Lightweight, open source, easy-use algorithm and web service for paraprotein screening using spatial frequency domain analysis of electrophoresis studies

Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. A model...

Full description

Saved in:
Bibliographic Details
Published inJournal of pathology informatics Vol. 13; p. 100128
Main Authors Chen, Robert, Jaye, David L., Roback, John D., Sherman, Melanie A., Smith, Geoffrey H.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2153-3539
2229-5089
2153-3539
DOI10.1016/j.jpi.2022.100128

Cover

Abstract Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening. When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs. We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.
AbstractList Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening. When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs. We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.
Introduction: Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment. Methods: A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient’s serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening. Results: When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium (0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs. Conclusions: We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.
Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.IntroductionSerum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein detection that uses minimal computational resources for training and deployment.A model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient's serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.MethodsA model screening for paraproteins based on the presence of high-frequency components in the spatial frequency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on representative (n=110) and external (n=1,321) test sets. The model takes as input a patient's serum densitometry curve and a standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a macro-enabled spreadsheet for easy automated screening.When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1-0.5 g/dL), medium (0.5-3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.ResultsWhen tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sensitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the external test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1-0.5 g/dL), medium (0.5-3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing users to score their own SPEP data, and also released the algorithm and application programming interface in an open-source package allowing users to customize the model to their needs.We developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.ConclusionsWe developed a proof of concept for an automated method for paraprotein screening using only the characteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including immunofixation gels, as well as incorporation of outside data sources including clinical data.
ArticleNumber 100128
Author Smith, Geoffrey H.
Jaye, David L.
Sherman, Melanie A.
Roback, John D.
Chen, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Chen
  fullname: Chen, Robert
  email: rchen25@emory.edu
– sequence: 2
  givenname: David L.
  surname: Jaye
  fullname: Jaye, David L.
– sequence: 3
  givenname: John D.
  surname: Roback
  fullname: Roback, John D.
– sequence: 4
  givenname: Melanie A.
  surname: Sherman
  fullname: Sherman, Melanie A.
– sequence: 5
  givenname: Geoffrey H.
  surname: Smith
  fullname: Smith, Geoffrey H.
BookMark eNqNkt9uFCEUxiemJtbaB_COSy-6Kwwwf2JiYppqm2zijV4TBg67rCyMMLObeRTfVqbTGNuLKhcHOJzvy4Efr4szHzwUxVuC1wST6v1-ve_tusRlmfeYlM2L4rwknK4op-3ZX-tXxWVKe5wHpYTg5rz4tbHb3XCCOV6h0INHKYxRwRUCmabVmABJtw3RDrsDkl6jE3QoQTxaBciEiHoZZR_DADZLVQTw1m_RmOaYejlY6ZCJ8HMEryakw0HmQumlm5JNKBgEDtQQQ78LEeZUGkZtIb0pXhrpElw-zBfF9883365vV5uvX-6uP21WivG2WTHd8JpRiqFpmKGka1RtDDOs5IRqrCvaNppWknea0bbLaUwY1gaDqjBoSi-Ku8VXB7kXfbQHGScRpBX3iRC3QsbBKgcCKm2A1bisCWGV4o2ulOwM5zXnlFU8e5WL1-h7OZ2kc38MCRYzK7EXmZWYWYmFVRZ9XET92B1AK_BDlO5RJ49PvN2JbTiKltd1BpkN3j0YxJCfOQ3iYJMC56SHMCZR1mVdMUwrkkvrpVTFkFIEI5QdMqMwO1v3bJfkifJ_bvZh0UDmd7QQRVI2fwPQNmbm-YHts-r2iVo5662S7gdM_9D-BsKD-u8
CitedBy_id crossref_primary_10_1016_j_cca_2024_120086
crossref_primary_10_1080_10408363_2023_2274325
crossref_primary_10_1093_jalm_jfac110
Cites_doi 10.1515/CCLM.2004.271
10.1093/clinchem/39.9.1984
10.1016/S0003-2670(00)82860-3
10.1136/jcp.45.7.612
10.1016/j.bspc.2011.03.004
10.1016/j.amc.2006.09.022
10.1093/clinchem/hvab133
10.1056/NEJMoa054494
10.1093/bioinformatics/btl355
10.1515/cclm-2021-0146
10.1016/j.jelectrocard.2015.08.034
10.1109/18.57199
10.1016/S1470-2045(14)70442-5
10.1090/S0025-5718-1965-0178586-1
10.4236/jbise.2011.44039
10.1515/CCLM.2008.284
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.jpi.2022.100128
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2153-3539
ExternalDocumentID oai_doaj_org_article_e6dfe470271146c58d6cabf557553465
10.1016/j.jpi.2022.100128
PMC9577033
10_1016_j_jpi_2022_100128
S2153353922007222
GroupedDBID .1-
.FO
0R~
5VS
7X7
8FE
8FG
8FI
8FJ
AAKDD
AALRI
AAXUO
AAYWO
ABDBF
ABUWG
ACGFS
ACUHS
ACVFH
ADBBV
ADCNI
ADRAZ
ADVLN
AEGXH
AEUPX
AEXQZ
AFJKZ
AFKRA
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
ARAPS
BAWUL
BCNDV
BENPR
BGLVJ
CCPQU
DIK
E3Z
EBS
EJD
EOJEC
ESX
F5P
FDB
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IL9
IPNFZ
ITC
K6V
K7-
KQ8
M41
M48
M~E
O5R
O5S
OBODZ
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RIG
RNS
ROL
RPM
TUS
UKHRP
Z5R
6I.
AAFTH
ABXLX
AFCTW
RMW
W3E
AAYXX
CITATION
PUEGO
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4598-4d8574330e884f31b8c7ff4f42513d0d6398d36a5bd439b4250140df0ec60ed33
IEDL.DBID M48
ISSN 2153-3539
2229-5089
IngestDate Tue Oct 14 18:43:34 EDT 2025
Sun Oct 26 02:47:42 EDT 2025
Tue Sep 30 17:18:25 EDT 2025
Wed Oct 01 00:05:08 EDT 2025
Wed Oct 01 01:53:52 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Sat Feb 17 16:07:17 EST 2024
Tue Oct 14 19:36:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords EHC
EEG
LIS
Signal processing
Cancer - hematological/lymphoma
ECG
Data processing
Electrophoresis
Laboratory methods and tools
Myeloma
SPEP
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4598-4d8574330e884f31b8c7ff4f42513d0d6398d36a5bd439b4250140df0ec60ed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/e6dfe470271146c58d6cabf557553465
PQID 2727640361
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e6dfe470271146c58d6cabf557553465
unpaywall_primary_10_1016_j_jpi_2022_100128
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9577033
proquest_miscellaneous_2727640361
crossref_citationtrail_10_1016_j_jpi_2022_100128
crossref_primary_10_1016_j_jpi_2022_100128
elsevier_sciencedirect_doi_10_1016_j_jpi_2022_100128
elsevier_clinicalkey_doi_10_1016_j_jpi_2022_100128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of pathology informatics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ognibene, Motta, Caldini, Terreni, Dea, Fabris (bb0030) 2004; 42
Kratzer, Ivandic, Fateh-Moghadam (bb0020) 1992; 45
Chabrun, Dieu, Ferre, Gaillard, Mery, Chao de la Barca (bb0035) 2021; 67
O’Connell, Horita, Kasravi (bb0010) 2005; 71
Männer, Schweiger, Söregi, Pohl (bb0025) 1993; 39
Bressert (bb0130) 2012
Smith (bb0165) 1997
Allen Broughton, Bryan (bb0050) 2018
Press, Teukolsky, Vetterling, Flannery (bb0125) 1987; 199
Polat, Güneş (bb0075) 2007; 187
PHORESIS Imaging System Instruction Manual (bb0115) 2003
Rajkumar, Dimopoulos, Palumbo, Blade, Merlini, Mateos (bb0005) 2014; 15
Smith (bb0170) 2003
Du, Kibbe, Lin (bb0155) 2006; 22
Gothwal, Kedawat, Kumar (bb0070) 2011; 4
Cooley, Tukey (bb0120) 1965; 19
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bb0140) 2011; 12
Sanei, Chambers (bb0060) 2013
Altinier, Sarti, Varagnolo, Zaninotto, Maggini, Plebani (bb0045) 2008; 46
Manikandan, Soman (bb0160) 2012; 7
Keren, Bocsi, Billman, Etzell, Faix, Kumar (bb0015) 2021
Clifford, Azuaje, McSharry (bb0055) 2006
Tereshchenko, Josephson (bb0065) 2015; 48
Daubechies (bb0150) 1990; 36
McKinney, Others (bb0135) 2011
Borrillo, Infusino, Birindelli, Panteghini (bb0040) 2021; 59
Kyle, Therneau, Rajkumar, Larson, Plevak, Offord (bb0145) 2006; 354
Kratzer (10.1016/j.jpi.2022.100128_bb0020) 1992; 45
Daubechies (10.1016/j.jpi.2022.100128_bb0150) 1990; 36
Rajkumar (10.1016/j.jpi.2022.100128_bb0005) 2014; 15
Gothwal (10.1016/j.jpi.2022.100128_bb0070) 2011; 4
Polat (10.1016/j.jpi.2022.100128_bb0075) 2007; 187
Manikandan (10.1016/j.jpi.2022.100128_bb0160) 2012; 7
Press (10.1016/j.jpi.2022.100128_bb0125) 1987; 199
Männer (10.1016/j.jpi.2022.100128_bb0025) 1993; 39
PHORESIS Imaging System Instruction Manual (10.1016/j.jpi.2022.100128_bb0115) 2003
O’Connell (10.1016/j.jpi.2022.100128_bb0010) 2005; 71
Altinier (10.1016/j.jpi.2022.100128_bb0045) 2008; 46
McKinney (10.1016/j.jpi.2022.100128_bb0135) 2011
Du (10.1016/j.jpi.2022.100128_bb0155) 2006; 22
Ognibene (10.1016/j.jpi.2022.100128_bb0030) 2004; 42
Allen Broughton (10.1016/j.jpi.2022.100128_bb0050) 2018
Clifford (10.1016/j.jpi.2022.100128_bb0055) 2006
Bressert (10.1016/j.jpi.2022.100128_bb0130) 2012
Smith (10.1016/j.jpi.2022.100128_bb0165) 1997
Smith (10.1016/j.jpi.2022.100128_bb0170) 2003
Sanei (10.1016/j.jpi.2022.100128_bb0060) 2013
Keren (10.1016/j.jpi.2022.100128_bb0015) 2021
Borrillo (10.1016/j.jpi.2022.100128_bb0040) 2021; 59
Cooley (10.1016/j.jpi.2022.100128_bb0120) 1965; 19
Pedregosa (10.1016/j.jpi.2022.100128_bb0140) 2011; 12
Tereshchenko (10.1016/j.jpi.2022.100128_bb0065) 2015; 48
Chabrun (10.1016/j.jpi.2022.100128_bb0035) 2021; 67
Kyle (10.1016/j.jpi.2022.100128_bb0145) 2006; 354
References_xml – volume: 45
  start-page: 612
  year: 1992
  end-page: 615
  ident: bb0020
  article-title: Neuronal network analysis of serum electrophoresis
  publication-title: Journal of Clinical Pathology
– volume: 48
  start-page: 933
  year: 2015
  end-page: 937
  ident: bb0065
  article-title: Frequency content and characteristics of ventricular conduction
  publication-title: Journal of Electrocardiology
– volume: 15
  start-page: e538
  year: 2014
  end-page: e548
  ident: bb0005
  article-title: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
  publication-title: The Lancet Oncology
– year: 2011
  ident: bb0135
  article-title: pandas: a foundational Python library for data analysis and statistics
  publication-title: Python for High Performance and Scientific Computing 14
– year: 2006
  ident: bb0055
  article-title: Advanced Methods and Tools for ECG Data Analysis
– start-page: 88
  year: 2003
  end-page: 89
  ident: bb0115
  publication-title: Sebia Electrophoresis
– volume: 46
  start-page: 1458
  year: 2008
  end-page: 1463
  ident: bb0045
  article-title: An expert system for the classification of serum protein electrophoresis patterns
  publication-title: Clinical Chemistry and Laboratory Medicine
– volume: 354
  start-page: 1362
  year: 2006
  end-page: 1369
  ident: bb0145
  article-title: Prevalence of monoclonal gammopathy of undetermined significance
  publication-title: The New England Journal of Medicine
– volume: 22
  start-page: 2059
  year: 2006
  end-page: 2065
  ident: bb0155
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
– volume: 67
  start-page: 1406
  year: 2021
  end-page: 1414
  ident: bb0035
  article-title: Achieving expert-level interpretation of serum protein electrophoresis through deep learning driven by human reasoning
  publication-title: Clinical Chemistry
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0140
  article-title: Scikit-learn: machine learning in Python
  publication-title: Journal of Machine Learning Research
– year: 1997
  ident: bb0165
  article-title: The Scientist and Engineer’s Guide to Digital Signal Processing
– volume: 4
  start-page: 289
  year: 2011
  ident: bb0070
  article-title: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network
  publication-title: Journal of Biomedical Science and Engineering
– volume: 199
  start-page: 293
  year: 1987
  end-page: 294
  ident: bb0125
  article-title: Numerical recipes: the art of scientific computing
  publication-title: Analytica Chimica Acta
– volume: 36
  start-page: 961
  year: 1990
  end-page: 1005
  ident: bb0150
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Transactions on Information Theory
– volume: 39
  start-page: 1984
  year: 1993
  end-page: 1985
  ident: bb0025
  article-title: Detection of monoclonal gammopathies in serum electrophoresis by neural networks
  publication-title: Clinical Chemistry
– year: 2021
  ident: bb0015
  article-title: Laboratory detection and initial diagnosis of monoclonal gammopathies: guideline from the College of American Pathologists in Collaboration with the American Association for Clinical Chemistry and the American Society for Clinical Pathology
  publication-title: Archives of Pathology & Laboratory Medicine
– volume: 7
  start-page: 118
  year: 2012
  end-page: 128
  ident: bb0160
  article-title: A novel method for detecting R-peaks in electrocardiogram (ECG) signal
  publication-title: Biomedical Signal Processing and Control
– volume: 19
  start-page: 297
  year: 1965
  end-page: 301
  ident: bb0120
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Mathematics of Computation
– volume: 42
  year: 2004
  ident: bb0030
  article-title: Artificial neural network-based algorithm for the evaluation of serum protein capillary electrophoresis
  publication-title: Clinical Chemistry and Laboratory Medicine
– year: 2003
  ident: bb0170
  article-title: Digital Signal Processing: A Practical Guide for Engineers and Scientists
– year: 2013
  ident: bb0060
  article-title: EEG Signal Processing
– volume: 59
  start-page: e367
  year: 2021
  end-page: e369
  ident: bb0040
  article-title: Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience
  publication-title: Clinical Chemistry and Laboratory Medicine (CCLM)
– volume: 71
  start-page: 105
  year: 2005
  end-page: 112
  ident: bb0010
  article-title: Understanding and interpreting serum protein electrophoresis
  publication-title: Am Fam Physician
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: bb0075
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied Mathematics and Computation
– year: 2012
  ident: bb0130
  article-title: SciPy and NumPy: An Overview for Developers
– year: 2018
  ident: bb0050
  article-title: Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.jpi.2022.100128_bb0140
  article-title: Scikit-learn: machine learning in Python
  publication-title: Journal of Machine Learning Research
– year: 2013
  ident: 10.1016/j.jpi.2022.100128_bb0060
– volume: 42
  issue: 12
  year: 2004
  ident: 10.1016/j.jpi.2022.100128_bb0030
  article-title: Artificial neural network-based algorithm for the evaluation of serum protein capillary electrophoresis
  publication-title: Clinical Chemistry and Laboratory Medicine
  doi: 10.1515/CCLM.2004.271
– volume: 39
  start-page: 1984
  issue: 9
  year: 1993
  ident: 10.1016/j.jpi.2022.100128_bb0025
  article-title: Detection of monoclonal gammopathies in serum electrophoresis by neural networks
  publication-title: Clinical Chemistry
  doi: 10.1093/clinchem/39.9.1984
– year: 2006
  ident: 10.1016/j.jpi.2022.100128_bb0055
– volume: 199
  start-page: 293
  year: 1987
  ident: 10.1016/j.jpi.2022.100128_bb0125
  article-title: Numerical recipes: the art of scientific computing
  publication-title: Analytica Chimica Acta
  doi: 10.1016/S0003-2670(00)82860-3
– volume: 45
  start-page: 612
  issue: 7
  year: 1992
  ident: 10.1016/j.jpi.2022.100128_bb0020
  article-title: Neuronal network analysis of serum electrophoresis
  publication-title: Journal of Clinical Pathology
  doi: 10.1136/jcp.45.7.612
– volume: 7
  start-page: 118
  issue: 2
  year: 2012
  ident: 10.1016/j.jpi.2022.100128_bb0160
  article-title: A novel method for detecting R-peaks in electrocardiogram (ECG) signal
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2011.03.004
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 10.1016/j.jpi.2022.100128_bb0075
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.09.022
– volume: 67
  start-page: 1406
  issue: 10
  year: 2021
  ident: 10.1016/j.jpi.2022.100128_bb0035
  article-title: Achieving expert-level interpretation of serum protein electrophoresis through deep learning driven by human reasoning
  publication-title: Clinical Chemistry
  doi: 10.1093/clinchem/hvab133
– start-page: 88
  year: 2003
  ident: 10.1016/j.jpi.2022.100128_bb0115
– volume: 354
  start-page: 1362
  issue: 13
  year: 2006
  ident: 10.1016/j.jpi.2022.100128_bb0145
  article-title: Prevalence of monoclonal gammopathy of undetermined significance
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMoa054494
– volume: 22
  start-page: 2059
  year: 2006
  ident: 10.1016/j.jpi.2022.100128_bb0155
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl355
– volume: 59
  start-page: e367
  issue: 9
  year: 2021
  ident: 10.1016/j.jpi.2022.100128_bb0040
  article-title: Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience
  publication-title: Clinical Chemistry and Laboratory Medicine (CCLM)
  doi: 10.1515/cclm-2021-0146
– year: 2021
  ident: 10.1016/j.jpi.2022.100128_bb0015
  article-title: Laboratory detection and initial diagnosis of monoclonal gammopathies: guideline from the College of American Pathologists in Collaboration with the American Association for Clinical Chemistry and the American Society for Clinical Pathology
  publication-title: Archives of Pathology & Laboratory Medicine
– year: 2011
  ident: 10.1016/j.jpi.2022.100128_bb0135
  article-title: pandas: a foundational Python library for data analysis and statistics
– volume: 48
  start-page: 933
  issue: 6
  year: 2015
  ident: 10.1016/j.jpi.2022.100128_bb0065
  article-title: Frequency content and characteristics of ventricular conduction
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2015.08.034
– volume: 36
  start-page: 961
  year: 1990
  ident: 10.1016/j.jpi.2022.100128_bb0150
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.57199
– volume: 15
  start-page: e538
  issue: 12
  year: 2014
  ident: 10.1016/j.jpi.2022.100128_bb0005
  article-title: International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
  publication-title: The Lancet Oncology
  doi: 10.1016/S1470-2045(14)70442-5
– year: 1997
  ident: 10.1016/j.jpi.2022.100128_bb0165
– year: 2003
  ident: 10.1016/j.jpi.2022.100128_bb0170
– volume: 71
  start-page: 105
  issue: 1
  year: 2005
  ident: 10.1016/j.jpi.2022.100128_bb0010
  article-title: Understanding and interpreting serum protein electrophoresis
  publication-title: Am Fam Physician
– year: 2012
  ident: 10.1016/j.jpi.2022.100128_bb0130
– volume: 19
  start-page: 297
  issue: 90
  year: 1965
  ident: 10.1016/j.jpi.2022.100128_bb0120
  article-title: An algorithm for the machine calculation of complex Fourier series
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1965-0178586-1
– volume: 4
  start-page: 289
  issue: 4
  year: 2011
  ident: 10.1016/j.jpi.2022.100128_bb0070
  article-title: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network
  publication-title: Journal of Biomedical Science and Engineering
  doi: 10.4236/jbise.2011.44039
– volume: 46
  start-page: 1458
  issue: 10
  year: 2008
  ident: 10.1016/j.jpi.2022.100128_bb0045
  article-title: An expert system for the classification of serum protein electrophoresis patterns
  publication-title: Clinical Chemistry and Laboratory Medicine
  doi: 10.1515/CCLM.2008.284
– year: 2018
  ident: 10.1016/j.jpi.2022.100128_bb0050
SSID ssj0000331108
Score 2.1927044
Snippet Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell neoplasms. We...
Introduction: Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet laboratory diagnostic criteria for plasma cell...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100128
SubjectTerms Cancer - hematological/lymphoma
Data processing
Electrophoresis
Laboratory methods and tools
Myeloma
Original
Signal processing
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8RQLBRmJEzQiiR9xjoCoKkQ5Uam3yPGjm2qbrDa7qvan8G87YyerLIfuhatjJ4pnPP5sf_6GkI9ZXvtAGzTC6IQrL5PaCZswJk1qhXKM4W3k89_y7IL_vBSXk1RfyAmL8sCx4744ab3jBaye8P6sEcpKo2svAGYIxmVQL01VOVlMhRjMGPLbMbMcDOmECVaOR5qB3HW9bGBtmOdBgggzsU8mpaDdvzc3TbDnv8zJR5t2qbe3erGYTEunT8mTAU_Sr_E_npEHrn1OHp4PJ-YvyN9fuPq-DRugJxRzZdG4X39Cne63yaZ3VC-uulWznt9Q3VoKcZX2MYJQQLQUxcGDmkMDTQ3SdGC2o8iXv6I98rHh834VGdlbarsbDRX1oHVCO0-HTDvLeQdLeyjqI3XxJbk4_fHn-1kypGNIDBelSrhVAvAGS51S3LOsVqbwnnsY9RmzqQWsoyyTWtQWUE4NxegE1qfOyNRZxl6Ro7Zr3WtCc1vj9omXxmrOnAGQlOmycGmuPQcDz0g62qMyg1Y5psxYVCMp7boCE1ZowiqacEY-7Zoso1DHfZW_oZF3FVFjOxSA51WD51WHPG9G8tFFqvEaKwReeFFz35f5rtGAcSJ2OdTsw-iDFYx_PNTRres2fZUDAJUccEg2I8Wec-793f6TtpkHJfFSFBDx2Yx83rnx4c578z867y15jK-Mm1nH5Gi92rh3AO_W9fswku8AlM5N0A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4AX7ohwk5F4gmVK4kvcx4GYJsQmHqg0niLHlzWjS6qm0VT-Cf-W49iplglt8BjHp2mc4-PP9ufvIPQuzUrb0wYVUzKmwvK4NEzHhHCVaCYMIe408tExP5zRLyfsJIhFu7Mwo_37nod1tqxgGpdlvVpQJm6jHc4Adk_Qzuz42_4PlzwOem1MGJkOu5Z_sxuNO708_2j4uQQvr5Ij73b1Um4u5GJxaeQ5eOA5W20vWOgIJz_3unW5p35dkXP8p5d6iO4H_In3vcM8QrdM_RjdOQo77E_Q769utn7RL5juYpdbC_v1_V1sZLuJu9ZguThtVtV6fo5lrTHEYdz6iIMBAWMnJt6rP1RgqhytB0ZH7Pj1p7h1_G14vF15BvcG6-ZcQkUZtFFwY3HIzLOcNyvjilpPdXyKZgefv386jEP6hlhRNhUx1YIBPiGJEYJakpZC5dZSC1EiJTrRgI2EJlyyUgMqKqHYOY22iVE8MZqQZ2hSN7V5jnCmS7fcYrnSkhKjAFSlcpqbJJOWaq4ilAwft1BB29yl2FgUA4ntrIAmL1yTF77JI_R-a7L0wh7XVf7oPGZb0Wly9wXwVYvQxQvDtTU0h3m-O-mtmIA_JkvLABAzQjmLUDb4WzEce4VADT9UXfdkujUKmMhjnZvM3g4OXUC8cJtAsjZN1xYZAFZOAbekEcpHnj56u_Gdupr3yuNTlsMIQSL0Ydsnbm68F_9V-yW65678KtcrNFmvOvMacN-6fBN6_B9rzFW-
  priority: 102
  providerName: Unpaywall
Title Lightweight, open source, easy-use algorithm and web service for paraprotein screening using spatial frequency domain analysis of electrophoresis studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2153353922007222
https://dx.doi.org/10.1016/j.jpi.2022.100128
https://www.proquest.com/docview/2727640361
https://pubmed.ncbi.nlm.nih.gov/PMC9577033
https://doi.org/10.1016/j.jpi.2022.100128
https://doaj.org/article/e6dfe470271146c58d6cabf557553465
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: AKRWK
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2153-3539
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M48
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2153-3539
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000331108
  issn: 2153-3539
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2IQEvE58iDCoj8QQLSmI7cR8Q2tDKhGg1ISqVp8jxR5spS0rSavRP4b_lnI-yoGkTL5Hi2knjO9_97ny-Q-iNHySmDhuUTAqXchO6iWbKJSSUnmJcE2JPI48n4dmUfpmx2Q7qylu1E1jdaNrZelLTMnv_6-fmIyz4D39jtS6WKZh6QVBnFAr4LtoHRTW0lRzGLdqvBTMhNujdlpuDde4SRobdPudNT-lpqjqhf09hXQOk_4ZT3l_nS7G5Ell2TVeNHqKDFmTi44YrHqEdnT9G98btNvoT9PurNcmvaq_oEbYfjBsn_hHWotq460pjkc2LMl0tLrHIFQZhi6tGrGCAudhmDK9TPKQwVNrYHVCB2AbRz3Flg7Th9aZswrQ3WBWXAjqKNgEKLgxuy-8sFwXY-9BUNfGMT9F0dPr905nb1mhwJWVD7lLFGYAQ4mnOqSF-wmVkDDUgCnyiPAUAiCsSCpYogD4JNFvOUMbTMvS0IuQZ2suLXD9HOFCJ9amYUCpBiZaAnHwxjLQXCENVKB3kdfSIZZvA3NbRyOIuUu0iBhLGloRxQ0IHvd0OWTbZO27rfGKJvO1oE2_XDUU5j9t1HOtQGU0jMObtcW7JOPwxkRgGqJcRGjIHBR2LxN3ZVpDG8KD0tjfT7aAW-DSA5q5hrzsejEEo2J0eketiXcUBoNKQAjjxHRT1mLP3df1f8nRRpxcfsgjUAHHQuy0b3z15L_5npg_RA3vXeLJeor1VudavANutkgHajWYRXPno8wDtn5xOzr8Naj_JoF7L0DadnB__-ANbGlOL
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4AX7ohwk5F4gmVK4kvcx4GYJsQmHqg0niLHlzWjS6qm0VT-Cf-W49iplglt8BjHp2mc4-PP9ufvIPQuzUrb0wYVUzKmwvK4NEzHhHCVaCYMIe408tExP5zRLyfsJIhFu7Mwo_37nod1tqxgGpdlvVpQJm6jHc4Adk_Qzuz42_4PlzwOem1MGJkOu5Z_sxuNO708_2j4uQQvr5Ij73b1Um4u5GJxaeQ5eOA5W20vWOgIJz_3unW5p35dkXP8p5d6iO4H_In3vcM8QrdM_RjdOQo77E_Q769utn7RL5juYpdbC_v1_V1sZLuJu9ZguThtVtV6fo5lrTHEYdz6iIMBAWMnJt6rP1RgqhytB0ZH7Pj1p7h1_G14vF15BvcG6-ZcQkUZtFFwY3HIzLOcNyvjilpPdXyKZgefv386jEP6hlhRNhUx1YIBPiGJEYJakpZC5dZSC1EiJTrRgI2EJlyyUgMqKqHYOY22iVE8MZqQZ2hSN7V5jnCmS7fcYrnSkhKjAFSlcpqbJJOWaq4ilAwft1BB29yl2FgUA4ntrIAmL1yTF77JI_R-a7L0wh7XVf7oPGZb0Wly9wXwVYvQxQvDtTU0h3m-O-mtmIA_JkvLABAzQjmLUDb4WzEce4VADT9UXfdkujUKmMhjnZvM3g4OXUC8cJtAsjZN1xYZAFZOAbekEcpHnj56u_Gdupr3yuNTlsMIQSL0Ydsnbm68F_9V-yW65678KtcrNFmvOvMacN-6fBN6_B9rzFW-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight%2C+open+source%2C+easy-use+algorithm+and+web+service+for+paraprotein+screening+using+spatial+frequency+domain+analysis+of+electrophoresis+studies&rft.jtitle=Journal+of+pathology+informatics&rft.au=Chen%2C+Robert&rft.au=Jaye%2C+David+L.&rft.au=Roback%2C+John+D.&rft.au=Sherman%2C+Melanie+A.&rft.date=2022-01-01&rft.issn=2153-3539&rft.volume=13&rft.spage=100128&rft_id=info:doi/10.1016%2Fj.jpi.2022.100128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpi_2022_100128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-3539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-3539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-3539&client=summon