Lightweight, open source, easy-use algorithm and web service for paraprotein screening using spatial frequency domain analysis of electrophoresis studies
Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. A model...
Saved in:
| Published in | Journal of pathology informatics Vol. 13; p. 100128 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.01.2022
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2153-3539 2229-5089 2153-3539 |
| DOI | 10.1016/j.jpi.2022.100128 |
Cover
| Abstract | Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.
A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.
When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.
We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data. |
|---|---|
| AbstractList | Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.
A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.
When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.
We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data. Introduction: Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. Methods: A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening. Results: When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs. Conclusions: We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data. Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.IntroductionSerum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient's serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.MethodsA model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient's serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1-0.5 g/dL), medium (0.5-3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.ResultsWhen tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1-0.5 g/dL), medium (0.5-3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.ConclusionsWe developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data. |
| ArticleNumber | 100128 |
| Author | Smith, Geoffrey H. Jaye, David L. Sherman, Melanie A. Roback, John D. Chen, Robert |
| Author_xml | – sequence: 1 givenname: Robert surname: Chen fullname: Chen, Robert email: rchen25@emory.edu – sequence: 2 givenname: David L. surname: Jaye fullname: Jaye, David L. – sequence: 3 givenname: John D. surname: Roback fullname: Roback, John D. – sequence: 4 givenname: Melanie A. surname: Sherman fullname: Sherman, Melanie A. – sequence: 5 givenname: Geoffrey H. surname: Smith fullname: Smith, Geoffrey H. |
| BookMark | eNqNkt9uFCEUxiemJtbaB_COSy-6Kwwwf2JiYppqm2zijV4TBg67rCyMMLObeRTfVqbTGNuLKhcHOJzvy4Efr4szHzwUxVuC1wST6v1-ve_tusRlmfeYlM2L4rwknK4op-3ZX-tXxWVKe5wHpYTg5rz4tbHb3XCCOV6h0INHKYxRwRUCmabVmABJtw3RDrsDkl6jE3QoQTxaBciEiHoZZR_DADZLVQTw1m_RmOaYejlY6ZCJ8HMEryakw0HmQumlm5JNKBgEDtQQQ78LEeZUGkZtIb0pXhrpElw-zBfF9883365vV5uvX-6uP21WivG2WTHd8JpRiqFpmKGka1RtDDOs5IRqrCvaNppWknea0bbLaUwY1gaDqjBoSi-Ku8VXB7kXfbQHGScRpBX3iRC3QsbBKgcCKm2A1bisCWGV4o2ulOwM5zXnlFU8e5WL1-h7OZ2kc38MCRYzK7EXmZWYWYmFVRZ9XET92B1AK_BDlO5RJ49PvN2JbTiKltd1BpkN3j0YxJCfOQ3iYJMC56SHMCZR1mVdMUwrkkvrpVTFkFIEI5QdMqMwO1v3bJfkifJ_bvZh0UDmd7QQRVI2fwPQNmbm-YHts-r2iVo5662S7gdM_9D-BsKD-u8 |
| CitedBy_id | crossref_primary_10_1016_j_cca_2024_120086 crossref_primary_10_1080_10408363_2023_2274325 crossref_primary_10_1093_jalm_jfac110 |
| Cites_doi | 10.1515/CCLM.2004.271 10.1093/clinchem/39.9.1984 10.1016/S0003-2670(00)82860-3 10.1136/jcp.45.7.612 10.1016/j.bspc.2011.03.004 10.1016/j.amc.2006.09.022 10.1093/clinchem/hvab133 10.1056/NEJMoa054494 10.1093/bioinformatics/btl355 10.1515/cclm-2021-0146 10.1016/j.jelectrocard.2015.08.034 10.1109/18.57199 10.1016/S1470-2045(14)70442-5 10.1090/S0025-5718-1965-0178586-1 10.4236/jbise.2011.44039 10.1515/CCLM.2008.284 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) 2022 The Authors. 2022 The Authors 2022 |
| Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.jpi.2022.100128 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2153-3539 |
| ExternalDocumentID | oai_doaj_org_article_e6dfe470271146c58d6cabf557553465 10.1016/j.jpi.2022.100128 PMC9577033 10_1016_j_jpi_2022_100128 S2153353922007222 |
| GroupedDBID | .1- .FO 0R~ 5VS 7X7 8FE 8FG 8FI 8FJ AAKDD AALRI AAXUO AAYWO ABDBF ABUWG ACGFS ACUHS ACVFH ADBBV ADCNI ADRAZ ADVLN AEGXH AEUPX AEXQZ AFJKZ AFKRA AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP ARAPS BAWUL BCNDV BENPR BGLVJ CCPQU DIK E3Z EBS EJD EOJEC ESX F5P FDB FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR IL9 IPNFZ ITC K6V K7- KQ8 M41 M48 M~E O5R O5S OBODZ OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC RIG RNS ROL RPM TUS UKHRP Z5R 6I. AAFTH ABXLX AFCTW RMW W3E AAYXX CITATION PUEGO 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4598-4d8574330e884f31b8c7ff4f42513d0d6398d36a5bd439b4250140df0ec60ed33 |
| IEDL.DBID | M48 |
| ISSN | 2153-3539 2229-5089 |
| IngestDate | Tue Oct 14 18:43:34 EDT 2025 Sun Oct 26 02:47:42 EDT 2025 Tue Sep 30 17:18:25 EDT 2025 Wed Oct 01 00:05:08 EDT 2025 Wed Oct 01 01:53:52 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Sat Feb 17 16:07:17 EST 2024 Tue Oct 14 19:36:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | EHC EEG LIS Signal processing Cancer - hematological/lymphoma ECG Data processing Electrophoresis Laboratory methods and tools Myeloma SPEP |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4598-4d8574330e884f31b8c7ff4f42513d0d6398d36a5bd439b4250140df0ec60ed33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/e6dfe470271146c58d6cabf557553465 |
| PQID | 2727640361 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e6dfe470271146c58d6cabf557553465 unpaywall_primary_10_1016_j_jpi_2022_100128 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9577033 proquest_miscellaneous_2727640361 crossref_citationtrail_10_1016_j_jpi_2022_100128 crossref_primary_10_1016_j_jpi_2022_100128 elsevier_sciencedirect_doi_10_1016_j_jpi_2022_100128 elsevier_clinicalkey_doi_10_1016_j_jpi_2022_100128 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of pathology informatics |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Ognibene, Motta, Caldini, Terreni, Dea, Fabris (bb0030) 2004; 42 Kratzer, Ivandic, Fateh-Moghadam (bb0020) 1992; 45 Chabrun, Dieu, Ferre, Gaillard, Mery, Chao de la Barca (bb0035) 2021; 67 O’Connell, Horita, Kasravi (bb0010) 2005; 71 Männer, Schweiger, Söregi, Pohl (bb0025) 1993; 39 Bressert (bb0130) 2012 Smith (bb0165) 1997 Allen Broughton, Bryan (bb0050) 2018 Press, Teukolsky, Vetterling, Flannery (bb0125) 1987; 199 Polat, Güneş (bb0075) 2007; 187 PHORESIS Imaging System Instruction Manual (bb0115) 2003 Rajkumar, Dimopoulos, Palumbo, Blade, Merlini, Mateos (bb0005) 2014; 15 Smith (bb0170) 2003 Du, Kibbe, Lin (bb0155) 2006; 22 Gothwal, Kedawat, Kumar (bb0070) 2011; 4 Cooley, Tukey (bb0120) 1965; 19 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bb0140) 2011; 12 Sanei, Chambers (bb0060) 2013 Altinier, Sarti, Varagnolo, Zaninotto, Maggini, Plebani (bb0045) 2008; 46 Manikandan, Soman (bb0160) 2012; 7 Keren, Bocsi, Billman, Etzell, Faix, Kumar (bb0015) 2021 Clifford, Azuaje, McSharry (bb0055) 2006 Tereshchenko, Josephson (bb0065) 2015; 48 Daubechies (bb0150) 1990; 36 McKinney, Others (bb0135) 2011 Borrillo, Infusino, Birindelli, Panteghini (bb0040) 2021; 59 Kyle, Therneau, Rajkumar, Larson, Plevak, Offord (bb0145) 2006; 354 Kratzer (10.1016/j.jpi.2022.100128_bb0020) 1992; 45 Daubechies (10.1016/j.jpi.2022.100128_bb0150) 1990; 36 Rajkumar (10.1016/j.jpi.2022.100128_bb0005) 2014; 15 Gothwal (10.1016/j.jpi.2022.100128_bb0070) 2011; 4 Polat (10.1016/j.jpi.2022.100128_bb0075) 2007; 187 Manikandan (10.1016/j.jpi.2022.100128_bb0160) 2012; 7 Press (10.1016/j.jpi.2022.100128_bb0125) 1987; 199 Männer (10.1016/j.jpi.2022.100128_bb0025) 1993; 39 PHORESIS Imaging System Instruction Manual (10.1016/j.jpi.2022.100128_bb0115) 2003 O’Connell (10.1016/j.jpi.2022.100128_bb0010) 2005; 71 Altinier (10.1016/j.jpi.2022.100128_bb0045) 2008; 46 McKinney (10.1016/j.jpi.2022.100128_bb0135) 2011 Du (10.1016/j.jpi.2022.100128_bb0155) 2006; 22 Ognibene (10.1016/j.jpi.2022.100128_bb0030) 2004; 42 Allen Broughton (10.1016/j.jpi.2022.100128_bb0050) 2018 Clifford (10.1016/j.jpi.2022.100128_bb0055) 2006 Bressert (10.1016/j.jpi.2022.100128_bb0130) 2012 Smith (10.1016/j.jpi.2022.100128_bb0165) 1997 Smith (10.1016/j.jpi.2022.100128_bb0170) 2003 Sanei (10.1016/j.jpi.2022.100128_bb0060) 2013 Keren (10.1016/j.jpi.2022.100128_bb0015) 2021 Borrillo (10.1016/j.jpi.2022.100128_bb0040) 2021; 59 Cooley (10.1016/j.jpi.2022.100128_bb0120) 1965; 19 Pedregosa (10.1016/j.jpi.2022.100128_bb0140) 2011; 12 Tereshchenko (10.1016/j.jpi.2022.100128_bb0065) 2015; 48 Chabrun (10.1016/j.jpi.2022.100128_bb0035) 2021; 67 Kyle (10.1016/j.jpi.2022.100128_bb0145) 2006; 354 |
| References_xml | – volume: 45 start-page: 612 year: 1992 end-page: 615 ident: bb0020 article-title: Neuronal network analysis of serum electrophoresis publication-title: Journal of Clinical Pathology – volume: 48 start-page: 933 year: 2015 end-page: 937 ident: bb0065 article-title: Frequency content and characteristics of ventricular conduction publication-title: Journal of Electrocardiology – volume: 15 start-page: e538 year: 2014 end-page: e548 ident: bb0005 article-title: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma publication-title: The Lancet Oncology – year: 2011 ident: bb0135 article-title: pandas: a foundational Python library for data analysis and statistics publication-title: Python for High Performance and Scientific Computing 14 – year: 2006 ident: bb0055 article-title: Advanced Methods and Tools for ECG Data Analysis – start-page: 88 year: 2003 end-page: 89 ident: bb0115 publication-title: Sebia Electrophoresis – volume: 46 start-page: 1458 year: 2008 end-page: 1463 ident: bb0045 article-title: An expert system for the classification of serum protein electrophoresis patterns publication-title: Clinical Chemistry and Laboratory Medicine – volume: 354 start-page: 1362 year: 2006 end-page: 1369 ident: bb0145 article-title: Prevalence of monoclonal gammopathy of undetermined significance publication-title: The New England Journal of Medicine – volume: 22 start-page: 2059 year: 2006 end-page: 2065 ident: bb0155 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching publication-title: Bioinformatics – volume: 67 start-page: 1406 year: 2021 end-page: 1414 ident: bb0035 article-title: Achieving expert-level interpretation of serum protein electrophoresis through deep learning driven by human reasoning publication-title: Clinical Chemistry – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0140 article-title: Scikit-learn: machine learning in Python publication-title: Journal of Machine Learning Research – year: 1997 ident: bb0165 article-title: The Scientist and Engineer’s Guide to Digital Signal Processing – volume: 4 start-page: 289 year: 2011 ident: bb0070 article-title: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network publication-title: Journal of Biomedical Science and Engineering – volume: 199 start-page: 293 year: 1987 end-page: 294 ident: bb0125 article-title: Numerical recipes: the art of scientific computing publication-title: Analytica Chimica Acta – volume: 36 start-page: 961 year: 1990 end-page: 1005 ident: bb0150 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Transactions on Information Theory – volume: 39 start-page: 1984 year: 1993 end-page: 1985 ident: bb0025 article-title: Detection of monoclonal gammopathies in serum electrophoresis by neural networks publication-title: Clinical Chemistry – year: 2021 ident: bb0015 article-title: Laboratory detection and initial diagnosis of monoclonal gammopathies: guideline from the College of American Pathologists in Collaboration with the American Association for Clinical Chemistry and the American Society for Clinical Pathology publication-title: Archives of Pathology & Laboratory Medicine – volume: 7 start-page: 118 year: 2012 end-page: 128 ident: bb0160 article-title: A novel method for detecting R-peaks in electrocardiogram (ECG) signal publication-title: Biomedical Signal Processing and Control – volume: 19 start-page: 297 year: 1965 end-page: 301 ident: bb0120 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Mathematics of Computation – volume: 42 year: 2004 ident: bb0030 article-title: Artificial neural network-based algorithm for the evaluation of serum protein capillary electrophoresis publication-title: Clinical Chemistry and Laboratory Medicine – year: 2003 ident: bb0170 article-title: Digital Signal Processing: A Practical Guide for Engineers and Scientists – year: 2013 ident: bb0060 article-title: EEG Signal Processing – volume: 59 start-page: e367 year: 2021 end-page: e369 ident: bb0040 article-title: Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience publication-title: Clinical Chemistry and Laboratory Medicine (CCLM) – volume: 71 start-page: 105 year: 2005 end-page: 112 ident: bb0010 article-title: Understanding and interpreting serum protein electrophoresis publication-title: Am Fam Physician – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: bb0075 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied Mathematics and Computation – year: 2012 ident: bb0130 article-title: SciPy and NumPy: An Overview for Developers – year: 2018 ident: bb0050 article-title: Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 10.1016/j.jpi.2022.100128_bb0140 article-title: Scikit-learn: machine learning in Python publication-title: Journal of Machine Learning Research – year: 2013 ident: 10.1016/j.jpi.2022.100128_bb0060 – volume: 42 issue: 12 year: 2004 ident: 10.1016/j.jpi.2022.100128_bb0030 article-title: Artificial neural network-based algorithm for the evaluation of serum protein capillary electrophoresis publication-title: Clinical Chemistry and Laboratory Medicine doi: 10.1515/CCLM.2004.271 – volume: 39 start-page: 1984 issue: 9 year: 1993 ident: 10.1016/j.jpi.2022.100128_bb0025 article-title: Detection of monoclonal gammopathies in serum electrophoresis by neural networks publication-title: Clinical Chemistry doi: 10.1093/clinchem/39.9.1984 – year: 2006 ident: 10.1016/j.jpi.2022.100128_bb0055 – volume: 199 start-page: 293 year: 1987 ident: 10.1016/j.jpi.2022.100128_bb0125 article-title: Numerical recipes: the art of scientific computing publication-title: Analytica Chimica Acta doi: 10.1016/S0003-2670(00)82860-3 – volume: 45 start-page: 612 issue: 7 year: 1992 ident: 10.1016/j.jpi.2022.100128_bb0020 article-title: Neuronal network analysis of serum electrophoresis publication-title: Journal of Clinical Pathology doi: 10.1136/jcp.45.7.612 – volume: 7 start-page: 118 issue: 2 year: 2012 ident: 10.1016/j.jpi.2022.100128_bb0160 article-title: A novel method for detecting R-peaks in electrocardiogram (ECG) signal publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2011.03.004 – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 10.1016/j.jpi.2022.100128_bb0075 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.09.022 – volume: 67 start-page: 1406 issue: 10 year: 2021 ident: 10.1016/j.jpi.2022.100128_bb0035 article-title: Achieving expert-level interpretation of serum protein electrophoresis through deep learning driven by human reasoning publication-title: Clinical Chemistry doi: 10.1093/clinchem/hvab133 – start-page: 88 year: 2003 ident: 10.1016/j.jpi.2022.100128_bb0115 – volume: 354 start-page: 1362 issue: 13 year: 2006 ident: 10.1016/j.jpi.2022.100128_bb0145 article-title: Prevalence of monoclonal gammopathy of undetermined significance publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa054494 – volume: 22 start-page: 2059 year: 2006 ident: 10.1016/j.jpi.2022.100128_bb0155 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl355 – volume: 59 start-page: e367 issue: 9 year: 2021 ident: 10.1016/j.jpi.2022.100128_bb0040 article-title: Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience publication-title: Clinical Chemistry and Laboratory Medicine (CCLM) doi: 10.1515/cclm-2021-0146 – year: 2021 ident: 10.1016/j.jpi.2022.100128_bb0015 article-title: Laboratory detection and initial diagnosis of monoclonal gammopathies: guideline from the College of American Pathologists in Collaboration with the American Association for Clinical Chemistry and the American Society for Clinical Pathology publication-title: Archives of Pathology & Laboratory Medicine – year: 2011 ident: 10.1016/j.jpi.2022.100128_bb0135 article-title: pandas: a foundational Python library for data analysis and statistics – volume: 48 start-page: 933 issue: 6 year: 2015 ident: 10.1016/j.jpi.2022.100128_bb0065 article-title: Frequency content and characteristics of ventricular conduction publication-title: Journal of Electrocardiology doi: 10.1016/j.jelectrocard.2015.08.034 – volume: 36 start-page: 961 year: 1990 ident: 10.1016/j.jpi.2022.100128_bb0150 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.57199 – volume: 15 start-page: e538 issue: 12 year: 2014 ident: 10.1016/j.jpi.2022.100128_bb0005 article-title: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma publication-title: The Lancet Oncology doi: 10.1016/S1470-2045(14)70442-5 – year: 1997 ident: 10.1016/j.jpi.2022.100128_bb0165 – year: 2003 ident: 10.1016/j.jpi.2022.100128_bb0170 – volume: 71 start-page: 105 issue: 1 year: 2005 ident: 10.1016/j.jpi.2022.100128_bb0010 article-title: Understanding and interpreting serum protein electrophoresis publication-title: Am Fam Physician – year: 2012 ident: 10.1016/j.jpi.2022.100128_bb0130 – volume: 19 start-page: 297 issue: 90 year: 1965 ident: 10.1016/j.jpi.2022.100128_bb0120 article-title: An algorithm for the machine calculation of complex Fourier series publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1965-0178586-1 – volume: 4 start-page: 289 issue: 4 year: 2011 ident: 10.1016/j.jpi.2022.100128_bb0070 article-title: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network publication-title: Journal of Biomedical Science and Engineering doi: 10.4236/jbise.2011.44039 – volume: 46 start-page: 1458 issue: 10 year: 2008 ident: 10.1016/j.jpi.2022.100128_bb0045 article-title: An expert system for the classification of serum protein electrophoresis patterns publication-title: Clinical Chemistry and Laboratory Medicine doi: 10.1515/CCLM.2008.284 – year: 2018 ident: 10.1016/j.jpi.2022.100128_bb0050 |
| SSID | ssj0000331108 |
| Score | 2.1927044 |
| Snippet | Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We... Introduction: Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 100128 |
| SubjectTerms | Cancer - hematological/lymphoma Data processing Electrophoresis Laboratory methods and tools Myeloma Original Signal processing |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8RQLBRmJEzQiiR9xjoCoKkQ5Uam3yPGjm2qbrDa7qvan8G87YyerLIfuhatjJ4pnPP5sf_6GkI9ZXvtAGzTC6IQrL5PaCZswJk1qhXKM4W3k89_y7IL_vBSXk1RfyAmL8sCx4744ab3jBaye8P6sEcpKo2svAGYIxmVQL01VOVlMhRjMGPLbMbMcDOmECVaOR5qB3HW9bGBtmOdBgggzsU8mpaDdvzc3TbDnv8zJR5t2qbe3erGYTEunT8mTAU_Sr_E_npEHrn1OHp4PJ-YvyN9fuPq-DRugJxRzZdG4X39Cne63yaZ3VC-uulWznt9Q3VoKcZX2MYJQQLQUxcGDmkMDTQ3SdGC2o8iXv6I98rHh834VGdlbarsbDRX1oHVCO0-HTDvLeQdLeyjqI3XxJbk4_fHn-1kypGNIDBelSrhVAvAGS51S3LOsVqbwnnsY9RmzqQWsoyyTWtQWUE4NxegE1qfOyNRZxl6Ro7Zr3WtCc1vj9omXxmrOnAGQlOmycGmuPQcDz0g62qMyg1Y5psxYVCMp7boCE1ZowiqacEY-7Zoso1DHfZW_oZF3FVFjOxSA51WD51WHPG9G8tFFqvEaKwReeFFz35f5rtGAcSJ2OdTsw-iDFYx_PNTRres2fZUDAJUccEg2I8Wec-793f6TtpkHJfFSFBDx2Yx83rnx4c578z867y15jK-Mm1nH5Gi92rh3AO_W9fswku8AlM5N0A priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4AX7ohwk5F4gmVK4kvcx4GYJsQmHqg0niLHlzWjS6qm0VT-Cf-W49iplglt8BjHp2mc4-PP9ufvIPQuzUrb0wYVUzKmwvK4NEzHhHCVaCYMIe408tExP5zRLyfsJIhFu7Mwo_37nod1tqxgGpdlvVpQJm6jHc4Adk_Qzuz42_4PlzwOem1MGJkOu5Z_sxuNO708_2j4uQQvr5Ij73b1Um4u5GJxaeQ5eOA5W20vWOgIJz_3unW5p35dkXP8p5d6iO4H_In3vcM8QrdM_RjdOQo77E_Q769utn7RL5juYpdbC_v1_V1sZLuJu9ZguThtVtV6fo5lrTHEYdz6iIMBAWMnJt6rP1RgqhytB0ZH7Pj1p7h1_G14vF15BvcG6-ZcQkUZtFFwY3HIzLOcNyvjilpPdXyKZgefv386jEP6hlhRNhUx1YIBPiGJEYJakpZC5dZSC1EiJTrRgI2EJlyyUgMqKqHYOY22iVE8MZqQZ2hSN7V5jnCmS7fcYrnSkhKjAFSlcpqbJJOWaq4ilAwft1BB29yl2FgUA4ntrIAmL1yTF77JI_R-a7L0wh7XVf7oPGZb0Wly9wXwVYvQxQvDtTU0h3m-O-mtmIA_JkvLABAzQjmLUDb4WzEce4VADT9UXfdkujUKmMhjnZvM3g4OXUC8cJtAsjZN1xYZAFZOAbekEcpHnj56u_Gdupr3yuNTlsMIQSL0Ydsnbm68F_9V-yW65678KtcrNFmvOvMacN-6fBN6_B9rzFW- priority: 102 providerName: Unpaywall |
| Title | Lightweight, open source, easy-use algorithm and web service for paraprotein screening using spatial frequency domain analysis of electrophoresis studies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2153353922007222 https://dx.doi.org/10.1016/j.jpi.2022.100128 https://www.proquest.com/docview/2727640361 https://pubmed.ncbi.nlm.nih.gov/PMC9577033 https://doi.org/10.1016/j.jpi.2022.100128 https://doaj.org/article/e6dfe470271146c58d6cabf557553465 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: AKRWK dateStart: 20100101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2153-3539 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2153-3539 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2153-3539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2153-3539 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M48 dateStart: 20121001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2153-3539 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000331108 issn: 2153-3539 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2IQEvE58iDCoj8QQLSmI7cR8Q2tDKhGg1ISqVp8jxR5spS0rSavRP4b_lnI-yoGkTL5Hi2knjO9_97ny-Q-iNHySmDhuUTAqXchO6iWbKJSSUnmJcE2JPI48n4dmUfpmx2Q7qylu1E1jdaNrZelLTMnv_6-fmIyz4D39jtS6WKZh6QVBnFAr4LtoHRTW0lRzGLdqvBTMhNujdlpuDde4SRobdPudNT-lpqjqhf09hXQOk_4ZT3l_nS7G5Ell2TVeNHqKDFmTi44YrHqEdnT9G98btNvoT9PurNcmvaq_oEbYfjBsn_hHWotq460pjkc2LMl0tLrHIFQZhi6tGrGCAudhmDK9TPKQwVNrYHVCB2AbRz3Flg7Th9aZswrQ3WBWXAjqKNgEKLgxuy-8sFwXY-9BUNfGMT9F0dPr905nb1mhwJWVD7lLFGYAQ4mnOqSF-wmVkDDUgCnyiPAUAiCsSCpYogD4JNFvOUMbTMvS0IuQZ2suLXD9HOFCJ9amYUCpBiZaAnHwxjLQXCENVKB3kdfSIZZvA3NbRyOIuUu0iBhLGloRxQ0IHvd0OWTbZO27rfGKJvO1oE2_XDUU5j9t1HOtQGU0jMObtcW7JOPwxkRgGqJcRGjIHBR2LxN3ZVpDG8KD0tjfT7aAW-DSA5q5hrzsejEEo2J0eketiXcUBoNKQAjjxHRT1mLP3df1f8nRRpxcfsgjUAHHQuy0b3z15L_5npg_RA3vXeLJeor1VudavANutkgHajWYRXPno8wDtn5xOzr8Naj_JoF7L0DadnB__-ANbGlOL |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4AX7ohwk5F4gmVK4kvcx4GYJsQmHqg0niLHlzWjS6qm0VT-Cf-W49iplglt8BjHp2mc4-PP9ufvIPQuzUrb0wYVUzKmwvK4NEzHhHCVaCYMIe408tExP5zRLyfsJIhFu7Mwo_37nod1tqxgGpdlvVpQJm6jHc4Adk_Qzuz42_4PlzwOem1MGJkOu5Z_sxuNO708_2j4uQQvr5Ij73b1Um4u5GJxaeQ5eOA5W20vWOgIJz_3unW5p35dkXP8p5d6iO4H_In3vcM8QrdM_RjdOQo77E_Q769utn7RL5juYpdbC_v1_V1sZLuJu9ZguThtVtV6fo5lrTHEYdz6iIMBAWMnJt6rP1RgqhytB0ZH7Pj1p7h1_G14vF15BvcG6-ZcQkUZtFFwY3HIzLOcNyvjilpPdXyKZgefv386jEP6hlhRNhUx1YIBPiGJEYJakpZC5dZSC1EiJTrRgI2EJlyyUgMqKqHYOY22iVE8MZqQZ2hSN7V5jnCmS7fcYrnSkhKjAFSlcpqbJJOWaq4ilAwft1BB29yl2FgUA4ntrIAmL1yTF77JI_R-a7L0wh7XVf7oPGZb0Wly9wXwVYvQxQvDtTU0h3m-O-mtmIA_JkvLABAzQjmLUDb4WzEce4VADT9UXfdkujUKmMhjnZvM3g4OXUC8cJtAsjZN1xYZAFZOAbekEcpHnj56u_Gdupr3yuNTlsMIQSL0Ydsnbm68F_9V-yW65678KtcrNFmvOvMacN-6fBN6_B9rzFW- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight%2C+open+source%2C+easy-use+algorithm+and+web+service+for+paraprotein+screening+using+spatial+frequency+domain+analysis+of+electrophoresis+studies&rft.jtitle=Journal+of+pathology+informatics&rft.au=Chen%2C+Robert&rft.au=Jaye%2C+David+L.&rft.au=Roback%2C+John+D.&rft.au=Sherman%2C+Melanie+A.&rft.date=2022-01-01&rft.issn=2153-3539&rft.volume=13&rft.spage=100128&rft_id=info:doi/10.1016%2Fj.jpi.2022.100128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpi_2022_100128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-3539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-3539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-3539&client=summon |