Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission
Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of...
Saved in:
Published in | Magnetic resonance in medicine Vol. 76; no. 1; pp. 20 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.07.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25828 |
Cover
Abstract | Purpose
Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.
Methods
With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject‐specific matching) was additionally demonstrated by leveraging experimentally calibrated power models.
Results
Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity—the normalized root‐mean‐square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected‐to‐forward power ratio to 1.7% from a conventional approach's 8.1%.
Conclusion
Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20–31, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.PURPOSEDevelop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models.METHODSWith a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models.Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%.RESULTSIncorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%.Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONUsing the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc. Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity--the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc. Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. © 2015 Wiley Periodicals, Inc. Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject‐specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity—the normalized root‐mean‐square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected‐to‐forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20–31, 2016. © 2015 Wiley Periodicals, Inc. Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained optimization framework and predictive models from a prescan based multichannel calibration, we presented a method supporting design and optimization of parallel RF excitation pulses that accurately obey the forward/reflected peak and average power limits of the RF power amplifiers in parallel transmit imaging experiments and Bloch simulations. Moreover, local SAR limits were incorporated into the parallel RF excitation pulses using electromagnetic field simulations. Virtual transmit coils concept for minimization of reflected power (effecting subject-specific matching) was additionally demonstrated by leveraging experimentally calibrated power models. Results Incorporation of experimentally calibrated power prediction models resulted in accurate compliance with prescribed hardware and global specific absorption rate (SAR) limits. Incorporation of spatial average 10 g SAR models, facilitated by simplifying numerical approximations, provided assurance of patient safety. RF pulses designed with various constraints demonstrated excellent excitation fidelity-the normalized root-mean-square error of the simulated excitation profiles was 2.6% for the fully constrained pulses, comparable to that of the unconstrained pulses. An RF shimming example showed a reduction of the reflected-to-forward power ratio to 1.7% from a conventional approach's 8.1%. Conclusion Using the presented RF pulse design method, effective proactive management of the multifaceted power and SAR limits was demonstrated in experimental and simulation studies. Magn Reson Med 76:20-31, 2016. |
Author | Brown, Ryan Zhu, Yudong Deniz, Cem M. Alon, Leeor |
Author_xml | – sequence: 1 givenname: Cem M. surname: Deniz fullname: Deniz, Cem M. email: cmd428@nyu.edu organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA – sequence: 2 givenname: Leeor surname: Alon fullname: Alon, Leeor organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA – sequence: 3 givenname: Ryan surname: Brown fullname: Brown, Ryan organization: Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA – sequence: 4 givenname: Yudong surname: Zhu fullname: Zhu, Yudong organization: Zhu Consulting, New York, Scarsdale, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26198052$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEUhC1URNPCgT-AVuICh22f7bXXPqIKCqgFBEE9Wo73beWwawd705J_j9skHCoQJ0tP34zGM0fkIMSAhDyncEIB2OmYxhMmFFOPyIwKxmomdHNAZtA2UHOqm0NylPMSALRumyfkkEmqFQg2I8tv68US3VRXNnRVwhzXyWGdV-h87101xuCnmHy4vgdWKVo3-RusRhvsNY4Ypir21comOww4VMl2PvYJf64xuE01JRvy6HP2MTwlj3s7ZHy2e4_J93dv52fv64vP5x_O3lzUrhFa1U5oCb3qOidoy7TlkqkFqK5cuRMcOqTIuxYWPW-lc9hzKimUi-yFQgB-TF5tfUvYEiNPpgRwOAw2YFxnQxUoKZjW8v9oq1vRgGp4QV8-QJelqlA-ckfJhjWUtoV6saPWixE7s0p-tGlj9oUX4HQLuBRzTtgb5yc7lXpKVX4wFMzdpKZMau4nLYrXDxR707-xO_dbP-Dm36C5_Hq5V9Rbhc8T_vqjsOmHkS1vhbn6dG7migO_-jI3H_lv_LG_Sw |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1002_mrm_28276 crossref_primary_10_1002_mrm_28693 crossref_primary_10_1002_mrm_29884 crossref_primary_10_1002_mrm_27870 crossref_primary_10_1002_mrm_29011 crossref_primary_10_1002_nbm_3694 crossref_primary_10_1097_RMR_0000000000000202 crossref_primary_10_1155_2021_3073248 crossref_primary_10_1016_j_mric_2020_10_001 crossref_primary_10_1002_mrm_28643 crossref_primary_10_1002_nbm_3701 crossref_primary_10_1002_mrm_26487 crossref_primary_10_1002_nbm_4876 crossref_primary_10_1002_mrm_26148 crossref_primary_10_1038_s44172_024_00233_0 crossref_primary_10_1097_RMR_0000000000000204 |
Cites_doi | 10.1002/mrm.24377 10.1109/TMI.2010.2087768 10.1002/mrm.20978 10.1109/TMI.2013.2295465 10.1002/mrm.22948 10.1002/mrm.24374 10.1002/mrm.25325 10.1002/mrm.23126 10.1002/mrm.22927 10.1002/mrm.23322 10.1016/j.jmr.2009.06.005 10.1002/mrm.23140 10.1002/jmri.21149 10.1002/mrm.24158 10.1002/mrm.10353 10.1088/0031-9155/51/19/001 10.1016/j.jmr.2004.07.020 10.1002/mrm.24138 10.1109/TMI.2009.2015757 10.1002/mrm.1910400610 10.1002/mrm.24329 10.1023/A:1021941328858 10.1016/0022-2364(89)90265-5 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D 10.1002/mrm.20011 10.1002/mrm.24974 10.1002/mrm.22330 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25828 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 31 |
ExternalDocumentID | 4088876331 26198052 10_1002_mrm_25828 MRM25828 ark_67375_WNG_T8303WPT_J |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01‐EB011551, R01‐EB000447, P41‐EB017183 – fundername: NIBIB NIH HHS grantid: R01 EB011551 – fundername: NIBIB NIH HHS grantid: R01 EB000447 – fundername: NIBIB NIH HHS grantid: P41 EB017183 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4598-c5960f8ddc51729a3628b08d9603c530de1e3d70bf376ccef316103d76f58e003 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 00:10:10 EDT 2025 Fri Jul 11 15:41:44 EDT 2025 Fri Jul 25 12:04:53 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Tue Jul 01 01:20:59 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:25:59 EST 2025 Sun Sep 21 06:18:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | high field MRI specific absorption rate pulse design parallel transmission RF safety |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4598-c5960f8ddc51729a3628b08d9603c530de1e3d70bf376ccef316103d76f58e003 |
Notes | istex:0C8BF3382058680511DFA55AD76E4EF093348E65 ArticleID:MRM25828 NIH - No. R01-EB011551, R01-EB000447, P41-EB017183 ark:/67375/WNG-T8303WPT-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/mrm.25828 |
PMID | 26198052 |
PQID | 1796424117 |
PQPubID | 1016391 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1808652996 proquest_miscellaneous_1797540843 proquest_journals_1796424117 pubmed_primary_26198052 crossref_citationtrail_10_1002_mrm_25828 crossref_primary_10_1002_mrm_25828 wiley_primary_10_1002_mrm_25828_MRM25828 istex_primary_ark_67375_WNG_T8303WPT_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07 July 2016 2016-07-00 20160701 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Van den Berg CA, Bartels LW, van den Bergen B, Kroeze H, de Leeuw AA, Van de Kamer JB, Lagendijk JJ. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies. Phys Med Biol 2006;51:4735. Golub GH, Loan CFV. Matrix computations. Baltimore, MD: Johns Hopkins University Press; 1996. Zanchi MG, Stang P, Kerr A, Pauly JM, Scott GC. Frequency-offset Cartesian feedback for MRI power amplifier linearization. IEEE Trans Med Imaging 2011;30:512-522. Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006;56:620-629. Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y. Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 2013;69:1457-1465. Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med 2004;51:775-784. Deniz CM, Brown R, Lattanzi R, Alon L, Sodickson DK, Zhu Y. Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla. Magn Reson Med 2013;69:1379-1388. Lee J, Gebhardt M, Wald LL, Adalsteinsson E. Local SAR in parallel transmission pulse design. Magn Reson Med 2012;67:1566-1578. Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126. Graesslin I, Homann H, Biederer S, Börnert P, Nehrke K, Vernickel P, Mens G, Harvey P, Katscher U. A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 2012;68:1664-1674. Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 2012;68:1517-1526. Zhu Y, Alon L, Deniz CM, Brown R, Sodickson DK. System and SAR characterization in parallel RF transmission. Magn Reson Med 2012;67:1367-1378. Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints. IEEE Trans Med Imaging 2014;33:739-748. Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med 2011;66:1468-1476. Guérin B, Setsompop K, Ye H, Poser BA, Stenger AV, Wald LL. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate. Magn Reson Med 2015;73:1946-1953. Center for Devices and Radiological Health. Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. Silver Spring, MD: Food and Drug Administration; 1998. p 23. Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003;49:144-150. Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67. Seifert F, Wübbeler G, Junge S, Ittermann B, Rinneberg H. Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 2007;26:1315-1321. Brunner DO, Pruessmann KP. Optimal design of multiple-channel RF pulses under strict power and SAR constraints. Magn Reson Med 2010;63:1280-1291. Collins CM, Li S, Smith MB. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 1998;40:847-856. Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009;200:147-152. Hanke M. On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer Math 2001;41:1008-1018. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374. Hoult DI, Kolansky G, Kripiakevich D, King SB. The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 2004;171:64-70. Boulant N, Massire A, Amadon A, Vignaud A. Radiofrequency pulse design in parallel transmission under strict temperature constraints. Magn Reson Med 2014;72:679-688. Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168. Sturm J. Primal-dual interior point approach to semidefinite programming. Amsterdam: Tinbergen Institute; 1997. Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. Homann H, Börnert P, Eggers H, Nehrke K, Dössel O, Graesslin I. Toward individualized SAR models and in vivo validation. Magn Reson Med 2011;66:1767-1776. 2013; 69 2006; 51 2012 2006; 56 2011 2010 2015; 73 1989; 81 1998 2009 2011; 30 1997 2008 2007 1996 2004 1998; 40 2010; 63 2001; 41 2009; 28 2004; 51 2000; 12 2004; 171 2011; 66 2009; 200 2003; 49 2014 2013 2012; 68 2012; 67 2014; 72 2014; 33 2007; 26 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Sturm J. (e_1_2_6_27_1) 1997 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 Golub GH (e_1_2_6_26_1) 1996 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 Center for Devices and Radiological Health. (e_1_2_6_2_1) 1998 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 |
References_xml | – reference: Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168. – reference: Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints. IEEE Trans Med Imaging 2014;33:739-748. – reference: Guérin B, Setsompop K, Ye H, Poser BA, Stenger AV, Wald LL. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate. Magn Reson Med 2015;73:1946-1953. – reference: Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006;56:620-629. – reference: Seifert F, Wübbeler G, Junge S, Ittermann B, Rinneberg H. Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 2007;26:1315-1321. – reference: Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003;49:144-150. – reference: Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 2009;200:147-152. – reference: Sturm J. Primal-dual interior point approach to semidefinite programming. Amsterdam: Tinbergen Institute; 1997. – reference: Voigt T, Homann H, Katscher U, Doessel O. Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 2012;68:1117-1126. – reference: Deniz CM, Brown R, Lattanzi R, Alon L, Sodickson DK, Zhu Y. Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla. Magn Reson Med 2013;69:1379-1388. – reference: Zanchi MG, Stang P, Kerr A, Pauly JM, Scott GC. Frequency-offset Cartesian feedback for MRI power amplifier linearization. IEEE Trans Med Imaging 2011;30:512-522. – reference: Homann H, Börnert P, Eggers H, Nehrke K, Dössel O, Graesslin I. Toward individualized SAR models and in vivo validation. Magn Reson Med 2011;66:1767-1776. – reference: Zhu Y, Alon L, Deniz CM, Brown R, Sodickson DK. System and SAR characterization in parallel RF transmission. Magn Reson Med 2012;67:1367-1378. – reference: Boulant N, Massire A, Amadon A, Vignaud A. Radiofrequency pulse design in parallel transmission under strict temperature constraints. Magn Reson Med 2014;72:679-688. – reference: Center for Devices and Radiological Health. Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. Silver Spring, MD: Food and Drug Administration; 1998. p 23. – reference: Hanke M. On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer Math 2001;41:1008-1018. – reference: Collins CM, Li S, Smith MB. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 1998;40:847-856. – reference: Golub GH, Loan CFV. Matrix computations. Baltimore, MD: Johns Hopkins University Press; 1996. – reference: Graesslin I, Homann H, Biederer S, Börnert P, Nehrke K, Vernickel P, Mens G, Harvey P, Katscher U. A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 2012;68:1664-1674. – reference: Hoult DI. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46-67. – reference: Hoult DI, Kolansky G, Kripiakevich D, King SB. The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 2004;171:64-70. – reference: Van den Berg CA, Bartels LW, van den Bergen B, Kroeze H, de Leeuw AA, Van de Kamer JB, Lagendijk JJ. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies. Phys Med Biol 2006;51:4735. – reference: Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y. Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 2013;69:1457-1465. – reference: Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med 2011;66:1468-1476. – reference: Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O. Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 2009;28:1365-1374. – reference: Lee J, Gebhardt M, Wald LL, Adalsteinsson E. Local SAR in parallel transmission pulse design. Magn Reson Med 2012;67:1566-1578. – reference: Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med 2004;51:775-784. – reference: Pauly J, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson 1989;81:43-56. – reference: Brunner DO, Pruessmann KP. Optimal design of multiple-channel RF pulses under strict power and SAR constraints. Magn Reson Med 2010;63:1280-1291. – reference: Nehrke K, Börnert P. DREAM-a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 2012;68:1517-1526. – year: 2011 – volume: 69 start-page: 1379 year: 2013 end-page: 1388 article-title: Maximum efficiency radiofrequency shimming: theory and initial application for hip imaging at 7 tesla publication-title: Magn Reson Med – year: 2009 – volume: 68 start-page: 1664 year: 2012 end-page: 1674 article-title: A specific absorption rate prediction concept for parallel transmission MR publication-title: Magn Reson Med – volume: 56 start-page: 620 year: 2006 end-page: 629 article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation publication-title: Magn Reson Med – volume: 67 start-page: 1566 year: 2012 end-page: 1578 article-title: Local SAR in parallel transmission pulse design publication-title: Magn Reson Med – year: 2007 – volume: 68 start-page: 1117 year: 2012 end-page: 1126 article-title: Patient‐individual local SAR determination: in vivo measurements and numerical validation publication-title: Magn Reson Med – year: 1996 – volume: 12 start-page: 46 year: 2000 end-page: 67 article-title: Sensitivity and power deposition in a high‐field imaging experiment publication-title: J Magn Reson Imaging – volume: 28 start-page: 1365 year: 2009 end-page: 1374 article-title: Determination of electric conductivity and local SAR via B1 mapping publication-title: IEEE Trans Med Imaging – volume: 81 start-page: 43 year: 1989 end-page: 56 article-title: A k‐space analysis of small‐tip‐angle excitation publication-title: J Magn Reson – volume: 200 start-page: 147 year: 2009 end-page: 152 article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation publication-title: J Magn Reson – volume: 30 start-page: 512 year: 2011 end-page: 522 article-title: Frequency‐offset Cartesian feedback for MRI power amplifier linearization publication-title: IEEE Trans Med Imaging – volume: 69 start-page: 1157 year: 2013 end-page: 1168 article-title: SAR simulations for high‐field MRI: how much detail, effort, and accuracy is needed? publication-title: Magn Reson Med – volume: 66 start-page: 1767 year: 2011 end-page: 1776 article-title: Toward individualized SAR models and in vivo validation publication-title: Magn Reson Med – volume: 51 start-page: 4735 year: 2006 article-title: The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies publication-title: Phys Med Biol – volume: 26 start-page: 1315 year: 2007 end-page: 1321 article-title: Patient safety concept for multichannel transmit coils publication-title: J Magn Reson Imaging – volume: 67 start-page: 1367 year: 2012 end-page: 1378 article-title: System and SAR characterization in parallel RF transmission publication-title: Magn Reson Med – volume: 69 start-page: 1457 year: 2013 end-page: 1465 article-title: Method for in situ characterization of radiofrequency heating in parallel transmit MRI publication-title: Magn Reson Med – year: 2014 – volume: 33 start-page: 739 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging – year: 2010 – year: 2012 – start-page: 23 year: 1998 – volume: 41 start-page: 1008 year: 2001 end-page: 1018 article-title: On Lanczos based methods for the regularization of discrete ill‐posed problems publication-title: BIT Numer Math – volume: 72 start-page: 679 year: 2014 end-page: 688 article-title: Radiofrequency pulse design in parallel transmission under strict temperature constraints publication-title: Magn Reson Med – volume: 66 start-page: 1468 year: 2011 end-page: 1476 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn Reson Med – year: 2008 – year: 2004 – year: 1997 – volume: 171 start-page: 64 year: 2004 end-page: 70 article-title: The NMR multi‐transmit phased array: a Cartesian feedback approach publication-title: J Magn Reson – volume: 40 start-page: 847 year: 1998 end-page: 856 article-title: SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil publication-title: Magn Reson Med – volume: 68 start-page: 1517 year: 2012 end-page: 1526 article-title: DREAM—a novel approach for robust, ultrafast, multislice B1 mapping publication-title: Magn Reson Med – volume: 73 start-page: 1946 year: 2015 end-page: 1953 article-title: Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate publication-title: Magn Reson Med – volume: 49 start-page: 144 year: 2003 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med – volume: 51 start-page: 775 year: 2004 end-page: 784 article-title: Parallel excitation with an array of transmit coils publication-title: Magn Reson Med – volume: 63 start-page: 1280 year: 2010 end-page: 1291 article-title: Optimal design of multiple‐channel RF pulses under strict power and SAR constraints publication-title: Magn Reson Med – year: 2013 – ident: e_1_2_6_20_1 – ident: e_1_2_6_31_1 doi: 10.1002/mrm.24377 – ident: e_1_2_6_7_1 doi: 10.1109/TMI.2010.2087768 – ident: e_1_2_6_23_1 doi: 10.1002/mrm.20978 – ident: e_1_2_6_33_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.22948 – ident: e_1_2_6_15_1 doi: 10.1002/mrm.24374 – ident: e_1_2_6_34_1 doi: 10.1002/mrm.25325 – ident: e_1_2_6_37_1 – ident: e_1_2_6_45_1 – ident: e_1_2_6_11_1 – ident: e_1_2_6_10_1 doi: 10.1002/mrm.23126 – ident: e_1_2_6_14_1 – ident: e_1_2_6_21_1 doi: 10.1002/mrm.22927 – ident: e_1_2_6_28_1 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.23322 – ident: e_1_2_6_40_1 doi: 10.1016/j.jmr.2009.06.005 – ident: e_1_2_6_32_1 doi: 10.1002/mrm.23140 – ident: e_1_2_6_42_1 doi: 10.1002/jmri.21149 – ident: e_1_2_6_44_1 doi: 10.1002/mrm.24158 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.10353 – ident: e_1_2_6_39_1 doi: 10.1088/0031-9155/51/19/001 – ident: e_1_2_6_6_1 doi: 10.1016/j.jmr.2004.07.020 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.24138 – ident: e_1_2_6_16_1 doi: 10.1109/TMI.2009.2015757 – ident: e_1_2_6_41_1 – ident: e_1_2_6_36_1 doi: 10.1002/mrm.1910400610 – ident: e_1_2_6_30_1 – ident: e_1_2_6_38_1 doi: 10.1002/mrm.24329 – ident: e_1_2_6_13_1 – ident: e_1_2_6_25_1 doi: 10.1023/A:1021941328858 – volume-title: Primal‐dual interior point approach to semidefinite programming year: 1997 ident: e_1_2_6_27_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_22_1 doi: 10.1016/0022-2364(89)90265-5 – start-page: 23 volume-title: Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices year: 1998 ident: e_1_2_6_2_1 – ident: e_1_2_6_3_1 – ident: e_1_2_6_29_1 doi: 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D – ident: e_1_2_6_9_1 – ident: e_1_2_6_5_1 doi: 10.1002/mrm.20011 – ident: e_1_2_6_43_1 – ident: e_1_2_6_35_1 doi: 10.1002/mrm.24974 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.22330 – ident: e_1_2_6_12_1 – volume-title: Matrix computations year: 1996 ident: e_1_2_6_26_1 |
SSID | ssj0009974 |
Score | 2.3006988 |
Snippet | Purpose
Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.
Methods
With a constrained... Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. With a constrained optimization framework and... Purpose Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission. Methods With a constrained... Develop a practical comprehensive package for proactive management of parallel radiofrequency (RF) transmission.PURPOSEDevelop a practical comprehensive... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Computer Simulation Computer-Aided Design Electromagnetic Fields high field MRI Humans Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Models, Theoretical parallel transmission Phantoms, Imaging pulse design Radiation Exposure - analysis Radiation Exposure - prevention & control Radiation Monitoring - instrumentation Radiation Monitoring - methods Radiation Protection - methods Radio Waves Reproducibility of Results RF safety Sensitivity and Specificity specific absorption rate |
Title | Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission |
URI | https://api.istex.fr/ark:/67375/WNG-T8303WPT-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25828 https://www.ncbi.nlm.nih.gov/pubmed/26198052 https://www.proquest.com/docview/1796424117 https://www.proquest.com/docview/1797540843 https://www.proquest.com/docview/1808652996 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahkC8cBm3wEAGIcRLurSxG1s8IcSYJnVCU6ftAclybEea1qYobaWNJ34Cv5Ffwjl2kmloIMRbm5yqsXMun885_gzwukIDI9qwtMRgm3JE-GmphE29UaqoDOkUbRSeHIz3jvj-iTjZgHfdXpjID9En3Mgygr8mAzflcueSNHTezAcjKvqg_x3mIpRoDy-po_CveKTgJD-jeMcqlI12-l9eiUU3aFrPrwOaV3FrCDy7d-FL98ix3-RssF6VA_vtNzbH_xzTPbjTAlL2PmrQfdjw9RbcmrQl9y24GXpE7fIB1OhkKGvz8_sPZmrHmjbzj99pvyb1HLF5cBGUKwwiYb8WOVQ279ts2KJiRDg-m_kZa4w7XVRN7Oe-YCuKnKh5lMJ7CEe7H6cf9tL2uIbUcqFkagWuhirpnBWIipTB0CjLTDq8mluRZ84Pfe6KrKzQqVnrqxzRZoZXxpWQHr3LI9isF7V_Aowbx61zihSJSyVUWZhRJjzVmjOnygTedi9O25bLnI7UmOnIwjzSOJM6zGQCr3rRr5HA4zqhN-Ht9xKmOaOOt0Lo44NPeiox0B9_nur9BLY79dCtsS_1kLbzIhIaFgm87G_jZFHtxdR-sQ4yBYJjyfO_yEhcXwrEB-MEHkfV6x-IFrp0-gSOPCjQn8eiJ4eT8OHpv4s-g9sIBMexDXkbNlfN2j9HsLUqXwSr-gV1Nyaa |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4C9cBm3jAEGIcRLurSxG1viBQGjjKVCU6ftBVmJ7UhobTplrQR74ifwG_klnONcpqGBEG9tcqrGzrl8Puf4M8DzAg2MaMPCHINtyBHhh7kSJnSZUkmRkU7RRuF0PBwd8N0jcbQCr9q9MDU_RJdwI8vw_poMnBLS2-esobNq1htQ1ecKrFF9jszy7f45eRT-Ga9JOMnTKN7yCkWD7e6nF6LRGk3s18ug5kXk6kPPzk343D503XFy3Fsu8p45-43P8X9HdQtuNJiUva6V6DasuHIDrqVN1X0Drvo2UXN6B0r0M5S4-fn9B8tKy6om-Y_facsmtR2xmfcSlC70In7LFvlUNus6bdi8YMQ5Pp26Kasy-2VeVHVL9ze2oOCJykdZvLtwsPNu8mYUNic2hIYLJUMjcEFUSGuNQGCkMoyOMo-kxauxEXFkXd_FNonyAv2aMa6IEXBGeGVYCOnQwdyD1XJeugfAeGa5sVaRLnGphMqTbBAJR-XmyKo8gJftm9OmoTOnUzWmuiZiHmicSe1nMoBnnehJzeFxmdAL__o7iaw6pqa3ROjD8Xs9kRjrDz9N9G4AW61-6MbeT3WfdvQiGOonATztbuNkUfklK9186WUSxMeSx3-RkbjEFAgRhgHcr3WveyBa69IBFDhyr0F_HotO91P_YfPfRZ_A9dEk3dN7H8YfH8I64sJh3ZW8BauLaukeIfZa5I-9if0CvmQqtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h4GTAuCwwwCCFe0qWNndjiCQFlDFpNU6ftYZKV2I6E1qZT1krAEz-B38gv4RznMg0NhHhrk1M1ds7l8_E5nwGeF2hgRBsW5hhsQ44IP8yVMKHLlEqLjHSKGoVH42T3kO8di-MVeNX2wtT8EF3CjSzD-2sy8DNb7FyQhs6qWW9Amz7XYI0nuLoiRHRwwR2F_8VrDk5yNIq3tELRYKf76aVgtEbz-uUqpHkZuPrIM7wJJ-0z1wUnp73lIu-Zb7_ROf7noG7BRoNI2etahW7Diis3YX3U7LlvwnVfJGrO70CJXobSNj-__2BZaVnVpP7xOzVsUtERm3kfQclCL-IbtsijsllXZ8PmBSPG8enUTVmV2c_zoqoLur-yBYVOVD3K4d2Fw-G7yZvdsDmvITRcKBkagcuhQlprBMIilWFslHkkLV6NjYgj6_outmmUF-jVjHFFjHAzwitJIaRD93IPVst56baA8cxyY60iTeJSCZWn2SASjjabI6vyAF62L06bhsycztSY6pqGeaBxJrWfyQCedaJnNYPHVUIv_NvvJLLqlEreUqGPxu_1RGKkP9qf6L0Atlv10I21n-s-9fMiFOqnATztbuNk0eZLVrr50sukiI4lj_8iI3GBKRAgJAHcr1WveyBa6dLxEzhyr0B_HoseHYz8hwf_LvoE1vffDvWnD-OPD-EGgsKkLknehtVFtXSPEHgt8sfewH4BJWMpZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject%E2%80%90+and+resource%E2%80%90specific+monitoring+and+proactive+management+of+parallel+radiofrequency+transmission&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Deniz%2C+Cem+M.&rft.au=Alon%2C+Leeor&rft.au=Brown%2C+Ryan&rft.au=Zhu%2C+Yudong&rft.date=2016-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=76&rft.issue=1&rft.spage=20&rft.epage=31&rft_id=info:doi/10.1002%2Fmrm.25828&rft.externalDBID=10.1002%252Fmrm.25828&rft.externalDocID=MRM25828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |