crossref_primary_10_1109_TITS_2014_2323116 crossref_primary_10_1016_j_tre_2020_102007 crossref_primary_10_1109_TITS_2018_2881156 crossref_primary_10_1016_j_jrtpm_2023_100405 crossref_primary_10_1016_j_trc_2023_104148 crossref_primary_10_1080_0305215X_2017_1358712 crossref_primary_10_1002_rnc_7082 crossref_primary_10_1016_j_trc_2024_104943 crossref_primary_10_3390_en13226038 crossref_primary_10_1016_j_trc_2025_105076 crossref_primary_10_1016_j_trc_2017_09_009 crossref_primary_10_1016_j_trc_2021_103209 crossref_primary_10_1016_j_ejtl_2020_100013 crossref_primary_10_3390_en13184933 crossref_primary_10_1109_TTE_2023_3291535 crossref_primary_10_3390_en16186712 crossref_primary_10_1109_TVT_2023_3262345 crossref_primary_10_3390_su132111933 crossref_primary_10_1177_10775463211003395 crossref_primary_10_1016_j_trb_2017_09_012 crossref_primary_10_2139_ssrn_4157090 crossref_primary_10_3390_en11123302 crossref_primary_10_1109_TITS_2022_3155628 crossref_primary_10_1080_0305215X_2020_1746782 crossref_primary_10_1080_10556788_2019_1604704 crossref_primary_10_1016_j_jrtpm_2024_100462 crossref_primary_10_1016_j_jrtpm_2020_100180 crossref_primary_10_1016_j_jrtpm_2019_100163 crossref_primary_10_1016_j_trb_2021_08_003 crossref_primary_10_1049_itr2_12399 crossref_primary_10_1186_s10033_023_00891_9 crossref_primary_10_1177_0361198120937307 crossref_primary_10_1177_0954409716671546 crossref_primary_10_1155_2023_6649871 crossref_primary_10_1016_j_trc_2015_07_012 crossref_primary_10_3390_su15129238 crossref_primary_10_1109_TASE_2022_3225288 crossref_primary_10_2139_ssrn_4183320 crossref_primary_10_1109_TITS_2014_2364178 crossref_primary_10_1109_TTE_2021_3071251 crossref_primary_10_1177_09544097211042184 crossref_primary_10_1109_TITS_2020_3043577 crossref_primary_10_1016_j_ifacol_2023_10_761 crossref_primary_10_3390_app10217705 crossref_primary_10_3390_pr7020077 crossref_primary_10_3390_en13071836 crossref_primary_10_1016_j_knosys_2015_10_016 crossref_primary_10_3390_en15082891 crossref_primary_10_1109_TITS_2015_2478403 crossref_primary_10_1109_TTE_2023_3313772 crossref_primary_10_1080_00207179_2017_1286534 crossref_primary_10_1080_0305215X_2022_2047669 crossref_primary_10_1016_j_jclepro_2021_127163 crossref_primary_10_1016_j_retrec_2015_10_024 crossref_primary_10_1109_TITS_2023_3264503 crossref_primary_10_1109_TITS_2023_3318981 crossref_primary_10_1109_TC_2015_2500565 crossref_primary_10_1016_j_trc_2023_104113 crossref_primary_10_1016_j_trc_2017_06_011 crossref_primary_10_1016_j_trc_2022_103884 crossref_primary_10_1146_annurev_control_053018_023717 crossref_primary_10_2139_ssrn_4168511 crossref_primary_10_1016_j_trc_2019_03_020 crossref_primary_10_1007_s40999_019_00401_w crossref_primary_10_1016_j_etran_2021_100130 crossref_primary_10_23919_cje_2022_00_174  | 
    
| Cites_doi | 10.1016/j.tra.2003.07.001 10.1109/CACSD.2010.5612676 10.2514/2.4231 10.1524/auto.2002.50.12.606 10.1109/9.867018 10.1243/0954409001531306 10.1016/j.nahs.2009.08.003 10.1016/j.trc.2010.12.004 10.1016/j.trc.2009.04.001 10.1109/CDC.2007.4435052 10.1109/CDC.2000.914108 10.1007/s10589-007-9102-4 10.1007/s10479-005-3968-2 10.1137/S1052623499350013 10.1016/S0005-1098(98)00178-2 10.1109/CCA.2009.5281131 10.1017/S0962492900002440 10.2514/1.3426 10.1145/1731022.1731032 10.1016/j.trc.2007.11.001 10.1109/9.467672 10.1299/jsme1958.11.857 10.1007/s10107-004-0559-y 10.1243/0954409011530595 10.1016/j.trc.2007.07.006 10.1109/ITSC.2011.6082884 10.1049/ip-epa:20000329 10.1007/978-3-540-36119-0_4 10.1023/A:1019235819716 10.1017/S0334270000006780 10.1109/TITS.2006.888605 10.23919/ECC.2009.7074860  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7ST C1K SOI 8FD F28 FR3 KR7  | 
    
| DOI | 10.1016/j.trc.2013.01.007 | 
    
| DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Civil Engineering Abstracts Environment Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Engineering Applied Sciences  | 
    
| EISSN | 1879-2359 | 
    
| EndPage | 114 | 
    
| ExternalDocumentID | 27159333 10_1016_j_trc_2013_01_007 S0968090X13000193  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7ST C1K SOI 8FD F28 FR3 KR7  | 
    
| ID | FETCH-LOGICAL-c459t-1c53bbd2bf9d6927ca729c7c6e01a5e137a6d8ab4f627afd061607efde60a4373 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0968-090X | 
    
| IngestDate | Sun Sep 28 07:46:07 EDT 2025 Tue Oct 07 09:24:01 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Wed Oct 01 06:26:20 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 23 02:16:17 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Trajectory planning MILP Pseudospectral method Train operation Case study Optimal trajectory Problem solving Mixed integer programming Rail transportation Planning Running of trains Method study  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c459t-1c53bbd2bf9d6927ca729c7c6e01a5e137a6d8ab4f627afd061607efde60a4373 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1323260952 | 
    
| PQPubID | 23462 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_miscellaneous_1671515393 proquest_miscellaneous_1323260952 pascalfrancis_primary_27159333 crossref_citationtrail_10_1016_j_trc_2013_01_007 crossref_primary_10_1016_j_trc_2013_01_007 elsevier_sciencedirect_doi_10_1016_j_trc_2013_01_007  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-04-01 | 
    
| PublicationDateYYYYMMDD | 2013-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington | 
    
| PublicationTitle | Transportation research. Part C, Emerging technologies | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier India Pvt Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier India Pvt Ltd – name: Elsevier  | 
    
| References | Bryson, Ho (b0045) 1975 Tao (b0255) 1995 Pontryagin (b0210) 1962 Rao, Benson, Darby, Patterson, Francolin, Sanders (b0215) 2010; 37 Bemporad, Morari (b0030) 1999; 35 Ross, Fahroo (b0230) 2003 Becerra, V.M., 2010a. PSOPT Optimal Control Solver User Manual – Release 3. Ko, Koseki, Miyatake (b0175) 2004 Schank, T., 2011. A fast algorithm for computing the running-time of trains by infinitesimal calculus. In: Proceedings of the 4th International Seminar on Railway Operations Modelling and Analysis RailRome2011, Rome, Italy. Kanwal (b0165) 1983 Chang, Xu (b0060) 2000; 147 Rochard, Schmid (b0220) 2000; 214 Camacho, Bordons (b0050) 1995 Peng (b0205) 2008 D’Ariano, Albrecht (b0070) 2006 Williams (b0275) 1999 Mao (b0195) 2008 Green, Limebeer (b0135) 1995 Huerlimann, D., Nash, A.B., 2003. OPENTRACK – Simulation of railway networks, user manual version 1.3. Institute for Transportation Planning and Systems, ETH Zürich. Wang, Y., De Schutter, B., Ning, B., Groot, N., van den Boom, T., 2011. Optimal trajectory planning for trains using mixed integer linear programming. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), Washington, DC, USA, pp. 1598–1604. Gill, Murray, Saunders (b0120) 2002; 12 Krasemann (b0180) 2012; 20 Corman, A. D’Ariano, Pranzo (b0065) 2009; 17 Atkinson (b0010) 1978 D’Ariano, Pranzoand, Hansen (b0080) 2007; 8 Sundström, O., Guzzella, L., 2009. A generic dynamic programming matlab function. In: Proceedings of the18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, pp. 1625–1630. Gerber (b0115) 2001; 215 Liu, Golovicher (b0190) 2003; 37 Bettes, J.T., 2001. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Series on Advances in Design and Control, Philadelphia. Franke, R., Terwiesch, P., Meyer, M., 2003. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2123–2128. Vašak, M., Baotić, M., Perić, N., Bago, M., 2009. Optimal rail route energy management under constraints and fixed arrival time. In: Proceedings of the European Control Conference, Budapest, Hungary, pp. 2972–2977. Howlett (b0145) 2000; 98 Midya, Thottappillil (b0200) 2008; 16 Khmelnitsky (b0170) 2000; 45 Franke, Meyer, Terwiesch (b0100) 2002; 50 Gong, Q., Kang, W., Bedrossian, N., Fahroo, F., Sekhavat, P., Bollino, K., 2007. Pseudospectral optimal control for military and industrial applications. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4128–4142. Betts (b0040) 1998; 21 Gao (b0110) 2008 Ichikawa (b0160) 1968; 11 Hansen, Pachl (b0140) 2008 Becerra, V.M., 2010b. Solving complex optimal control problems at no cost with PSOPT. In: Proceedings of IEEE Multi-Conference on Systems and Control, Yokohama, Japan, pp. 1391–1396. Canuto, Hussaini, Quarteroni, Zang (b0055) 1988 Dielh, M., Bock, H.G., Diedam, H., Wieber, P.B., 2006. Fast direct multiple shooting algorithm for optimal robot control, in: Fast motions in Biomechanics and Robotics Optimization and Feedback Control, Lecture Notes in Control and Information Sciences, pp. 65–94. Rutquist, Edvall (b0240) 2008 Gong, Ross, Kang, Fahroo (b0130) 2008; 41 D’Ariano, Pacciarelli, Pranzo (b0075) 2008; 16 Howlett (b0150) 1990; 31 Azuma, Imura, Sugie (b0015) 2010; 4 Ross, Fahroo (b0235) 2004; 27 Linderoth, J., Ralphs, T., 2005. Noncommercial software for mixed-integer linear programming. Optimization Online. Ross (b0225) 2004 Elnagar, Kazemi, Razzaghi (b0090) 1995; 40 Fornberg, Sloan (b0095) 1994; 3 Atamtürk, Savelsbergh (b0005) 2005; 140 Wächter, Biegler (b0265) 2006; 106 Atamtürk (10.1016/j.trc.2013.01.007_b0005) 2005; 140 Hansen (10.1016/j.trc.2013.01.007_b0140) 2008 Franke (10.1016/j.trc.2013.01.007_b0100) 2002; 50 Ross (10.1016/j.trc.2013.01.007_b0230) 2003 10.1016/j.trc.2013.01.007_b0085 Howlett (10.1016/j.trc.2013.01.007_b0150) 1990; 31 Ross (10.1016/j.trc.2013.01.007_b0235) 2004; 27 Canuto (10.1016/j.trc.2013.01.007_b0055) 1988 Bemporad (10.1016/j.trc.2013.01.007_b0030) 1999; 35 10.1016/j.trc.2013.01.007_b0245 Tao (10.1016/j.trc.2013.01.007_b0255) 1995 Rochard (10.1016/j.trc.2013.01.007_b0220) 2000; 214 Gao (10.1016/j.trc.2013.01.007_b0110) 2008 10.1016/j.trc.2013.01.007_b0125 Chang (10.1016/j.trc.2013.01.007_b0060) 2000; 147 Green (10.1016/j.trc.2013.01.007_b0135) 1995 Liu (10.1016/j.trc.2013.01.007_b0190) 2003; 37 Azuma (10.1016/j.trc.2013.01.007_b0015) 2010; 4 Mao (10.1016/j.trc.2013.01.007_b0195) 2008 Wächter (10.1016/j.trc.2013.01.007_b0265) 2006; 106 Peng (10.1016/j.trc.2013.01.007_b0205) 2008 Bryson (10.1016/j.trc.2013.01.007_b0045) 1975 10.1016/j.trc.2013.01.007_b0250 Atkinson (10.1016/j.trc.2013.01.007_b0010) 1978 Williams (10.1016/j.trc.2013.01.007_b0275) 1999 Khmelnitsky (10.1016/j.trc.2013.01.007_b0170) 2000; 45 Ross (10.1016/j.trc.2013.01.007_b0225) 2004 Corman (10.1016/j.trc.2013.01.007_b0065) 2009; 17 Rutquist (10.1016/j.trc.2013.01.007_b0240) 2008 Krasemann (10.1016/j.trc.2013.01.007_b0180) 2012; 20 Betts (10.1016/j.trc.2013.01.007_b0040) 1998; 21 D’Ariano (10.1016/j.trc.2013.01.007_b0070) 2006 Elnagar (10.1016/j.trc.2013.01.007_b0090) 1995; 40 Gill (10.1016/j.trc.2013.01.007_b0120) 2002; 12 D’Ariano (10.1016/j.trc.2013.01.007_b0080) 2007; 8 10.1016/j.trc.2013.01.007_b0260 10.1016/j.trc.2013.01.007_b0020 10.1016/j.trc.2013.01.007_b0185 D’Ariano (10.1016/j.trc.2013.01.007_b0075) 2008; 16 10.1016/j.trc.2013.01.007_b0025 Camacho (10.1016/j.trc.2013.01.007_b0050) 1995 Gerber (10.1016/j.trc.2013.01.007_b0115) 2001; 215 Pontryagin (10.1016/j.trc.2013.01.007_b0210) 1962 10.1016/j.trc.2013.01.007_b0105 Ichikawa (10.1016/j.trc.2013.01.007_b0160) 1968; 11 Gong (10.1016/j.trc.2013.01.007_b0130) 2008; 41 Rao (10.1016/j.trc.2013.01.007_b0215) 2010; 37 Ko (10.1016/j.trc.2013.01.007_b0175) 2004 10.1016/j.trc.2013.01.007_b0270 Kanwal (10.1016/j.trc.2013.01.007_b0165) 1983 Howlett (10.1016/j.trc.2013.01.007_b0145) 2000; 98 10.1016/j.trc.2013.01.007_b0155 10.1016/j.trc.2013.01.007_b0035 Midya (10.1016/j.trc.2013.01.007_b0200) 2008; 16 Fornberg (10.1016/j.trc.2013.01.007_b0095) 1994; 3  | 
    
| References_xml | – year: 1999 ident: b0275 article-title: Model Building in Mathematical Programming – volume: 140 start-page: 67 year: 2005 end-page: 124 ident: b0005 article-title: Integer-programming software systems publication-title: Annals of Operations Research – reference: Wang, Y., De Schutter, B., Ning, B., Groot, N., van den Boom, T., 2011. Optimal trajectory planning for trains using mixed integer linear programming. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), Washington, DC, USA, pp. 1598–1604. – volume: 11 start-page: 857 year: 1968 end-page: 865 ident: b0160 article-title: Application of optimization theory for bounded state variable problems to the operation of train publication-title: Japan Society of Mechanical Engineers – volume: 50 start-page: 606 year: 2002 end-page: 614 ident: b0100 article-title: Optimal control of the driving of trains publication-title: Automatisierungstechnik – volume: 4 start-page: 92 year: 2010 end-page: 102 ident: b0015 article-title: Lebesgue piecewise affine approximation of nonlinear systems publication-title: Nonlinear Analysis: Hybrid Systems – reference: Linderoth, J., Ralphs, T., 2005. Noncommercial software for mixed-integer linear programming. Optimization Online. – volume: 106 start-page: 25 year: 2006 end-page: 57 ident: b0265 article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming – volume: 41 start-page: 307 year: 2008 end-page: 335 ident: b0130 article-title: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control publication-title: Computational optimization and applications – volume: 35 start-page: 407 year: 1999 end-page: 427 ident: b0030 article-title: Control of systems integrating logic, dynamics, and constraints publication-title: Automatica – volume: 3 start-page: 203 year: 1994 end-page: 267 ident: b0095 article-title: A review of pseudospectral methods for solving partial differential equations publication-title: Acta Numerica – reference: Franke, R., Terwiesch, P., Meyer, M., 2003. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2123–2128. – year: 1978 ident: b0010 article-title: An Introduction to Numerical Analysis – year: 1988 ident: b0055 article-title: Spectral Methods in Fluid Dynamics – volume: 31 start-page: 454 year: 1990 end-page: 471 ident: b0150 article-title: The optimal strategy for the control of train publication-title: Journal of the Australian Mathematical Society. Series B. Applied Mathematics – year: 2008 ident: b0205 article-title: Urban Rail Transit System – reference: Bettes, J.T., 2001. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Series on Advances in Design and Control, Philadelphia. – volume: 12 start-page: 979 year: 2002 end-page: 1006 ident: b0120 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM Journal on Optimization – reference: Gong, Q., Kang, W., Bedrossian, N., Fahroo, F., Sekhavat, P., Bollino, K., 2007. Pseudospectral optimal control for military and industrial applications. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4128–4142. – year: 1962 ident: b0210 article-title: The Mathematical Theory of Optimal Processes – year: 2008 ident: b0140 article-title: Railway, Timetable & Traffic: Analysis, Modelling, Simulation – reference: Becerra, V.M., 2010a. PSOPT Optimal Control Solver User Manual – Release 3. – volume: 16 start-page: 232 year: 2008 end-page: 245 ident: b0075 article-title: Assessment of flexible timetables in real-time traffic management of a railway bottleneck publication-title: Transportation Research Part C: Emerging Technologies – year: 1995 ident: b0255 article-title: Adaptive Control Design and Analysis – volume: 147 start-page: 206 year: 2000 end-page: 212 ident: b0060 article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system publication-title: IEE Proceedings – Electric Power Applications – volume: 215 start-page: 25 year: 2001 end-page: 35 ident: b0115 article-title: Class re 465 locomotives for heavy-haul freight service publication-title: Proceedings of the Institution of Mechanical Engineers. Pt.F. Journal of Rail and Rapid Transit – volume: 27 start-page: 397 year: 2004 end-page: 405 ident: b0235 article-title: Pseudospectral knotting methods for solving optimal control problems publication-title: Journal of Guidance, Control, and Dynamics – reference: Sundström, O., Guzzella, L., 2009. A generic dynamic programming matlab function. In: Proceedings of the18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, pp. 1625–1630. – year: 2008 ident: b0195 article-title: The Calculation and Design of Train Operation – reference: Schank, T., 2011. A fast algorithm for computing the running-time of trains by infinitesimal calculus. In: Proceedings of the 4th International Seminar on Railway Operations Modelling and Analysis RailRome2011, Rome, Italy. – volume: 16 start-page: 515 year: 2008 end-page: 534 ident: b0200 article-title: An overview of electromagnetic compatibility challenges in European Rail Traffic Management system publication-title: Transportation Research Part C: Emerging Technologies – year: 2008 ident: b0110 article-title: Railway Signal Operation Basis – volume: 37 start-page: 917 year: 2003 end-page: 931 ident: b0190 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A: Policy and Practice – reference: Vašak, M., Baotić, M., Perić, N., Bago, M., 2009. Optimal rail route energy management under constraints and fixed arrival time. In: Proceedings of the European Control Conference, Budapest, Hungary, pp. 2972–2977. – reference: Becerra, V.M., 2010b. Solving complex optimal control problems at no cost with PSOPT. In: Proceedings of IEEE Multi-Conference on Systems and Control, Yokohama, Japan, pp. 1391–1396. – volume: 8 start-page: 208 year: 2007 end-page: 222 ident: b0080 article-title: Conflict resolution and train speed coordination for solving real-time timetable perturbations publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 98 start-page: 65 year: 2000 end-page: 87 ident: b0145 article-title: The optimal control of a train publication-title: Annals of Operations Research – start-page: 327 year: 2003 end-page: 342 ident: b0230 article-title: Legendre pseudospectral approximations of optimal control problems publication-title: New Trends in Nonlinear Dynamics and Control and their Applications – year: 2008 ident: b0240 article-title: PROPT: MATLAB Optimal Control Software – volume: 40 start-page: 1793 year: 1995 end-page: 1796 ident: b0090 article-title: The pseudospectral legendre method for discretizing optimal control problems publication-title: IEEE Transactions on Automatic Control – year: 1983 ident: b0165 article-title: Generalized Functions: Theory and Technique – year: 1995 ident: b0135 article-title: Linear Robust Control – reference: Dielh, M., Bock, H.G., Diedam, H., Wieber, P.B., 2006. Fast direct multiple shooting algorithm for optimal robot control, in: Fast motions in Biomechanics and Robotics Optimization and Feedback Control, Lecture Notes in Control and Information Sciences, pp. 65–94. – year: 2004 ident: b0225 article-title: Users Manual for DIDO: A MATLAB Application Package for Solving Optimal Control Problems – volume: 214 start-page: 185 year: 2000 end-page: 199 ident: b0220 article-title: A review of methods to measure and calculate train resistances publication-title: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit – volume: 45 start-page: 1257 year: 2000 end-page: 1266 ident: b0170 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control – volume: 37 start-page: 22:1 year: 2010 end-page: 22:39 ident: b0215 article-title: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method publication-title: ACM Transactions on Mathematical Software – year: 1975 ident: b0045 article-title: Applied Optimal Control – start-page: 103 year: 2004 end-page: 112 ident: b0175 article-title: Application of dynamic programming to optimization of running profile of a train publication-title: Computers in Railways IX – volume: 21 start-page: 193 year: 1998 end-page: 207 ident: b0040 article-title: Survey of numerical methods for trajectory optimization publication-title: Journal of Guidance, Control, and Dynamics – volume: 17 start-page: 607 year: 2009 end-page: 616 ident: b0065 article-title: Evaluation of green wave policy in real-time railway traffic management publication-title: Transportation Research Part C – year: 1995 ident: b0050 article-title: Model Predictive Control in the Process Industry – start-page: 531 year: 2006 end-page: 540 ident: b0070 article-title: Running time re-optimization during real-time timetable perturbations publication-title: Computers in Railways X – reference: Huerlimann, D., Nash, A.B., 2003. OPENTRACK – Simulation of railway networks, user manual version 1.3. Institute for Transportation Planning and Systems, ETH Zürich. – volume: 20 start-page: 62 year: 2012 end-page: 78 ident: b0180 article-title: Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances publication-title: Transportation Research Part C: Emerging Technologies – year: 1995 ident: 10.1016/j.trc.2013.01.007_b0255 – year: 1962 ident: 10.1016/j.trc.2013.01.007_b0210 – volume: 37 start-page: 917 year: 2003 ident: 10.1016/j.trc.2013.01.007_b0190 article-title: Energy-efficient operation of rail vehicles publication-title: Transportation Research Part A: Policy and Practice doi: 10.1016/j.tra.2003.07.001 – ident: 10.1016/j.trc.2013.01.007_b0025 doi: 10.1109/CACSD.2010.5612676 – volume: 21 start-page: 193 year: 1998 ident: 10.1016/j.trc.2013.01.007_b0040 article-title: Survey of numerical methods for trajectory optimization publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/2.4231 – volume: 50 start-page: 606 year: 2002 ident: 10.1016/j.trc.2013.01.007_b0100 article-title: Optimal control of the driving of trains publication-title: Automatisierungstechnik doi: 10.1524/auto.2002.50.12.606 – year: 1995 ident: 10.1016/j.trc.2013.01.007_b0050 – volume: 45 start-page: 1257 year: 2000 ident: 10.1016/j.trc.2013.01.007_b0170 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.867018 – volume: 214 start-page: 185 year: 2000 ident: 10.1016/j.trc.2013.01.007_b0220 article-title: A review of methods to measure and calculate train resistances publication-title: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit doi: 10.1243/0954409001531306 – year: 2008 ident: 10.1016/j.trc.2013.01.007_b0240 – year: 2008 ident: 10.1016/j.trc.2013.01.007_b0195 – ident: 10.1016/j.trc.2013.01.007_b0035 – volume: 4 start-page: 92 year: 2010 ident: 10.1016/j.trc.2013.01.007_b0015 article-title: Lebesgue piecewise affine approximation of nonlinear systems publication-title: Nonlinear Analysis: Hybrid Systems doi: 10.1016/j.nahs.2009.08.003 – volume: 20 start-page: 62 year: 2012 ident: 10.1016/j.trc.2013.01.007_b0180 article-title: Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2010.12.004 – year: 1988 ident: 10.1016/j.trc.2013.01.007_b0055 – volume: 17 start-page: 607 year: 2009 ident: 10.1016/j.trc.2013.01.007_b0065 article-title: Evaluation of green wave policy in real-time railway traffic management publication-title: Transportation Research Part C doi: 10.1016/j.trc.2009.04.001 – ident: 10.1016/j.trc.2013.01.007_b0125 doi: 10.1109/CDC.2007.4435052 – year: 2008 ident: 10.1016/j.trc.2013.01.007_b0205 – year: 2004 ident: 10.1016/j.trc.2013.01.007_b0225 – ident: 10.1016/j.trc.2013.01.007_b0105 doi: 10.1109/CDC.2000.914108 – volume: 41 start-page: 307 year: 2008 ident: 10.1016/j.trc.2013.01.007_b0130 article-title: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control publication-title: Computational optimization and applications doi: 10.1007/s10589-007-9102-4 – ident: 10.1016/j.trc.2013.01.007_b0020 – volume: 140 start-page: 67 year: 2005 ident: 10.1016/j.trc.2013.01.007_b0005 article-title: Integer-programming software systems publication-title: Annals of Operations Research doi: 10.1007/s10479-005-3968-2 – ident: 10.1016/j.trc.2013.01.007_b0185 – volume: 12 start-page: 979 year: 2002 ident: 10.1016/j.trc.2013.01.007_b0120 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623499350013 – volume: 35 start-page: 407 year: 1999 ident: 10.1016/j.trc.2013.01.007_b0030 article-title: Control of systems integrating logic, dynamics, and constraints publication-title: Automatica doi: 10.1016/S0005-1098(98)00178-2 – ident: 10.1016/j.trc.2013.01.007_b0250 doi: 10.1109/CCA.2009.5281131 – start-page: 327 year: 2003 ident: 10.1016/j.trc.2013.01.007_b0230 article-title: Legendre pseudospectral approximations of optimal control problems – start-page: 531 year: 2006 ident: 10.1016/j.trc.2013.01.007_b0070 article-title: Running time re-optimization during real-time timetable perturbations – volume: 3 start-page: 203 year: 1994 ident: 10.1016/j.trc.2013.01.007_b0095 article-title: A review of pseudospectral methods for solving partial differential equations publication-title: Acta Numerica doi: 10.1017/S0962492900002440 – volume: 27 start-page: 397 year: 2004 ident: 10.1016/j.trc.2013.01.007_b0235 article-title: Pseudospectral knotting methods for solving optimal control problems publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/1.3426 – start-page: 103 year: 2004 ident: 10.1016/j.trc.2013.01.007_b0175 article-title: Application of dynamic programming to optimization of running profile of a train – volume: 37 start-page: 22:1 year: 2010 ident: 10.1016/j.trc.2013.01.007_b0215 article-title: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method publication-title: ACM Transactions on Mathematical Software doi: 10.1145/1731022.1731032 – year: 1975 ident: 10.1016/j.trc.2013.01.007_b0045 – volume: 16 start-page: 515 year: 2008 ident: 10.1016/j.trc.2013.01.007_b0200 article-title: An overview of electromagnetic compatibility challenges in European Rail Traffic Management system publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2007.11.001 – ident: 10.1016/j.trc.2013.01.007_b0155 – year: 1978 ident: 10.1016/j.trc.2013.01.007_b0010 – volume: 40 start-page: 1793 year: 1995 ident: 10.1016/j.trc.2013.01.007_b0090 article-title: The pseudospectral legendre method for discretizing optimal control problems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.467672 – volume: 11 start-page: 857 year: 1968 ident: 10.1016/j.trc.2013.01.007_b0160 article-title: Application of optimization theory for bounded state variable problems to the operation of train publication-title: Japan Society of Mechanical Engineers doi: 10.1299/jsme1958.11.857 – ident: 10.1016/j.trc.2013.01.007_b0245 – year: 2008 ident: 10.1016/j.trc.2013.01.007_b0140 – volume: 106 start-page: 25 year: 2006 ident: 10.1016/j.trc.2013.01.007_b0265 article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming doi: 10.1007/s10107-004-0559-y – year: 2008 ident: 10.1016/j.trc.2013.01.007_b0110 – volume: 215 start-page: 25 year: 2001 ident: 10.1016/j.trc.2013.01.007_b0115 article-title: Class re 465 locomotives for heavy-haul freight service publication-title: Proceedings of the Institution of Mechanical Engineers. Pt.F. Journal of Rail and Rapid Transit doi: 10.1243/0954409011530595 – year: 1983 ident: 10.1016/j.trc.2013.01.007_b0165 – volume: 16 start-page: 232 year: 2008 ident: 10.1016/j.trc.2013.01.007_b0075 article-title: Assessment of flexible timetables in real-time traffic management of a railway bottleneck publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2007.07.006 – ident: 10.1016/j.trc.2013.01.007_b0270 doi: 10.1109/ITSC.2011.6082884 – volume: 147 start-page: 206 year: 2000 ident: 10.1016/j.trc.2013.01.007_b0060 article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system publication-title: IEE Proceedings – Electric Power Applications doi: 10.1049/ip-epa:20000329 – year: 1995 ident: 10.1016/j.trc.2013.01.007_b0135 – ident: 10.1016/j.trc.2013.01.007_b0085 doi: 10.1007/978-3-540-36119-0_4 – volume: 98 start-page: 65 year: 2000 ident: 10.1016/j.trc.2013.01.007_b0145 article-title: The optimal control of a train publication-title: Annals of Operations Research doi: 10.1023/A:1019235819716 – volume: 31 start-page: 454 year: 1990 ident: 10.1016/j.trc.2013.01.007_b0150 article-title: The optimal strategy for the control of train publication-title: Journal of the Australian Mathematical Society. Series B. Applied Mathematics doi: 10.1017/S0334270000006780 – year: 1999 ident: 10.1016/j.trc.2013.01.007_b0275 – volume: 8 start-page: 208 year: 2007 ident: 10.1016/j.trc.2013.01.007_b0080 article-title: Conflict resolution and train speed coordination for solving real-time timetable perturbations publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2006.888605 – ident: 10.1016/j.trc.2013.01.007_b0260 doi: 10.23919/ECC.2009.7074860  | 
    
| SSID | ssj0001957 | 
    
| Score | 2.489819 | 
    
| Snippet | ► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve... The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable...  | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 97 | 
    
| SubjectTerms | Applied sciences Computation Exact sciences and technology Ground, air and sea transportation, marine construction Linear programming Mathematical analysis Mathematical models MILP Optimal control Optimization Pseudospectral method Railway transportation and traffic Train operation Trains Trajectory planning Transportation planning, management and economics  | 
    
| Title | Optimal trajectory planning for trains – A pseudospectral method and a mixed integer linear programming approach | 
    
| URI | https://dx.doi.org/10.1016/j.trc.2013.01.007 https://www.proquest.com/docview/1323260952 https://www.proquest.com/docview/1671515393  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcigIVbSA2BZWRuKEFDaJE3t9XFWtllaUA1Tam-X4R9qqm42SrASXinfgDXkSZpykpQLtgUNyiDyJ47HHn-2Zbwh5BzOUKeKCR4mWPMpMxqLCyhRGvNUeVmM-9xg7_OmSz6-y80W-2CEnQywMulX2tr-z6cFa908mfWtOquVy8gXA9zSW8QIPZACoIONnlgnMYvDh9t7NI5Ed2ycUxj2JxXCyGXy82hpZDBMWmDsxo-y_56anlW6gxXyX6uIvqx2morNnZL_HkHTWVfOA7LjykOwNIcbNIXnyB8vgc1J_BrOwAoG21tdhk_47rfpcRRQwKw1pIhr668dPOqNV4zZ2HQIwa5DpMkxTXcJFV8tvztLAMOFqigBV17T38Frh2waG8hfk6uz068k86lMtRCbLZRslJmdFYdPCS8tlKowG0G2E4S5OdO4SJjS3U11knqdCewsogMfCeet4rJEd6SXZLdele0UoQwIebaUXEgyEnsLd2SS3iDW04XJE4qGRlel5yPE_b9TgcHatQC8K9aLiRIFeRuT9nUjVkXBsK5wNmlMPepKCSWKb2PiBlu8-lApAfIyxEXk7qF3BEMRzFV269aZRsKAHEAxYNd1ShguEjkyyo_-r3zF5nIZMHOg09JrstvXGvQE81Bbj0OHH5NHs48X88jdRsQxS | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9lAQQm0BsTyKK3FCCpvEib0-VhXVFvo4tJX2Zjl-SFux2SjJSnBB_Af-Ib-EsZMUKqo9cEgOkSdxPPb4sz3zDcA7nKF0ERcsSpRgUaYzGhVGpDjijXK4GnO587HDZ-dsep19muWzDTgaYmG8W2Vv-zubHqx1_2Tct-a4ms_Hlwi-J7GIZ_5ABoEKfQBbWZ5yvwL78P2Pn0ciOrpPLO03JWbD0WZw8mprT2OY0EDd6VPK3j85Pa5Ug03mulwX_5jtMBcd78CTHkSSw66eu7Bhyz3YHmKMmz149BfN4FOoL9AuLFCgrdVN2KX_Rqo-WRFB0EpCnoiG_PrxkxySqrErswwRmDXKdCmmiSrxIov5V2tIoJiwNfEIVdWkd_Fa-LcNFOXP4Pr449XRNOpzLUQ6y0UbJTqnRWHSwgnDRMq1QtStuWY2TlRuE8oVMxNVZI6lXDmDMIDF3DpjWaw8PdJz2CyXpX0BhHoGHmWE4wIthJrg3ZokNx5sKM3ECOKhkaXuicj9f36Rg8fZjUS9SK8XGScS9TKC97ciVcfCsa5wNmhO3ulKEmeJdWL7d7R8-6GUI-SjlI7gYFC7xDHoD1ZUaZerRuKKHlEwgtV0TRnGPXakgr78v_q9he3p1dmpPD05__wKHqYhLYf3IHoNm229sm8QHLXFfuj8vwFoxQ3n | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+trajectory+planning+for+trains+%E2%80%93+A+pseudospectral+method+and+a+mixed+integer+linear+programming+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Wang%2C+Yihui&rft.au=De+Schutter%2C+Bart&rft.au=van+den+Boom%2C+Ton+J.J.&rft.au=Ning%2C+Bin&rft.date=2013-04-01&rft.issn=0968-090X&rft.volume=29&rft.spage=97&rft.epage=114&rft_id=info:doi/10.1016%2Fj.trc.2013.01.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2013_01_007 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |