Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission

Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 76; no. 1; pp. 20 - 31
Main Authors Deniz, Cem M., Alon, Leeor, Brown, Ryan, Zhu, Yudong
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25828

Cover

Abstract Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject‐specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity—the normalized root‐mean‐square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected‐to‐forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20–31, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.PURPOSEDevelop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models.METHODSWith a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models.Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%.RESULTSIncorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%.Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONUsing the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity--the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc.
Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject‐specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity—the normalized root‐mean‐square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected‐to‐forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20–31, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016.
Author Brown, Ryan
Zhu, Yudong
Deniz, Cem M.
Alon, Leeor
Author_xml – sequence: 1
  givenname: Cem M.
  surname: Deniz
  fullname: Deniz, Cem M.
  email: cmd428@nyu.edu
  organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
– sequence: 2
  givenname: Leeor
  surname: Alon
  fullname: Alon, Leeor
  organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
– sequence: 3
  givenname: Ryan
  surname: Brown
  fullname: Brown, Ryan
  organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
– sequence: 4
  givenname: Yudong
  surname: Zhu
  fullname: Zhu, Yudong
  organization: Zhu Consulting, New York, Scarsdale, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26198052$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEUhC1URNPCgT-AVuICh22f7bXXPqIKCqgFBEE9Wo73beWwawd705J_j9skHCoQJ0tP34zGM0fkIMSAhDyncEIB2OmYxhMmFFOPyIwKxmomdHNAZtA2UHOqm0NylPMSALRumyfkkEmqFQg2I8tv68US3VRXNnRVwhzXyWGdV-h87101xuCnmHy4vgdWKVo3-RusRhvsNY4Ypir21comOww4VMl2PvYJf64xuE01JRvy6HP2MTwlj3s7ZHy2e4_J93dv52fv64vP5x_O3lzUrhFa1U5oCb3qOidoy7TlkqkFqK5cuRMcOqTIuxYWPW-lc9hzKimUi-yFQgB-TF5tfUvYEiNPpgRwOAw2YFxnQxUoKZjW8v9oq1vRgGp4QV8-QJelqlA-ckfJhjWUtoV6saPWixE7s0p-tGlj9oUX4HQLuBRzTtgb5yc7lXpKVX4wFMzdpKZMau4nLYrXDxR707-xO_dbP-Dm36C5_Hq5V9Rbhc8T_vqjsOmHkS1vhbn6dG7migO_-jI3H_lv_LG_Sw
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_mrm_28276
crossref_primary_10_1002_mrm_28693
crossref_primary_10_1002_mrm_29884
crossref_primary_10_1002_mrm_27870
crossref_primary_10_1002_mrm_29011
crossref_primary_10_1002_nbm_3694
crossref_primary_10_1097_RMR_0000000000000202
crossref_primary_10_1155_2021_3073248
crossref_primary_10_1016_j_mric_2020_10_001
crossref_primary_10_1002_mrm_28643
crossref_primary_10_1002_nbm_3701
crossref_primary_10_1002_mrm_26487
crossref_primary_10_1002_nbm_4876
crossref_primary_10_1002_mrm_26148
crossref_primary_10_1038_s44172_024_00233_0
crossref_primary_10_1097_RMR_0000000000000204
Cites_doi 10.1002/mrm.24377
10.1109/TMI.2010.2087768
10.1002/mrm.20978
10.1109/TMI.2013.2295465
10.1002/mrm.22948
10.1002/mrm.24374
10.1002/mrm.25325
10.1002/mrm.23126
10.1002/mrm.22927
10.1002/mrm.23322
10.1016/j.jmr.2009.06.005
10.1002/mrm.23140
10.1002/jmri.21149
10.1002/mrm.24158
10.1002/mrm.10353
10.1088/0031-9155/51/19/001
10.1016/j.jmr.2004.07.020
10.1002/mrm.24138
10.1109/TMI.2009.2015757
10.1002/mrm.1910400610
10.1002/mrm.24329
10.1023/A:1021941328858
10.1016/0022-2364(89)90265-5
10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D
10.1002/mrm.20011
10.1002/mrm.24974
10.1002/mrm.22330
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25828
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 31
ExternalDocumentID 4088876331
26198052
10_1002_mrm_25828
MRM25828
ark_67375_WNG_T8303WPT_J
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01‐EB011551, R01‐EB000447, P41‐EB017183
– fundername: NIBIB NIH HHS
  grantid: R01 EB011551
– fundername: NIBIB NIH HHS
  grantid: R01 EB000447
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4598-c5960f8ddc51729a3628b08d9603c530de1e3d70bf376ccef316103d76f58e003
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 00:10:10 EDT 2025
Fri Jul 11 15:41:44 EDT 2025
Fri Jul 25 12:04:53 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Tue Jul 01 01:20:59 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:25:59 EST 2025
Sun Sep 21 06:18:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords high field MRI
specific absorption rate
pulse design
parallel transmission
RF safety
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4598-c5960f8ddc51729a3628b08d9603c530de1e3d70bf376ccef316103d76f58e003
Notes istex:0C8BF3382058680511DFA55AD76E4EF093348E65
ArticleID:MRM25828
NIH - No. R01-EB011551, R01-EB000447, P41-EB017183
ark:/67375/WNG-T8303WPT-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1002/mrm.25828
PMID 26198052
PQID 1796424117
PQPubID 1016391
PageCount 12
ParticipantIDs proquest_miscellaneous_1808652996
proquest_miscellaneous_1797540843
proquest_journals_1796424117
pubmed_primary_26198052
crossref_citationtrail_10_1002_mrm_25828
crossref_primary_10_1002_mrm_25828
wiley_primary_10_1002_mrm_25828_MRM25828
istex_primary_ark_67375_WNG_T8303WPT_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07
July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Van den Berg CA, Bartels LW, van den Bergen B, Kroeze H, de Leeuw AA, Van de Kamer JB, Lagendijk JJ. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies. Phys Med Biol 2006;51:4735.
Golub GH, Loan CFV. Matrix computations. Baltimore, MD: Johns Hopkins University Press; 1996.
Zanchi MG, Stang P, Kerr A, Pauly JM, Scott GC. Frequency-offset Cartesian feedback for MRI power amplifier linearization. IEEE Trans Med Imaging 2011;30:512-522.
Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006;56:620-629.
Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y. Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 2013;69:1457-1465.
Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med 2004;51:775-784.
Deniz CM, Brown R, Lattanzi R, Alon L, Sodickson DK, Zhu Y. Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla. Magn Reson Med 2013;69:1379-1388.
Lee J, Gebhardt M, Wald LL, Adalsteinsson E. Local SAR in parallel transmission pulse design. Magn Reson Med 2012;67:1566-1578.
Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126.
Graesslin I, Homann H, Biederer S, Börnert P, Nehrke K, Vernickel P, Mens G, Harvey P, Katscher U. A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 2012;68:1664-1674.
Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 2012;68:1517-1526.
Zhu Y, Alon L, Deniz CM, Brown R, Sodickson DK. System and SAR characterization in parallel RF transmission. Magn Reson Med 2012;67:1367-1378.
Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints. IEEE Trans Med Imaging 2014;33:739-748.
Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med 2011;66:1468-1476.
Guérin B, Setsompop K, Ye H, Poser BA, Stenger AV, Wald LL. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate. Magn Reson Med 2015;73:1946-1953.
Center for Devices and Radiological Health. Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. Silver Spring, MD: Food and Drug Administration; 1998. p 23.
Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003;49:144-150.
Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67.
Seifert F, Wübbeler G, Junge S, Ittermann B, Rinneberg H. Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 2007;26:1315-1321.
Brunner DO, Pruessmann KP. Optimal design of multiple-channel RF pulses under strict power and SAR constraints. Magn Reson Med 2010;63:1280-1291.
Collins CM, Li S, Smith MB. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 1998;40:847-856.
Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009;200:147-152.
Hanke M. On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer Math 2001;41:1008-1018.
Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374.
Hoult DI, Kolansky G, Kripiakevich D, King SB. The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 2004;171:64-70.
Boulant N, Massire A, Amadon A, Vignaud A. Radiofrequency pulse design in parallel transmission under strict temperature constraints. Magn Reson Med 2014;72:679-688.
Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168.
Sturm J. Primal-dual interior point approach to semidefinite programming. Amsterdam: Tinbergen Institute; 1997.
Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
Homann H, Börnert P, Eggers H, Nehrke K, Dössel O, Graesslin I. Toward individualized SAR models and in vivo validation. Magn Reson Med 2011;66:1767-1776.
2013; 69
2006; 51
2012
2006; 56
2011
2010
2015; 73
1989; 81
1998
2009
2011; 30
1997
2008
2007
1996
2004
1998; 40
2010; 63
2001; 41
2009; 28
2004; 51
2000; 12
2004; 171
2011; 66
2009; 200
2003; 49
2014
2013
2012; 68
2012; 67
2014; 72
2014; 33
2007; 26
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Sturm J. (e_1_2_6_27_1) 1997
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
Golub GH (e_1_2_6_26_1) 1996
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
Center for Devices and Radiological Health. (e_1_2_6_2_1) 1998
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
References_xml – reference: Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168.
– reference: Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints. IEEE Trans Med Imaging 2014;33:739-748.
– reference: Guérin B, Setsompop K, Ye H, Poser BA, Stenger AV, Wald LL. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate. Magn Reson Med 2015;73:1946-1953.
– reference: Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006;56:620-629.
– reference: Seifert F, Wübbeler G, Junge S, Ittermann B, Rinneberg H. Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 2007;26:1315-1321.
– reference: Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003;49:144-150.
– reference: Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009;200:147-152.
– reference: Sturm J. Primal-dual interior point approach to semidefinite programming. Amsterdam: Tinbergen Institute; 1997.
– reference: Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126.
– reference: Deniz CM, Brown R, Lattanzi R, Alon L, Sodickson DK, Zhu Y. Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla. Magn Reson Med 2013;69:1379-1388.
– reference: Zanchi MG, Stang P, Kerr A, Pauly JM, Scott GC. Frequency-offset Cartesian feedback for MRI power amplifier linearization. IEEE Trans Med Imaging 2011;30:512-522.
– reference: Homann H, Börnert P, Eggers H, Nehrke K, Dössel O, Graesslin I. Toward individualized SAR models and in vivo validation. Magn Reson Med 2011;66:1767-1776.
– reference: Zhu Y, Alon L, Deniz CM, Brown R, Sodickson DK. System and SAR characterization in parallel RF transmission. Magn Reson Med 2012;67:1367-1378.
– reference: Boulant N, Massire A, Amadon A, Vignaud A. Radiofrequency pulse design in parallel transmission under strict temperature constraints. Magn Reson Med 2014;72:679-688.
– reference: Center for Devices and Radiological Health. Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. Silver Spring, MD: Food and Drug Administration; 1998. p 23.
– reference: Hanke M. On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer Math 2001;41:1008-1018.
– reference: Collins CM, Li S, Smith MB. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 1998;40:847-856.
– reference: Golub GH, Loan CFV. Matrix computations. Baltimore, MD: Johns Hopkins University Press; 1996.
– reference: Graesslin I, Homann H, Biederer S, Börnert P, Nehrke K, Vernickel P, Mens G, Harvey P, Katscher U. A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 2012;68:1664-1674.
– reference: Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67.
– reference: Hoult DI, Kolansky G, Kripiakevich D, King SB. The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 2004;171:64-70.
– reference: Van den Berg CA, Bartels LW, van den Bergen B, Kroeze H, de Leeuw AA, Van de Kamer JB, Lagendijk JJ. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies. Phys Med Biol 2006;51:4735.
– reference: Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y. Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 2013;69:1457-1465.
– reference: Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med 2011;66:1468-1476.
– reference: Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374.
– reference: Lee J, Gebhardt M, Wald LL, Adalsteinsson E. Local SAR in parallel transmission pulse design. Magn Reson Med 2012;67:1566-1578.
– reference: Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med 2004;51:775-784.
– reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56.
– reference: Brunner DO, Pruessmann KP. Optimal design of multiple-channel RF pulses under strict power and SAR constraints. Magn Reson Med 2010;63:1280-1291.
– reference: Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 2012;68:1517-1526.
– year: 2011
– volume: 69
  start-page: 1379
  year: 2013
  end-page: 1388
  article-title: Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla
  publication-title: Magn Reson Med
– year: 2009
– volume: 68
  start-page: 1664
  year: 2012
  end-page: 1674
  article-title: A specific absorption rate prediction concept for parallel transmission MR
  publication-title: Magn Reson Med
– volume: 56
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1566
  year: 2012
  end-page: 1578
  article-title: Local SAR in parallel transmission pulse design
  publication-title: Magn Reson Med
– year: 2007
– volume: 68
  start-page: 1117
  year: 2012
  end-page: 1126
  article-title: Patient‐individual local SAR determination: in vivo measurements and numerical validation
  publication-title: Magn Reson Med
– year: 1996
– volume: 12
  start-page: 46
  year: 2000
  end-page: 67
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson Imaging
– volume: 28
  start-page: 1365
  year: 2009
  end-page: 1374
  article-title: Determination of electric conductivity and local SAR via B1 mapping
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 43
  year: 1989
  end-page: 56
  article-title: A k‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson
– volume: 200
  start-page: 147
  year: 2009
  end-page: 152
  article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation
  publication-title: J Magn Reson
– volume: 30
  start-page: 512
  year: 2011
  end-page: 522
  article-title: Frequency‐offset Cartesian feedback for MRI power amplifier linearization
  publication-title: IEEE Trans Med Imaging
– volume: 69
  start-page: 1157
  year: 2013
  end-page: 1168
  article-title: SAR simulations for high‐field MRI: how much detail, effort, and accuracy is needed?
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med
– volume: 51
  start-page: 4735
  year: 2006
  article-title: The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies
  publication-title: Phys Med Biol
– volume: 26
  start-page: 1315
  year: 2007
  end-page: 1321
  article-title: Patient safety concept for multichannel transmit coils
  publication-title: J Magn Reson Imaging
– volume: 67
  start-page: 1367
  year: 2012
  end-page: 1378
  article-title: System and SAR characterization in parallel RF transmission
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1457
  year: 2013
  end-page: 1465
  article-title: Method for in situ characterization of radiofrequency heating in parallel transmit MRI
  publication-title: Magn Reson Med
– year: 2014
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– year: 2010
– year: 2012
– start-page: 23
  year: 1998
– volume: 41
  start-page: 1008
  year: 2001
  end-page: 1018
  article-title: On Lanczos based methods for the regularization of discrete ill‐posed problems
  publication-title: BIT Numer Math
– volume: 72
  start-page: 679
  year: 2014
  end-page: 688
  article-title: Radiofrequency pulse design in parallel transmission under strict temperature constraints
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
– year: 2008
– year: 2004
– year: 1997
– volume: 171
  start-page: 64
  year: 2004
  end-page: 70
  article-title: The NMR multi‐transmit phased array: a Cartesian feedback approach
  publication-title: J Magn Reson
– volume: 40
  start-page: 847
  year: 1998
  end-page: 856
  article-title: SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1517
  year: 2012
  end-page: 1526
  article-title: DREAM—a novel approach for robust, ultrafast, multislice B1 mapping
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1946
  year: 2015
  end-page: 1953
  article-title: Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 51
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1280
  year: 2010
  end-page: 1291
  article-title: Optimal design of multiple‐channel RF pulses under strict power and SAR constraints
  publication-title: Magn Reson Med
– year: 2013
– ident: e_1_2_6_20_1
– ident: e_1_2_6_31_1
  doi: 10.1002/mrm.24377
– ident: e_1_2_6_7_1
  doi: 10.1109/TMI.2010.2087768
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_6_33_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.22948
– ident: e_1_2_6_15_1
  doi: 10.1002/mrm.24374
– ident: e_1_2_6_34_1
  doi: 10.1002/mrm.25325
– ident: e_1_2_6_37_1
– ident: e_1_2_6_45_1
– ident: e_1_2_6_11_1
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.23126
– ident: e_1_2_6_14_1
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_6_28_1
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.23322
– ident: e_1_2_6_40_1
  doi: 10.1016/j.jmr.2009.06.005
– ident: e_1_2_6_32_1
  doi: 10.1002/mrm.23140
– ident: e_1_2_6_42_1
  doi: 10.1002/jmri.21149
– ident: e_1_2_6_44_1
  doi: 10.1002/mrm.24158
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_6_39_1
  doi: 10.1088/0031-9155/51/19/001
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jmr.2004.07.020
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.24138
– ident: e_1_2_6_16_1
  doi: 10.1109/TMI.2009.2015757
– ident: e_1_2_6_41_1
– ident: e_1_2_6_36_1
  doi: 10.1002/mrm.1910400610
– ident: e_1_2_6_30_1
– ident: e_1_2_6_38_1
  doi: 10.1002/mrm.24329
– ident: e_1_2_6_13_1
– ident: e_1_2_6_25_1
  doi: 10.1023/A:1021941328858
– volume-title: Primal‐dual interior point approach to semidefinite programming
  year: 1997
  ident: e_1_2_6_27_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_22_1
  doi: 10.1016/0022-2364(89)90265-5
– start-page: 23
  volume-title: Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices
  year: 1998
  ident: e_1_2_6_2_1
– ident: e_1_2_6_3_1
– ident: e_1_2_6_29_1
  doi: 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D
– ident: e_1_2_6_9_1
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_6_43_1
– ident: e_1_2_6_35_1
  doi: 10.1002/mrm.24974
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.22330
– ident: e_1_2_6_12_1
– volume-title: Matrix computations
  year: 1996
  ident: e_1_2_6_26_1
SSID ssj0009974
Score 2.3006988
Snippet Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained...
Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. With a constrained optimization framework and...
Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained...
Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.PURPOSEDevelop a practical comprehensive...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Computer Simulation
Computer-Aided Design
Electromagnetic Fields
high field MRI
Humans
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Models, Theoretical
parallel transmission
Phantoms, Imaging
pulse design
Radiation Exposure - analysis
Radiation Exposure - prevention & control
Radiation Monitoring - instrumentation
Radiation Monitoring - methods
Radiation Protection - methods
Radio Waves
Reproducibility of Results
RF safety
Sensitivity and Specificity
specific absorption rate
Title Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission
URI https://api.istex.fr/ark:/67375/WNG-T8303WPT-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25828
https://www.ncbi.nlm.nih.gov/pubmed/26198052
https://www.proquest.com/docview/1796424117
https://www.proquest.com/docview/1797540843
https://www.proquest.com/docview/1808652996
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahkC8cBm3wEAGIcRLurSxG1s8IcSYJnVCU6ftAclybEea1qYobaWNJ34Cv5Ffwjl2kmloIMRbm5yqsXMun885_gzwukIDI9qwtMRgm3JE-GmphE29UaqoDOkUbRSeHIz3jvj-iTjZgHfdXpjID9En3Mgygr8mAzflcueSNHTezAcjKvqg_x3mIpRoDy-po_CveKTgJD-jeMcqlI12-l9eiUU3aFrPrwOaV3FrCDy7d-FL98ix3-RssF6VA_vtNzbH_xzTPbjTAlL2PmrQfdjw9RbcmrQl9y24GXpE7fIB1OhkKGvz8_sPZmrHmjbzj99pvyb1HLF5cBGUKwwiYb8WOVQ279ts2KJiRDg-m_kZa4w7XVRN7Oe-YCuKnKh5lMJ7CEe7H6cf9tL2uIbUcqFkagWuhirpnBWIipTB0CjLTDq8mluRZ84Pfe6KrKzQqVnrqxzRZoZXxpWQHr3LI9isF7V_Aowbx61zihSJSyVUWZhRJjzVmjOnygTedi9O25bLnI7UmOnIwjzSOJM6zGQCr3rRr5HA4zqhN-Ht9xKmOaOOt0Lo44NPeiox0B9_nur9BLY79dCtsS_1kLbzIhIaFgm87G_jZFHtxdR-sQ4yBYJjyfO_yEhcXwrEB-MEHkfV6x-IFrp0-gSOPCjQn8eiJ4eT8OHpv4s-g9sIBMexDXkbNlfN2j9HsLUqXwSr-gV1Nyaa
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4C9cBm3jAEGIcRLurSxG1viBQGjjKVCU6ftBVmJ7UhobTplrQR74ifwG_klnONcpqGBEG9tcqrGzrl8Puf4M8DzAg2MaMPCHINtyBHhh7kSJnSZUkmRkU7RRuF0PBwd8N0jcbQCr9q9MDU_RJdwI8vw_poMnBLS2-esobNq1htQ1ecKrFF9jszy7f45eRT-Ga9JOMnTKN7yCkWD7e6nF6LRGk3s18ug5kXk6kPPzk343D503XFy3Fsu8p45-43P8X9HdQtuNJiUva6V6DasuHIDrqVN1X0Drvo2UXN6B0r0M5S4-fn9B8tKy6om-Y_facsmtR2xmfcSlC70In7LFvlUNus6bdi8YMQ5Pp26Kasy-2VeVHVL9ze2oOCJykdZvLtwsPNu8mYUNic2hIYLJUMjcEFUSGuNQGCkMoyOMo-kxauxEXFkXd_FNonyAv2aMa6IEXBGeGVYCOnQwdyD1XJeugfAeGa5sVaRLnGphMqTbBAJR-XmyKo8gJftm9OmoTOnUzWmuiZiHmicSe1nMoBnnehJzeFxmdAL__o7iaw6pqa3ROjD8Xs9kRjrDz9N9G4AW61-6MbeT3WfdvQiGOonATztbuNkUfklK9186WUSxMeSx3-RkbjEFAgRhgHcr3WveyBa69IBFDhyr0F_HotO91P_YfPfRZ_A9dEk3dN7H8YfH8I64sJh3ZW8BauLaukeIfZa5I-9if0CvmQqtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h4GTAuCwwwCCFe0qWNndjiCQFlDFpNU6ftYZKV2I6E1qZT1krAEz-B38gv4RznMg0NhHhrk1M1ds7l8_E5nwGeF2hgRBsW5hhsQ44IP8yVMKHLlEqLjHSKGoVH42T3kO8di-MVeNX2wtT8EF3CjSzD-2sy8DNb7FyQhs6qWW9Amz7XYI0nuLoiRHRwwR2F_8VrDk5yNIq3tELRYKf76aVgtEbz-uUqpHkZuPrIM7wJJ-0z1wUnp73lIu-Zb7_ROf7noG7BRoNI2etahW7Diis3YX3U7LlvwnVfJGrO70CJXobSNj-__2BZaVnVpP7xOzVsUtERm3kfQclCL-IbtsijsllXZ8PmBSPG8enUTVmV2c_zoqoLur-yBYVOVD3K4d2Fw-G7yZvdsDmvITRcKBkagcuhQlprBMIilWFslHkkLV6NjYgj6_outmmUF-jVjHFFjHAzwitJIaRD93IPVst56baA8cxyY60iTeJSCZWn2SASjjabI6vyAF62L06bhsycztSY6pqGeaBxJrWfyQCedaJnNYPHVUIv_NvvJLLqlEreUqGPxu_1RGKkP9qf6L0Atlv10I21n-s-9fMiFOqnATztbuNk0eZLVrr50sukiI4lj_8iI3GBKRAgJAHcr1WveyBa6dLxEzhyr0B_HoseHYz8hwf_LvoE1vffDvWnD-OPD-EGgsKkLknehtVFtXSPEHgt8sfewH4BJWMpZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject%E2%80%90+and+resource%E2%80%90specific+monitoring+and+proactive+management+of+parallel+radiofrequency+transmission&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Deniz%2C+Cem+M.&rft.au=Alon%2C+Leeor&rft.au=Brown%2C+Ryan&rft.au=Zhu%2C+Yudong&rft.date=2016-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=76&rft.issue=1&rft.spage=20&rft.epage=31&rft_id=info:doi/10.1002%2Fmrm.25828&rft.externalDBID=10.1002%252Fmrm.25828&rft.externalDocID=MRM25828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon