A General Hybrid Modeling Framework for Systems Biology Applications: Combining Mechanistic Knowledge with Deep Neural Networks under the SBML Standard

In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over the last 20 years, the systems biology community has developed a large number of mechanistic models that are currently sto...

Full description

Saved in:
Bibliographic Details
Published inAI (Basel) Vol. 4; no. 1; pp. 303 - 318
Main Authors Pinto, José, Ramos, João R. C., Costa, Rafael S., Oliveira, Rui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text
ISSN2673-2688
2673-2688
DOI10.3390/ai4010014

Cover

Abstract In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over the last 20 years, the systems biology community has developed a large number of mechanistic models that are currently stored in public databases in SBML. With the proposed framework, existing SBML models may be redesigned into hybrid systems through the incorporation of deep neural networks into the model core, using a freely available python tool. The so-formed hybrid mechanistic/neural network models are trained with a deep learning algorithm based on the adaptive moment estimation method (ADAM), stochastic regularization and semidirect sensitivity equations. The trained hybrid models are encoded in SBML and uploaded in model databases, where they may be further analyzed as regular SBML models. This approach is illustrated with three well-known case studies: the Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the Yeast glycolytic oscillations model. The proposed framework is expected to greatly facilitate the widespread use of hybrid modeling techniques for systems biology applications.
AbstractList In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over the last 20 years, the systems biology community has developed a large number of mechanistic models that are currently stored in public databases in SBML. With the proposed framework, existing SBML models may be redesigned into hybrid systems through the incorporation of deep neural networks into the model core, using a freely available python tool. The so-formed hybrid mechanistic/neural network models are trained with a deep learning algorithm based on the adaptive moment estimation method (ADAM), stochastic regularization and semidirect sensitivity equations. The trained hybrid models are encoded in SBML and uploaded in model databases, where they may be further analyzed as regular SBML models. This approach is illustrated with three well-known case studies: the Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the Yeast glycolytic oscillations model. The proposed framework is expected to greatly facilitate the widespread use of hybrid modeling techniques for systems biology applications.
Author Pinto, José
Ramos, João R. C.
Oliveira, Rui
Costa, Rafael S.
Author_xml – sequence: 1
  givenname: José
  surname: Pinto
  fullname: Pinto, José
– sequence: 2
  givenname: João R. C.
  orcidid: 0000-0002-6832-6774
  surname: Ramos
  fullname: Ramos, João R. C.
– sequence: 3
  givenname: Rafael S.
  orcidid: 0000-0002-7539-488X
  surname: Costa
  fullname: Costa, Rafael S.
– sequence: 4
  givenname: Rui
  orcidid: 0000-0001-8077-4177
  surname: Oliveira
  fullname: Oliveira, Rui
BookMark eNp9kU2P0zAQhiO0SCzLHvgHljiBVNZObCfm1i3sh2iXQ-EcjT_Surh2sB1V_SX8XZItWiGEOI01euYZjd-XxZkP3hTFa4LfV5XAV2ApJhgT-qw4L3ldzUreNGd_vF8UlyntMMYlIyWt8Hnxc45ujTcRHLo7ymg1WgVtnPUbdBNhbw4hfkddiGh9TNnsE7q2wYXNEc373lkF2QafPqBF2Evrp6mVUVvwNmWr0GcfDs7ojUEHm7foozE9ejDDtOzB5Emd0OC1iShvDVpfr5ZoncFriPpV8bwDl8zl73pRfLv59HVxN1t-ub1fzJczRZnIM1JWtBYll7IWVAsqaF2rBrioVMWk4lwIynBTYsV1hzvFYeQbyaXCcvyquroo7k9eHWDX9tHuIR7bALZ9bIS4aSGOtzjTCtKISvOSia6jDauBjTsIlSAZVqwho-vdyTX4Ho4HcO5JSHA7JdQ-JTTCb05wH8OPwaTc7sIQ_XhrW9aCMNYwPFFvT5SKIaVouv8ar_5ilc2PAeUI1v1j4hesqa2a
CitedBy_id crossref_primary_10_3390_su15118804
crossref_primary_10_3389_fceng_2024_1494244
crossref_primary_10_3390_biomimetics9020092
crossref_primary_10_1039_D4CC01289E
crossref_primary_10_3390_fermentation9100922
crossref_primary_10_3390_appliedmath4040069
crossref_primary_10_1002_bit_28668
crossref_primary_10_1016_j_rineng_2024_103548
crossref_primary_10_1016_j_tem_2024_02_018
crossref_primary_10_1016_j_compchemeng_2024_108706
crossref_primary_10_1016_j_dche_2023_100136
Cites_doi 10.1093/nar/gkj092
10.1093/bioinformatics/btg015
10.1016/j.csbj.2020.10.011
10.1016/j.virol.2011.04.020
10.3390/ijms21239070
10.1002/ceat.270170103
10.1021/bp0502328
10.3390/sym12101628
10.1002/aic.690400806
10.1007/s00449-016-1611-z
10.1016/j.cell.2019.04.016
10.1038/s41580-021-00407-0
10.1002/pmic.202100232
10.1016/j.coisb.2021.03.001
10.1186/1471-2105-8-30
10.1007/978-1-0716-2617-7_18
10.1093/bioinformatics/btl485
10.1016/j.compchemeng.2013.08.008
10.1002/aic.17715
10.1186/1752-0509-4-131
10.1093/bioinformatics/bth200
10.1016/j.compchemeng.2022.107952
10.1111/j.1742-4658.2006.05485.x
10.1186/1752-0509-5-34
10.1002/aic.690381003
10.1007/s00449-022-02795-9
10.1093/bioinformatics/btad044
10.1042/bj3560433
10.1016/j.rinp.2021.104235
10.1039/C5MB00828J
10.1016/j.isci.2020.101818
10.1007/s00449-016-1557-1
10.1038/s41467-021-22989-1
10.1007/s00449-013-1029-9
10.1186/1752-0509-5-92
10.1093/bioinformatics/bts432
10.1371/journal.pcbi.1008472
10.1016/S0169-7439(02)00051-5
10.1016/j.eswa.2011.02.117
10.1007/s00449-019-02181-y
10.22541/au.167465887.70993839/v1
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/ai4010014
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Biology
EISSN 2673-2688
EndPage 318
ExternalDocumentID oai_doaj_org_article_91893d6259ff4857a5c3514bab50c581
10.3390/ai4010014
10_3390_ai4010014
GroupedDBID AADQD
AAYXX
ABDBF
ACUHS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
IGS
ISR
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c459t-12347926bb794d949477c8a693c35bc6699450820c6df0fc6a3478b6bc0b01073
IEDL.DBID BENPR
ISSN 2673-2688
IngestDate Fri Oct 03 12:44:24 EDT 2025
Sun Oct 26 04:14:53 EDT 2025
Mon Jul 14 07:32:45 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Thu Oct 16 04:31:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-12347926bb794d949477c8a693c35bc6699450820c6df0fc6a3478b6bc0b01073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7539-488X
0000-0001-8077-4177
0000-0002-6832-6774
OpenAccessLink https://www.proquest.com/docview/2791558504?pq-origsite=%requestingapplication%&accountid=15518
PQID 2791558504
PQPubID 5046920
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_91893d6259ff4857a5c3514bab50c581
unpaywall_primary_10_3390_ai4010014
proquest_journals_2791558504
crossref_primary_10_3390_ai4010014
crossref_citationtrail_10_3390_ai4010014
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AI (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Greener (ref_14) 2022; 23
Pinto (ref_37) 2022; 165
Isidro (ref_19) 2016; 39
Oliveira (ref_7) 2011; 38
Ferreira (ref_20) 2014; 37
Goodman (ref_39) 2011; 417
ref_12
Le (ref_13) 2022; 22
ref_11
Antonakoudis (ref_16) 2020; 18
Olivier (ref_33) 2004; 20
Oliveira (ref_1) 2014; 60
ref_10
Chassagnole (ref_38) 2001; 356
Dano (ref_40) 2006; 273
ref_18
Yang (ref_28) 2019; 177
Li (ref_44) 2002; 64
Rajulapati (ref_9) 2022; 68
Marques (ref_23) 2016; 12
Psichogios (ref_2) 1992; 38
Lewis (ref_29) 2021; 12
Vijayakumar (ref_30) 2020; 23
Mochao (ref_34) 2020; 2020
Bennett (ref_15) 2023; 2553
Kim (ref_17) 2021; 25
Schubert (ref_4) 1994; 17
ref_25
Teixeira (ref_5) 2006; 22
Pinto (ref_8) 2019; 42
Hoops (ref_42) 2006; 22
ref_22
ref_21
ref_41
Hamelink (ref_24) 2016; 39
Pinto (ref_36) 2023; 39
Ramos (ref_31) 2022; 45
Thompson (ref_3) 1994; 40
ref_27
Umar (ref_26) 2021; 25
Konig (ref_43) 2012; 28
Bornstein (ref_32) 2006; 34
Hucka (ref_35) 2003; 19
ref_6
References_xml – volume: 34
  start-page: D689
  year: 2006
  ident: ref_32
  article-title: BioModels Database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj092
– volume: 19
  start-page: 524
  year: 2003
  ident: ref_35
  article-title: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg015
– volume: 18
  start-page: 3287
  year: 2020
  ident: ref_16
  article-title: The era of big data: Genome-scale modelling meets machine learning
  publication-title: Comput. Struct Biotec.
  doi: 10.1016/j.csbj.2020.10.011
– volume: 417
  start-page: 27
  year: 2011
  ident: ref_39
  article-title: Virus infection rapidly activates the P58(IPK) pathway, delaying peak kinase activation to enhance viral replication
  publication-title: Virology
  doi: 10.1016/j.virol.2011.04.020
– ident: ref_12
  doi: 10.3390/ijms21239070
– volume: 17
  start-page: 10
  year: 1994
  ident: ref_4
  article-title: Hybrid Modeling of Yeast Production Processes—Combination of a-Priori Knowledge on Different Levels of Sophistication
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.270170103
– volume: 22
  start-page: 247
  year: 2006
  ident: ref_5
  article-title: Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0502328
– ident: ref_27
  doi: 10.3390/sym12101628
– volume: 40
  start-page: 1328
  year: 1994
  ident: ref_3
  article-title: Modeling Chemical Processes Using Prior Knowledge and Neural Networks
  publication-title: Aiche J.
  doi: 10.1002/aic.690400806
– volume: 39
  start-page: 1351
  year: 2016
  ident: ref_19
  article-title: Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a singlechain antibody fragment
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-016-1611-z
– volume: 2020
  start-page: baaa093
  year: 2020
  ident: ref_34
  article-title: KiMoSys 2.0: An upgraded database for submitting, storing and accessing experimental data for kinetic modeling
  publication-title: Database J. Biol. Databases Curation
– volume: 177
  start-page: 1649
  year: 2019
  ident: ref_28
  article-title: A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.016
– volume: 23
  start-page: 40
  year: 2022
  ident: ref_14
  article-title: A guide to machine learning for biologists
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00407-0
– volume: 22
  start-page: e2100232
  year: 2022
  ident: ref_13
  article-title: Potential of deep representative learning features to interpret the sequence information in proteomics
  publication-title: Proteomics
  doi: 10.1002/pmic.202100232
– volume: 25
  start-page: 42
  year: 2021
  ident: ref_17
  article-title: Machine learning applications in genome-scale metabolic modeling
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2021.03.001
– ident: ref_6
  doi: 10.1186/1471-2105-8-30
– volume: 2553
  start-page: 417
  year: 2023
  ident: ref_15
  article-title: Machine Learning and Hybrid Methods for Metabolic Pathway Modeling
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-2617-7_18
– volume: 22
  start-page: 3067
  year: 2006
  ident: ref_42
  article-title: COPASI—A COmplex PAthway SImulator
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl485
– volume: 60
  start-page: 86
  year: 2014
  ident: ref_1
  article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.08.008
– volume: 68
  start-page: e17715
  year: 2022
  ident: ref_9
  article-title: Integration of machine learning and first principles models
  publication-title: Aiche J.
  doi: 10.1002/aic.17715
– ident: ref_22
  doi: 10.1186/1752-0509-4-131
– volume: 20
  start-page: 2143
  year: 2004
  ident: ref_33
  article-title: Web-based kinetic modelling using JWS Online
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth200
– volume: 165
  start-page: 107952
  year: 2022
  ident: ref_37
  article-title: A general deep hybrid model for bioreactor systems: Combining first principles with deep neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107952
– volume: 273
  start-page: 4862
  year: 2006
  ident: ref_40
  article-title: Reduction of a biochemical model with preservation of its basic dynamic properties
  publication-title: Febs J.
  doi: 10.1111/j.1742-4658.2006.05485.x
– ident: ref_10
– ident: ref_18
  doi: 10.1186/1752-0509-5-34
– volume: 38
  start-page: 1499
  year: 1992
  ident: ref_2
  article-title: A Hybrid Neural Network-1st Principles Approach to Process Modeling
  publication-title: Aiche J.
  doi: 10.1002/aic.690381003
– volume: 45
  start-page: 1889
  year: 2022
  ident: ref_31
  article-title: Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-022-02795-9
– volume: 39
  start-page: btad044
  year: 2023
  ident: ref_36
  article-title: SBML2HYB: A Python interface for SBML compatible hybrid modelling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad044
– volume: 356
  start-page: 433
  year: 2001
  ident: ref_38
  article-title: Control of the threonine-synthesis pathway in Escherichia coli: A theoretical and experimental approach
  publication-title: Biochem. J.
  doi: 10.1042/bj3560433
– ident: ref_41
– volume: 25
  start-page: 104235
  year: 2021
  ident: ref_26
  article-title: A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104235
– volume: 12
  start-page: 737
  year: 2016
  ident: ref_23
  article-title: Principal elementary mode analysis (PEMA)
  publication-title: Mol. Biosyst.
  doi: 10.1039/C5MB00828J
– volume: 23
  start-page: 101818
  year: 2020
  ident: ref_30
  article-title: A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101818
– volume: 39
  start-page: 773
  year: 2016
  ident: ref_24
  article-title: Hybrid modeling as a QbD/PAT tool in process development: An industrial E-coli case study
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-016-1557-1
– volume: 12
  start-page: 2700
  year: 2021
  ident: ref_29
  article-title: Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22989-1
– volume: 37
  start-page: 629
  year: 2014
  ident: ref_20
  article-title: Fast development of Pichia pastoris GS115 Mut(+) cultures employing batch-to-batch control and hybrid semi-parametric modeling
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-013-1029-9
– ident: ref_21
  doi: 10.1186/1752-0509-5-92
– volume: 28
  start-page: 2402
  year: 2012
  ident: ref_43
  article-title: CySBML: A Cytoscape plugin for SBML
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts432
– ident: ref_25
  doi: 10.1371/journal.pcbi.1008472
– volume: 64
  start-page: 79
  year: 2002
  ident: ref_44
  article-title: Model selection for partial least squares regression
  publication-title: Chemom. Intell. Lab.
  doi: 10.1016/S0169-7439(02)00051-5
– volume: 38
  start-page: 10862
  year: 2011
  ident: ref_7
  article-title: A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.117
– volume: 42
  start-page: 1853
  year: 2019
  ident: ref_8
  article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-019-02181-y
– ident: ref_11
  doi: 10.22541/au.167465887.70993839/v1
SSID ssj0002512430
Score 2.3081489
Snippet In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 303
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Biology
computational modeling
Coronaviruses
COVID-19
Deep learning
deep neural networks
E coli
Enzyme kinetics
Genomes
hybrid modeling
Hybrid systems
Machine learning
Metabolism
Modelling
Neural networks
Ordinary differential equations
Parameter identification
Process controls
Regularization
SBML
Signal transduction
systems biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS--xfpiUA9elm67SXbjrT5KUdtLLfS2JNksCKWWtiL9Jf5dZ3azpYLixesybEIyyTwy832MXemi47HBA5ElLuBWmcAkMgpc5iKl0aQZSy-63Z7sDPjjUAxXqL6oJqyEBy4Xrq4aaFEz8tLznCci1sJS8bnRRoRWFE3XzTBRK8EU3cFktXkUllBCEcb1df2KkQQFBN8MUIHT_8253HgfT_TiQ49GK3amvcO2vIMIrXJiu2zNjffYdkW-AP4s7rPPFnjIaOgsqO0KiNaMmsuhXRVcAXqk4DHJoWSdXEBr5cn6BvDHpuCIgK6jJuACtxmeqkwbUJ4W7p2bAMF44GC9sm58BtR9NgX0H6F_232Gvs9JHLBB--HlrhN4loXAcqHmAZouHqumNAaPZqa44nFsEy1VhAttrJRKcUGOgpVZHuZWapRPjDSWcqh4Qxyy9fHb2B0xsEoT8HUkbZZxRUgwQguTGfSqeI4fa-y6WvrUeghyYsIYpRiK0C6ly12qsYul6KTE3fhJ6Jb2bylAUNnFB1Sg1CtQ-pcC1dhptfupP7-ztBkTbn4iQhzjcqkRv8_k-D9mcsI2icy-rHA7Zevz6bs7Q5dnbs4L7f4CK6r9BA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oO-eH5i704Z1Adfcm2S3U1WBOmppagtwlk4HyTsRyKHpVd6rVL_Ef9dZ5JNuRMF8TVMsrtkZvc3szO_AXhq6orHWETS52UknLaRzVUalb5MtaEjzTq-0R1P1Ggq3p7K0x140dbCcFolueJn9SadqCyNEkU-mujFvVj0Fr56-S3EkWKVZUppmatrsKskIfEO7E4nHwafuJ9c-2ZDJpSSZ98zZ-RLsEtw5QiqmfqvwMvr6_nCbL6b2ezSSTPcg8_tHJsEk69H65U9cj9-o2_830XcgpsBguKg0ZnbsFPO78Be294Bg7XfhZ8DDKTUONpwYRdy4zQuX8dhm9KFhHkxsJ5j09dyg4NLl-LPkT5s6y4UOC65zLhmhsZ3bSwPORKMr8tygUwUQoNNmsz0C-T6tiUSQsWT4_F7PAlRj3swHb75-GoUhT4OkRNSryI6HEWmE2UtGb_XQossc7lROnWptI7Wr4VkKOKUr_qVU4bkc6us4ygt7UH3oTM_n5cPAJ02TK2dKue90Mw1I4203hJuExU97MKz9tcWLpCcc6-NWUHODmtBsdWCLjzeii4aZo8_CR2zfmwFmIy7fnC-_FIE2y50TKDPsyNZVSKXmZGO6yOssbLvZB534bDVriLsEBdFkjEzfy77NMaTrcb9fSb7_yR1ADcSQmFNktwhdFbLdfmQUNPKPgrG8QvBfxHR
  priority: 102
  providerName: Unpaywall
Title A General Hybrid Modeling Framework for Systems Biology Applications: Combining Mechanistic Knowledge with Deep Neural Networks under the SBML Standard
URI https://www.proquest.com/docview/2791558504
https://www.mdpi.com/2673-2688/4/1/14/pdf?version=1677669586
https://doaj.org/article/91893d6259ff4857a5c3514bab50c581
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: ABDBF
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2673-2688
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512430
  issn: 2673-2688
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEB_aFNGXqtVitIZBffDlaJLb3bsViiSaGNQcxRqoT8d-nQghiWlKyYv_hv9ud-72zhbUlzwsy15gZnY-dub3A3ilyonHHou4TV3EjNSRTkUcOetiqbxL04ZedKeZmMzYx3N-vgNZPQtDbZX1nVhe1HZpqEZ-3E8IyTzlXfZ29TMi1ih6Xa0pNFSgVrAnJcTYLuz1CRmrBXvDUXb6pam6kDdncbeCGIp9vn-sfvgMgxKFW46pxO-_FXTevVys1PZKzec3_M_4AeyHwBEHlaQfwo5bHMCdikpyewD3a3oGDNb6CH4PMIBK42RLg1lIxGc0fo7juiULfcyKAbUcw2E4uPGo_Qb9wbpkkcCpozHhEtkZP9W1OKRKLr53boUE9OE_llWd5RdI82lr9BEmng2nn_EsVC0ew2w8-vpuEgUehsgwLjeRd24skX2htTdeK5lkSWJSJWRsYq6NEFIyTqGEEbboFkYovz_VQhuqsvo75BBai-XCPQE0UhE0diyMtUwSVgxXXFvt4y5W-MU2vK6FkJsAUk5cGfPcJyskr7yRVxteNFtXFTLH3zYNSZLNBgLTLheW6-95sM1c9nzQZikRLAqW8kRxQ_MNWmneNTztteGo1oM8WPhF_kcf2_Cy0Y1__5On_z_kGdwjIvuqu-0IWpv1pXvuw52N7sBuOv7QCZrcKYsG_nf6a-TXZtnp4Ns1BT8DuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVqi8cCkgAgVGXCRerDr2ru1FqlBCG6XkIkRbqW9mb64qRUlIUlX5Ev6Gb2PGXptWAt76ulqtLc3s7JnZnXMYe6fKjsc2D4TNXMCN1IHOkjhw1sVS4ZGmDd3ojsZJ_5R_ORNnG-xX3QtDzyrrmFgGajszVCPfi1JiMs9EyD_NfwSkGkW3q7WEhvLSCna_pBjzjR0Dt77CFG65f3SA9n4fRb3Dk8_9wKsMBIYLuQowdPNURonW6JpWcsnT1GQqkbGJhTZJIiUXdFCaxBZhYRKF8zOdaEM1RNwhuO4dtsVjLjH52-oejr9-a6o8hB54HFaURnEswz11gRkNJSY3DsJSL-AGyN2-nM7V-kpNJtfOu95Ddt8DVehUnvWIbbjpDrtbSVeud9iDWg4CfHR4zH52wJNYQ39NjWBAQmvU7g69-gkYIEYGz5IOfjHoXLtE_wi4sC5VK2DkqC25ZJKGQV37A6ocw4FzcyBiEfzYuHrJvgTqh1sAIlo47o6GcOyrJE_Y6a1Y5CnbnM6m7hkDIxVRcceJsZZL4qYRSmirEefxAgdb7ENthNx4UnTS5pjkmByRvfLGXi32ppk6r5hA_japS5ZsJhB5dzkwW5znPhbkso0g0VLiWRQ8E6kShvoptNIiNCJrt9hu7Qe5jyjL_I__t9jbxjf-_SfP_7_Ia7bdPxkN8-HRePCC3YsQulUv63bZ5mpx6V4i1FrpV96fgX2_7S30G4kqOac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEC9feBkgCgNOvEh8iZomthMjIdRRQkfXCmlM2rdgO840qWpL22nqL-G_8Ou4S5ywScC3fY0st9Kdz8-d756Hsde6mnjs8UAUqQu4VSYwqYwDV7hYabzSjKUX3fFEDo_4l2NxvMV-NbMw1FbZxMQqUBdzSzXybpQQk3kqQt4tfVvE10H2YfEjIAUpemlt5DRqFxm5zTmmb6v3-wO09Zsoyj59-zgMvMJAYLlQ6wDDNk9UJI1BtywUVzxJbKqlim0sjJVSKS7okrSyKMPSSo3rUyONpfohng7c9xq7nhCLO02pZ5_b-g7hBh6HNZlRHKuwq08xl6GU5NIVWCkFXIK3t85mC70519PphZsuu8fueIgK_dqn7rMtN9thN2rRys0Ou9sIQYCPCw_Yzz54-moYbmgEDEhijQbdIWuavwDRMXh-dPCbQf_C8_k7wI1NpVcBY0cDyRWHNIyaqh9QzRgGzi2AKEXwxyZ1D_sKaBJuCYhl4XBvfACHvj7ykB1diT0ese3ZfOYeM7BKEwl3LG1RcEWsNEILUxhEeLzEjx32tjFCbj0dOqlyTHNMi8heeWuvDnvZLl3UHCB_W7RHlmwXEG139WG-PMl9FMhVD-FhQSlnWfJUJFpYmqQw2ojQirTXYbuNH-Q-lqzyP57fYa9a3_j3P3ny_01esJt4cPKD_cnoKbsdIWarW-p22fZ6eeaeIcZam-eVMwP7ftWn5zfspzdB
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oO-eH5i704Z1Adfcm2S3U1WBOmppagtwlk4HyTsRyKHpVd6rVL_Ef9dZ5JNuRMF8TVMsrtkZvc3szO_AXhq6orHWETS52UknLaRzVUalb5MtaEjzTq-0R1P1Ggq3p7K0x140dbCcFolueJn9SadqCyNEkU-mujFvVj0Fr56-S3EkWKVZUppmatrsKskIfEO7E4nHwafuJ9c-2ZDJpSSZ98zZ-RLsEtw5QiqmfqvwMvr6_nCbL6b2ezSSTPcg8_tHJsEk69H65U9cj9-o2_830XcgpsBguKg0ZnbsFPO78Be294Bg7XfhZ8DDKTUONpwYRdy4zQuX8dhm9KFhHkxsJ5j09dyg4NLl-LPkT5s6y4UOC65zLhmhsZ3bSwPORKMr8tygUwUQoNNmsz0C-T6tiUSQsWT4_F7PAlRj3swHb75-GoUhT4OkRNSryI6HEWmE2UtGb_XQossc7lROnWptI7Wr4VkKOKUr_qVU4bkc6us4ygt7UH3oTM_n5cPAJ02TK2dKue90Mw1I4203hJuExU97MKz9tcWLpCcc6-NWUHODmtBsdWCLjzeii4aZo8_CR2zfmwFmIy7fnC-_FIE2y50TKDPsyNZVSKXmZGO6yOssbLvZB534bDVriLsEBdFkjEzfy77NMaTrcb9fSb7_yR1ADcSQmFNktwhdFbLdfmQUNPKPgrG8QvBfxHR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Hybrid+Modeling+Framework+for+Systems+Biology+Applications%3A+Combining+Mechanistic+Knowledge+with+Deep+Neural+Networks+under+the+SBML+Standard&rft.jtitle=AI+%28Basel%29&rft.au=Pinto%2C+Jos%C3%A9&rft.au=Ramos%2C+Jo%C3%A3o+R.+C.&rft.au=Costa%2C+Rafael+S.&rft.au=Oliveira%2C+Rui&rft.date=2023-03-01&rft.issn=2673-2688&rft.eissn=2673-2688&rft.volume=4&rft.issue=1&rft.spage=303&rft.epage=318&rft_id=info:doi/10.3390%2Fai4010014&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ai4010014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-2688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-2688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-2688&client=summon