Two-stage parameter estimation algorithms for Box–Jenkins systems

A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the para...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 7; no. 8; pp. 646 - 654
Main Authors Ding, Feng, Duan, Honghong
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.10.2013
Institution of Engineering and Technology
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1751-9675
1751-9683
1751-9683
DOI10.1049/iet-spr.2012.0183

Cover

Abstract A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.
AbstractList A two‐stage recursive least‐squares identification method and a two‐stage multi‐innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.
A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box-Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden. [PUBLICATION ABSTRACT]
Author Duan, Honghong
Ding, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  email: fding@jiangnan.edu.cn
  organization: 2Control Science and Engineering Research Center, Jiangnan University, Wuxi 214122, People's Republic of China
– sequence: 2
  givenname: Honghong
  surname: Duan
  fullname: Duan, Honghong
  organization: 1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27801632$$DView record in Pascal Francis
BookMark eNqFkctu1DAUhi1UJNrCA7CLhJBgkeHYjp2EHR21ZdBIIDqsLddzXFySOLU9KrPjHXjDPgkOUy6qUFnZlr7vXPwfkL3BD0jIUwozClX7ymEq4xhmDCibAW34A7JPa0HLVjZ87_e9Fo_IQYyXAEIKyvbJfHXty5j0BRajDrrHhKHAmFyvk_NDobsLH1z63MfC-lAc-a83376_w-GLG2IRtzFhHx-Th1Z3EZ_cnofk08nxav62XL4_XczfLEtTiZaXkgMDDg3yVqI4P-dMrE1jWpufvF0LbSvU0BopkFUMpLb5qKTlCMa2jeWH5MWu7hj81SYPqXoXDXadHtBvoqKCcgFQcZHRZ3fQS78JQ55O0aqtQIq64Zl6fkvpaHRngx6Mi2oMefuwVaxugErOMlfvOBN8jAGtMi79_J8UtOsUBTWFoHIIKoegphDUFEI26R3zV_H7nNc759p1uP2_oM4WS3Z0AgD1JJc7ecL-7HxPs5f_4BfHK3X24eNfPca15T8Ah128oQ
CitedBy_id crossref_primary_10_1016_j_apm_2013_06_007
crossref_primary_10_1049_iet_spr_2013_0076
crossref_primary_10_1155_2013_296185
crossref_primary_10_1007_s11071_013_1212_1
crossref_primary_10_1016_j_sigpro_2013_10_018
crossref_primary_10_1049_iet_spr_2016_0357
crossref_primary_10_1016_j_jfranklin_2015_07_003
crossref_primary_10_1177_00202940221124093
crossref_primary_10_1016_j_jtice_2015_05_004
crossref_primary_10_1016_j_jwpe_2024_105202
crossref_primary_10_1155_2015_516374
crossref_primary_10_1016_j_jfranklin_2013_08_023
crossref_primary_10_1177_1077546314523634
crossref_primary_10_1016_j_aml_2013_10_011
crossref_primary_10_1155_2017_4873459
crossref_primary_10_1049_iet_spr_2015_0280
crossref_primary_10_1016_j_sigpro_2015_08_005
crossref_primary_10_1016_j_jfranklin_2013_10_018
crossref_primary_10_1049_iet_spr_2013_0438
crossref_primary_10_1155_2014_106505
crossref_primary_10_1155_2014_694053
crossref_primary_10_1049_cmu2_12249
crossref_primary_10_1016_j_amc_2014_02_087
crossref_primary_10_1155_2014_329437
crossref_primary_10_1049_iet_spr_2015_0366
crossref_primary_10_1007_s11071_013_1097_z
crossref_primary_10_1016_j_sigpro_2015_04_015
crossref_primary_10_1155_2014_232848
crossref_primary_10_1109_TMECH_2017_2725344
crossref_primary_10_1155_2013_240929
crossref_primary_10_1016_j_sigpro_2017_06_025
crossref_primary_10_1049_iet_cta_2016_0941
crossref_primary_10_1049_iet_cta_2014_0734
crossref_primary_10_1080_00207160_2015_1077949
crossref_primary_10_1007_s11071_014_1801_7
crossref_primary_10_1016_j_automatica_2015_09_008
crossref_primary_10_1016_j_arcontrol_2024_100942
crossref_primary_10_1016_j_isatra_2016_03_015
crossref_primary_10_1109_ACCESS_2021_3130678
crossref_primary_10_1016_j_ins_2021_09_004
crossref_primary_10_1080_00207721_2017_1320455
crossref_primary_10_1109_TCBB_2015_2497225
crossref_primary_10_1049_iet_spr_2017_0187
crossref_primary_10_1007_s00521_016_2548_5
crossref_primary_10_1016_j_jfranklin_2015_10_022
crossref_primary_10_1016_j_ifacol_2015_09_076
crossref_primary_10_1016_j_ifacol_2019_11_106
Cites_doi 10.1016/j.camwa.2010.02.030
10.1016/j.camwa.2010.06.001
10.1109/TSMCB.2009.2028871
10.1016/j.automatica.2004.05.001
10.1016/j.automatica.2006.03.004
10.1016/j.mcm.2011.09.039
10.1016/j.automatica.2006.07.024
10.1016/j.sigpro.2012.12.013
10.1049/iet-spr.2009.0161
10.1243/09596518JSCE888
10.1016/j.sigpro.2009.03.020
10.1002/acs.1266
10.1109/TAC.2009.2020638
10.1049/iet-cta:20070460
10.1016/j.automatica.2011.05.007
10.1109/ACC.2008.4586812
10.1016/j.dsp.2009.10.012
10.1049/iet-cta.2012.0171
10.1109/ACC.2012.6315494
10.1016/j.amc.2009.07.012
10.1109/CCDC.2012.6244336
10.1049/iet-spr.2008.0190
10.1016/j.apm.2012.10.014
10.1016/j.camwa.2010.01.030
10.1002/acs.1141
10.1049/iet-cta.2012.0313
10.1080/00207160.2012.698008
10.1177/0959651811409491
10.1080/00207170903273987
10.1016/j.camwa.2011.12.002
10.1016/S0005-1098(97)00198-2
10.1016/j.mcm.2010.03.002
10.1049/iet-cta.2010.0416
10.1016/j.apm.2011.07.083
10.1016/S0096-3003(02)00201-1
10.1016/j.dsp.2010.01.004
10.1016/j.apm.2012.04.039
10.1049/iet-spr.2009.0240
10.1016/j.mcm.2011.08.023
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
2014 INIST-CNRS
Copyright The Institution of Engineering & Technology Oct 2013
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
– notice: 2014 INIST-CNRS
– notice: Copyright The Institution of Engineering & Technology Oct 2013
DBID AAYXX
CITATION
IQODW
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
7SC
7SP
8FD
L7M
L~C
L~D
DOI 10.1049/iet-spr.2012.0183
DatabaseName CrossRef
Pascal-Francis
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef

Technology Research Database
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1751-9683
EndPage 654
ExternalDocumentID 3202980651
27801632
10_1049_iet_spr_2012_0183
SIL2BF00073
Genre article
Feature
GrantInformation_xml – fundername: PAPD of Jiangsu Higher Education Instituttions
  funderid: B12018
– fundername: National Natural Science Foundation of China
  funderid: 61273194
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK2012549
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
HCIFZ
HZ
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
MCNEO
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
IQODW
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
8FD
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c4593-63020308e396e5bb325dc8c9f96e39d5af4ea09c65e24206af24246f3e0cf98f3
IEDL.DBID 24P
ISSN 1751-9675
1751-9683
IngestDate Fri Sep 05 11:01:08 EDT 2025
Wed Aug 13 09:47:58 EDT 2025
Wed Apr 02 07:24:34 EDT 2025
Wed Oct 29 21:09:37 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Wed Jan 22 16:31:07 EST 2025
Tue Jan 05 21:44:06 EST 2021
Thu May 09 18:13:40 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords least squares approximations
system model parameter algorithm
signal processing
Box-Jenkins systems
two-stage parameter estimation algorithms
two-stage recursive least-square identification method
noise model parameter algorithm
two-stage multiinnovation stochastic gradient method
BJ system decomposition
recursive estimation
parameter estimation
stochastic processes
gradient methods
Parameter estimation
Innovation
Multistage method
Simulation
Least squares method
Subsystem
Recursive method
Stochastic method
Algorithm
Gradient method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4593-63020308e396e5bb325dc8c9f96e39d5af4ea09c65e24206af24246f3e0cf98f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1494065783
PQPubID 1916341
PageCount 9
ParticipantIDs proquest_miscellaneous_1513500435
pascalfrancis_primary_27801632
crossref_citationtrail_10_1049_iet_spr_2012_0183
crossref_primary_10_1049_iet_spr_2012_0183
wiley_primary_10_1049_iet_spr_2012_0183_SIL2BF00073
iet_journals_10_1049_iet_spr_2012_0183
proquest_journals_1494065783
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET signal processing
PublicationYear 2013
Publisher The Institution of Engineering and Technology
Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Duan, H.H.; Jia, J.; Ding, R.F. (C22) 2012; 55
Ding, F.; Liu, X.P.; Liu, G. (C12) 2010; 20
Ding, F.; Chen, T. (C32) 2007; 43
Wang, D.Q.; Chu, Y.Y.; Yang, G.W.; Ding, F. (C15) 2010; 52
Liu, Y.J.; Wang, D.Q.; Ding, F. (C17) 2010; 20
Ding, F.; Liu, X.P.; Liu, G. (C19) 2010; 40
Ding, F.; Liu, G.; Liu, X.P. (C34) 2011; 47
Ding, F.; Chen, T. (C27) 2004; 40
Liu, Y.J.; Sheng, J.; Ding, R.F. (C39) 2010; 59
Ding, F. (C37) 2012; 4
Wang, D.Q. (C13) 2011; 5
Petrović, P.B.; Stevanović, M.R. (C5) 2011; 5
Ding, F.; Ding, J. (C33) 2010; 24
Ding, F.; Liu, Y.J.; Bao, B. (C41) 2012; 226
Wang, D.Q.; Chu, Y.Y.; Ding, F. (C14) 2010; 59
Ding, F. (C30) 2013; 93
Ding, F.; Liu, X.P.; Liu, G. (C18) 2009; 89
Li, J.H.; Ding, F.; Yang, G.W. (C3) 2012; 55
Fattah, S.A.; Zhu, W.P.; Ahmad, M.O. (C6) 2011; 5
Ding, F. (C42) 2013; 7
Shi, Y.; Fang, H. (C8) 2010; 83
Ding, F. (C24) 2013; 37
Shi, Y.; Yu, B. (C9) 2009; 54
Ding, J.; Ding, F. (C38) 2011; 25
Ding, F.; Liu, X.G.; Chu, J. (C43) 2013
Li, K.; Peng, J.X.; Bai, E.W. (C29) 2006; 42
Fang, H.; Wu, J.; Shi, Y. (C11) 2010; 224
Wang, D.Q.; Yang, G.W.; Ding, R.F. (C16) 2010; 60
Yao, G.Y.; Ding, R.F. (C21) 2012; 63
Bai, E.W. (C28) 1998; 34
Cao, Z.H. (C31) 2003; 139
Abderrahim, K.; Mathlouthi, H.; Msahli, F. (C7) 2010; 4
Ding, F.; Gu, Y. (C40) 2012; 89
Liu, Y.J.; Xiao, Y.S.; Zhao, X.L. (C20) 2009; 215
Ding, F. (C26) 2013; 37
Yan, M.; Shi, Y. (C10) 2008; 2
Wang, W.; Ding, F.; Dai, J.Y. (C2) 2013; 36
2009; 89
2010; 59
2004; 40
2003; 139
2012
2010; 224
2008
2013; 93
1996
2013; 7
2008; 2
2012; 226
2012; 55
2011; 5
2010; 40
2010; 83
2009; 215
2010; 60
2010; 20
2013; 37
2013; 36
2006; 42
2009; 54
2010; 24
1984
2013
2011; 47
2011; 25
2007; 43
2012; 4
2012; 89
2010; 4
2010; 52
1998; 34
2012; 63
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Golub G.H. (e_1_2_9_37_2) 1996
Ding F. (e_1_2_9_2_2) 2013
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_41_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
Ding F. (e_1_2_9_38_2) 2012; 4
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
Goodwin G.C. (e_1_2_9_36_2) 1984
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – volume: 52
  start-page: 309
  issue: 1–2
  year: 2010
  end-page: 317
  ident: C15
  article-title: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
  publication-title: Math. Comput. Model.
– volume: 139
  start-page: 371
  issue: 2–3
  year: 2003
  end-page: 381
  ident: C31
  article-title: Rounding error analysis of two-stage iterative methods for large linear systems
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 1100
  issue: 12
  year: 2011
  end-page: 1111
  ident: C38
  article-title: Bias compensation based parameter estimation for output error moving average systems
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 40
  start-page: 767
  issue: 3
  year: 2010
  end-page: 778
  ident: C19
  article-title: Multi-innovation least squares identification for system modelling
  publication-title: IEEE Trans. Syst. Man Cybern.B, Cybern.
– volume: 4
  start-page: 488
  issue: 5
  year: 2010
  end-page: 501
  ident: C7
  article-title: New approaches to finite impulse response systems identification using higher-order statistics
  publication-title: IET Signal Process.
– volume: 54
  start-page: 1668
  issue: 7
  year: 2009
  end-page: 1674
  ident: C9
  article-title: Output feedback stabilization of networked control systems with random delays modeled by Markov chains
  publication-title: IEEE Trans. Autom. Control
– volume: 43
  start-page: 1
  issue: 1
  year: 2007
  end-page: 14
  ident: C32
  article-title: Performance analysis of multi-innovation gradient type identification methods
  publication-title: Automatica
– volume: 55
  start-page: 1151
  issue: 3–4
  year: 2012
  end-page: 1159
  ident: C22
  article-title: Two-stage recursive least squares parameter estimation algorithm for output error models
  publication-title: Math. Comput. Model.
– volume: 59
  start-page: 3092
  issue: 9
  year: 2010
  end-page: 3098
  ident: C14
  article-title: Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems
  publication-title: Comput. Math. Appl.
– volume: 37
  start-page: 4798
  issue: 7
  year: 2013
  end-page: 4808
  ident: C24
  article-title: Two-stage least squares based iterative estimation algorithm for CARMA system modeling
  publication-title: Appl. Math. Model.
– volume: 24
  start-page: 540
  issue: 7
  year: 2010
  end-page: 553
  ident: C33
  article-title: Least squares parameter estimation with irregularly missing data
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 4
  start-page: 289
  issue: 4
  year: 2012
  end-page: 300
  ident: C37
  article-title: Computational efficiency of the identification methods – part A: recursive algorithms
  publication-title: J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.)
– volume: 2
  start-page: 662
  issue: 8
  year: 2008
  end-page: 674
  ident: C10
  article-title: Robust discrete-time sliding mode control for uncertain systems with time-varying state delay
  publication-title: IET Control Theory Appl.
– volume: 5
  start-page: 1648
  issue: 14
  year: 2011
  end-page: 1657
  ident: C13
  article-title: Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering
  publication-title: IET Control Theory Appl.
– volume: 37
  start-page: 1694
  issue: 4
  year: 2013
  end-page: 1704
  ident: C26
  article-title: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling
  publication-title: Appl. Math. Model.
– volume: 5
  start-page: 292
  issue: 3
  year: 2011
  end-page: 305
  ident: C6
  article-title: Identification of autoregressive moving average systems based on noise compensation in the correlation domain
  publication-title: IET Signal Process.
– volume: 34
  start-page: 333
  issue: 3
  year: 1998
  end-page: 338
  ident: C28
  article-title: An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems
  publication-title: Automatica
– volume: 93
  start-page: 1235
  issue: 5
  year: 2013
  end-page: 1242
  ident: C30
  article-title: Decomposition based fast least squares algorithm for output error systems
  publication-title: Signal Process.
– volume: 63
  start-page: 975
  issue: 5
  year: 2012
  end-page: 984
  ident: C21
  article-title: Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average systems
  publication-title: Comput. Math. Appl.
– volume: 83
  start-page: 538
  issue: 3
  year: 2010
  end-page: 551
  ident: C8
  article-title: Kalman filter based identification for systems with randomly missing measurements in a network environment
  publication-title: Int. J. Control
– volume: 89
  start-page: 1883
  issue: 10
  year: 2009
  end-page: 1890
  ident: C18
  article-title: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises
  publication-title: Signal Process.
– volume: 215
  start-page: 1477
  issue: 4
  year: 2009
  end-page: 1483
  ident: C20
  article-title: Mlti-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model
  publication-title: Appl. Math. Comput.
– volume: 42
  start-page: 1189
  issue: 7
  year: 2006
  end-page: 1197
  ident: C29
  article-title: A two-stage algorithm for identification of nonlinear dynamic systems
  publication-title: Automatica
– volume: 89
  start-page: 2019
  issue: 15
  year: 2012
  end-page: 2028
  ident: C40
  article-title: Performance analysis of the auxiliary model based least squares identification algorithm for one-step state delay systems
  publication-title: Int. J. Comput. Math.
– volume: 40
  start-page: 1739
  issue: 10
  year: 2004
  end-page: 1748
  ident: C27
  article-title: Combined parameter and output estimation of dual-rate systems using an auxiliary model
  publication-title: Automatica
– volume: 20
  start-page: 1458
  issue: 5
  year: 2010
  end-page: 1467
  ident: C17
  article-title: Least-squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data
  publication-title: Digit. Signal Process.
– volume: 20
  start-page: 664
  issue: 3
  year: 2010
  end-page: 677
  ident: C12
  article-title: Gradient based and least-squares based iterative identification methods for OE and OEMA systems
  publication-title: Digit. Signal Process.
– volume: 55
  start-page: 442
  issue: 3–4
  year: 2012
  end-page: 450
  ident: C3
  article-title: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems
  publication-title: Math. Comput. Model.
– volume: 5
  start-page: 138
  issue: 2
  year: 2011
  end-page: 149
  ident: C5
  article-title: Algorithm for Fourier coefficient estimation
  publication-title: IET Signal Process.
– year: 2013
  ident: C43
  article-title: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle
  publication-title: IET Control Theory Appl.
– volume: 36
  start-page: 1842
  issue: 5
  year: 2013
  end-page: 1853
  ident: C2
  article-title: Maximum likelihood least squares identification for systems with autoregressive moving average noise
  publication-title: Appl. Math. Model.
– volume: 224
  start-page: 611
  issue: 5
  year: 2010
  end-page: 617
  ident: C11
  article-title: Genetic adaptive state estimation with missing input/output data
  publication-title: Proc. Inst. Mech. Eng. I, J. Syst. Control Eng.
– volume: 47
  start-page: 1646
  issue: 8
  year: 2011
  end-page: 1655
  ident: C34
  article-title: Parameter estimation with scarce measurements
  publication-title: Automatica
– volume: 59
  start-page: 2615
  issue: 8
  year: 2010
  end-page: 2627
  ident: C39
  article-title: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems
  publication-title: Comput. Math. Appl.
– volume: 7
  start-page: 68
  issue: 1
  year: 2013
  end-page: 79
  ident: C42
  article-title: Coupled-least-squares identification for multivariable systems
  publication-title: IET Control Theory Appl.
– volume: 226
  start-page: 43
  issue: 1
  year: 2012
  end-page: 55
  ident: C41
  article-title: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems
  publication-title: Proc. Inst. Mech. Eng. I, J. Syst. Control Eng.
– volume: 60
  start-page: 1200
  issue: 5
  year: 2010
  end-page: 1208
  ident: C16
  article-title: Gradient-based iterative parameter estimation for Box–Jenkins systems
  publication-title: Comput. Math. Appl.
– volume: 20
  start-page: 1458
  issue: 5
  year: 2010
  end-page: 1467
  article-title: Least‐squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data
  publication-title: Digit. Signal Process.
– volume: 47
  start-page: 1646
  issue: 8
  year: 2011
  end-page: 1655
  article-title: Parameter estimation with scarce measurements
  publication-title: Automatica
– volume: 2
  start-page: 662
  issue: 8
  year: 2008
  end-page: 674
  article-title: Robust discrete‐time sliding mode control for uncertain systems with time‐varying state delay
  publication-title: IET Control Theory Appl.
– volume: 37
  start-page: 4798
  issue: 7
  year: 2013
  end-page: 4808
  article-title: Two‐stage least squares based iterative estimation algorithm for CARMA system modeling
  publication-title: Appl. Math. Model.
– volume: 24
  start-page: 540
  issue: 7
  year: 2010
  end-page: 553
  article-title: Least squares parameter estimation with irregularly missing data
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 25
  start-page: 1100
  issue: 12
  year: 2011
  end-page: 1111
  article-title: Bias compensation based parameter estimation for output error moving average systems
  publication-title: Int. J. Adapt. Control Signal Process.
– year: 1996
– volume: 4
  start-page: 488
  issue: 5
  year: 2010
  end-page: 501
  article-title: New approaches to finite impulse response systems identification using higher‐order statistics
  publication-title: IET Signal Process.
– volume: 36
  start-page: 1842
  issue: 5
  year: 2013
  end-page: 1853
  article-title: Maximum likelihood least squares identification for systems with autoregressive moving average noise
  publication-title: Appl. Math. Model.
– volume: 43
  start-page: 1
  issue: 1
  year: 2007
  end-page: 14
  article-title: Performance analysis of multi‐innovation gradient type identification methods
  publication-title: Automatica
– volume: 60
  start-page: 1200
  issue: 5
  year: 2010
  end-page: 1208
  article-title: Gradient‐based iterative parameter estimation for Box–Jenkins systems
  publication-title: Comput. Math. Appl.
– volume: 89
  start-page: 1883
  issue: 10
  year: 2009
  end-page: 1890
  article-title: Auxiliary model based multi‐innovation extended stochastic gradient parameter estimation with colored measurement noises
  publication-title: Signal Process.
– volume: 4
  start-page: 289
  issue: 4
  year: 2012
  end-page: 300
  article-title: Computational efficiency of the identification methods – part A: recursive algorithms
  publication-title: J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.)
– volume: 5
  start-page: 1648
  issue: 14
  year: 2011
  end-page: 1657
  article-title: Least squares‐based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering
  publication-title: IET Control Theory Appl.
– volume: 40
  start-page: 767
  issue: 3
  year: 2010
  end-page: 778
  article-title: Multi‐innovation least squares identification for system modelling
  publication-title: IEEE Trans. Syst. Man Cybern.B, Cybern.
– volume: 224
  start-page: 611
  issue: 5
  year: 2010
  end-page: 617
  article-title: Genetic adaptive state estimation with missing input/output data
  publication-title: Proc. Inst. Mech. Eng. I, J. Syst. Control Eng.
– volume: 59
  start-page: 2615
  issue: 8
  year: 2010
  end-page: 2627
  article-title: Convergence of stochastic gradient estimation algorithm for multivariable ARX‐like systems
  publication-title: Comput. Math. Appl.
– volume: 89
  start-page: 2019
  issue: 15
  year: 2012
  end-page: 2028
  article-title: Performance analysis of the auxiliary model based least squares identification algorithm for one‐step state delay systems
  publication-title: Int. J. Comput. Math.
– start-page: 2160
  year: 2008
  end-page: 2165
  article-title: Dynamic modelling and robust fault detection of a gas turbine engine
– volume: 34
  start-page: 333
  issue: 3
  year: 1998
  end-page: 338
  article-title: An optimal two‐stage identification algorithm for Hammerstein–Wiener nonlinear systems
  publication-title: Automatica
– year: 1984
– volume: 37
  start-page: 1694
  issue: 4
  year: 2013
  end-page: 1704
  article-title: Hierarchical multi‐innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling
  publication-title: Appl. Math. Model.
– volume: 40
  start-page: 1739
  issue: 10
  year: 2004
  end-page: 1748
  article-title: Combined parameter and output estimation of dual‐rate systems using an auxiliary model
  publication-title: Automatica
– volume: 63
  start-page: 975
  issue: 5
  year: 2012
  end-page: 984
  article-title: Two‐stage least squares based iterative identification algorithm for controlled autoregressive moving average systems
  publication-title: Comput. Math. Appl.
– volume: 215
  start-page: 1477
  issue: 4
  year: 2009
  end-page: 1483
  article-title: Mlti‐innovation stochastic gradient algorithm for multiple‐input single‐output systems using the auxiliary model
  publication-title: Appl. Math. Comput.
– start-page: 23
  year: 2012
  end-page: 25
  article-title: Two‐stage iterative estimation algorithm for systems with colored noises using the data filtering
– volume: 139
  start-page: 371
  issue: 2–3
  year: 2003
  end-page: 381
  article-title: Rounding error analysis of two‐stage iterative methods for large linear systems
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 538
  issue: 3
  year: 2010
  end-page: 551
  article-title: Kalman filter based identification for systems with randomly missing measurements in a network environment
  publication-title: Int. J. Control
– volume: 5
  start-page: 292
  issue: 3
  year: 2011
  end-page: 305
  article-title: Identification of autoregressive moving average systems based on noise compensation in the correlation domain
  publication-title: IET Signal Process.
– volume: 52
  start-page: 309
  issue: 1–2
  year: 2010
  end-page: 317
  article-title: Auxiliary model‐based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
  publication-title: Math. Comput. Model.
– volume: 42
  start-page: 1189
  issue: 7
  year: 2006
  end-page: 1197
  article-title: A two‐stage algorithm for identification of nonlinear dynamic systems
  publication-title: Automatica
– volume: 55
  start-page: 442
  issue: 3–4
  year: 2012
  end-page: 450
  article-title: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems
  publication-title: Math. Comput. Model.
– volume: 54
  start-page: 1668
  issue: 7
  year: 2009
  end-page: 1674
  article-title: Output feedback stabilization of networked control systems with random delays modeled by Markov chains
  publication-title: IEEE Trans. Autom. Control
– volume: 5
  start-page: 138
  issue: 2
  year: 2011
  end-page: 149
  article-title: Algorithm for Fourier coefficient estimation
  publication-title: IET Signal Process.
– volume: 59
  start-page: 3092
  issue: 9
  year: 2010
  end-page: 3098
  article-title: Auxiliary model‐based RELS and MI‐ELS algorithms for Hammerstein OEMA systems
  publication-title: Comput. Math. Appl.
– volume: 20
  start-page: 664
  issue: 3
  year: 2010
  end-page: 677
  article-title: Gradient based and least‐squares based iterative identification methods for OE and OEMA systems
  publication-title: Digit. Signal Process.
– volume: 55
  start-page: 1151
  issue: 3–4
  year: 2012
  end-page: 1159
  article-title: Two‐stage recursive least squares parameter estimation algorithm for output error models
  publication-title: Math. Comput. Model.
– start-page: 2683
  year: 2012
  end-page: 2688
  article-title: TS‐RLS algorithm for pseudo‐linear regressive models
– volume: 7
  start-page: 68
  issue: 1
  year: 2013
  end-page: 79
  article-title: Coupled‐least‐squares identification for multivariable systems
  publication-title: IET Control Theory Appl.
– volume: 226
  start-page: 43
  issue: 1
  year: 2012
  end-page: 55
  article-title: Gradient based and least squares based iterative estimation algorithms for multi‐input multi‐output systems
  publication-title: Proc. Inst. Mech. Eng. I, J. Syst. Control Eng.
– volume: 93
  start-page: 1235
  issue: 5
  year: 2013
  end-page: 1242
  article-title: Decomposition based fast least squares algorithm for output error systems
  publication-title: Signal Process.
– year: 2013
  article-title: Gradient‐based and least‐squares‐based iterative algorithms for Hammerstein systems using the hierarchical identification principle
  publication-title: IET Control Theory Appl.
– year: 2013
– ident: e_1_2_9_15_2
  doi: 10.1016/j.camwa.2010.02.030
– volume-title: Matrix computations
  year: 1996
  ident: e_1_2_9_37_2
– ident: e_1_2_9_17_2
  doi: 10.1016/j.camwa.2010.06.001
– ident: e_1_2_9_20_2
  doi: 10.1109/TSMCB.2009.2028871
– ident: e_1_2_9_28_2
  doi: 10.1016/j.automatica.2004.05.001
– ident: e_1_2_9_30_2
  doi: 10.1016/j.automatica.2006.03.004
– ident: e_1_2_9_23_2
  doi: 10.1016/j.mcm.2011.09.039
– ident: e_1_2_9_33_2
  doi: 10.1016/j.automatica.2006.07.024
– ident: e_1_2_9_31_2
  doi: 10.1016/j.sigpro.2012.12.013
– ident: e_1_2_9_6_2
  doi: 10.1049/iet-spr.2009.0161
– ident: e_1_2_9_12_2
  doi: 10.1243/09596518JSCE888
– ident: e_1_2_9_19_2
  doi: 10.1016/j.sigpro.2009.03.020
– ident: e_1_2_9_39_2
  doi: 10.1002/acs.1266
– ident: e_1_2_9_10_2
  doi: 10.1109/TAC.2009.2020638
– ident: e_1_2_9_11_2
  doi: 10.1049/iet-cta:20070460
– ident: e_1_2_9_35_2
  doi: 10.1016/j.automatica.2011.05.007
– ident: e_1_2_9_5_2
  doi: 10.1109/ACC.2008.4586812
– ident: e_1_2_9_13_2
  doi: 10.1016/j.dsp.2009.10.012
– ident: e_1_2_9_43_2
  doi: 10.1049/iet-cta.2012.0171
– ident: e_1_2_9_26_2
  doi: 10.1109/ACC.2012.6315494
– ident: e_1_2_9_21_2
  doi: 10.1016/j.amc.2009.07.012
– ident: e_1_2_9_24_2
  doi: 10.1109/CCDC.2012.6244336
– ident: e_1_2_9_8_2
  doi: 10.1049/iet-spr.2008.0190
– ident: e_1_2_9_25_2
  doi: 10.1016/j.apm.2012.10.014
– ident: e_1_2_9_40_2
  doi: 10.1016/j.camwa.2010.01.030
– ident: e_1_2_9_34_2
  doi: 10.1002/acs.1141
– ident: e_1_2_9_44_2
  doi: 10.1049/iet-cta.2012.0313
– ident: e_1_2_9_41_2
  doi: 10.1080/00207160.2012.698008
– ident: e_1_2_9_42_2
  doi: 10.1177/0959651811409491
– volume: 4
  start-page: 289
  issue: 4
  year: 2012
  ident: e_1_2_9_38_2
  article-title: Computational efficiency of the identification methods – part A: recursive algorithms
  publication-title: J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.)
– ident: e_1_2_9_9_2
  doi: 10.1080/00207170903273987
– volume-title: Adaptive filtering prediction and control
  year: 1984
  ident: e_1_2_9_36_2
– ident: e_1_2_9_22_2
  doi: 10.1016/j.camwa.2011.12.002
– ident: e_1_2_9_29_2
  doi: 10.1016/S0005-1098(97)00198-2
– ident: e_1_2_9_16_2
  doi: 10.1016/j.mcm.2010.03.002
– ident: e_1_2_9_14_2
  doi: 10.1049/iet-cta.2010.0416
– ident: e_1_2_9_3_2
  doi: 10.1016/j.apm.2011.07.083
– ident: e_1_2_9_32_2
  doi: 10.1016/S0096-3003(02)00201-1
– ident: e_1_2_9_18_2
  doi: 10.1016/j.dsp.2010.01.004
– ident: e_1_2_9_27_2
  doi: 10.1016/j.apm.2012.04.039
– volume-title: System identification – new theory and methods
  year: 2013
  ident: e_1_2_9_2_2
– ident: e_1_2_9_7_2
  doi: 10.1049/iet-spr.2009.0240
– ident: e_1_2_9_4_2
  doi: 10.1016/j.mcm.2011.08.023
SSID ssj0056512
Score 2.2146134
Snippet A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems....
A two‐stage recursive least‐squares identification method and a two‐stage multi‐innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems....
A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box-Jenkins (BJ) systems....
SourceID proquest
pascalfrancis
crossref
wiley
iet
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 646
SubjectTerms Algorithms
Applied sciences
BJ system decomposition
Box‐Jenkins systems
Computer simulation
Detection, estimation, filtering, equalization, prediction
Estimates
Exact sciences and technology
gradient methods
Information, signal and communications theory
least squares approximations
Least squares method
Mathematical models
Noise
noise model parameter algorithm
parameter estimation
Recursive
recursive estimation
Signal and communications theory
Signal processing
Signal, noise
stochastic processes
system model parameter algorithm
Telecommunications and information theory
two‐stage multiinnovation stochastic gradient method
two‐stage parameter estimation algorithms
two‐stage recursive least‐square identification method
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7R7QUOiPIQgVIFhDggWU39yvrY16pbFYToVurNShx7W6ndrJqt4Mh_4B_2lzATZ7e7Eiock0xieTyxP3tmvgH4mIcdzXmJyE35wKTyFTPOCVaoUoUyqDJ6TL981Udn8vhcnd-nR1eXY6qVweYnbnRa7mPmAYVu4zy83ek4FiRBfLuNAqyZErcnneuhia7BOsfdOe_B-vDghLZYcWZG7BK9nzmVlkekvPBy_uUjK-vUGj6mqMmiQcWFWPFiBZIuA9t2ZRo8g6cdpEx3ow1swCM_eQ5PlogGX8D-6EfNEAeOfUpc39cUA5MSv0ZMXEyLq3F9czm7uG5SBLHpXv3z7tfvY09lFZo0kj03L-FscDjaP2Jd-QTmpDKCaUFexqzvhdFelaXgqnJ9ZwJeClOpIkhfZMZp5XGdznQRKFVEB-EzF0w_iFfQm9QT_xpSU4Q880o4mZdSel0Srb0h7jFXKeOqBLK5sqzruMWpxMWVbX3c0lhUoEX9WtKvJf0m8HnxyjQSazwk_InuzYf-IcEPK4LDw5E9_fb9XsBOq5DA1spILtrnOa7XWvAENudDu9SmNAh-cILDRt4vHuPPSB6WYuLrW5RRO0KRc1UlIFqT-Hff7OnwhO8NWp_pm__t51t4zKkuRxtVuAm92c2tf4foaFZudUb_B2BaCrA
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Na9wwEB2SzaU9lH5St2lwS-mhIOK1LHl1KCVbdklCu4RkA7kJSZbSQrLexBvan98Zf3X3sj3aHiM8HmseftJ7AB_zMJRpahG5CR9YJnzBlHOcGWFFsEHYhjH9MZPHl9nplbjagVm3F4aWVXZzYj1RF6Wjf-SHiOSx92B98a_LO0auUcSudhYaprVWKL7UEmO7sJeSMtYA9saT2dl5Nzcjemn4z5zM5REr9zynOvzlV6xakkQo_R4cjvhGp9rFy7Ru0lSYutB4XmyA0nVoW_em6VN40oLK-Kipgmew4xfP4fGa1OALOJr_LhkiwWsfk9r3La2CiUlho9m6GJuba3za1c_bKkYYG4_LP-zUk61CFTdiz9VLuJxO5t-OWWufwFwmFGeSE8uYjDxX0gtreSoKN3Iq4CFXhTAh8yZRTgqPfTqRJtBWERm4T1xQo8BfwWBRLvxriJUJeeIFd1lus8xLS7L2ijLsCqFcEUHSpUq7VlucLC5udM1xZ0pj-jRmV1N2NWU3gs_9LctGWGNb8Cc6135e1bbADxuBJ5O5vjg7_xegl0WI4GDjPfbjpzn2a8nTCPa7F7s2Zl-AEbzvL-PHSAyLWfjyAWPEkAsiV0UEvC6I_z-bvjj5no6nNWf6ZvvAb-FRSm4c9VrCfRis7h_8O8REK3vQFvpfmiAHtg
  priority: 102
  providerName: ProQuest
Title Two-stage parameter estimation algorithms for Box–Jenkins systems
URI http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2012.0183
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-spr.2012.0183
https://www.proquest.com/docview/1494065783
https://www.proquest.com/docview/1513500435
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: BENPR
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 20140930
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 8FG
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9675
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7yuLSH0idVmxq1lB4KorL2Ie3RTu3EIU1NYpfQi9CudpNAYpnIoT3mJxTyD_NLMiPZik0hhV60SDvSotmdnY-d3W8APsauLaNII3IT1gVc2DxQxrAgE1o47YSuI6bfDuTumO8di-M12F6chan5IZoFN7KMar4mA890nYUEQS124pmdBeWUKD1pOQ9H5jpsthHP0DCP-HAxHSNgqUOeMeWTlwlrQpvqy1-fWHFO61hNWyWzErXl6jQXKzh0Gc1W7qj_FJ7McaTfqTv-GazZyXN4vMQu-AJ6o1_F7fUfhH8n1ieK7wva-uITrUZ9XtHPzk-Ky7PZ6UXpI3b1u8Xv2-ubPUvZFEq_5nguX8K43xtt7wbzrAmB4UKxQDIKLoaJRVVYoTWLRG4SoxzeMpWLzHGbhcpIYdE9hzJzdEJEOmZD41Ti2CvYmBQT-xp8lbk4tIIZHmvOrdTEZq-IcszkQpncg3ChrtTMKcUps8V5WoW2uUpRhSlqOCUNp6RhDz43r0xrPo2HhD_Rs7lVlQ8JflgRHPRG6dHw8F4gnebOg9ZKXzbtRzG6ackiD7YWnbvUJleIeXBew0beN9VogxRYySa2uEIZ0WaCYqrCA1YNin__W3o02I-6_SpU-ua_3noLjyLKzVHtLNyCjdnllX2HCGmmW5UF4DXp77Rgs_Nj_HOMZbd3MDzEcvB1_3vnDkBOEFc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cQAOiKdwW4pBwAFpVce762QPFWogUdKmUdWmUm9be71bkNo44FSFP8dvY8Yvkks49Wh77JVnZz3f-tv9BuB927WiMEwQuUnrmJA2ZcoYzmKZSJc4mZSM6fE4GpyLwwt5sQZ_6r0wtKyy_iYWH-o0M_SPfA-RPOYejC_-efaDUdUoYlfrEhpxVVoh3S8kxqqNHUf29x1O4fL94Vfs7w9h2O9NvgxYVWWAGSEVZxEnMi7oWK4iK5OEhzI1HaMcHnKVytgJGwfKRNJiOgui2NGOishxGxinOo7jc9dhU3ChcPK32e2NT07rXIBoqeRb21TMHrF5w6uqve92zvIZSZLS78hWhy9lxnW8TOs04xy7ypU1NpZA8CKULnJh_wk8rkCsf1BG3VNYs9Nn8GhB2vA5HEzuMobI88r6pC5-Q6tufFL0KLdK-vH1FXp3_u0m9xE2-93sFzu0VMYh90tx6fwFnN-LI1_CxjSb2lfgq9i1Ayu5Ee1ECBslJKOvSOvMpFKZ1IOgdpU2lZY5ldS41gWnLpRG92n0ribvavKuB5-aW2alkMcq4490rhrO-SrDd0uGw95En52c_jPQs9R5sLvUj037YRvxQcRDD3bqjl1oswl4D942l3HwE6MTT212izayxSWRudIDXgTE_99Nnw1HYbdfcLRbqxt-Aw8Gk-ORHg3HR9vwMKRKIMU6xh3YmP-8ta8Rj82T3Srofbi873H2Fw3fQ7Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB21RUJwQOVLGNpiEHBAWsXZ9drZQ4VaWtO0papoKvW2tde7BamNA05V-tf4dcz4i-QSTj0mnmTl2VnP877ZNwDvYtePOM8QuUnrWChtzpQxgqUyky5zMqsZ069H0d5puH8mz5bgT3sWhsoq22di9aDOC0N75D1E8ph7ML5EzzVlEcc7yafJT0YdpIhpbdtp1CFyYG9v8PWt3Bzu4Fy_5zzZHX3eY02HAWZCqQSLBBFxwcAKFVmZZYLL3AyMcvhRqFymLrRpoEwkLaayIEodnaaInLCBcWrgBP7vMtyLScWdTqknX9osgDipZlpjamOPqLxjVFXvh52yckJipLQR2R-IuZy4jJepQjMtcZJc3V1jDv7OgugqCyar8KiBr_5WHW-PYcmOn8DDGVHDp7A1uikYYs4L65Ou-BXV2_ik5VEfkvTTywv05fT7VekjYPa3i99s31IDh9KvZaXLZ3B6J258DivjYmxfgK9SFwdWChPGWRjaKCMBfUUqZyaXyuQeBK2rtGlUzKmZxqWu2PRQaXSfRu9q8q4m73rwsfvJpJbwWGT8gb5rFnK5yPDtnOFwd6RPjr_9M9CT3HmwMTeP3fg8RmQQCe7BWjuxM2N2oe7Bm-4yLnvictKxLa7RRvaFJBpXeiCqgPj_vemT4SHfTip29uXigV_DfVxd-nB4dPAKHnBqAVIVMK7ByvTXtV1HIDbNNqqI9-H8rpfYXx_PQVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90stage+parameter+estimation+algorithms+for+Box%E2%80%93Jenkins+systems&rft.jtitle=IET+signal+processing&rft.au=Ding%2C+Feng&rft.au=Duan%2C+Honghong&rft.date=2013-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9683&rft.eissn=1751-9683&rft.volume=7&rft.issue=8&rft.spage=646&rft.epage=654&rft_id=info:doi/10.1049%2Fiet-spr.2012.0183&rft.externalDBID=10.1049%252Fiet-spr.2012.0183&rft.externalDocID=SIL2BF00073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon