Optimal trajectory planning for trains – A pseudospectral method and a mixed integer linear programming approach

► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance. The optimal trajectory planning problem for trai...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 29; pp. 97 - 114
Main Authors Wang, Yihui, De Schutter, Bart, van den Boom, Ton J.J., Ning, Bin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier India Pvt Ltd 01.04.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
DOI10.1016/j.trc.2013.01.007

Cover

Abstract ► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance. The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach.
AbstractList The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach.
► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve the problem. ► Simulation results show the MILP approach yields a better overall performance. The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable speed restrictions, and varying maximum traction force are included in the problem definition. The objective function is a trade-off between the energy consumption and the riding comfort. Two approaches are proposed to solve this optimal control problem. First, we propose to use the pseudospectral method, a state-of-the-art method for optimal control problems, which has not used for train optimal control before. In the pseudospectral method, the optimal trajectory planning problem is recast into a multiple-phase optimal control problem, which is then transformed into a nonlinear programming problem. However, the calculation time for the pseudospectral method is too long for the real-time application in an automatic train operation system. To shorten the computation time, the optimal trajectory planning problem is reformulated as a mixed-integer linear programming (MILP) problem by approximating the nonlinear terms in the problem by piecewise affine functions. The MILP problem can be solved efficiently by existing solvers that guarantee to return the global optimum for the proposed MILP problem. Simulation results comparing the pseudospectral method, the new MILP approach, and a discrete dynamic programming approach show that the pseudospectral method has the best control performance, but that if the required computation time is also take into consideration, the MILP approach yields the best overall performance. More specifically, for the given case study the control performance of the pseudospectral approach is about 10% better than that of the MILP approach, and the computation time of the MILP approach is two to three orders of magnitude smaller than that of the pseudospectral method and the discrete dynamic programming approach.
Author van den Boom, Ton J.J.
De Schutter, Bart
Ning, Bin
Wang, Yihui
Author_xml – sequence: 1
  givenname: Yihui
  surname: Wang
  fullname: Wang, Yihui
  email: yihui.wang@tudelft.nl
  organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
– sequence: 2
  givenname: Bart
  surname: De Schutter
  fullname: De Schutter, Bart
  email: b.deschutter@tudelft.nl
  organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
– sequence: 3
  givenname: Ton J.J.
  surname: van den Boom
  fullname: van den Boom, Ton J.J.
  email: a.j.j.vandenboom@tudelft.nl
  organization: Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
– sequence: 4
  givenname: Bin
  surname: Ning
  fullname: Ning, Bin
  email: bning@bjtu.edu.cn
  organization: State Key Laboratory of Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27159333$$DView record in Pascal Francis
BookMark eNqFkc1qVDEYhoNUcFq9AHfZCG7mmJ85yQRXpWgrFLpRcBe-Sb4zzXBOckwyYnfeg3folZjD1I2Luggh4X2ekO89J2cxRSTkNWcdZ1y9O3Q1u04wLjvGO8b0M7LiW23WQvbmjKyYUds1M-zrC3JeyoExxk2vVyTfzTVMMNKa4YCupvxA5xFiDHFPh5SX-xAL_f3zF72kc8GjT2VuwdyYCet98hRiW3QKP9DTECvuMdMxRIRM55z2GaZpscHcTuDuX5LnA4wFXz3uF-TLxw-fr27Wt3fXn64ub9du05u65q6Xu50Xu8F4ZYR2oIVx2ilkHHrkUoPyW9htBiU0DJ4prpjGwaNisJFaXpC3J2979tsRS7VTKA7H9jtMx2K50rznvTTy_1EppFDM9KJF3zxGoTgYhwzRhWLn3KaYH6xoziZclPqUczmVknGwLlSoIcVloqPlzC7F2YNtxdmlOMu4bcU1kv9D_pU_xbw_MdgG-j1gtsUFjA59yK0s61N4gv4DomG1Ww
CitedBy_id crossref_primary_10_1016_j_ejor_2024_10_005
crossref_primary_10_1016_j_trc_2018_08_008
crossref_primary_10_1109_TITS_2016_2577037
crossref_primary_10_1016_j_trc_2018_08_009
crossref_primary_10_1007_s42524_021_0173_1
crossref_primary_10_1016_j_conengprac_2022_105430
crossref_primary_10_1016_j_trb_2016_08_002
crossref_primary_10_1080_23249935_2017_1332113
crossref_primary_10_1007_s00170_016_9466_7
crossref_primary_10_1016_j_trc_2024_104626
crossref_primary_10_2139_ssrn_4183580
crossref_primary_10_1109_TSMC_2020_3000073
crossref_primary_10_1109_TITS_2020_2970000
crossref_primary_10_23919_cje_2022_00_189
crossref_primary_10_1061_JTEPBS_0000473
crossref_primary_10_1016_j_cie_2018_09_024
crossref_primary_10_1109_TITS_2015_2445920
crossref_primary_10_1016_j_trc_2020_102680
crossref_primary_10_1016_j_jrtpm_2023_100391
crossref_primary_10_1109_TITS_2014_2334061
crossref_primary_10_1155_2018_7308058
crossref_primary_10_1016_j_trc_2016_06_008
crossref_primary_10_1016_j_trc_2021_103249
crossref_primary_10_1109_TCST_2022_3140805
crossref_primary_10_3390_en12183573
crossref_primary_10_1007_s10479_018_2877_0
crossref_primary_10_1016_j_ejor_2016_09_044
crossref_primary_10_1016_j_jrtpm_2023_100393
crossref_primary_10_1109_TTE_2024_3389960
crossref_primary_10_1016_j_trb_2018_06_006
crossref_primary_10_1002_atr_1441
crossref_primary_10_1016_j_conengprac_2023_105605
crossref_primary_10_1016_j_apm_2016_04_015
crossref_primary_10_3390_eng5030086
crossref_primary_10_1016_j_est_2024_113498
crossref_primary_10_3390_a17050190
crossref_primary_10_1016_j_trc_2023_104059
crossref_primary_10_1016_j_trb_2018_06_011
crossref_primary_10_1016_j_knosys_2019_105173
crossref_primary_10_1016_j_jclepro_2022_135773
crossref_primary_10_1177_0954409718772133
crossref_primary_10_1177_0361198120938052
crossref_primary_10_1016_j_trb_2021_10_010
crossref_primary_10_1016_j_trc_2016_05_019
crossref_primary_10_1016_j_trc_2023_104170
crossref_primary_10_1109_TTE_2021_3050470
crossref_primary_10_1177_0361198118776508
crossref_primary_10_3390_en11030478
crossref_primary_10_1109_TTE_2020_2983855
crossref_primary_10_1007_s43069_023_00248_x
crossref_primary_10_3390_en10060794
crossref_primary_10_3390_en13051115
crossref_primary_10_1109_TVT_2021_3099529
crossref_primary_10_1109_TITS_2019_2939358
crossref_primary_10_1080_00207179_2015_1025430
crossref_primary_10_1109_TTE_2021_3059111
crossref_primary_10_1049_itr2_12482
crossref_primary_10_1016_j_isatra_2021_04_036
crossref_primary_10_1016_j_trc_2023_104202
crossref_primary_10_1109_TITS_2021_3105380
crossref_primary_10_1016_j_apm_2023_12_002
crossref_primary_10_1007_s11768_020_0001_x
crossref_primary_10_1016_j_jfranklin_2017_07_004
crossref_primary_10_1016_j_trb_2016_12_016
crossref_primary_10_1016_j_cor_2023_106198
crossref_primary_10_1016_j_jrtpm_2013_10_001
crossref_primary_10_3390_a12080173
crossref_primary_10_1016_j_trb_2017_05_008
crossref_primary_10_2139_ssrn_4184574
crossref_primary_10_1016_j_simpat_2018_01_006
crossref_primary_10_15302_J_FEM_2017042
crossref_primary_10_1016_j_conengprac_2017_02_006
crossref_primary_10_1109_TITS_2015_2391831
crossref_primary_10_1049_itr2_12509
crossref_primary_10_1109_TITS_2013_2263532
crossref_primary_10_1016_j_trc_2016_08_011
crossref_primary_10_1109_TSMC_2019_2957299
crossref_primary_10_1299_mej_22_00360
crossref_primary_10_1109_TITS_2018_2846480
crossref_primary_10_1016_j_trc_2015_04_016
crossref_primary_10_1080_03081060_2025_2457048
crossref_primary_10_1109_TITS_2019_2912038
crossref_primary_10_1016_j_ejor_2020_10_018
crossref_primary_10_1109_TITS_2014_2320757
crossref_primary_10_1049_itr2_12193
crossref_primary_10_1541_ieejias_144_102
crossref_primary_10_1109_TITS_2023_3345739
crossref_primary_10_1016_j_conengprac_2013_09_011
crossref_primary_10_1109_TITS_2023_3277452
crossref_primary_10_1109_TIA_2021_3102881
crossref_primary_10_20295_1815_588X_2025_1_75_84
crossref_primary_10_1109_TITS_2020_3040730
crossref_primary_10_1109_TITS_2023_3331901
crossref_primary_10_3390_axioms12050489
crossref_primary_10_1002_eej_23114
crossref_primary_10_1109_TITS_2014_2323116
crossref_primary_10_1016_j_tre_2020_102007
crossref_primary_10_1109_TITS_2018_2881156
crossref_primary_10_1016_j_jrtpm_2023_100405
crossref_primary_10_1016_j_trc_2023_104148
crossref_primary_10_1080_0305215X_2017_1358712
crossref_primary_10_1002_rnc_7082
crossref_primary_10_1016_j_trc_2024_104943
crossref_primary_10_3390_en13226038
crossref_primary_10_1016_j_trc_2025_105076
crossref_primary_10_1016_j_trc_2017_09_009
crossref_primary_10_1016_j_trc_2021_103209
crossref_primary_10_1016_j_ejtl_2020_100013
crossref_primary_10_3390_en13184933
crossref_primary_10_1109_TTE_2023_3291535
crossref_primary_10_3390_en16186712
crossref_primary_10_1109_TVT_2023_3262345
crossref_primary_10_3390_su132111933
crossref_primary_10_1177_10775463211003395
crossref_primary_10_1016_j_trb_2017_09_012
crossref_primary_10_2139_ssrn_4157090
crossref_primary_10_3390_en11123302
crossref_primary_10_1109_TITS_2022_3155628
crossref_primary_10_1080_0305215X_2020_1746782
crossref_primary_10_1080_10556788_2019_1604704
crossref_primary_10_1016_j_jrtpm_2024_100462
crossref_primary_10_1016_j_jrtpm_2020_100180
crossref_primary_10_1016_j_jrtpm_2019_100163
crossref_primary_10_1016_j_trb_2021_08_003
crossref_primary_10_1049_itr2_12399
crossref_primary_10_1186_s10033_023_00891_9
crossref_primary_10_1177_0361198120937307
crossref_primary_10_1177_0954409716671546
crossref_primary_10_1155_2023_6649871
crossref_primary_10_1016_j_trc_2015_07_012
crossref_primary_10_3390_su15129238
crossref_primary_10_1109_TASE_2022_3225288
crossref_primary_10_2139_ssrn_4183320
crossref_primary_10_1109_TITS_2014_2364178
crossref_primary_10_1109_TTE_2021_3071251
crossref_primary_10_1177_09544097211042184
crossref_primary_10_1109_TITS_2020_3043577
crossref_primary_10_1016_j_ifacol_2023_10_761
crossref_primary_10_3390_app10217705
crossref_primary_10_3390_pr7020077
crossref_primary_10_3390_en13071836
crossref_primary_10_1016_j_knosys_2015_10_016
crossref_primary_10_3390_en15082891
crossref_primary_10_1109_TITS_2015_2478403
crossref_primary_10_1109_TTE_2023_3313772
crossref_primary_10_1080_00207179_2017_1286534
crossref_primary_10_1080_0305215X_2022_2047669
crossref_primary_10_1016_j_jclepro_2021_127163
crossref_primary_10_1016_j_retrec_2015_10_024
crossref_primary_10_1109_TITS_2023_3264503
crossref_primary_10_1109_TITS_2023_3318981
crossref_primary_10_1109_TC_2015_2500565
crossref_primary_10_1016_j_trc_2023_104113
crossref_primary_10_1016_j_trc_2017_06_011
crossref_primary_10_1016_j_trc_2022_103884
crossref_primary_10_1146_annurev_control_053018_023717
crossref_primary_10_2139_ssrn_4168511
crossref_primary_10_1016_j_trc_2019_03_020
crossref_primary_10_1007_s40999_019_00401_w
crossref_primary_10_1016_j_etran_2021_100130
crossref_primary_10_23919_cje_2022_00_174
Cites_doi 10.1016/j.tra.2003.07.001
10.1109/CACSD.2010.5612676
10.2514/2.4231
10.1524/auto.2002.50.12.606
10.1109/9.867018
10.1243/0954409001531306
10.1016/j.nahs.2009.08.003
10.1016/j.trc.2010.12.004
10.1016/j.trc.2009.04.001
10.1109/CDC.2007.4435052
10.1109/CDC.2000.914108
10.1007/s10589-007-9102-4
10.1007/s10479-005-3968-2
10.1137/S1052623499350013
10.1016/S0005-1098(98)00178-2
10.1109/CCA.2009.5281131
10.1017/S0962492900002440
10.2514/1.3426
10.1145/1731022.1731032
10.1016/j.trc.2007.11.001
10.1109/9.467672
10.1299/jsme1958.11.857
10.1007/s10107-004-0559-y
10.1243/0954409011530595
10.1016/j.trc.2007.07.006
10.1109/ITSC.2011.6082884
10.1049/ip-epa:20000329
10.1007/978-3-540-36119-0_4
10.1023/A:1019235819716
10.1017/S0334270000006780
10.1109/TITS.2006.888605
10.23919/ECC.2009.7074860
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
8FD
F28
FR3
KR7
DOI 10.1016/j.trc.2013.01.007
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Applied Sciences
EISSN 1879-2359
EndPage 114
ExternalDocumentID 27159333
10_1016_j_trc_2013_01_007
S0968090X13000193
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7ST
C1K
SOI
8FD
F28
FR3
KR7
ID FETCH-LOGICAL-c459t-1c53bbd2bf9d6927ca729c7c6e01a5e137a6d8ab4f627afd061607efde60a4373
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Sun Sep 28 07:46:07 EDT 2025
Tue Oct 07 09:24:01 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Wed Oct 01 06:26:20 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 23 02:16:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trajectory planning
MILP
Pseudospectral method
Train operation
Case study
Optimal trajectory
Problem solving
Mixed integer programming
Rail transportation
Planning
Running of trains
Method study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1c53bbd2bf9d6927ca729c7c6e01a5e137a6d8ab4f627afd061607efde60a4373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1323260952
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_1671515393
proquest_miscellaneous_1323260952
pascalfrancis_primary_27159333
crossref_citationtrail_10_1016_j_trc_2013_01_007
crossref_primary_10_1016_j_trc_2013_01_007
elsevier_sciencedirect_doi_10_1016_j_trc_2013_01_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2013
Publisher Elsevier India Pvt Ltd
Elsevier
Publisher_xml – name: Elsevier India Pvt Ltd
– name: Elsevier
References Bryson, Ho (b0045) 1975
Tao (b0255) 1995
Pontryagin (b0210) 1962
Rao, Benson, Darby, Patterson, Francolin, Sanders (b0215) 2010; 37
Bemporad, Morari (b0030) 1999; 35
Ross, Fahroo (b0230) 2003
Becerra, V.M., 2010a. PSOPT Optimal Control Solver User Manual – Release 3.
Ko, Koseki, Miyatake (b0175) 2004
Schank, T., 2011. A fast algorithm for computing the running-time of trains by infinitesimal calculus. In: Proceedings of the 4th International Seminar on Railway Operations Modelling and Analysis RailRome2011, Rome, Italy.
Kanwal (b0165) 1983
Chang, Xu (b0060) 2000; 147
Rochard, Schmid (b0220) 2000; 214
Camacho, Bordons (b0050) 1995
Peng (b0205) 2008
D’Ariano, Albrecht (b0070) 2006
Williams (b0275) 1999
Mao (b0195) 2008
Green, Limebeer (b0135) 1995
Huerlimann, D., Nash, A.B., 2003. OPENTRACK – Simulation of railway networks, user manual version 1.3. Institute for Transportation Planning and Systems, ETH Zürich.
Wang, Y., De Schutter, B., Ning, B., Groot, N., van den Boom, T., 2011. Optimal trajectory planning for trains using mixed integer linear programming. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), Washington, DC, USA, pp. 1598–1604.
Gill, Murray, Saunders (b0120) 2002; 12
Krasemann (b0180) 2012; 20
Corman, A. D’Ariano, Pranzo (b0065) 2009; 17
Atkinson (b0010) 1978
D’Ariano, Pranzoand, Hansen (b0080) 2007; 8
Sundström, O., Guzzella, L., 2009. A generic dynamic programming matlab function. In: Proceedings of the18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, pp. 1625–1630.
Gerber (b0115) 2001; 215
Liu, Golovicher (b0190) 2003; 37
Bettes, J.T., 2001. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Series on Advances in Design and Control, Philadelphia.
Franke, R., Terwiesch, P., Meyer, M., 2003. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2123–2128.
Vašak, M., Baotić, M., Perić, N., Bago, M., 2009. Optimal rail route energy management under constraints and fixed arrival time. In: Proceedings of the European Control Conference, Budapest, Hungary, pp. 2972–2977.
Howlett (b0145) 2000; 98
Midya, Thottappillil (b0200) 2008; 16
Khmelnitsky (b0170) 2000; 45
Franke, Meyer, Terwiesch (b0100) 2002; 50
Gong, Q., Kang, W., Bedrossian, N., Fahroo, F., Sekhavat, P., Bollino, K., 2007. Pseudospectral optimal control for military and industrial applications. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4128–4142.
Betts (b0040) 1998; 21
Gao (b0110) 2008
Ichikawa (b0160) 1968; 11
Hansen, Pachl (b0140) 2008
Becerra, V.M., 2010b. Solving complex optimal control problems at no cost with PSOPT. In: Proceedings of IEEE Multi-Conference on Systems and Control, Yokohama, Japan, pp. 1391–1396.
Canuto, Hussaini, Quarteroni, Zang (b0055) 1988
Dielh, M., Bock, H.G., Diedam, H., Wieber, P.B., 2006. Fast direct multiple shooting algorithm for optimal robot control, in: Fast motions in Biomechanics and Robotics Optimization and Feedback Control, Lecture Notes in Control and Information Sciences, pp. 65–94.
Rutquist, Edvall (b0240) 2008
Gong, Ross, Kang, Fahroo (b0130) 2008; 41
D’Ariano, Pacciarelli, Pranzo (b0075) 2008; 16
Howlett (b0150) 1990; 31
Azuma, Imura, Sugie (b0015) 2010; 4
Ross, Fahroo (b0235) 2004; 27
Linderoth, J., Ralphs, T., 2005. Noncommercial software for mixed-integer linear programming. Optimization Online.
Ross (b0225) 2004
Elnagar, Kazemi, Razzaghi (b0090) 1995; 40
Fornberg, Sloan (b0095) 1994; 3
Atamtürk, Savelsbergh (b0005) 2005; 140
Wächter, Biegler (b0265) 2006; 106
Atamtürk (10.1016/j.trc.2013.01.007_b0005) 2005; 140
Hansen (10.1016/j.trc.2013.01.007_b0140) 2008
Franke (10.1016/j.trc.2013.01.007_b0100) 2002; 50
Ross (10.1016/j.trc.2013.01.007_b0230) 2003
10.1016/j.trc.2013.01.007_b0085
Howlett (10.1016/j.trc.2013.01.007_b0150) 1990; 31
Ross (10.1016/j.trc.2013.01.007_b0235) 2004; 27
Canuto (10.1016/j.trc.2013.01.007_b0055) 1988
Bemporad (10.1016/j.trc.2013.01.007_b0030) 1999; 35
10.1016/j.trc.2013.01.007_b0245
Tao (10.1016/j.trc.2013.01.007_b0255) 1995
Rochard (10.1016/j.trc.2013.01.007_b0220) 2000; 214
Gao (10.1016/j.trc.2013.01.007_b0110) 2008
10.1016/j.trc.2013.01.007_b0125
Chang (10.1016/j.trc.2013.01.007_b0060) 2000; 147
Green (10.1016/j.trc.2013.01.007_b0135) 1995
Liu (10.1016/j.trc.2013.01.007_b0190) 2003; 37
Azuma (10.1016/j.trc.2013.01.007_b0015) 2010; 4
Mao (10.1016/j.trc.2013.01.007_b0195) 2008
Wächter (10.1016/j.trc.2013.01.007_b0265) 2006; 106
Peng (10.1016/j.trc.2013.01.007_b0205) 2008
Bryson (10.1016/j.trc.2013.01.007_b0045) 1975
10.1016/j.trc.2013.01.007_b0250
Atkinson (10.1016/j.trc.2013.01.007_b0010) 1978
Williams (10.1016/j.trc.2013.01.007_b0275) 1999
Khmelnitsky (10.1016/j.trc.2013.01.007_b0170) 2000; 45
Ross (10.1016/j.trc.2013.01.007_b0225) 2004
Corman (10.1016/j.trc.2013.01.007_b0065) 2009; 17
Rutquist (10.1016/j.trc.2013.01.007_b0240) 2008
Krasemann (10.1016/j.trc.2013.01.007_b0180) 2012; 20
Betts (10.1016/j.trc.2013.01.007_b0040) 1998; 21
D’Ariano (10.1016/j.trc.2013.01.007_b0070) 2006
Elnagar (10.1016/j.trc.2013.01.007_b0090) 1995; 40
Gill (10.1016/j.trc.2013.01.007_b0120) 2002; 12
D’Ariano (10.1016/j.trc.2013.01.007_b0080) 2007; 8
10.1016/j.trc.2013.01.007_b0260
10.1016/j.trc.2013.01.007_b0020
10.1016/j.trc.2013.01.007_b0185
D’Ariano (10.1016/j.trc.2013.01.007_b0075) 2008; 16
10.1016/j.trc.2013.01.007_b0025
Camacho (10.1016/j.trc.2013.01.007_b0050) 1995
Gerber (10.1016/j.trc.2013.01.007_b0115) 2001; 215
Pontryagin (10.1016/j.trc.2013.01.007_b0210) 1962
10.1016/j.trc.2013.01.007_b0105
Ichikawa (10.1016/j.trc.2013.01.007_b0160) 1968; 11
Gong (10.1016/j.trc.2013.01.007_b0130) 2008; 41
Rao (10.1016/j.trc.2013.01.007_b0215) 2010; 37
Ko (10.1016/j.trc.2013.01.007_b0175) 2004
10.1016/j.trc.2013.01.007_b0270
Kanwal (10.1016/j.trc.2013.01.007_b0165) 1983
Howlett (10.1016/j.trc.2013.01.007_b0145) 2000; 98
10.1016/j.trc.2013.01.007_b0155
10.1016/j.trc.2013.01.007_b0035
Midya (10.1016/j.trc.2013.01.007_b0200) 2008; 16
Fornberg (10.1016/j.trc.2013.01.007_b0095) 1994; 3
References_xml – year: 1999
  ident: b0275
  article-title: Model Building in Mathematical Programming
– volume: 140
  start-page: 67
  year: 2005
  end-page: 124
  ident: b0005
  article-title: Integer-programming software systems
  publication-title: Annals of Operations Research
– reference: Wang, Y., De Schutter, B., Ning, B., Groot, N., van den Boom, T., 2011. Optimal trajectory planning for trains using mixed integer linear programming. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), Washington, DC, USA, pp. 1598–1604.
– volume: 11
  start-page: 857
  year: 1968
  end-page: 865
  ident: b0160
  article-title: Application of optimization theory for bounded state variable problems to the operation of train
  publication-title: Japan Society of Mechanical Engineers
– volume: 50
  start-page: 606
  year: 2002
  end-page: 614
  ident: b0100
  article-title: Optimal control of the driving of trains
  publication-title: Automatisierungstechnik
– volume: 4
  start-page: 92
  year: 2010
  end-page: 102
  ident: b0015
  article-title: Lebesgue piecewise affine approximation of nonlinear systems
  publication-title: Nonlinear Analysis: Hybrid Systems
– reference: Linderoth, J., Ralphs, T., 2005. Noncommercial software for mixed-integer linear programming. Optimization Online.
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: b0265
  article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Mathematical Programming
– volume: 41
  start-page: 307
  year: 2008
  end-page: 335
  ident: b0130
  article-title: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control
  publication-title: Computational optimization and applications
– volume: 35
  start-page: 407
  year: 1999
  end-page: 427
  ident: b0030
  article-title: Control of systems integrating logic, dynamics, and constraints
  publication-title: Automatica
– volume: 3
  start-page: 203
  year: 1994
  end-page: 267
  ident: b0095
  article-title: A review of pseudospectral methods for solving partial differential equations
  publication-title: Acta Numerica
– reference: Franke, R., Terwiesch, P., Meyer, M., 2003. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2123–2128.
– year: 1978
  ident: b0010
  article-title: An Introduction to Numerical Analysis
– year: 1988
  ident: b0055
  article-title: Spectral Methods in Fluid Dynamics
– volume: 31
  start-page: 454
  year: 1990
  end-page: 471
  ident: b0150
  article-title: The optimal strategy for the control of train
  publication-title: Journal of the Australian Mathematical Society. Series B. Applied Mathematics
– year: 2008
  ident: b0205
  article-title: Urban Rail Transit System
– reference: Bettes, J.T., 2001. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Series on Advances in Design and Control, Philadelphia.
– volume: 12
  start-page: 979
  year: 2002
  end-page: 1006
  ident: b0120
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM Journal on Optimization
– reference: Gong, Q., Kang, W., Bedrossian, N., Fahroo, F., Sekhavat, P., Bollino, K., 2007. Pseudospectral optimal control for military and industrial applications. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4128–4142.
– year: 1962
  ident: b0210
  article-title: The Mathematical Theory of Optimal Processes
– year: 2008
  ident: b0140
  article-title: Railway, Timetable & Traffic: Analysis, Modelling, Simulation
– reference: Becerra, V.M., 2010a. PSOPT Optimal Control Solver User Manual – Release 3.
– volume: 16
  start-page: 232
  year: 2008
  end-page: 245
  ident: b0075
  article-title: Assessment of flexible timetables in real-time traffic management of a railway bottleneck
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 1995
  ident: b0255
  article-title: Adaptive Control Design and Analysis
– volume: 147
  start-page: 206
  year: 2000
  end-page: 212
  ident: b0060
  article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system
  publication-title: IEE Proceedings – Electric Power Applications
– volume: 215
  start-page: 25
  year: 2001
  end-page: 35
  ident: b0115
  article-title: Class re 465 locomotives for heavy-haul freight service
  publication-title: Proceedings of the Institution of Mechanical Engineers. Pt.F. Journal of Rail and Rapid Transit
– volume: 27
  start-page: 397
  year: 2004
  end-page: 405
  ident: b0235
  article-title: Pseudospectral knotting methods for solving optimal control problems
  publication-title: Journal of Guidance, Control, and Dynamics
– reference: Sundström, O., Guzzella, L., 2009. A generic dynamic programming matlab function. In: Proceedings of the18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, pp. 1625–1630.
– year: 2008
  ident: b0195
  article-title: The Calculation and Design of Train Operation
– reference: Schank, T., 2011. A fast algorithm for computing the running-time of trains by infinitesimal calculus. In: Proceedings of the 4th International Seminar on Railway Operations Modelling and Analysis RailRome2011, Rome, Italy.
– volume: 16
  start-page: 515
  year: 2008
  end-page: 534
  ident: b0200
  article-title: An overview of electromagnetic compatibility challenges in European Rail Traffic Management system
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 2008
  ident: b0110
  article-title: Railway Signal Operation Basis
– volume: 37
  start-page: 917
  year: 2003
  end-page: 931
  ident: b0190
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A: Policy and Practice
– reference: Vašak, M., Baotić, M., Perić, N., Bago, M., 2009. Optimal rail route energy management under constraints and fixed arrival time. In: Proceedings of the European Control Conference, Budapest, Hungary, pp. 2972–2977.
– reference: Becerra, V.M., 2010b. Solving complex optimal control problems at no cost with PSOPT. In: Proceedings of IEEE Multi-Conference on Systems and Control, Yokohama, Japan, pp. 1391–1396.
– volume: 8
  start-page: 208
  year: 2007
  end-page: 222
  ident: b0080
  article-title: Conflict resolution and train speed coordination for solving real-time timetable perturbations
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 98
  start-page: 65
  year: 2000
  end-page: 87
  ident: b0145
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
– start-page: 327
  year: 2003
  end-page: 342
  ident: b0230
  article-title: Legendre pseudospectral approximations of optimal control problems
  publication-title: New Trends in Nonlinear Dynamics and Control and their Applications
– year: 2008
  ident: b0240
  article-title: PROPT: MATLAB Optimal Control Software
– volume: 40
  start-page: 1793
  year: 1995
  end-page: 1796
  ident: b0090
  article-title: The pseudospectral legendre method for discretizing optimal control problems
  publication-title: IEEE Transactions on Automatic Control
– year: 1983
  ident: b0165
  article-title: Generalized Functions: Theory and Technique
– year: 1995
  ident: b0135
  article-title: Linear Robust Control
– reference: Dielh, M., Bock, H.G., Diedam, H., Wieber, P.B., 2006. Fast direct multiple shooting algorithm for optimal robot control, in: Fast motions in Biomechanics and Robotics Optimization and Feedback Control, Lecture Notes in Control and Information Sciences, pp. 65–94.
– year: 2004
  ident: b0225
  article-title: Users Manual for DIDO: A MATLAB Application Package for Solving Optimal Control Problems
– volume: 214
  start-page: 185
  year: 2000
  end-page: 199
  ident: b0220
  article-title: A review of methods to measure and calculate train resistances
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266
  ident: b0170
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
– volume: 37
  start-page: 22:1
  year: 2010
  end-page: 22:39
  ident: b0215
  article-title: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method
  publication-title: ACM Transactions on Mathematical Software
– year: 1975
  ident: b0045
  article-title: Applied Optimal Control
– start-page: 103
  year: 2004
  end-page: 112
  ident: b0175
  article-title: Application of dynamic programming to optimization of running profile of a train
  publication-title: Computers in Railways IX
– volume: 21
  start-page: 193
  year: 1998
  end-page: 207
  ident: b0040
  article-title: Survey of numerical methods for trajectory optimization
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 17
  start-page: 607
  year: 2009
  end-page: 616
  ident: b0065
  article-title: Evaluation of green wave policy in real-time railway traffic management
  publication-title: Transportation Research Part C
– year: 1995
  ident: b0050
  article-title: Model Predictive Control in the Process Industry
– start-page: 531
  year: 2006
  end-page: 540
  ident: b0070
  article-title: Running time re-optimization during real-time timetable perturbations
  publication-title: Computers in Railways X
– reference: Huerlimann, D., Nash, A.B., 2003. OPENTRACK – Simulation of railway networks, user manual version 1.3. Institute for Transportation Planning and Systems, ETH Zürich.
– volume: 20
  start-page: 62
  year: 2012
  end-page: 78
  ident: b0180
  article-title: Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 1995
  ident: 10.1016/j.trc.2013.01.007_b0255
– year: 1962
  ident: 10.1016/j.trc.2013.01.007_b0210
– volume: 37
  start-page: 917
  year: 2003
  ident: 10.1016/j.trc.2013.01.007_b0190
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transportation Research Part A: Policy and Practice
  doi: 10.1016/j.tra.2003.07.001
– ident: 10.1016/j.trc.2013.01.007_b0025
  doi: 10.1109/CACSD.2010.5612676
– volume: 21
  start-page: 193
  year: 1998
  ident: 10.1016/j.trc.2013.01.007_b0040
  article-title: Survey of numerical methods for trajectory optimization
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/2.4231
– volume: 50
  start-page: 606
  year: 2002
  ident: 10.1016/j.trc.2013.01.007_b0100
  article-title: Optimal control of the driving of trains
  publication-title: Automatisierungstechnik
  doi: 10.1524/auto.2002.50.12.606
– year: 1995
  ident: 10.1016/j.trc.2013.01.007_b0050
– volume: 45
  start-page: 1257
  year: 2000
  ident: 10.1016/j.trc.2013.01.007_b0170
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.867018
– volume: 214
  start-page: 185
  year: 2000
  ident: 10.1016/j.trc.2013.01.007_b0220
  article-title: A review of methods to measure and calculate train resistances
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
  doi: 10.1243/0954409001531306
– year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0240
– year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0195
– ident: 10.1016/j.trc.2013.01.007_b0035
– volume: 4
  start-page: 92
  year: 2010
  ident: 10.1016/j.trc.2013.01.007_b0015
  article-title: Lebesgue piecewise affine approximation of nonlinear systems
  publication-title: Nonlinear Analysis: Hybrid Systems
  doi: 10.1016/j.nahs.2009.08.003
– volume: 20
  start-page: 62
  year: 2012
  ident: 10.1016/j.trc.2013.01.007_b0180
  article-title: Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2010.12.004
– year: 1988
  ident: 10.1016/j.trc.2013.01.007_b0055
– volume: 17
  start-page: 607
  year: 2009
  ident: 10.1016/j.trc.2013.01.007_b0065
  article-title: Evaluation of green wave policy in real-time railway traffic management
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2009.04.001
– ident: 10.1016/j.trc.2013.01.007_b0125
  doi: 10.1109/CDC.2007.4435052
– year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0205
– year: 2004
  ident: 10.1016/j.trc.2013.01.007_b0225
– ident: 10.1016/j.trc.2013.01.007_b0105
  doi: 10.1109/CDC.2000.914108
– volume: 41
  start-page: 307
  year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0130
  article-title: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control
  publication-title: Computational optimization and applications
  doi: 10.1007/s10589-007-9102-4
– ident: 10.1016/j.trc.2013.01.007_b0020
– volume: 140
  start-page: 67
  year: 2005
  ident: 10.1016/j.trc.2013.01.007_b0005
  article-title: Integer-programming software systems
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-005-3968-2
– ident: 10.1016/j.trc.2013.01.007_b0185
– volume: 12
  start-page: 979
  year: 2002
  ident: 10.1016/j.trc.2013.01.007_b0120
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623499350013
– volume: 35
  start-page: 407
  year: 1999
  ident: 10.1016/j.trc.2013.01.007_b0030
  article-title: Control of systems integrating logic, dynamics, and constraints
  publication-title: Automatica
  doi: 10.1016/S0005-1098(98)00178-2
– ident: 10.1016/j.trc.2013.01.007_b0250
  doi: 10.1109/CCA.2009.5281131
– start-page: 327
  year: 2003
  ident: 10.1016/j.trc.2013.01.007_b0230
  article-title: Legendre pseudospectral approximations of optimal control problems
– start-page: 531
  year: 2006
  ident: 10.1016/j.trc.2013.01.007_b0070
  article-title: Running time re-optimization during real-time timetable perturbations
– volume: 3
  start-page: 203
  year: 1994
  ident: 10.1016/j.trc.2013.01.007_b0095
  article-title: A review of pseudospectral methods for solving partial differential equations
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002440
– volume: 27
  start-page: 397
  year: 2004
  ident: 10.1016/j.trc.2013.01.007_b0235
  article-title: Pseudospectral knotting methods for solving optimal control problems
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/1.3426
– start-page: 103
  year: 2004
  ident: 10.1016/j.trc.2013.01.007_b0175
  article-title: Application of dynamic programming to optimization of running profile of a train
– volume: 37
  start-page: 22:1
  year: 2010
  ident: 10.1016/j.trc.2013.01.007_b0215
  article-title: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/1731022.1731032
– year: 1975
  ident: 10.1016/j.trc.2013.01.007_b0045
– volume: 16
  start-page: 515
  year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0200
  article-title: An overview of electromagnetic compatibility challenges in European Rail Traffic Management system
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2007.11.001
– ident: 10.1016/j.trc.2013.01.007_b0155
– year: 1978
  ident: 10.1016/j.trc.2013.01.007_b0010
– volume: 40
  start-page: 1793
  year: 1995
  ident: 10.1016/j.trc.2013.01.007_b0090
  article-title: The pseudospectral legendre method for discretizing optimal control problems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.467672
– volume: 11
  start-page: 857
  year: 1968
  ident: 10.1016/j.trc.2013.01.007_b0160
  article-title: Application of optimization theory for bounded state variable problems to the operation of train
  publication-title: Japan Society of Mechanical Engineers
  doi: 10.1299/jsme1958.11.857
– ident: 10.1016/j.trc.2013.01.007_b0245
– year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0140
– volume: 106
  start-page: 25
  year: 2006
  ident: 10.1016/j.trc.2013.01.007_b0265
  article-title: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-004-0559-y
– year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0110
– volume: 215
  start-page: 25
  year: 2001
  ident: 10.1016/j.trc.2013.01.007_b0115
  article-title: Class re 465 locomotives for heavy-haul freight service
  publication-title: Proceedings of the Institution of Mechanical Engineers. Pt.F. Journal of Rail and Rapid Transit
  doi: 10.1243/0954409011530595
– year: 1983
  ident: 10.1016/j.trc.2013.01.007_b0165
– volume: 16
  start-page: 232
  year: 2008
  ident: 10.1016/j.trc.2013.01.007_b0075
  article-title: Assessment of flexible timetables in real-time traffic management of a railway bottleneck
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2007.07.006
– ident: 10.1016/j.trc.2013.01.007_b0270
  doi: 10.1109/ITSC.2011.6082884
– volume: 147
  start-page: 206
  year: 2000
  ident: 10.1016/j.trc.2013.01.007_b0060
  article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system
  publication-title: IEE Proceedings – Electric Power Applications
  doi: 10.1049/ip-epa:20000329
– year: 1995
  ident: 10.1016/j.trc.2013.01.007_b0135
– ident: 10.1016/j.trc.2013.01.007_b0085
  doi: 10.1007/978-3-540-36119-0_4
– volume: 98
  start-page: 65
  year: 2000
  ident: 10.1016/j.trc.2013.01.007_b0145
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019235819716
– volume: 31
  start-page: 454
  year: 1990
  ident: 10.1016/j.trc.2013.01.007_b0150
  article-title: The optimal strategy for the control of train
  publication-title: Journal of the Australian Mathematical Society. Series B. Applied Mathematics
  doi: 10.1017/S0334270000006780
– year: 1999
  ident: 10.1016/j.trc.2013.01.007_b0275
– volume: 8
  start-page: 208
  year: 2007
  ident: 10.1016/j.trc.2013.01.007_b0080
  article-title: Conflict resolution and train speed coordination for solving real-time timetable perturbations
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2006.888605
– ident: 10.1016/j.trc.2013.01.007_b0260
  doi: 10.23919/ECC.2009.7074860
SSID ssj0001957
Score 2.489819
Snippet ► The trajectory planning problem for train operation with constraints is considered. ► The pseudospectral method and the MILP approach are proposed to solve...
The optimal trajectory planning problem for train operations under constraints and fixed arrival time is considered. The varying line resistance, variable...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 97
SubjectTerms Applied sciences
Computation
Exact sciences and technology
Ground, air and sea transportation, marine construction
Linear programming
Mathematical analysis
Mathematical models
MILP
Optimal control
Optimization
Pseudospectral method
Railway transportation and traffic
Train operation
Trains
Trajectory planning
Transportation planning, management and economics
Title Optimal trajectory planning for trains – A pseudospectral method and a mixed integer linear programming approach
URI https://dx.doi.org/10.1016/j.trc.2013.01.007
https://www.proquest.com/docview/1323260952
https://www.proquest.com/docview/1671515393
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcigIVbSA2BZWRuKEFDaJE3t9XFWtllaUA1Tam-X4R9qqm42SrASXinfgDXkSZpykpQLtgUNyiDyJ47HHn-2Zbwh5BzOUKeKCR4mWPMpMxqLCyhRGvNUeVmM-9xg7_OmSz6-y80W-2CEnQywMulX2tr-z6cFa908mfWtOquVy8gXA9zSW8QIPZACoIONnlgnMYvDh9t7NI5Ed2ycUxj2JxXCyGXy82hpZDBMWmDsxo-y_56anlW6gxXyX6uIvqx2morNnZL_HkHTWVfOA7LjykOwNIcbNIXnyB8vgc1J_BrOwAoG21tdhk_47rfpcRRQwKw1pIhr668dPOqNV4zZ2HQIwa5DpMkxTXcJFV8tvztLAMOFqigBV17T38Frh2waG8hfk6uz068k86lMtRCbLZRslJmdFYdPCS8tlKowG0G2E4S5OdO4SJjS3U11knqdCewsogMfCeet4rJEd6SXZLdele0UoQwIebaUXEgyEnsLd2SS3iDW04XJE4qGRlel5yPE_b9TgcHatQC8K9aLiRIFeRuT9nUjVkXBsK5wNmlMPepKCSWKb2PiBlu8-lApAfIyxEXk7qF3BEMRzFV269aZRsKAHEAxYNd1ShguEjkyyo_-r3zF5nIZMHOg09JrstvXGvQE81Bbj0OHH5NHs48X88jdRsQxS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9lAQQm0BsTyKK3FCCpvEib0-VhXVFvo4tJX2Zjl-SFux2SjJSnBB_Af-Ib-EsZMUKqo9cEgOkSdxPPb4sz3zDcA7nKF0ERcsSpRgUaYzGhVGpDjijXK4GnO587HDZ-dsep19muWzDTgaYmG8W2Vv-zubHqx1_2Tct-a4ms_Hlwi-J7GIZ_5ABoEKfQBbWZ5yvwL78P2Pn0ciOrpPLO03JWbD0WZw8mprT2OY0EDd6VPK3j85Pa5Ug03mulwX_5jtMBcd78CTHkSSw66eu7Bhyz3YHmKMmz149BfN4FOoL9AuLFCgrdVN2KX_Rqo-WRFB0EpCnoiG_PrxkxySqrErswwRmDXKdCmmiSrxIov5V2tIoJiwNfEIVdWkd_Fa-LcNFOXP4Pr449XRNOpzLUQ6y0UbJTqnRWHSwgnDRMq1QtStuWY2TlRuE8oVMxNVZI6lXDmDMIDF3DpjWaw8PdJz2CyXpX0BhHoGHmWE4wIthJrg3ZokNx5sKM3ECOKhkaXuicj9f36Rg8fZjUS9SK8XGScS9TKC97ciVcfCsa5wNmhO3ulKEmeJdWL7d7R8-6GUI-SjlI7gYFC7xDHoD1ZUaZerRuKKHlEwgtV0TRnGPXakgr78v_q9he3p1dmpPD05__wKHqYhLYf3IHoNm229sm8QHLXFfuj8vwFoxQ3n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+trajectory+planning+for+trains+%E2%80%93+A+pseudospectral+method+and+a+mixed+integer+linear+programming+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Wang%2C+Yihui&rft.au=De+Schutter%2C+Bart&rft.au=van+den+Boom%2C+Ton+J.J.&rft.au=Ning%2C+Bin&rft.date=2013-04-01&rft.issn=0968-090X&rft.volume=29&rft.spage=97&rft.epage=114&rft_id=info:doi/10.1016%2Fj.trc.2013.01.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2013_01_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon