Decision theory, reinforcement learning, and the brain

Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. He...

Full description

Saved in:
Bibliographic Details
Published inCognitive, affective, & behavioral neuroscience Vol. 8; no. 4; pp. 429 - 453
Main Authors Dayan, Peter, Daw, Nathaniel D.
Format Journal Article
LanguageEnglish
Published New York Springer-Verlag 01.12.2008
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1530-7026
1531-135X
1531-135X
DOI10.3758/CABN.8.4.429

Cover

Abstract Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.
AbstractList Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.
Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.
Author Dayan, Peter
Daw, Nathaniel D.
Author_xml – sequence: 1
  givenname: Peter
  surname: Dayan
  fullname: Dayan, Peter
  email: dayan@gatsby.ucl.ac.uk
  organization: Gatsby Computational Neuroscience Unit, University College London
– sequence: 2
  givenname: Nathaniel D.
  surname: Daw
  fullname: Daw, Nathaniel D.
  email: nathaniel.daw@nyu.edu
  organization: Center for Neural Science, Department of Psychology and Center for Neuroeconomics, New York University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19033240$$D View this record in MEDLINE/PubMed
BookMark eNptkTtPwzAUhS1URB-wMaOIgakpjh-JM5bylCpYQGKzHOe6pEqdYidC_fcktKKoYroevnvuOcdD1LOVBYTOIzyhCRfXs-nN80RM2ISR9AgNIk6jMKL8vffzxmGCSdxHQ--XGGNGGDlB_SjFlBKGByi-BV34orJB_QGV24wDB4U1ldOwAlsHJShnC7sYB8rmHRNkThX2FB0bVXo4280Reru_e509hvOXh6fZdB5qxkUdGkq4ylXKGGSANaYEDIuEplwoxWIBJhMmETrVCc8MkNgoDkmcUyA8z_KEjlC41W3sWm2-VFnKtStWym1khGWXX2qVWSkkk23-lr_a8mtXfTbga7kqvIayVBaqxss4FTQhpBO-PACXVeNsm0USzBhnPO7ULnZQk60g35_e1dcCZAtoV3nvwEhd1Kpu66zblspfj90f_fE4Plg6jHSA7yrwLWYX4PZO_-W_Adykn28
CitedBy_id crossref_primary_10_1016_j_neuroimage_2018_05_074
crossref_primary_10_1371_journal_pone_0160245
crossref_primary_10_1007_s00221_024_06805_y
crossref_primary_10_1007_s12559_017_9511_3
crossref_primary_10_1016_j_cobeha_2020_11_002
crossref_primary_10_1523_JNEUROSCI_4458_09_2010
crossref_primary_10_3389_fpsyt_2017_00001
crossref_primary_10_1016_j_neuroimage_2012_04_024
crossref_primary_10_1186_1471_2202_14_S1_P288
crossref_primary_10_1016_j_tics_2020_06_011
crossref_primary_10_1371_journal_pcbi_1002918
crossref_primary_10_1097_PSY_0000000000000640
crossref_primary_10_1371_journal_pcbi_1005503
crossref_primary_10_1007_s00422_012_0512_8
crossref_primary_10_1371_journal_pcbi_1002235
crossref_primary_10_3389_fnhum_2022_938501
crossref_primary_10_1016_j_brainres_2011_05_053
crossref_primary_10_1016_j_isci_2024_111182
crossref_primary_10_1080_15427560_2016_1238372
crossref_primary_10_1016_j_neubiorev_2020_01_025
crossref_primary_10_1017_S003329171700174X
crossref_primary_10_1073_pnas_1613844114
crossref_primary_10_1109_ACCESS_2020_3027355
crossref_primary_10_1002_eat_24156
crossref_primary_10_1111_cogs_12910
crossref_primary_10_7554_eLife_50469
crossref_primary_10_1038_s42003_020_01438_7
crossref_primary_10_3390_s21237931
crossref_primary_10_1016_j_celrep_2023_112931
crossref_primary_10_1016_j_cortex_2020_02_024
crossref_primary_10_1016_j_biopsych_2020_02_017
crossref_primary_10_1038_ncomms16033
crossref_primary_10_1016_j_cognition_2011_10_009
crossref_primary_10_7554_eLife_66917
crossref_primary_10_1016_j_sapharm_2011_06_004
crossref_primary_10_1016_j_anbehav_2018_08_011
crossref_primary_10_1016_j_tics_2022_09_003
crossref_primary_10_1016_j_tics_2011_11_018
crossref_primary_10_1371_journal_pone_0018539
crossref_primary_10_1016_j_neuroimage_2020_117212
crossref_primary_10_1146_annurev_devpsych_121318_085229
crossref_primary_10_1016_j_cogsys_2018_07_005
crossref_primary_10_3389_fncom_2017_00029
crossref_primary_10_1007_s00213_009_1735_9
crossref_primary_10_1016_j_beproc_2019_05_009
crossref_primary_10_1523_JNEUROSCI_4389_13_2014
crossref_primary_10_1016_j_neuron_2019_05_042
crossref_primary_10_1371_journal_pcbi_1005768
crossref_primary_10_1016_j_neuron_2020_01_036
crossref_primary_10_1371_journal_pcbi_1004442
crossref_primary_10_3389_fpsyg_2021_619855
crossref_primary_10_1109_ACCESS_2019_2922150
crossref_primary_10_1038_s41593_024_01711_6
crossref_primary_10_1523_JNEUROSCI_0989_14_2014
crossref_primary_10_2139_ssrn_4152649
crossref_primary_10_3389_fpsyg_2015_01948
crossref_primary_10_1016_S2215_0366_15_00360_0
crossref_primary_10_1038_srep01048
crossref_primary_10_1016_j_neuron_2018_03_042
crossref_primary_10_1371_journal_pcbi_1007265
crossref_primary_10_1007_s10614_022_10249_3
crossref_primary_10_1073_pnas_2113961119
crossref_primary_10_1080_13546805_2014_932685
crossref_primary_10_1098_rstb_2013_0481
crossref_primary_10_1126_sciadv_abh2059
crossref_primary_10_1016_j_neuroscience_2016_07_025
crossref_primary_10_1073_pnas_1205131109
crossref_primary_10_3389_fpsyg_2017_00312
crossref_primary_10_1016_j_cognition_2009_07_005
crossref_primary_10_1111_cogs_13088
crossref_primary_10_3758_s13415_014_0277_8
crossref_primary_10_1371_journal_pone_0053344
crossref_primary_10_1007_s11571_017_9458_9
crossref_primary_10_1016_j_tins_2020_09_004
crossref_primary_10_1038_nrn_2016_56
crossref_primary_10_1111_nyas_14524
crossref_primary_10_3758_s13423_021_01986_x
crossref_primary_10_1038_s41467_023_42813_2
crossref_primary_10_7554_eLife_82531
crossref_primary_10_1002_aaai_12116
crossref_primary_10_1371_journal_pone_0239616
crossref_primary_10_1038_s41562_021_01213_6
crossref_primary_10_1080_0144929X_2024_2329616
crossref_primary_10_7554_eLife_63055
crossref_primary_10_1523_JNEUROSCI_2201_12_2013
crossref_primary_10_3389_fnbot_2023_1298176
crossref_primary_10_1016_j_neubiorev_2011_04_011
crossref_primary_10_1038_s41467_024_51393_8
crossref_primary_10_1038_s41467_018_08121_w
crossref_primary_10_1080_1350178X_2015_1024883
crossref_primary_10_1073_pnas_1906662116
crossref_primary_10_1186_1744_9081_9_3
crossref_primary_10_1001_jamapsychiatry_2022_0051
crossref_primary_10_1016_j_pneurobio_2011_08_010
crossref_primary_10_3389_fpsyg_2015_00353
crossref_primary_10_1016_j_neuron_2016_02_018
crossref_primary_10_1016_j_tics_2019_07_012
crossref_primary_10_1038_npp_2010_163
crossref_primary_10_1111_tops_12415
crossref_primary_10_7554_eLife_80926
crossref_primary_10_1016_j_cognition_2016_08_015
crossref_primary_10_1016_j_cognition_2023_105603
crossref_primary_10_1109_TBDATA_2020_2988273
crossref_primary_10_1016_j_neuroscience_2022_08_015
crossref_primary_10_1016_j_tics_2010_05_008
crossref_primary_10_1073_pnas_1014938108
crossref_primary_10_1155_2012_937860
crossref_primary_10_3389_fnins_2021_704728
crossref_primary_10_1016_j_cognition_2017_11_001
crossref_primary_10_3389_fnins_2014_00101
crossref_primary_10_32388_1KC9TH_2
crossref_primary_10_32388_1KC9TH_3
crossref_primary_10_1371_journal_pcbi_1007475
crossref_primary_10_1016_j_neubiorev_2016_08_013
crossref_primary_10_1016_j_celrep_2024_115152
crossref_primary_10_3389_fpsyg_2018_00579
crossref_primary_10_1016_j_asoc_2018_01_042
crossref_primary_10_1162_CPSY_a_00002
crossref_primary_10_3389_fnins_2022_805658
crossref_primary_10_1109_JPROC_2020_2979233
crossref_primary_10_1016_j_cobeha_2019_04_009
crossref_primary_10_1016_j_cobeha_2016_08_002
crossref_primary_10_1093_cercor_bht218
crossref_primary_10_1162_jocn_a_01238
crossref_primary_10_1038_s41467_021_25419_4
crossref_primary_10_1016_j_bbi_2017_09_011
crossref_primary_10_3902_jnns_27_165
crossref_primary_10_1016_j_cognition_2014_11_009
crossref_primary_10_1162_NECO_a_00103
crossref_primary_10_1038_s41467_024_48338_6
crossref_primary_10_1152_jn_00395_2015
crossref_primary_10_1016_j_bbr_2013_02_004
crossref_primary_10_7554_eLife_55872
crossref_primary_10_1016_j_neuroimage_2025_121166
crossref_primary_10_1007_s10071_011_0387_4
crossref_primary_10_1371_journal_pone_0233308
crossref_primary_10_1016_j_neuron_2012_09_034
crossref_primary_10_1016_j_neuron_2019_11_018
crossref_primary_10_1038_s41598_022_06383_5
crossref_primary_10_1038_nn_2304
crossref_primary_10_3389_fnhum_2022_809616
crossref_primary_10_3390_app14177843
crossref_primary_10_7554_eLife_29908
crossref_primary_10_1007_s41465_024_00303_3
crossref_primary_10_1186_s40359_024_01952_x
crossref_primary_10_15252_embr_201438993
crossref_primary_10_1016_j_conb_2011_02_009
crossref_primary_10_1101_sqb_2018_83_038166
crossref_primary_10_3390_e24101484
crossref_primary_10_1016_j_actpsy_2022_103511
crossref_primary_10_1017_S1355617725000013
crossref_primary_10_3390_brainsci10010055
crossref_primary_10_1007_s40636_024_00300_3
crossref_primary_10_3390_drones7120690
crossref_primary_10_3389_fnins_2023_1195388
crossref_primary_10_1016_j_jort_2024_100841
crossref_primary_10_12968_bjnn_2016_12_1_30
crossref_primary_10_1007_s11625_021_00989_w
crossref_primary_10_3389_fncom_2022_1060101
crossref_primary_10_1016_j_jmp_2021_102544
crossref_primary_10_1038_s44159_024_00385_y
crossref_primary_10_3758_s13420_022_00569_7
crossref_primary_10_1038_s41598_020_62970_4
crossref_primary_10_3758_s13423_018_1446_5
crossref_primary_10_1371_journal_pcbi_1010805
crossref_primary_10_1002_hbm_25019
crossref_primary_10_1016_j_biopsych_2012_03_033
crossref_primary_10_1002_mpr_1410
crossref_primary_10_1007_s00422_015_0669_z
crossref_primary_10_1016_j_yhbeh_2017_05_002
crossref_primary_10_1027_1864_1105_a000315
crossref_primary_10_54097_ehss_v8i_4673
crossref_primary_10_1073_pnas_2010890117
crossref_primary_10_1016_j_celrep_2023_112523
crossref_primary_10_1038_s41598_023_27662_9
crossref_primary_10_3390_bs3030501
crossref_primary_10_1038_s41598_018_31985_3
crossref_primary_10_1007_s42113_021_00112_3
crossref_primary_10_1109_TRO_2020_2992987
crossref_primary_10_1177_02783649231167210
crossref_primary_10_1016_j_neubiorev_2016_09_010
crossref_primary_10_1038_s41386_022_01374_6
crossref_primary_10_1177_0023830920948552
crossref_primary_10_1016_j_ynstr_2022_100507
crossref_primary_10_1038_nn_4506
crossref_primary_10_1146_annurev_neuro_071714_033928
crossref_primary_10_1016_j_conb_2019_09_011
crossref_primary_10_3390_diagnostics12081835
crossref_primary_10_1371_journal_pcbi_1012331
crossref_primary_10_1016_j_jbi_2021_103913
crossref_primary_10_1162_NECO_a_00494
crossref_primary_10_1038_s41467_024_46921_5
crossref_primary_10_1038_s41562_019_0681_8
crossref_primary_10_1124_pharmrev_121_000508
crossref_primary_10_1016_j_jneumeth_2020_108912
crossref_primary_10_1016_j_neunet_2009_03_019
crossref_primary_10_1016_j_tree_2016_01_012
crossref_primary_10_1016_j_cognition_2018_06_008
crossref_primary_10_1093_cercor_bhab391
crossref_primary_10_1007_s11571_010_9109_x
crossref_primary_10_1098_rstb_2012_0037
crossref_primary_10_1073_pnas_1712479114
crossref_primary_10_1038_s41583_024_00807_z
crossref_primary_10_1002_oby_23792
crossref_primary_10_1007_s42113_024_00229_1
crossref_primary_10_1073_pnas_1211606110
crossref_primary_10_1016_j_cub_2017_02_026
crossref_primary_10_1016_j_resconrec_2020_105027
crossref_primary_10_1038_npp_2016_95
crossref_primary_10_1016_j_tics_2011_04_002
crossref_primary_10_1177_00027642231207073
crossref_primary_10_1016_j_copsyc_2017_09_011
crossref_primary_10_32388_1KC9TH
crossref_primary_10_1111_cogs_12271
crossref_primary_10_1371_journal_pone_0108142
crossref_primary_10_1016_j_cogpsych_2017_03_002
crossref_primary_10_1038_s41467_018_04397_0
crossref_primary_10_1016_j_conb_2012_05_011
crossref_primary_10_1016_j_neubiorev_2017_02_003
crossref_primary_10_1016_j_isci_2021_102826
crossref_primary_10_1523_JNEUROSCI_2432_12_2012
crossref_primary_10_7554_eLife_49834
crossref_primary_10_1038_nn_3956
crossref_primary_10_1016_j_cogsys_2015_12_012
crossref_primary_10_1145_3505557
crossref_primary_10_3389_fnbeh_2016_00200
crossref_primary_10_1371_journal_pbio_3002031
crossref_primary_10_1080_17470919_2019_1668846
crossref_primary_10_1523_JNEUROSCI_5806_12_2014
crossref_primary_10_1162_NECO_a_00758
crossref_primary_10_1016_j_bbr_2017_09_030
crossref_primary_10_1177_2167702614562040
crossref_primary_10_1371_journal_pcbi_1007730
crossref_primary_10_1167_jov_24_5_17
crossref_primary_10_1177_1745691618792261
crossref_primary_10_1016_j_dr_2021_100979
crossref_primary_10_1038_s41467_024_44880_5
crossref_primary_10_1038_s41583_025_00916_3
crossref_primary_10_1016_j_neubiorev_2024_105877
crossref_primary_10_1093_bjps_axu013
crossref_primary_10_1016_j_neuron_2019_01_055
crossref_primary_10_1080_13546805_2010_548678
crossref_primary_10_1016_j_isci_2023_106761
crossref_primary_10_1016_j_neubiorev_2017_02_014
crossref_primary_10_1016_j_neuron_2013_09_007
crossref_primary_10_1016_j_nlm_2013_09_012
crossref_primary_10_1523_JNEUROSCI_3669_14_2015
crossref_primary_10_1086_682371
crossref_primary_10_1016_j_tics_2013_09_001
crossref_primary_10_1038_s41467_019_13135_z
crossref_primary_10_1073_pnas_2009641117
crossref_primary_10_31887_DCNS_2016_18_1_asirigu
crossref_primary_10_1016_j_neuropharm_2013_05_033
crossref_primary_10_1162_neco_2010_03_09_980
crossref_primary_10_1016_j_tics_2015_07_010
crossref_primary_10_1038_s42003_020_0786_7
crossref_primary_10_1126_science_1169405
crossref_primary_10_1002_brb3_70168
crossref_primary_10_2139_ssrn_4014051
crossref_primary_10_1073_pnas_1310272111
crossref_primary_10_1038_s41467_023_39536_9
crossref_primary_10_1038_s41593_021_01007_z
crossref_primary_10_7554_eLife_55490
crossref_primary_10_3389_fnhum_2016_00550
crossref_primary_10_1016_j_neubiorev_2015_08_017
crossref_primary_10_1523_JNEUROSCI_6316_10_2011
crossref_primary_10_1007_s10551_016_3058_1
crossref_primary_10_1016_j_isci_2021_102127
crossref_primary_10_1016_j_bpsc_2016_05_001
crossref_primary_10_1016_j_biopsych_2012_05_010
crossref_primary_10_1146_annurev_psych_113011_143807
crossref_primary_10_1523_JNEUROSCI_1164_17_2017
crossref_primary_10_4161_cib_21474
crossref_primary_10_1038_s41386_019_0454_0
crossref_primary_10_3758_s13423_018_1554_2
crossref_primary_10_1073_pnas_1706693114
crossref_primary_10_1016_j_jclepro_2022_131142
crossref_primary_10_7554_eLife_21492
crossref_primary_10_1016_j_neuron_2017_07_039
crossref_primary_10_1371_journal_pcbi_1003015
crossref_primary_10_1007_s00213_020_05454_7
crossref_primary_10_1016_S2215_0366_14_70275_5
crossref_primary_10_1371_journal_pcbi_1011678
crossref_primary_10_1126_sciadv_aax8783
crossref_primary_10_1016_j_ibneur_2022_05_006
crossref_primary_10_1007_s10071_023_01769_y
crossref_primary_10_1080_23273798_2015_1077979
crossref_primary_10_1016_j_neuron_2012_03_037
crossref_primary_10_1016_j_neuron_2015_03_019
crossref_primary_10_1371_journal_pone_0089494
crossref_primary_10_1155_2014_238357
crossref_primary_10_1016_j_neuron_2014_12_015
crossref_primary_10_1016_j_cognition_2018_11_004
crossref_primary_10_1016_j_tics_2018_08_008
ContentType Journal Article
Copyright Psychonomic Society, Inc. 2008
Copyright Springer Science & Business Media Dec 2008
Copyright_xml – notice: Psychonomic Society, Inc. 2008
– notice: Copyright Springer Science & Business Media Dec 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
4U-
7TK
K9.
NAPCQ
7X8
ADTOC
UNPAY
DOI 10.3758/CABN.8.4.429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
University Readers
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
University Readers
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Psychology
EISSN 1531-135X
EndPage 453
ExternalDocumentID 10.3758/cabn.8.4.429
1655323101
19033240
10_3758_CABN_8_4_429
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-55
-5G
-BR
-EM
-~C
-~X
.-4
.GJ
04C
06D
0R~
123
186
199
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFFNX
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
BAWUL
BENPR
BGNMA
BKEYQ
BMSDO
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M4Y
N9A
NAPCQ
NEJ
NHB
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P9L
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
QII
R9I
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VQA
W48
WK8
WOW
YYQ
Z83
ZMTXR
ZOVNA
ZUP
ZY4
AAPKM
AAYXX
ABFSG
ACSTC
ADXHL
AETEA
AEZWR
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
4T-
4U-
7TK
K9.
7X8
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c458t-f325ada944ebe0c032ef418c358aa468efb8f78c9c75bfe26fa5e76d3e25dbd73
IEDL.DBID AGYKE
ISSN 1530-7026
1531-135X
IngestDate Tue Sep 23 05:43:27 EDT 2025
Wed Oct 01 13:07:02 EDT 2025
Tue Oct 07 05:59:49 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Oct 01 00:47:30 EDT 2025
Fri Feb 21 02:31:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Lateral Intraparietal Area
Temporal Difference Model
Belief State
Markov Decision Problem
Ective State
Language English
License http://www.springer.com/tdm
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-f325ada944ebe0c032ef418c358aa468efb8f78c9c75bfe26fa5e76d3e25dbd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.3758/CABN.8.4.429.pdf
PMID 19033240
PQID 204454569
PQPubID 976343
PageCount 25
ParticipantIDs unpaywall_primary_10_3758_cabn_8_4_429
proquest_miscellaneous_69837227
proquest_journals_204454569
pubmed_primary_19033240
crossref_citationtrail_10_3758_CABN_8_4_429
crossref_primary_10_3758_CABN_8_4_429
springer_journals_10_3758_CABN_8_4_429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20081200
2008-12-01
2008-Dec
20081201
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 20081200
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Cognitive, affective, & behavioral neuroscience
PublicationTitleAbbrev Cognitive, Affective, & Behavioral Neuroscience
PublicationTitleAlternate Cogn Affect Behav Neurosci
PublicationYear 2008
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References SahaniM.DayanP.Doubly distributional population codes: Simultaneous representation of uncertainty and multiplicityNeural Computation200315225522791451152110.1162/089976603322362356
CohenJ. D.McClureS. M.YuA. J.Should I stay or should I go? How the human brain manages the trade-off between exploitation and explorationPhilosophical Transactions of the Royal Society B200736293394210.1098/rstb.2007.2098
RoitmanJ. D.ShadlenM. N.Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time taskJournal of Neuroscience2002229475948912417672
DawN. D.NivY.DayanP.Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral controlNature Neuroscience20058170417111628693210.1038/nn1560
RossS.Introduction to stochastic dynamic programming: Probability and mathematical1983Orlando, FLAcademic Press
ShadlenM. N.NewsomeW. T.Motion perception: Seeing and decidingProceedings of the National Academy of Sciences19969362863310.1073/pnas.93.2.628
YangT.ShadlenM. N.Probabilistic reasoning by neuronsNature2007447107510801754602710.1038/nature05852
BrittenK. H.ShadlenM. N.NewsomeW. T.MovshonJ. A.The analysis of visual motion: A comparison of neuronal and psychophysical performanceJournal of Neuroscience199212474547651464765
NealR. M.HintonG. E.JordanM. I.A view of the EM algorithm that justifies incremental, sparse, and other variantsLearning in graphical models1998Norwell, MAKluwer355368
DawN. D.CourvilleA. C.TouretzkyD. S.Representation and timing in theories of the dopamine systemNeural Computation200618163716771676451710.1162/neco.2006.18.7.1637
DoyaK.Metalearning and neuromodulationNeural Networks2002154955061237150710.1016/S0893-6080(02)00044-8
KördingK. [P.]Decision theory: What “should”the nervous system do?Science20073186066101796255410.1126/science.1142998
HarunoM.KurodaT.DoyaK.ToyamaK.KimuraM.SamejimaK.A neural correlate of reward-based behavioral learning in caudate nucleus:A functional magnetic resonance imagresearch ing study of a stochastic decision taskJournal of Neuroscience200424166016651497323910.1523/JNEUROSCI.3417-03.2004
GoldJ. I.ShadlenM. N.Neural computations that underlie decisions about sensory stimuliTrends in Cognitive Sciences2001510161116473110.1016/S1364-6613(00)01567-9
RaoR. P. N.Bayesian computation in recurrent neural circuitsNeural Computation2004161381500602110.1162/08997660460733976
CostaR. M.BalleineB. W.DoyaK.O’DohertyJ.SakagamiM.Plastic corticostriatal circuits for action learning: What’s dopamine got to do with it?Reward and decision making in corticobasal ganglia networks2007New YorkNew York Academy of Sciences172191Annals of the New York Academy of Sciences
BogaczR.BrownE.MoehlisJ.HolmesP.CohenJ. D.The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasksPsychology Review200611370076510.1037/0033-295X.113.4.700
GoldJ. I.ShadlenM. N.The neural basis of decision makingAnnual Review of Neuroscience2007305355741760052510.1146/annurev.neuro.29.051605.113038
BergerJ. O.Statistical decision theory and Bayesian analysis1985New YorkSpringer
O’DohertyJ. P.DayanP.FristonK.CritchleyH.DolanR. J.Temporal difference models and reward-related learning in the human brainNeuron2003383293371271886510.1016/S0896-6273(03)00169-7
WickensJ. R.HorvitzJ. C.CostaR. M.KillcrossS.Dopaminergic mechanisms in actions and habitsJournal of Neuroscience200727818181831767096410.1523/JNEUROSCI.1671-07.2007
StockerA. A.SimoncelliE. P.Noise characteristics and prior expectations in human visual speed perceptionNature Neuroscience200695785851654751310.1038/nn1669
JaakkolaT.JordanM. I.SinghS. P.On the convergence of stochastic iterative dynamic programming algorithmsNeural Computation199461185120110.1162/neco.1994.6.6.1185
SchultzW.Getting formal with dopamine and rewardNeuron2002362412631238378010.1016/S0896-6273(02)00967-4
DawN. D.O’DohertyJ. P.DayanP.SeymourB.DolanR. J.Cortical substrates for exploratory decisions in humansNature20064418768791677889010.1038/nature04766
EverittB. J.RobbinsT. W.Neural systems of reinforcement for drug addiction: From actions to habits to compulsionNature Neuroscience20058148114891625199110.1038/nn1579
SuttonR. S.PorterB. W.MooneyR. J.Integrated architectures for learning, planning, and reacting based on approximating dynamic programmingProceedings of the Seventh International Conference on Machine Learning1990San FranciscoMorgan Kaufmann216224
DeardenR.FriedmanN.RussellS.Bayesian Q-learningProceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence1998Menlo Park, CAAAAI Press761768
BellmanR. E.Dynamic programming1957Princeton, NJPrinceton University Press
ShadlenM. N.BrittenK. H.NewsomeW. T.MovshonJ. A.A computational analysis of the relationship between neuronal and behavioral responses to visual motionJournal of Neuroscience199616148615108778300
BartoA. G.HoukJ. C.DavisJ. L.BeiserD. G.Adaptive critics and the basal gangliaModels of information processing in the basal ganglia1995Cambridge, MAMIT Press215232
WittmannB. C.DawN. D.SeymourB.DolanR. J.Striatal activity underlies novelty-based choice in humansNeuron2008589679731857908510.1016/j.neuron.2008.04.027
YuilleA. J.BülthoffH. H.KnillD. C.RichardsW.Bayesian decision theory and psychophysicsPerception as Bayesian inference1996CambridgeCambridge University Press123161
BalleineB. W.DelgadoM. R.HikosakaO.The role of the dorsal striatum in reward and decision-makingJournal of Neuroscience200727816181651767095910.1523/JNEUROSCI.1554-07.2007
SmithP. L.RatcliffR.Psychology and neurobiology of simple decisionsTrends in Neurosciences2004271611681503688210.1016/j.tins.2004.01.006
TrommershäuserJ.MaloneyL. T.LandyM. S.Statistical decision theory and trade-offs in the control of motor responseSpatial Vision2003162552751285895110.1163/156856803322467527
DempsterA. P.LairdN. M.RubinD. B.Maximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B197739138
RatcliffR.McKoonG.The diffusion decision model: Theory and data for two-choice decision tasksNeural Computation2008208739221808599110.1162/neco.2008.12-06-420
RatcliffR.RouderJ.Modeling response times for twochoice decisionsPsychological Science1998934735610.1111/1467-9280.00067
TrommershäuserJ.MaloneyL. T.LandyM. S.Statistical decision theory and the selection of rapid, goal-directed movementsJournal of the Optical Society of America A2003201419143310.1364/JOSAA.20.001419
NgA.HaradaD.RussellS.Policy invariance under reward transformations: Theory and application to reward shapingProceedings of the Sixteenth International Conference on Machine Learning1999San FranciscoMorgan Kaufmann278287
BertsekasD. P.Dynamic programming and optimal control2007Belmont, MAAthena Scientific
GlimcherP. W.Decisions, uncertainty, and the brain: The science of neuroeconomics2004Cambridge, MAMIT Press, Bradford Books
ParkerA. J.NewsomeW. T.Sense and the single neuron: Probing the physiology of perceptionAnnual Review of Neuroscience199821227277953049710.1146/annurev.neuro.21.1.227
DayanP.AbbottL. F.Theoretical neuroscience: Computational and mathematical modeling of neural systems2005Cambridge, MAMIT Press
Montague[P.] R.Why choose this book?: How we make decisions2006New YorkDutton
LengyelM.DayanP.PlattJ.KollerD.SingerY.RoweisS.Hippocampal contributions to control: The third wayAdvances in neural information processing systems 202008Cambridge, MAMIT Press889896
WickensJ. [R.]Striatal dopamine in motor activation and reward-mediated learning: Steps towards a unifying modelJournal of Neural Transmission199080931240726910.1007/BF01245020
BeckJ. M.PougetA.Exact inferences in a neural implementation of a hidden Markov modelNeural Computation200719134413611738126910.1162/neco.2007.19.5.1344
Watkins, C. (1989). Learning from delayed rewards. Unpublished doctoral thesis, University of Cambridge.
WhiteleyL.SahaniM.Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomesJournal of Vision200881151848480810.1167/8.3.2
ShadlenM. N.HanksT. D.ChurchlandA. K.KianiR.YangT.DoyaK.IshiiS.PougetA.RaoR. P.The speed and accuracy of a simple perceptual decision: A mathematical primerBayesian brain: Probabilistic approaches to neural coding2007Cambridge, MAMIT Press209238
DickinsonA.BalleineB.GallistelC.The role of learning in motivationStevens’s handbook of experimental psychology2002New YorkWiley497533
YuA. J.SchölkopfB.PlattJ.HofmannT.Optimal change-detection and spiking neuronsAdvances in neural information processing systems 192007Cambridge, MAMIT Press15451552
BattagliaP. W.JacobsR. A.AslinR. N.Bayesian integration of visual and auditory signals for spatial localizationJournal of the Optical Society of America A2003201391139710.1364/JOSAA.20.001391
DeneveS.Bayesian spiking neurons I: InferenceNeural Computation200820911171804500210.1162/neco.2008.20.1.91
JacobsR. A.Optimal integration of texture and motion cues to depthVision Research199939362136291074613210.1016/S0042-6989(99)00088-7
WilliamsR. J.Simple statistical gradient-following algorithms for connectionist reinforcement learningMachine Learning19928229256
ErnstM. O.BanksM. S.Humans integrate visual and haptic information in a statistically optimal fashionNature20024154294331180755410.1038/415429a
TrommershäuserJ.LandyM. S.MaloneyL. T.Humans rapidly estimate expected gain in movement planningPsychological Science2006179819881717643110.1111/j.1467-9280.2006.01816.x
ZemelR. S.DayanP.PougetA.Probabilistic interpretation of population codesNeural Computation199810403430947248810.1162/089976698300017818
SuriR. E.SchultzW.Learning of sequential movements by neural network model with dopamine-like reinforcement signalExperimental Brain Research199812135035410.1007/s002210050467
BaxterJ.BartlettP. L.Infinite-horizon policy-gradient estimationJournal of Artificial Intelligence Research20011531935010.1016/S0954-1810(01)00028-0
McClureS. M.GilzenratM. S.CohenJ. D.WeissY.Schö
11807554 - Nature. 2002 Jan 24;415(6870):429-33
8730992 - Vis Neurosci. 1996 Jan-Feb;13(1):87-100
17670959 - J Neurosci. 2007 Aug 1;27(31):8161-5
16547513 - Nat Neurosci. 2006 Apr;9(4):578-85
17435119 - Ann N Y Acad Sci. 2007 May;1104:172-91
17962554 - Science. 2007 Oct 26;318(5850):606-10
12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506
11164731 - Trends Cogn Sci. 2001 Jan 1;5(1):10-16
1464765 - J Neurosci. 1992 Dec;12(12):4745-65
14511521 - Neural Comput. 2003 Oct;15(10):2255-79
15006021 - Neural Comput. 2004 Jan;16(1):1-38
16731515 - Neuron. 2006 Jun 1;50(5):781-9
17395573 - Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):933-42
18085991 - Neural Comput. 2008 Apr;20(4):873-922
15190354 - Nature. 2004 Jun 10;429(6992):664-7
16776597 - Annu Rev Neurosci. 2006;29:565-98
16767089 - Nat Neurosci. 2006 Jul;9(7):956-63
15036882 - Trends Neurosci. 2004 Mar;27(3):161-8
17546027 - Nature. 2007 Jun 28;447(7148):1075-80
17982449 - Nat Neurosci. 2007 Dec;10(12):1625-33
11488378 - Psychol Rev. 2001 Jul;108(3):550-92
16617339 - Nat Neurosci. 2006 May;9(5):690-6
15087550 - Science. 2004 Apr 16;304(5669):452-4
12383780 - Neuron. 2002 Oct 10;36(2):241-63
10421364 - Nature. 1999 Jul 15;400(6741):233-8
14973239 - J Neurosci. 2004 Feb 18;24(7):1660-5
14724638 - Nature. 2004 Jan 15;427(6971):244-7
18045002 - Neural Comput. 2008 Jan;20(1):91-117
8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47
2407269 - J Neural Transm Gen Sect. 1990;80(1):9-31
12868646 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1419-33
16764517 - Neural Comput. 2006 Jul;18(7):1637-77
9054347 - Science. 1997 Mar 14;275(5306):1593-9
18055018 - Brain Res Rev. 2008 Aug;58(2):322-39
16778890 - Nature. 2006 Jun 15;441(7095):876-9
17600525 - Annu Rev Neurosci. 2007;30:535-74
12631569 - Cereb Cortex. 2003 Apr;13(4):400-8
16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
18579085 - Neuron. 2008 Jun 26;58(6):967-73
17603481 - Nat Neurosci. 2007 Aug;10(8):1020-8
8008189 - Neuroscience. 1994 Mar;59(2):229-43
17057707 - Nat Neurosci. 2006 Nov;9(11):1432-8
12858951 - Spat Vis. 2003;16(3-4):255-75
12383783 - Neuron. 2002 Oct 10;36(2):299-308
9746140 - Exp Brain Res. 1998 Aug;121(3):350-4
17381269 - Neural Comput. 2007 May;19(5):1344-61
17925267 - Prog Brain Res. 2007;165:509-19
9472488 - Neural Comput. 1998 Feb 15;10(2):403-30
10746132 - Vision Res. 1999 Oct;39(21):3621-9
17072591 - Psychopharmacology (Berl). 2007 Apr;191(3):391-431
12868643 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1391-7
15486304 - Science. 2004 Oct 15;306(5695):503-7
17014301 - Psychol Rev. 2006 Oct;113(4):700-65
17176431 - Psychol Sci. 2006 Nov;17(11):981-8
16563737 - Curr Opin Neurobiol. 2006 Apr;16(2):199-204
7442286 - J Theor Biol. 1980 Aug 21;85(4):673-90
12718865 - Neuron. 2003 Apr 24;38(2):329-37
17670964 - J Neurosci. 2007 Aug 1;27(31):8181-3
16251991 - Nat Neurosci. 2005 Nov;8(11):1481-9
18484808 - J Vis. 2008 Mar 06;8(3):2.1-15
12417672 - J Neurosci. 2002 Nov 1;22(21):9475-89
16508903 - Pharmacopsychiatry. 2006 Feb;39 Suppl 1:S80-7
12371511 - Neural Netw. 2002 Jun-Jul;15(4-6):549-59
9530497 - Annu Rev Neurosci. 1998;21:227-77
8778300 - J Neurosci. 1996 Feb 15;16(4):1486-510
8570606 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):628-33
12467598 - Neuron. 2002 Dec 5;36(5):955-68
12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47
References_xml – reference: ShadlenM. N.HanksT. D.ChurchlandA. K.KianiR.YangT.DoyaK.IshiiS.PougetA.RaoR. P.The speed and accuracy of a simple perceptual decision: A mathematical primerBayesian brain: Probabilistic approaches to neural coding2007Cambridge, MAMIT Press209238
– reference: JazayeriM.MovshonJ. A.Optimal representation of sensory information by neural populationsNature Neuroscience200696906961661733910.1038/nn1691
– reference: McNamaraJ.HoustonA.The application of statistical decision theory to animal behaviourJournal of Theoretical Biology198085673690744228610.1016/0022-5193(80)90265-9
– reference: ChrismanL.Reinforcement learning with perceptual aliasing: The perceptual distinctions approachProceedings of the 10th National Conference on Artificial Intelligence1992Menlo Park, CAAAAI Press
– reference: JacobsR. A.Optimal integration of texture and motion cues to depthVision Research199939362136291074613210.1016/S0042-6989(99)00088-7
– reference: TrommershäuserJ.MaloneyL. T.LandyM. S.Statistical decision theory and the selection of rapid, goal-directed movementsJournal of the Optical Society of America A2003201419143310.1364/JOSAA.20.001419
– reference: BrittenK. H.ShadlenM. N.NewsomeW. T.MovshonJ. A.The analysis of visual motion: A comparison of neuronal and psychophysical performanceJournal of Neuroscience199212474547651464765
– reference: RatcliffR.McKoonG.The diffusion decision model: Theory and data for two-choice decision tasksNeural Computation2008208739221808599110.1162/neco.2008.12-06-420
– reference: NgA.HaradaD.RussellS.Policy invariance under reward transformations: Theory and application to reward shapingProceedings of the Sixteenth International Conference on Machine Learning1999San FranciscoMorgan Kaufmann278287
– reference: ParkerA. J.NewsomeW. T.Sense and the single neuron: Probing the physiology of perceptionAnnual Review of Neuroscience199821227277953049710.1146/annurev.neuro.21.1.227
– reference: RescorlaR.WagnerA.BlackA. H.ProkasyW. F.A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcementClassical conditioning II: Current research and theory1972New YorkAppleton-Century-Crofts6499
– reference: WittmannB. C.DawN. D.SeymourB.DolanR. J.Striatal activity underlies novelty-based choice in humansNeuron2008589679731857908510.1016/j.neuron.2008.04.027
– reference: DeardenR.FriedmanN.RussellS.Bayesian Q-learningProceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence1998Menlo Park, CAAAAI Press761768
– reference: SchultzW.DayanP.MontagueP. R.A neural substrate of prediction and rewardScience199727515931599905434710.1126/science.275.5306.1593
– reference: GoldJ. I.ShadlenM. N.Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and rewardNeuron2002362993081238378310.1016/S0896-6273(02)00971-6
– reference: RoitmanJ. D.ShadlenM. N.Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time taskJournal of Neuroscience2002229475948912417672
– reference: SmithP. L.RatcliffR.Psychology and neurobiology of simple decisionsTrends in Neurosciences2004271611681503688210.1016/j.tins.2004.01.006
– reference: DawN. D.O’DohertyJ. P.DayanP.SeymourB.DolanR. J.Cortical substrates for exploratory decisions in humansNature20064418768791677889010.1038/nature04766
– reference: BertsekasD. P.TsitsiklisJ. N.Neuro-dynamic programming1996Belmont, MAAthena Scientific
– reference: TrommershäuserJ.LandyM. S.MaloneyL. T.Humans rapidly estimate expected gain in movement planningPsychological Science2006179819881717643110.1111/j.1467-9280.2006.01816.x
– reference: WaldA.Sequential analysis1947New YorkWiley
– reference: KördingK. [P.]Decision theory: What “should”the nervous system do?Science20073186066101796255410.1126/science.1142998
– reference: O’DohertyJ. [P.]DayanP.SchultzJ.DeichmannR.FristonK.DolanR. J.Dissociable roles of ventral and dorsal striatum in instrumental conditioningScience20043044524541508755010.1126/science.1094285
– reference: KakadeS.DayanP.Dopamine: Generalization and bonusesNeural Networks2002155495591237151110.1016/S0893-6080(02)00048-5
– reference: DawN. D.DoyaK.The computational neurobiology of learning and rewardCurrent Opinion in Neurobiology2006161992041656373710.1016/j.conb.2006.03.006
– reference: ShadlenM. N.NewsomeW. T.Motion perception: Seeing and decidingProceedings of the National Academy of Sciences19969362863310.1073/pnas.93.2.628
– reference: BattagliaP. W.JacobsR. A.AslinR. N.Bayesian integration of visual and auditory signals for spatial localizationJournal of the Optical Society of America A2003201391139710.1364/JOSAA.20.001391
– reference: GoldJ. I.ShadlenM. N.The neural basis of decision makingAnnual Review of Neuroscience2007305355741760052510.1146/annurev.neuro.29.051605.113038
– reference: RatcliffR.RouderJ.Modeling response times for twochoice decisionsPsychological Science1998934735610.1111/1467-9280.00067
– reference: SchultzW.Getting formal with dopamine and rewardNeuron2002362412631238378010.1016/S0896-6273(02)00967-4
– reference: DempsterA. P.LairdN. M.RubinD. B.Maximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society: Series B197739138
– reference: DayanP.SejnowskiT. J.Exploration bonuses and dual controlMachine Learning199625522
– reference: RaoR. P. N.Bayesian computation in recurrent neural circuitsNeural Computation2004161381500602110.1162/08997660460733976
– reference: YangT.ShadlenM. N.Probabilistic reasoning by neuronsNature2007447107510801754602710.1038/nature05852
– reference: SahaniM.DayanP.Doubly distributional population codes: Simultaneous representation of uncertainty and multiplicityNeural Computation200315225522791451152110.1162/089976603322362356
– reference: NealR. M.HintonG. E.JordanM. I.A view of the EM algorithm that justifies incremental, sparse, and other variantsLearning in graphical models1998Norwell, MAKluwer355368
– reference: RedgraveP.GurneyK.ReynoldsJ.What is reinforced by phasic dopamine signals?Brain Research Reviews2008583223391805501810.1016/j.brainresrev.2007.10.007
– reference: Watkins, C. (1989). Learning from delayed rewards. Unpublished doctoral thesis, University of Cambridge.
– reference: EverittB. J.RobbinsT. W.Neural systems of reinforcement for drug addiction: From actions to habits to compulsionNature Neuroscience20058148114891625199110.1038/nn1579
– reference: UsherM.McClellandJ. L.The time course of perceptual choice: The leaky, competing accumulator modelPsychological Review20011085505921148837810.1037/0033-295X.108.3.550
– reference: PykeG. H.Optimal foraging theory: A critical reviewAnnual Review of Ecology & Systematics19841552357510.1146/annurev.es.15.110184.002515
– reference: ShadlenM. N.BrittenK. H.NewsomeW. T.MovshonJ. A.A computational analysis of the relationship between neuronal and behavioral responses to visual motionJournal of Neuroscience199616148615108778300
– reference: DawN. D.NivY.DayanP.Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral controlNature Neuroscience20058170417111628693210.1038/nn1560
– reference: McClureS. M.GilzenratM. S.CohenJ. D.WeissY.SchölkopfB.PlattJ.An exploration-exploitation model based on norepinephrine and dopamine activityAdvances in neural information processing systems 182006Cambridge, MAMIT Press867874
– reference: MaW. J.BeckJ. M.LathamP. E.PougetA.Bayesian inference with probabilistic population codesNature Neuroscience20069143214381705770710.1038/nn1790
– reference: SuriR. E.SchultzW.Learning of sequential movements by neural network model with dopamine-like reinforcement signalExperimental Brain Research199812135035410.1007/s002210050467
– reference: WangX.-J.Probabilistic decision making by slow reverberation in cortical circuitsNeuron2002369559681246759810.1016/S0896-6273(02)01092-9
– reference: BartoA. G.HoukJ. C.DavisJ. L.BeiserD. G.Adaptive critics and the basal gangliaModels of information processing in the basal ganglia1995Cambridge, MAMIT Press215232
– reference: KaelblingL. P.Learning in embedded systems1993Cambridge, MAMIT Press
– reference: JoelD.NivY.RuppinE.Actor-critic models of the basal ganglia: New anatomical and computational perspectivesNeural Networks2002155355471237151010.1016/S0893-6080(02)00047-3
– reference: StockerA. A.SimoncelliE. P.Noise characteristics and prior expectations in human visual speed perceptionNature Neuroscience200695785851654751310.1038/nn1669
– reference: TrommershäuserJ.MaloneyL. T.LandyM. S.Statistical decision theory and trade-offs in the control of motor responseSpatial Vision2003162552751285895110.1163/156856803322467527
– reference: YoshidaW.IshiiS.Resolution of uncertainty in prefrontal cortexNeuron2006507817891673151510.1016/j.neuron.2006.05.006
– reference: HymanS. E.MalenkaR. C.NestlerE. J.Neural mechanisms of addiction: The role of reward-related learning and memoryAnnual Review of Neuroscience2006295655981677659710.1146/annurev.neuro.29.051605.113009
– reference: BogaczR.BrownE.MoehlisJ.HolmesP.CohenJ. D.The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasksPsychology Review200611370076510.1037/0033-295X.113.4.700
– reference: ZemelR. S.DayanP.PougetA.Probabilistic interpretation of population codesNeural Computation199810403430947248810.1162/089976698300017818
– reference: O’DohertyJ. P.DayanP.FristonK.CritchleyH.DolanR. J.Temporal difference models and reward-related learning in the human brainNeuron2003383293371271886510.1016/S0896-6273(03)00169-7
– reference: KördingK. P.WolpertD. M.Bayesian integration in sensorimotor learningNature20044272442471472463810.1038/nature02169
– reference: BrittenK. H.NewsomeW. T.ShadlenM. N.CelebriniS.MovshonJ. A.A relationship between behavioral choice and the visual responses of neurons in macaque mtVisual Neuroscience19961387100873099210.1017/S095252380000715X
– reference: ErnstM. O.BanksM. S.Humans integrate visual and haptic information in a statistically optimal fashionNature20024154294331180755410.1038/415429a
– reference: SuttonR. S.PorterB. W.MooneyR. J.Integrated architectures for learning, planning, and reacting based on approximating dynamic programmingProceedings of the Seventh International Conference on Machine Learning1990San FranciscoMorgan Kaufmann216224
– reference: WickensJ. [R.]Striatal dopamine in motor activation and reward-mediated learning: Steps towards a unifying modelJournal of Neural Transmission199080931240726910.1007/BF01245020
– reference: MangelM.ClarkC. W.Dynamic modeling in behavioral ecology1989Princeton, NJPrinceton University Press
– reference: WangX.-J.Toward a prefrontal microcircuit model for cognitive deficits in schizophreniaPharmacopsychiatry200639(Suppl. 1)S80S871650890310.1055/s-2006-931501
– reference: KillcrossS.CoutureauE.Coordination of actions and habits in the medial prefrontal cortex of ratsCerebral Cortex2003134004081263156910.1093/cercor/13.4.400
– reference: WhiteleyL.SahaniM.Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomesJournal of Vision200881151848480810.1167/8.3.2
– reference: BerridgeK. C.The debate over dopamine’s role in reward: The case for incentive saliencePsychopharmacology20071913914311707259110.1007/s00213-006-0578-x
– reference: YuilleA. J.BülthoffH. H.KnillD. C.RichardsW.Bayesian decision theory and psychophysicsPerception as Bayesian inference1996CambridgeCambridge University Press123161
– reference: WickensJ. R.HorvitzJ. C.CostaR. M.KillcrossS.Dopaminergic mechanisms in actions and habitsJournal of Neuroscience200727818181831767096410.1523/JNEUROSCI.1671-07.2007
– reference: RossS.Introduction to stochastic dynamic programming: Probability and mathematical1983Orlando, FLAcademic Press
– reference: DeneveS.Bayesian spiking neurons I: InferenceNeural Computation200820911171804500210.1162/neco.2008.20.1.91
– reference: DickinsonA.BalleineB.GallistelC.The role of learning in motivationStevens’s handbook of experimental psychology2002New YorkWiley497533
– reference: BellmanR. E.Dynamic programming1957Princeton, NJPrinceton University Press
– reference: CostaR. M.BalleineB. W.DoyaK.O’DohertyJ.SakagamiM.Plastic corticostriatal circuits for action learning: What’s dopamine got to do with it?Reward and decision making in corticobasal ganglia networks2007New YorkNew York Academy of Sciences172191Annals of the New York Academy of Sciences
– reference: GreenD. M.SwetsJ. A.Signal detection theory and psychophysics1966New YorkWiley
– reference: YuA. J.SchölkopfB.PlattJ.HofmannT.Optimal change-detection and spiking neuronsAdvances in neural information processing systems 192007Cambridge, MAMIT Press15451552
– reference: FristonK. J.TononiG.ReekeG. N.SpornsO.EdelmanG. M.Value-dependent selection in the brain: Simulation in a synthetic neural modelNeuroscience199459229243800818910.1016/0306-4522(94)90592-4
– reference: DayanP.AbbottL. F.Theoretical neuroscience: Computational and mathematical modeling of neural systems2005Cambridge, MAMIT Press
– reference: AinslieG.Breakdown of will2001CambridgeCambridge University Press
– reference: CohenJ. D.McClureS. M.YuA. J.Should I stay or should I go? How the human brain manages the trade-off between exploitation and explorationPhilosophical Transactions of the Royal Society B200736293394210.1098/rstb.2007.2098
– reference: BerryD. A.FristedtB.Bandit problems: Sequential allocation of experiments1985LondonChapman & Hall(Monographs on Statistics and Applied Probability)
– reference: HarunoM.KurodaT.DoyaK.ToyamaK.KimuraM.SamejimaK.A neural correlate of reward-based behavioral learning in caudate nucleus:A functional magnetic resonance imagresearch ing study of a stochastic decision taskJournal of Neuroscience200424166016651497323910.1523/JNEUROSCI.3417-03.2004
– reference: PutermanM. L.Markov decision processes: Discrete stochastic dynamic programming2005New YorkWiley Interscience
– reference: JaakkolaT.JordanM. I.SinghS. P.On the convergence of stochastic iterative dynamic programming algorithmsNeural Computation199461185120110.1162/neco.1994.6.6.1185
– reference: GittinsJ. C.Multi-armed bandit allocation indices1989New YorkWiley
– reference: LengyelM.DayanP.PlattJ.KollerD.SingerY.RoweisS.Hippocampal contributions to control: The third wayAdvances in neural information processing systems 202008Cambridge, MAMIT Press889896
– reference: PlattM. L.GlimcherP. W.Neural correlates of decision variables in parietal cortexNature19994002332381042136410.1038/22268
– reference: Montague[P.] R.Why choose this book?: How we make decisions2006New YorkDutton
– reference: GoldJ. I.ShadlenM. N.Neural computations that underlie decisions about sensory stimuliTrends in Cognitive Sciences2001510161116473110.1016/S1364-6613(00)01567-9
– reference: DayJ. J.RoitmanM. F.WightmanR. M.CarelliR. M.Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbensNature Neuroscience200710102010281760348110.1038/nn1923
– reference: BalleineB. W.DelgadoM. R.HikosakaO.The role of the dorsal striatum in reward and decision-makingJournal of Neuroscience200727816181651767095910.1523/JNEUROSCI.1554-07.2007
– reference: McClureS. M.LaibsonD. I.LoewensteinG.CohenJ. D.Separate neural systems value immediate and delayed monetary rewardsScience20043065035071548630410.1126/science.1100907
– reference: DoyaK.Metalearning and neuromodulationNeural Networks2002154955061237150710.1016/S0893-6080(02)00044-8
– reference: MontagueP. R.DayanP.SejnowskiT. J.A framework for mesencephalic dopamine systems based on predictive Hebbian learningJournal of Neuroscience199616193619478774460
– reference: DawN. D.CourvilleA. C.TouretzkyD. S.Representation and timing in theories of the dopamine systemNeural Computation200618163716771676451710.1162/neco.2006.18.7.1637
– reference: BergerJ. O.Statistical decision theory and Bayesian analysis1985New YorkSpringer
– reference: KableJ. W.GlimcherP. W.The neural correlates of subjective value during intertemporal choiceNature Neuroscience200710162516331798244910.1038/nn2007
– reference: SuttonR. S.Learning to predict by the methods of temporal differencesMachine Learning19883944
– reference: BeckJ. [M.]MaW. J.LathamP. E.PougetA.Probabilistic population codes and the exponential family of distributionsProgress in Brain Research20071655095191792526710.1016/S0079-6123(06)65032-2
– reference: BeckJ. M.PougetA.Exact inferences in a neural implementation of a hidden Markov modelNeural Computation200719134413611738126910.1162/neco.2007.19.5.1344
– reference: SuttonR. S.BartoA. G.Reinforcement learning: An introduction1998Cambridge, MAMIT Press
– reference: GlimcherP. W.Decisions, uncertainty, and the brain: The science of neuroeconomics2004Cambridge, MAMIT Press, Bradford Books
– reference: LoC.-C.WangX.-J.Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasksNature Neuroscience200699569631676708910.1038/nn1722
– reference: BaxterJ.BartlettP. L.Infinite-horizon policy-gradient estimationJournal of Artificial Intelligence Research20011531935010.1016/S0954-1810(01)00028-0
– reference: WilliamsR. J.Simple statistical gradient-following algorithms for connectionist reinforcement learningMachine Learning19928229256
– reference: KrebsJ.KacelnikA.TaylorP.Test of optimal sampling by foraging great titsNature1978275273110.1038/275027a0
– reference: BertsekasD. P.Dynamic programming and optimal control2007Belmont, MAAthena Scientific
– reference: SeymourB.O’DohertyJ. P.DayanP.KoltzenburgM.JonesA. K.DolanR. J.Temporal difference models describe higher-order learning in humansNature20044296646671519035410.1038/nature02581
– reference: 17176431 - Psychol Sci. 2006 Nov;17(11):981-8
– reference: 14511521 - Neural Comput. 2003 Oct;15(10):2255-79
– reference: 11164731 - Trends Cogn Sci. 2001 Jan 1;5(1):10-16
– reference: 12383780 - Neuron. 2002 Oct 10;36(2):241-63
– reference: 15087550 - Science. 2004 Apr 16;304(5669):452-4
– reference: 12371510 - Neural Netw. 2002 Jun-Jul;15(4-6):535-47
– reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9
– reference: 8008189 - Neuroscience. 1994 Mar;59(2):229-43
– reference: 9530497 - Annu Rev Neurosci. 1998;21:227-77
– reference: 16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
– reference: 14973239 - J Neurosci. 2004 Feb 18;24(7):1660-5
– reference: 12383783 - Neuron. 2002 Oct 10;36(2):299-308
– reference: 12631569 - Cereb Cortex. 2003 Apr;13(4):400-8
– reference: 17381269 - Neural Comput. 2007 May;19(5):1344-61
– reference: 11807554 - Nature. 2002 Jan 24;415(6870):429-33
– reference: 15006021 - Neural Comput. 2004 Jan;16(1):1-38
– reference: 16764517 - Neural Comput. 2006 Jul;18(7):1637-77
– reference: 8778300 - J Neurosci. 1996 Feb 15;16(4):1486-510
– reference: 17395573 - Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):933-42
– reference: 9746140 - Exp Brain Res. 1998 Aug;121(3):350-4
– reference: 17057707 - Nat Neurosci. 2006 Nov;9(11):1432-8
– reference: 17982449 - Nat Neurosci. 2007 Dec;10(12):1625-33
– reference: 18055018 - Brain Res Rev. 2008 Aug;58(2):322-39
– reference: 10746132 - Vision Res. 1999 Oct;39(21):3621-9
– reference: 12371507 - Neural Netw. 2002 Jun-Jul;15(4-6):495-506
– reference: 12718865 - Neuron. 2003 Apr 24;38(2):329-37
– reference: 18484808 - J Vis. 2008 Mar 06;8(3):2.1-15
– reference: 12858951 - Spat Vis. 2003;16(3-4):255-75
– reference: 16767089 - Nat Neurosci. 2006 Jul;9(7):956-63
– reference: 9472488 - Neural Comput. 1998 Feb 15;10(2):403-30
– reference: 12371511 - Neural Netw. 2002 Jun-Jul;15(4-6):549-59
– reference: 2407269 - J Neural Transm Gen Sect. 1990;80(1):9-31
– reference: 17546027 - Nature. 2007 Jun 28;447(7148):1075-80
– reference: 8570606 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):628-33
– reference: 18085991 - Neural Comput. 2008 Apr;20(4):873-922
– reference: 16617339 - Nat Neurosci. 2006 May;9(5):690-6
– reference: 16731515 - Neuron. 2006 Jun 1;50(5):781-9
– reference: 16776597 - Annu Rev Neurosci. 2006;29:565-98
– reference: 10421364 - Nature. 1999 Jul 15;400(6741):233-8
– reference: 18579085 - Neuron. 2008 Jun 26;58(6):967-73
– reference: 11488378 - Psychol Rev. 2001 Jul;108(3):550-92
– reference: 16778890 - Nature. 2006 Jun 15;441(7095):876-9
– reference: 16547513 - Nat Neurosci. 2006 Apr;9(4):578-85
– reference: 15036882 - Trends Neurosci. 2004 Mar;27(3):161-8
– reference: 16251991 - Nat Neurosci. 2005 Nov;8(11):1481-9
– reference: 15190354 - Nature. 2004 Jun 10;429(6992):664-7
– reference: 16508903 - Pharmacopsychiatry. 2006 Feb;39 Suppl 1:S80-7
– reference: 17925267 - Prog Brain Res. 2007;165:509-19
– reference: 12868646 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1419-33
– reference: 12467598 - Neuron. 2002 Dec 5;36(5):955-68
– reference: 17603481 - Nat Neurosci. 2007 Aug;10(8):1020-8
– reference: 18045002 - Neural Comput. 2008 Jan;20(1):91-117
– reference: 8730992 - Vis Neurosci. 1996 Jan-Feb;13(1):87-100
– reference: 15486304 - Science. 2004 Oct 15;306(5695):503-7
– reference: 12868643 - J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1391-7
– reference: 17962554 - Science. 2007 Oct 26;318(5850):606-10
– reference: 17435119 - Ann N Y Acad Sci. 2007 May;1104:172-91
– reference: 12417672 - J Neurosci. 2002 Nov 1;22(21):9475-89
– reference: 17670964 - J Neurosci. 2007 Aug 1;27(31):8181-3
– reference: 14724638 - Nature. 2004 Jan 15;427(6971):244-7
– reference: 17670959 - J Neurosci. 2007 Aug 1;27(31):8161-5
– reference: 16563737 - Curr Opin Neurobiol. 2006 Apr;16(2):199-204
– reference: 17600525 - Annu Rev Neurosci. 2007;30:535-74
– reference: 17014301 - Psychol Rev. 2006 Oct;113(4):700-65
– reference: 1464765 - J Neurosci. 1992 Dec;12(12):4745-65
– reference: 17072591 - Psychopharmacology (Berl). 2007 Apr;191(3):391-431
– reference: 7442286 - J Theor Biol. 1980 Aug 21;85(4):673-90
– reference: 8774460 - J Neurosci. 1996 Mar 1;16(5):1936-47
SSID ssj0004242
Score 2.443622
SecondaryResourceType review_article
Snippet Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 429
SubjectTerms Algorithms
Animals
Bayes Theorem
Behavioral Science and Psychology
Brain - physiology
Cognition
Cognitive Psychology
Connections between Computational and Neurobiological Perspectives on Decision Making
Cost-Benefit Analysis
Decision Making
Decision Theory
Exploratory Behavior
Human subjects
Humans
Markov Chains
Models, Psychological
Models, Statistical
Neurosciences
Problem Solving
Psychology
Reinforcement (Psychology)
Signal Detection, Psychological
Uncertainty
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6C7jB2YKMDVmCQA_TCkqX-kTjHUpgmJCoOVCony3HsHShetaZC5a_nOYm7jYGEuCXykxM_P_t9tp_fB_AaPUZJU2HiXBEaM6tNLATFV4ZoucqoZcxfTv40zc5n7OOcz7sNt1WIdg9Hku2dBp-lydWny8r6IU4R4J5Oxu-miUhYgrNpggX3YSfjiMV7sDObfh5_bZOkpnGeNnxr-DyKR5TP28j3pgqtShequO2T7gDNG4eke7C7dku1-aEWixt-6GwfZGhBG37yLVnXZaJ__pbc8f-beAAPO4gajVubegT3jOvD4djh8vz7JhpGTdBosxvfh91JIIzrw4PtZLo5hOx9R94TNVclNyfRlWmStOpmPzLq2CouTiLlKi8TlZ6s4jHMzj58mZzHHUdDrBkXdWwp4apSBWNoDalOKTGWjYSmXCjFMmFsKWwudKFzXlpDMqu4ybOKGsKrssrpE-i5S2eOIDKkwukzLXJdUKa4FZZYga4EMZ0SiPMG8Db0ktRdAnPPo7GQuJDxOpNeZ1JIJlFnA3izlV62iTv-Ivc8dLjshu9KkpQxDy2x9NW2FLXpD1OUM5frlcwKXNoTkg_gaWsl118pUurTHA5gGHr5uuY__8Jwa1R3_tXbaRB89q-CL6BXX63NMeKlunzZDYpfhuYSUw
  priority: 102
  providerName: Unpaywall
Title Decision theory, reinforcement learning, and the brain
URI https://link.springer.com/article/10.3758/CABN.8.4.429
https://www.ncbi.nlm.nih.gov/pubmed/19033240
https://www.proquest.com/docview/204454569
https://www.proquest.com/docview/69837227
https://link.springer.com/content/pdf/10.3758/CABN.8.4.429.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-135X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004242
  issn: 1530-7026
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-135X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004242
  issn: 1530-7026
  databaseCode: U2A
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RU9QwEN6R4wF4UDkUDxTzoPcirTVJ2_SxHiADw-mDNwNPmTRNfPAsDHc3zvnr2aTtHXoyw2Mn2zTdTXa_TTa7AO_QYhQsEiZIFWUBt9oEQjB85IiWy4RZzt3l5IthcjriZ5fxZeMoTtpo9_ZI0mtq51ciqP04yD8PQxHyEDXoGqz7TFsdWM-_XJ0fL29CUl8uB5dxFKToXtSh7ivv_22EVpDlvVPRLdiYVTdq_luNx_cMz8kz-NoOuY43-RnOpkWo__yTzfHx__QcnjYYlOT1pNmGJ6bqwk5eof_9a076xEeF-u32LmwM2opwXdhcaMv5DiRHTXUe4u9Czg_JrfFZWLXfcCRNOYofh0RVpaMhhatG8QJGJ8ffB6dBU4Qh0DwW08AyGqtSZZyjuCMdMWos_yQ0i4VSPBHGFsKmQmc6jQtraGJVbNKkZIbGZVGm7CV0quvKvAJiaIn6McpSnTGuYisstQJtBYI2JRDI9eBDKxWpmwzlrlDGWKKn4vglHb-kkFwiv3rwfkF9U2fmeIBuvxWwbNbnRNKIc4cdsfXtohW56U5LVGWuZxOZZOi7U5r2YLeeFcuvZBFzeQx70G-luuz5_0PoLybRyli1KqqWcO-xPe7Dpg9c8XE1r6EzvZ2ZN4iOpsVBsyQOYG1Ec3waDb_lV3e5_wpq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOJQ9ICgLW54-QC9LStZ2EudYCqi8eqISN8txbC4lRbTVqv-esZu0oO5KHCNPHGsmHn9jj-cDOMUVI2OhMEGiKAu41SYQguEjR7Scx8xy7i4nP_bibp_fPUfPZaA4qrLdqyNJ76ldXImg9qLTvuy1RIu30IOuwrorXeVq5fdpe3EPknqyHJzEYZBgcDFLdF96--sStIQrP52J_oDapHhT079qMPi07NxswWaJF0l7ZuBtWDFFHXbaBcbKr1PSJD6D02-N16HWqdjb6rAx92zTHYivSiYd4u8tTs_Ju_EVU7XfHCQldcTLOVFF7mRI5pgjfkL_5vqp0w1KwoRA80iMA8topHKVco6mCXXIqLH8j9AsEkrxWBibCZsIneokyqyhsVWRSeKcGRrlWZ6wXVgrhoX5BcTQHH1ZmCY6ZVxFVlhqBfp1BFhKIOhqwO9Kh1KX1cQdqcVAYlThNC6dxqWQXKLGG3A2l36bVdH4j9xBZQ5ZzqWRpCHnDudh68m8FbXpTjZUYYaTkYxTjLMpTRqwN7Ph4itpyFzNwQY0K6Muev73EJpzky-NVausqAT3v9vjCdS6T48P8uG2d38AGz7hxOfDHMLa-H1ijhDVjLNj_yt_ALwI7sE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_amDTggLYyoLANH7ZeRkqwncQ5lrKKwVbtsErcLMexuRRT0Vao_z3PTtIydZM4Rn52rPfs59-z3wfAFzwxChYLE2WKsohbbSIhGH5yRMtlyiznPjj51zC9HPGrm-Sm9qqcNt7uzZNkFdPgszS52emktH6LMwS4p_3e-bAruryL2vQ1vOE-RQKu5RHtrWIiaSicgxs6jjI0NCqn97Xefx9Haxjz2fvoNmzO3UQtHtV4_OwIGryDnRo7kl4l7PfwyrgW7PYc2s13C9IhwZszXJO3YLPfVHJrwdZSyy12Ib2oq-qQEMO4OCEPJmRP1eGikNRlJG5PiHKlpyGFryLxAUaD73_6l1FdPCHSPBGzyDKaqFLlnKOYYh0zaiw_E5olQimeCmMLYTOhc50lhTU0tSoxWVoyQ5OyKDO2Bxvu3pkDIIaWqNfiPNM54yqxwlIrUMcj2FICAVgbvjU8lLrOLO4LXIwlWhie49JzXArJJXK8DV-X1JMqo8Z_6I4acch6X00ljTn3mA9bj5etyE3_yqGcuZ9PZZqjzU1p1ob9Soarv-Qx8_kH29BphLoa-d9T6CxFvjZXrQrXEB6-dMRjePv7YiB__hheH8FW8D0JrjEfYWP2MDefEODMis9hJT8BXmTy_Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6C7jB2YKMDVmCQA_TCkqX-kTjHUpgmJCoOVCony3HsHShetaZC5a_nOYm7jYGEuCXykxM_P_t9tp_fB_AaPUZJU2HiXBEaM6tNLATFV4ZoucqoZcxfTv40zc5n7OOcz7sNt1WIdg9Hku2dBp-lydWny8r6IU4R4J5Oxu-miUhYgrNpggX3YSfjiMV7sDObfh5_bZOkpnGeNnxr-DyKR5TP28j3pgqtShequO2T7gDNG4eke7C7dku1-aEWixt-6GwfZGhBG37yLVnXZaJ__pbc8f-beAAPO4gajVubegT3jOvD4djh8vz7JhpGTdBosxvfh91JIIzrw4PtZLo5hOx9R94TNVclNyfRlWmStOpmPzLq2CouTiLlKi8TlZ6s4jHMzj58mZzHHUdDrBkXdWwp4apSBWNoDalOKTGWjYSmXCjFMmFsKWwudKFzXlpDMqu4ybOKGsKrssrpE-i5S2eOIDKkwukzLXJdUKa4FZZYga4EMZ0SiPMG8Db0ktRdAnPPo7GQuJDxOpNeZ1JIJlFnA3izlV62iTv-Ivc8dLjshu9KkpQxDy2x9NW2FLXpD1OUM5frlcwKXNoTkg_gaWsl118pUurTHA5gGHr5uuY__8Jwa1R3_tXbaRB89q-CL6BXX63NMeKlunzZDYpfhuYSUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+theory%2C+reinforcement+learning%2C+and+the+brain&rft.jtitle=Cognitive%2C+affective%2C+%26+behavioral+neuroscience&rft.au=Dayan%2C+Peter&rft.au=Daw%2C+Nathaniel+D&rft.date=2008-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1530-7026&rft.eissn=1531-135X&rft.volume=8&rft.issue=4&rft.spage=429&rft_id=info:doi/10.3758%2FCABN.8.4.429&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1655323101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-7026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-7026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-7026&client=summon