MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury

Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20–50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typical...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 71; no. 4; pp. 1358 - 1367
Main Authors Hetherington, Hoby P., Hamid, Hamada, Kulas, Joseph, Ling, Geoffrey, Bandak, Faris, de Lanerolle, Nihal C., Pan, Jullie W.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.24814

Cover

Abstract Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20–50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. Methods At 7 T, hippocampal MRSI measurements are limited by: (1) poor B0 homogeneity; (2) insufficient B1+ strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B0 shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming‐based outer volume suppression. Results In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N‐acetyl aspartate to choline (P < 0.001) and N‐acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury. Magn Reson Med 71:1358–1367, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. Methods At 7 T, hippocampal MRSI measurements are limited by: (1) poor B0 homogeneity; (2) insufficient B 1 + strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B0 shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression. Results In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury. Magn Reson Med 71:1358-1367, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. At 7 T, hippocampal MRSI measurements are limited by: (1) poor B(0) homogeneity; (2) insufficient B(1)(+) strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B(0) shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression. In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury.
Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury.PURPOSEUp to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury.At 7 T, hippocampal MRSI measurements are limited by: (1) poor B(0) homogeneity; (2) insufficient B(1)(+) strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B(0) shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression.METHODSAt 7 T, hippocampal MRSI measurements are limited by: (1) poor B(0) homogeneity; (2) insufficient B(1)(+) strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B(0) shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression.In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects.RESULTSIn 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects.With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury.CONCLUSIONWith the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury.
Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. Methods At 7 T, hippocampal MRSI measurements are limited by: (1) poor B sub(0) homogeneity; (2) insufficient B super(+) sub(1) strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B sub(0) shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming-based outer volume suppression. Results In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N-acetyl aspartate to choline (P < 0.001) and N-acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury. Magn Reson Med 71:1358-1367, 2014. copyright 2013 Wiley Periodicals, Inc.
Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20–50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7 T and evaluate their sensitivity to detect injury in veterans with mild traumatic brain injury. Methods At 7 T, hippocampal MRSI measurements are limited by: (1) poor B0 homogeneity; (2) insufficient B1+ strength and homogeneity; and (3) chemical shift dispersion artifacts. To overcofme these limitations we: (1) used third degree B0 shimming; (2) an inductively decoupled transceiver array with radiofrequency shimming; and (3) a volume localized single slice sequence using radiofrequency shimming‐based outer volume suppression. Results In 20 controls and 25 veterans with mild traumatic brain injury due to blast exposure with memory impairment, hippocampal N‐acetyl aspartate to choline (P < 0.001) and N‐acetyl aspartate to creatine (P < 0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7 T. MRSI at 7 T can detect hippocampal injury in veterans with mild traumatic brain injury. Magn Reson Med 71:1358–1367, 2014. © 2013 Wiley Periodicals, Inc.
Author Kulas, Joseph
Ling, Geoffrey
Bandak, Faris
Hetherington, Hoby P.
de Lanerolle, Nihal C.
Pan, Jullie W.
Hamid, Hamada
Author_xml – sequence: 1
  givenname: Hoby P.
  surname: Hetherington
  fullname: Hetherington, Hoby P.
  email: hetheringtonh@upmc.edu
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 2
  givenname: Hamada
  surname: Hamid
  fullname: Hamid, Hamada
  organization: Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
– sequence: 3
  givenname: Joseph
  surname: Kulas
  fullname: Kulas, Joseph
  organization: Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
– sequence: 4
  givenname: Geoffrey
  surname: Ling
  fullname: Ling, Geoffrey
  organization: Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Maryland, Bethesda, USA
– sequence: 5
  givenname: Faris
  surname: Bandak
  fullname: Bandak, Faris
  organization: Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
– sequence: 6
  givenname: Nihal C.
  surname: de Lanerolle
  fullname: de Lanerolle, Nihal C.
  organization: Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
– sequence: 7
  givenname: Jullie W.
  surname: Pan
  fullname: Pan, Jullie W.
  organization: Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23918077$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFBS-ALLEBpLT-SxwvqwJDUaeIMsDSsj2O8ODEwXZo5-3xMG0XlahY3bv4ztG95xyAvSEMFoDnGB1hhMhxH_sjwlrMHoEZrgmpSC3YHpghzlBFsWD74CClNUJICM6egH1CBW4R5zPwbXH55QyGDuYfFvZ25ZSH2fZjiGXxQVuoMuRwCd0A7fXoQ3K_LdRepQx751cwRzX1KjsDdVQFcsN6ipun4HGnfLLPbuYh-Pr-3fL0Q3X-aX52enJeGVZOrJhh1Aq0MoijjjSYmbYhTaPrlghFTN10XY2pba3g2jTYMKRppxnGptWiE4wegjc732kY1eZKeS_H6HoVNxIjuQ1HlnDk33AK_GoHjzH8mmzKsnfJWO_VYMOUZIkOUd4SRv4DRYJhJgQt6Mt76DpMcShfb6mWNYw2W8MXN9SkS8x3V942UYDXO8DEkFK03YOPHN9jjculgzCUNpx_SHHlvN3821ouLhe3imqncCnb6zuFij9lwymv5feLuVwu6o9v6ee5vKB_AOGKw2E
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_nbm_4196
crossref_primary_10_1186_s40478_016_0395_3
crossref_primary_10_3390_app13031882
crossref_primary_10_1002_acn3_98
crossref_primary_10_1371_journal_pone_0122329
crossref_primary_10_1002_mrm_28047
crossref_primary_10_1016_j_ab_2021_114479
crossref_primary_10_1016_j_nic_2017_09_007
crossref_primary_10_1089_neu_2022_0125
crossref_primary_10_1038_srep04809
crossref_primary_10_1002_nbm_3386
crossref_primary_10_1002_nbm_4596
crossref_primary_10_1089_neu_2017_5218
crossref_primary_10_1089_neu_2017_5317
crossref_primary_10_1016_j_pneurobio_2022_102370
crossref_primary_10_1089_neu_2023_0309
crossref_primary_10_1002_nbm_3309
crossref_primary_10_1186_s40779_021_00363_y
crossref_primary_10_1002_nbm_4538
crossref_primary_10_1002_nbm_4934
crossref_primary_10_1002_nbm_4415
crossref_primary_10_1097_RMR_0000000000000063
crossref_primary_10_3389_fneur_2020_559318
crossref_primary_10_1017_S1355617720001034
crossref_primary_10_1007_s40141_018_0173_1
crossref_primary_10_3109_02699052_2014_947627
crossref_primary_10_3233_ADR_220022
crossref_primary_10_1111_bpa_12249
crossref_primary_10_1016_j_neuroimage_2016_11_031
crossref_primary_10_1152_jn_00765_2019
crossref_primary_10_1007_s11682_015_9409_1
crossref_primary_10_1016_j_nicl_2018_01_007
crossref_primary_10_1007_s11682_015_9444_y
crossref_primary_10_1016_j_neuroimage_2017_07_017
crossref_primary_10_1080_23279095_2017_1350684
crossref_primary_10_1001_jamanetworkopen_2024_43416
crossref_primary_10_1016_j_neuroimage_2016_10_043
crossref_primary_10_3389_fnsys_2016_00008
crossref_primary_10_1007_s11682_020_00330_6
crossref_primary_10_1016_j_metrad_2024_100056
crossref_primary_10_3389_fneur_2014_00269
crossref_primary_10_1097_HTR_0000000000000183
crossref_primary_10_1097_RLI_0000000000000626
Cites_doi 10.1089/neu.2010.1540
10.1097/NEN.0b013e318235bef2
10.1037/e527612010-001
10.1002/jmri.21660
10.1002/jmri.20709
10.1177/1073191106297617
10.1176/appi.ajp.2009.08101604
10.1002/mrm.20941
10.1056/NEJMoa072972
10.1227/01.neu.0000333300.34189.74
10.1097/01.HTR.0000348755.42649.e9
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.neuroimage.2010.04.269
10.1056/NEJMoa1008069
10.1111/j.1528-1167.2008.01603.x
10.1146/annurev-med-061610-154046
10.1097/HTR.0b013e31819b1210
10.1080/02699050903133962
10.1186/1471-2377-11-105
10.1002/mrm.22182
10.1016/j.neuroimage.2010.04.008
10.1002/mrm.1156
10.1089/neu.2009.1073
10.1002/jmri.20607
10.1016/j.cpr.2009.08.004
10.1212/01.wnl.0000286945.21270.6d
10.1007/s10439-011-0424-0
10.1093/arclin/acp020
10.1080/09084280903526182
10.1007/s00723-011-0280-y
10.1002/mrm.21970
10.1002/jnr.22510
10.3389/fneur.2012.00015
10.1080/02699050701311133
10.1097/00001199-200609000-00004
10.1002/jmri.20696
10.1002/mrm.24122
10.1002/mrm.1910360106
10.1089/neu.2010.1591
10.1016/j.injury.2009.11.018
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
7TK
ADTOC
UNPAY
DOI 10.1002/mrm.24814
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1367
ExternalDocumentID 10.1002/mrm.24814
3249884551
23918077
10_1002_mrm_24814
MRM24814
ark_67375_WNG_TM5JD3QG_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIH
  funderid: R01EB009871; R01EB011639; R01NS081772; DARPA/SPAWAR N66001‐08‐C‐2005
– fundername: NINDS NIH HHS
  grantid: R01 NS081772
– fundername: NIBIB NIH HHS
  grantid: R01 EB009871
– fundername: NIBIB NIH HHS
  grantid: R01EB011639
– fundername: NINDS NIH HHS
  grantid: R01NS081772
– fundername: NIEHS NIH HHS
  grantid: 27306C2005
– fundername: NIBIB NIH HHS
  grantid: R01EB009871
– fundername: NIBIB NIH HHS
  grantid: R01 EB011639
– fundername: NINDS NIH HHS
  grantid: R01 NS090417
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
7TK
ADTOC
UNPAY
ID FETCH-LOGICAL-c4594-4c43e90dc070f2614c86266b5829a2c56ff513e8e97bc61c40b3fb411c8b9f943
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Tue Aug 19 20:17:56 EDT 2025
Fri Jul 11 15:31:15 EDT 2025
Thu Jul 10 18:43:42 EDT 2025
Fri Jul 25 12:15:07 EDT 2025
Thu Apr 03 07:09:09 EDT 2025
Wed Oct 01 02:05:10 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 22 16:34:58 EST 2025
Sun Sep 21 06:22:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 7 T
hippocampus
mild traumatic brain injury
MRSI
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4594-4c43e90dc070f2614c86266b5829a2c56ff513e8e97bc61c40b3fb411c8b9f943
Notes ark:/67375/WNG-TM5JD3QG-N
ArticleID:MRM24814
istex:4537FE67816976F5775670F66FBF8D330B9F3413
NIH - No. R01EB009871; No. R01EB011639; No. R01NS081772; No. DARPA/SPAWAR N66001-08-C-2005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24814
PMID 23918077
PQID 1508464362
PQPubID 1016391
PageCount 10
ParticipantIDs unpaywall_primary_10_1002_mrm_24814
proquest_miscellaneous_1520378242
proquest_miscellaneous_1509414993
proquest_journals_1508464362
pubmed_primary_23918077
crossref_primary_10_1002_mrm_24814
crossref_citationtrail_10_1002_mrm_24814
wiley_primary_10_1002_mrm_24814_MRM24814
istex_primary_ark_67375_WNG_TM5JD3QG_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP. Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 2009;62:17-25.
Flaro L, Green P, Robertson E. Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: the power of external incentives. Brain Inj 2007;21:373-383.
Matthews SC, Strigo IA, Simmons AN, O'Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 2011;54(suppl 1):S69-S75.
Stein MB, McAllister TW. Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. Am J Psychiatry 2009;166:768-776.
Govindaraju V, Gauger GE, Manley GT, Ebel A, Meeker M, Maudsley AA. Volumetric proton spectroscopic imaging of mild traumatic brain injury. Am J Neuroradiol 2004;25:730-737.
Hetherington HP, Chu WJ, Gonen O, Pan JW. Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 2006;56:26-33.
Whitney KA, Shepard PH, Williams AL, Davis JJ, Adams KM. The Medical Symptom Validity Test in the evaluation of Operation Iraqi Freedom/Operation Enduring Freedom soldiers: a preliminary study. Arch Clin Neuropsychol 2009;24:145-152.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289-300.
Mac Donald CL, Johnson AM, Cooper D, et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011;364:2091-2100.
Hetherington HP, Kuzniecky RI, Vives K, et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology 2007;69:2256-2265.
Warden D. Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 2006;21:398-402.
Svetlov SI, Prima V, Glushakova O, et al. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast. Front Neurol 2012;3:15.
Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, Lassonde M. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol 2011;11:105.
Cavus I, Pan JW, Hetherington HP, Abi-Saab W, Zaveri HP, Vives KP, Krystal JH, Spencer SS, Spencer DD. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 2008;49:1358-1366.
Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng 2012;40:185-202.
Avdievich N. Transceiver-phased arrays for human brain studies at 7 T. Appl Magn Reson 2011;41:483-506.
Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 1996;36:21-29.
Ruff R. Best practice guidelines for forensic neuropsychological examinations of patients with traumatic brain injury. J Head Trauma Rehabil 2009;24:131-140.
Holshouser BA, Tong KA, Ashwal S, Oyoyo U, Ghamsary M, Saunders D, Shutter L. Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 2006;24:33-40.
Avdievich NI, Hetherington HP, Kuznetsov AM, Pan JW. 7T head volume coils: improvements for rostral brain imaging. J Magn Reson Imaging 2009;29:461-465.
Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW. RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 2010;63:9-19.
Lu J, Ng KC, Ling G, et al. Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma 2012;29:1434-1454.
Levin HS, Wilde E, Troyanskaya M, et al. Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 2010;27:683-694.
Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 2008;358:453-463.
Sayer NA. Traumatic brain injury and its neuropsychiatric sequelae in war veterans. Annu Rev Med 2012;63:405-419.
Rosenfeld JV, Ford NL. Bomb blast, mild traumatic brain injury and psychiatric morbidity: a review. Injury 2010;41:437-443.
Frederick RI, Bowden SC. Evaluating constructs represented by symptom validity tests in forensic neuropsychological assessment of traumatic brain injury. J Head Trauma Rehabil 2009;24:105-122.
Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG. Increase in blood-brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 2010;88:3530-3539.
Green P, Flaro L, Courtney J. Examining false positives on the Word Memory Test in adults with mild traumatic brain injury. Brain Inj 2009;23:741-750.
Miyasaka N, Takahashi K, Hetherington HP. 1H NMR spectroscopic imaging of the mouse brain at 9.4 T. J Magn Reson Imaging 2006;24:908-913.
Pan JW, Lo KM, Hetherington HP. Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla. Magn Reson Med 2012;68:1007-1017.
Armistead-Jehle P. Symptom validity test performance in U.S. veterans referred for evaluation of mild TBI. Appl Neuropsychol 2010;17:52-59.
Vasterling JJ, Verfaellie M, Sullivan KD. Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: perspectives from cognitive neuroscience. Clin Psychol Rev 2009;29:674-684.
Tanelian T, Jaycox L. Invisible wounds of war psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica, CA: Rand Corporation; 2008.
de Lanerolle NC, Bandak F, Kang D, Li AY, Du F, Swauger P, Parks S, Ling G, Kim JH. Characteristics of an explosive blast-induced brain injury in an experimental model. J Neuropathol Exp Neurol 2011;70:1046-1057.
Vagnozzi R, Signoretti S, Tavazzi B, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes-part III. Neurosurgery 2008;62:1286-1295; discussion 95-6.
Bauer L, O'Bryant SE, Lynch JK, McCaffrey RJ, Fisher JM. Examining the Test Of Memory Malingering Trial 1 and Word Memory Test Immediate Recognition as screening tools for insufficient effort. Assessment 2007;14:215-222.
Babikian T, Freier MC, Ashwal S, Riggs ML, Burley T, Holshouser BA. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging 2006;24:801-811.
Vaughan JT, Garwood M, Collins CM, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001;46:24-30.
Peskind ER, Petrie EC, Cross DJ, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage 2011;54(suppl 1):S76-S82.
Garman RH, Jenkins LW, Switzer RC 3rd, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma 2011;28:947-959.
2009; 23
2009; 24
2009; 62
2006; 56
2010; 17
2004; 25
1995; 57
2009
2008
2011; 11
2011; 54
2003
1996; 36
2001; 46
2010; 41
2010; 63
2007; 14
2009; 29
2010; 88
2010; 27
2012; 3
2006; 24
2006; 21
2011; 70
2008; 49
2011; 41
2009; 166
2012; 29
2008; 358
2011; 28
2007; 21
2008; 62
2012; 68
2011; 364
2007; 69
2012; 63
2012; 40
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Govindaraju V (e_1_2_6_20_1) 2004; 25
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Tanielian T (e_1_2_6_2_1) 2009
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 1996;36:21-29.
– reference: Mac Donald CL, Johnson AM, Cooper D, et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011;364:2091-2100.
– reference: Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW. RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 2010;63:9-19.
– reference: Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995;57:289-300.
– reference: de Lanerolle NC, Bandak F, Kang D, Li AY, Du F, Swauger P, Parks S, Ling G, Kim JH. Characteristics of an explosive blast-induced brain injury in an experimental model. J Neuropathol Exp Neurol 2011;70:1046-1057.
– reference: Ruff R. Best practice guidelines for forensic neuropsychological examinations of patients with traumatic brain injury. J Head Trauma Rehabil 2009;24:131-140.
– reference: Armistead-Jehle P. Symptom validity test performance in U.S. veterans referred for evaluation of mild TBI. Appl Neuropsychol 2010;17:52-59.
– reference: Warden D. Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 2006;21:398-402.
– reference: Sayer NA. Traumatic brain injury and its neuropsychiatric sequelae in war veterans. Annu Rev Med 2012;63:405-419.
– reference: Miyasaka N, Takahashi K, Hetherington HP. 1H NMR spectroscopic imaging of the mouse brain at 9.4 T. J Magn Reson Imaging 2006;24:908-913.
– reference: Vaughan JT, Garwood M, Collins CM, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001;46:24-30.
– reference: Pan JW, Lo KM, Hetherington HP. Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla. Magn Reson Med 2012;68:1007-1017.
– reference: Green P, Flaro L, Courtney J. Examining false positives on the Word Memory Test in adults with mild traumatic brain injury. Brain Inj 2009;23:741-750.
– reference: Whitney KA, Shepard PH, Williams AL, Davis JJ, Adams KM. The Medical Symptom Validity Test in the evaluation of Operation Iraqi Freedom/Operation Enduring Freedom soldiers: a preliminary study. Arch Clin Neuropsychol 2009;24:145-152.
– reference: Stein MB, McAllister TW. Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. Am J Psychiatry 2009;166:768-776.
– reference: Hetherington HP, Kuzniecky RI, Vives K, et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology 2007;69:2256-2265.
– reference: Garman RH, Jenkins LW, Switzer RC 3rd, et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma 2011;28:947-959.
– reference: Svetlov SI, Prima V, Glushakova O, et al. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast. Front Neurol 2012;3:15.
– reference: Avdievich NI, Hetherington HP, Kuznetsov AM, Pan JW. 7T head volume coils: improvements for rostral brain imaging. J Magn Reson Imaging 2009;29:461-465.
– reference: Tanelian T, Jaycox L. Invisible wounds of war psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica, CA: Rand Corporation; 2008.
– reference: Bauer L, O'Bryant SE, Lynch JK, McCaffrey RJ, Fisher JM. Examining the Test Of Memory Malingering Trial 1 and Word Memory Test Immediate Recognition as screening tools for insufficient effort. Assessment 2007;14:215-222.
– reference: Frederick RI, Bowden SC. Evaluating constructs represented by symptom validity tests in forensic neuropsychological assessment of traumatic brain injury. J Head Trauma Rehabil 2009;24:105-122.
– reference: Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 2008;358:453-463.
– reference: Rosenfeld JV, Ford NL. Bomb blast, mild traumatic brain injury and psychiatric morbidity: a review. Injury 2010;41:437-443.
– reference: Vagnozzi R, Signoretti S, Tavazzi B, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes-part III. Neurosurgery 2008;62:1286-1295; discussion 95-6.
– reference: Cavus I, Pan JW, Hetherington HP, Abi-Saab W, Zaveri HP, Vives KP, Krystal JH, Spencer SS, Spencer DD. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 2008;49:1358-1366.
– reference: Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng 2012;40:185-202.
– reference: Avdievich N. Transceiver-phased arrays for human brain studies at 7 T. Appl Magn Reson 2011;41:483-506.
– reference: Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG. Increase in blood-brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 2010;88:3530-3539.
– reference: Flaro L, Green P, Robertson E. Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: the power of external incentives. Brain Inj 2007;21:373-383.
– reference: Peskind ER, Petrie EC, Cross DJ, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage 2011;54(suppl 1):S76-S82.
– reference: Levin HS, Wilde E, Troyanskaya M, et al. Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 2010;27:683-694.
– reference: Holshouser BA, Tong KA, Ashwal S, Oyoyo U, Ghamsary M, Saunders D, Shutter L. Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 2006;24:33-40.
– reference: Matthews SC, Strigo IA, Simmons AN, O'Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 2011;54(suppl 1):S69-S75.
– reference: Govindaraju V, Gauger GE, Manley GT, Ebel A, Meeker M, Maudsley AA. Volumetric proton spectroscopic imaging of mild traumatic brain injury. Am J Neuroradiol 2004;25:730-737.
– reference: Vasterling JJ, Verfaellie M, Sullivan KD. Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: perspectives from cognitive neuroscience. Clin Psychol Rev 2009;29:674-684.
– reference: Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, Lassonde M. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol 2011;11:105.
– reference: Babikian T, Freier MC, Ashwal S, Riggs ML, Burley T, Holshouser BA. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging 2006;24:801-811.
– reference: Hetherington HP, Chu WJ, Gonen O, Pan JW. Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 2006;56:26-33.
– reference: Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP. Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 2009;62:17-25.
– reference: Lu J, Ng KC, Ling G, et al. Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma 2012;29:1434-1454.
– volume: 28
  start-page: 947
  year: 2011
  end-page: 959
  article-title: Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury
  publication-title: J Neurotrauma
– year: 2009
– volume: 54
  start-page: S69
  issue: suppl 1
  year: 2011
  end-page: S75
  article-title: A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast‐related concussion
  publication-title: Neuroimage
– volume: 41
  start-page: 483
  year: 2011
  end-page: 506
  article-title: Transceiver‐phased arrays for human brain studies at 7 T
  publication-title: Appl Magn Reson
– volume: 41
  start-page: 437
  year: 2010
  end-page: 443
  article-title: Bomb blast, mild traumatic brain injury and psychiatric morbidity: a review
  publication-title: Injury
– volume: 70
  start-page: 1046
  year: 2011
  end-page: 1057
  article-title: Characteristics of an explosive blast‐induced brain injury in an experimental model
  publication-title: J Neuropathol Exp Neurol
– volume: 40
  start-page: 185
  year: 2012
  end-page: 202
  article-title: Brain injuries from blast
  publication-title: Ann Biomed Eng
– volume: 14
  start-page: 215
  year: 2007
  end-page: 222
  article-title: Examining the Test Of Memory Malingering Trial 1 and Word Memory Test Immediate Recognition as screening tools for insufficient effort
  publication-title: Assessment
– volume: 24
  start-page: 145
  year: 2009
  end-page: 152
  article-title: The Medical Symptom Validity Test in the evaluation of Operation Iraqi Freedom/Operation Enduring Freedom soldiers: a preliminary study
  publication-title: Arch Clin Neuropsychol
– volume: 21
  start-page: 398
  year: 2006
  end-page: 402
  article-title: Military TBI during the Iraq and Afghanistan wars
  publication-title: J Head Trauma Rehabil
– volume: 21
  start-page: 373
  year: 2007
  end-page: 383
  article-title: Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: the power of external incentives
  publication-title: Brain Inj
– year: 2003
– volume: 17
  start-page: 52
  year: 2010
  end-page: 59
  article-title: Symptom validity test performance in U.S. veterans referred for evaluation of mild TBI
  publication-title: Appl Neuropsychol
– volume: 358
  start-page: 453
  year: 2008
  end-page: 463
  article-title: Mild traumatic brain injury in U.S. Soldiers returning from Iraq
  publication-title: N Engl J Med
– volume: 25
  start-page: 730
  year: 2004
  end-page: 737
  article-title: Volumetric proton spectroscopic imaging of mild traumatic brain injury
  publication-title: Am J Neuroradiol
– volume: 364
  start-page: 2091
  year: 2011
  end-page: 2100
  article-title: Detection of blast‐related traumatic brain injury in U.S. military personnel
  publication-title: N Engl J Med
– volume: 62
  start-page: 17
  year: 2009
  end-page: 25
  article-title: Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays
  publication-title: Magn Reson Med
– volume: 24
  start-page: 131
  year: 2009
  end-page: 140
  article-title: Best practice guidelines for forensic neuropsychological examinations of patients with traumatic brain injury
  publication-title: J Head Trauma Rehabil
– volume: 36
  start-page: 21
  year: 1996
  end-page: 29
  article-title: Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation
  publication-title: Magn Reson Med
– volume: 49
  start-page: 1358
  year: 2008
  end-page: 1366
  article-title: Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients
  publication-title: Epilepsia
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  article-title: 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1007
  year: 2012
  end-page: 1017
  article-title: Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla
  publication-title: Magn Reson Med
– volume: 62
  start-page: 1286
  year: 2008
  end-page: 1295
  article-title: Temporal window of metabolic brain vulnerability to concussion: a pilot 1H‐magnetic resonance spectroscopic study in concussed athletes—part III
  publication-title: Neurosurgery
– volume: 24
  start-page: 33
  year: 2006
  end-page: 40
  article-title: Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 908
  year: 2006
  end-page: 913
  article-title: 1H NMR spectroscopic imaging of the mouse brain at 9.4 T
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 9
  year: 2010
  end-page: 19
  article-title: RF shimming for spectroscopic localization in the human brain at 7 T
  publication-title: Magn Reson Med
– volume: 11
  start-page: 105
  year: 2011
  article-title: Metabolic changes in concussed American football players during the acute and chronic post‐injury phases
  publication-title: BMC Neurol
– volume: 29
  start-page: 461
  year: 2009
  end-page: 465
  article-title: 7T head volume coils: improvements for rostral brain imaging
  publication-title: J Magn Reson Imaging
– volume: 69
  start-page: 2256
  year: 2007
  end-page: 2265
  article-title: A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy
  publication-title: Neurology
– volume: 88
  start-page: 3530
  year: 2010
  end-page: 3539
  article-title: Increase in blood‐brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast‐induced traumatic brain injury
  publication-title: J Neurosci Res
– volume: 63
  start-page: 405
  year: 2012
  end-page: 419
  article-title: Traumatic brain injury and its neuropsychiatric sequelae in war veterans
  publication-title: Annu Rev Med
– year: 2008
– volume: 23
  start-page: 741
  year: 2009
  end-page: 750
  article-title: Examining false positives on the Word Memory Test in adults with mild traumatic brain injury
  publication-title: Brain Inj
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B
– volume: 24
  start-page: 801
  year: 2006
  end-page: 811
  article-title: MR spectroscopy: predicting long‐term neuropsychological outcome following pediatric TBI
  publication-title: J Magn Reson Imaging
– volume: 3
  start-page: 15
  year: 2012
  article-title: Neuro‐glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast
  publication-title: Front Neurol
– volume: 166
  start-page: 768
  year: 2009
  end-page: 776
  article-title: Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury
  publication-title: Am J Psychiatry
– volume: 29
  start-page: 674
  year: 2009
  end-page: 684
  article-title: Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: perspectives from cognitive neuroscience
  publication-title: Clin Psychol Rev
– volume: 27
  start-page: 683
  year: 2010
  end-page: 694
  article-title: Diffusion tensor imaging of mild to moderate blast‐related traumatic brain injury and its sequelae
  publication-title: J Neurotrauma
– volume: 24
  start-page: 105
  year: 2009
  end-page: 122
  article-title: Evaluating constructs represented by symptom validity tests in forensic neuropsychological assessment of traumatic brain injury
  publication-title: J Head Trauma Rehabil
– volume: 29
  start-page: 1434
  year: 2012
  end-page: 1454
  article-title: Effect of blast exposure on the brain structure and cognition in Macaca fascicularis
  publication-title: J Neurotrauma
– volume: 54
  start-page: S76
  issue: suppl 1
  year: 2011
  end-page: S82
  article-title: Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post‐concussive symptoms
  publication-title: Neuroimage
– volume: 56
  start-page: 26
  year: 2006
  end-page: 33
  article-title: Robust fully automated shimming of the human brain for high‐field 1H spectroscopic imaging
  publication-title: Magn Reson Med
– ident: e_1_2_6_39_1
  doi: 10.1089/neu.2010.1540
– ident: e_1_2_6_42_1
  doi: 10.1097/NEN.0b013e318235bef2
– ident: e_1_2_6_3_1
  doi: 10.1037/e527612010-001
– ident: e_1_2_6_26_1
  doi: 10.1002/jmri.21660
– ident: e_1_2_6_32_1
  doi: 10.1002/jmri.20709
– ident: e_1_2_6_11_1
  doi: 10.1177/1073191106297617
– ident: e_1_2_6_37_1
  doi: 10.1176/appi.ajp.2009.08101604
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.20941
– ident: e_1_2_6_44_1
  doi: 10.1056/NEJMoa072972
– ident: e_1_2_6_23_1
  doi: 10.1227/01.neu.0000333300.34189.74
– ident: e_1_2_6_9_1
  doi: 10.1097/01.HTR.0000348755.42649.e9
– ident: e_1_2_6_35_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neuroimage.2010.04.269
– ident: e_1_2_6_16_1
  doi: 10.1056/NEJMoa1008069
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1528-1167.2008.01603.x
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev-med-061610-154046
– ident: e_1_2_6_10_1
  doi: 10.1097/HTR.0b013e31819b1210
– ident: e_1_2_6_13_1
  doi: 10.1080/02699050903133962
– ident: e_1_2_6_36_1
– volume: 25
  start-page: 730
  year: 2004
  ident: e_1_2_6_20_1
  article-title: Volumetric proton spectroscopic imaging of mild traumatic brain injury
  publication-title: Am J Neuroradiol
– ident: e_1_2_6_24_1
  doi: 10.1186/1471-2377-11-105
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.22182
– ident: e_1_2_6_18_1
  doi: 10.1016/j.neuroimage.2010.04.008
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.1156
– ident: e_1_2_6_19_1
  doi: 10.1089/neu.2009.1073
– volume-title: Implications from the RAND invisible wounds of war study
  year: 2009
  ident: e_1_2_6_2_1
– ident: e_1_2_6_22_1
  doi: 10.1002/jmri.20607
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cpr.2009.08.004
– ident: e_1_2_6_33_1
  doi: 10.1212/01.wnl.0000286945.21270.6d
– ident: e_1_2_6_6_1
  doi: 10.1007/s10439-011-0424-0
– ident: e_1_2_6_15_1
  doi: 10.1093/arclin/acp020
– ident: e_1_2_6_14_1
  doi: 10.1080/09084280903526182
– ident: e_1_2_6_31_1
  doi: 10.1007/s00723-011-0280-y
– ident: e_1_2_6_29_1
  doi: 10.1002/mrm.21970
– ident: e_1_2_6_40_1
  doi: 10.1002/jnr.22510
– ident: e_1_2_6_41_1
  doi: 10.3389/fneur.2012.00015
– ident: e_1_2_6_12_1
  doi: 10.1080/02699050701311133
– ident: e_1_2_6_4_1
  doi: 10.1097/00001199-200609000-00004
– ident: e_1_2_6_21_1
  doi: 10.1002/jmri.20696
– ident: e_1_2_6_27_1
  doi: 10.1002/mrm.24122
– ident: e_1_2_6_38_1
  doi: 10.1002/mrm.1910360106
– ident: e_1_2_6_43_1
  doi: 10.1089/neu.2010.1591
– ident: e_1_2_6_8_1
  doi: 10.1016/j.injury.2009.11.018
SSID ssj0009974
Score 2.357826
Snippet Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast...
Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure....
Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1358
SubjectTerms 7 T
Adult
Aspartic Acid - analogs & derivatives
Aspartic Acid - metabolism
Biomarkers - blood
Blast Injuries - diagnosis
Blast Injuries - metabolism
Brain Injuries - diagnosis
Brain Injuries - metabolism
Choline - metabolism
Creatine - metabolism
Explosions
Female
hippocampus
Hippocampus - injuries
Hippocampus - metabolism
Hippocampus - pathology
Humans
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Male
mild traumatic brain injury
Military Personnel
Molecular Imaging - methods
MRSI
Reproducibility of Results
Sensitivity and Specificity
Temporal Lobe - injuries
Temporal Lobe - metabolism
Temporal Lobe - pathology
Tissue Distribution
United States
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qitgOLGUbKMgsQr1kmnhJYnFCQFsqZSSGKe0BybIdRyrNZKqZRCy_HttZqqJSIW6R8iXy8p792X7-HsArSQqqIhkHJiUyoDrGAS9kFGBTMByrnJPcbQ1kk3jvgO4fsaM1eNPfhWn1IYYNN-cZfrx2Di7VavtMNHS-nI8xTX0S64gwf0Q7PZOO4rxVYE6oG2c47VWFQrw9fHluLrrimvXHRUTzJlxvqlP587ssy_Mc1k9CO7fha1_8NvbkZNzUaqx__aHs-J_1uwO3OnKK3rbWdBfWTLUB17Lu-H0Drvp4Ub26B1-y6eePaFEgyx9Re_sEdSpXJXIBHEjWKEEzdFwh48L8XJQ8Upaq12h-XOaoXsrGq8Ui5ZJUWNw327v34WDnw-zdXtClaAg0ZZzazqXE8DDXduQo7GKMardCihVLMZdYs7goWERManiidBxpGipSKBpFOlW84JQ8gPVqUZlHgAw1vEg0x5HJqaQszZW09sOYZWwYq3QEW31nCd3pl7s0GqVolZexsC0mfIuN4MUAPW1FOy4CvfY9PiDk8sRFuSVMHE52xSxj--_Jp10xGcFmbxKic_CVcDL61LK5GI_g-fDauqY7b5GVWTQew6ldgXJyGQaHxLI0av_zsDW3oUCY8CgNk2QELwf7u6w-W96c_o4Q2TTzD4__HfoEbliK2MUqbcJ6vWzMU0vDavXM-9tvqr0qZg
  priority: 102
  providerName: Wiley-Blackwell
Title MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury
URI https://api.istex.fr/ark:/67375/WNG-TM5JD3QG-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24814
https://www.ncbi.nlm.nih.gov/pubmed/23918077
https://www.proquest.com/docview/1508464362
https://www.proquest.com/docview/1509414993
https://www.proquest.com/docview/1520378242
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24814
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQK24PXAaDwpjMRWgv6RrbufhxArYxKRWUFsZTsB1bGkvTqkvE5ddz7LgRQ2NC4i1STqzY5-LP9vF3EHohqGEyFHGgUyoCpmIScCPCgGgTkVgWnBZ2ayAbx4czdnQcHfs6p_YuTMsP0W24Wc9w8do6-LIwbZz3p_tkd76aDwlLbSHrfmxPmHqoPxu_2_vckm_aCONKIcIkRQIA-mzNLfT7t-dmpL4d3O8Xwc2b6HpTLcWPb6IszyNZNxXt30Zf1p1oM1BOh00th-rnH_yO_9HLO-iWh6l4r7Wru-iKrjbQtcwfxG-gqy5zVJ3dQx-zyYe3eGEwIEnc3kPBnu-qxDaVA4saJ3iKTyqsbcKfzZfHEkB7jecnZYHrlWgcbyyWtlwFyH0FPd9Hs_0301eHgS_WECgGAwtqZlTzUaEghhhYljFl10qxjFLCBVFRbEwUUp1qnkgVh4qNJDWShaFKJTec0U3UqxaVfoiwZpqbRHES6oIJFqWFFGBJUQTYjRCZDtDOWmG58kzmtqBGmbcczCSHEcvdiA3Qs0502dJ3XCT00mm9kxCrU5vvlkT5p_FBPs2io9f0_UE-HqCttVnk3tXPckuozwDXxWSAnnavwUntyYuo9KJxMpzBWpTTy2TIiAJeY9DOg9bkuh8ilIfpKEkG6Hlng5f1Z8eZ1N8l8mySuYdH_9TgY3QDcKJPWNpCvXrV6CeAxWq5DauQCdn2XvcLnwkvpQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VraDwwFGuQAFzqOpLtomPJJZ4QZR2W5qVWLbQF2TZjiOVZrPVNhHHr8dOsqmKSoV4i5QvUeyZcT7b428AXkuSUxXKyDcJkT7VEfZ5LkMfm5zhSGWcZG5pIB1Fw0O6f8SOluDN4ixMqw_RL7i5yGjGaxfgbkF661w1dDqfDjBNXBXrFbc_58Jye3wuHsV5q8EcUzfScLrQFQrwVv_ohb_RiuvYH5dRzZuwWpen8ud3WRQXWWzzG9q5DV8XDWizT04GdaUG-tcf2o7_28I7cKvjp-ht61B3YcmUa3A97Xbg1-BakzKqz-7B53T8aQ_NcmQpJGoPoKBO6KpALocDyQrFaIKOS2Rcpp9LlEfKsvUKTY-LDFVzWTeCsUi5OhUW980a-D4c7ryfvBv6XZUGX1PGqbUvJYYHmbaDR27nY1S7SVKkWIK5xJpFec5CYhLDY6WjUNNAkVzRMNSJ4jmn5AEsl7PSPAJkqOF5rDkOTUYlZUmmpHUhxixpw1glHmwurCV0J2HuKmkUohVfxsL2mGh6zIOXPfS01e24DLTRmLxHyPmJS3SLmfgy2hWTlO1vk4-7YuTB-sInRBfjZ8Ip6Vu_swzAgxf9bRudbstFlmZWNxhO7SSUk6swOCCWqFH7noetv_UfhAkPkyCOPXjVO-BV7dls_OnvCJGO0-bi8b9Dn8PqcJIeiIO90YcncMMyxi51aR2Wq3ltnlpWVqlnTfD9BkFkLoI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VrSjwwFEoLBQwh1Bfsk18JLF4QpTtAVnBdgt9qGTZji2V7mZX26w4fj12kk1VVCrEW6RMItszY39jj78BeCWJpSqScWBSIgOqYxxwK6MAG8twrHJOcr81kPXj3UO6f8SOluDN4i5MzQ_Rbrh5z6jma-_g09xunZOGjmfjLqapL2K9QmMXXXlENDjnjuK8pmBOqJ9oOF3QCoV4q_30wmK04sf1x2VI8yZcnxdT-fO7HI0ugthqFerdhuNF--vkk9PuvFRd_esPasf_7OAduNWgU_S2Nqe7sGSKNVjNmvP3NbhWJYzqs3vwJRsc7KGJRQ5Aovr6CWporkbIZ3AgWaIEDdFJgYzP8_Np8kg5rF6i8ckoR-VMziu6WKR8lQon982p9z4c9t4P3-0GTY2GQFPGqdMuJYaHuXZTh3XRGNU-RIoVSzGXWLPYWhYRkxqeKB1HmoaKWEWjSKeKW07JOiwXk8I8BGSo4TbRHEcmp5KyNFfSGRBjDrJhrNIObC6UJXRDYO7raIxETb2MhRsxUY1YB160otOateMyodeVxlsJOTv1aW4JE1_7O2KYsf1t8nlH9DuwsTAJ0Xj4mfA8-tTBuRh34Hn72vmmP3CRhZnMKxlOXQjKyVUyOCQOplH3nwe1ubUNwoRHaZgkHXjZ2t9V_dmszOnvEiIbZNXDo38XfQarn7Z74uNe_8NjuOHgYpO3tAHL5WxunjhIVqqnlev9Bou8LTE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLbQjNgOLGULFGQWoV4yTLwk8bEC2lIpIygztJyM7dhSaSYzmiZi-fXYjieiqFRI3CLlxYr9Fn-2n78HwAuBDZGJSGOdYxETlaKYGZHESBuKUlkyXLqtgWKS7s3I_hE9CnVO3V2Yjh-i33BznuHjtXPwZWm6OB9O99Gr-Wo-QiR3hayHqTthGoDhbPJ--3NHvukijC-FaCcpFFugT9bcQr9_e2ZGGrrB_X4e3LwOrrb1Uvz4JqrqLJL1U9HOTfBl3YkuA-Vk1DZypH7-we_4H728BW4EmAq3O7u6DS7pegNcKcJB_Aa47DNH1ekd8Kk4-PgOLgy0SBJ291Bg4LuqoEvlgKKBGZzC4xpql_Dn8uWhtKC9gfPjqoTNSrSeNxZKV67Cyn21er4LZjtvp6_34lCsIVbEDqxVM8GajUtlY4ixyzKi3FoplTRHTCBFU2NognWuWSZVmigylthIkiQql8wwgu-BQb2o9QMANdHMZIqhRJdEEJqXUlhLotRiN4RkHoGttcK4CkzmrqBGxTsOZsTtiHE_YhF41osuO_qO84Reeq33EmJ14vLdMsoPJ7t8WtD9N_jDLp9EYHNtFjy4-il3hPrE4roUReBp_9o6qTt5EbVetF6GEbsWZfgiGTTGFq8R2879zuT6H0KYJfk4yyLwvLfBi_qz5U3q7xK8OCj8w8N_avARuGZxYkhY2gSDZtXqxxaLNfJJ8LdfhwguvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRSI+of+the+medial+temporal+lobe+at+7+T+in+explosive+blast+mild+traumatic+brain+injury&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hetherington%2C+Hoby+P.&rft.au=Hamid%2C+Hamada&rft.au=Kulas%2C+Joseph&rft.au=Ling%2C+Geoffrey&rft.date=2014-04-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=71&rft.issue=4&rft.spage=1358&rft.epage=1367&rft_id=info:doi/10.1002%2Fmrm.24814&rft.externalDBID=10.1002%252Fmrm.24814&rft.externalDocID=MRM24814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon