A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power
An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also...
Saved in:
| Published in | Energy (Oxford) Vol. 36; no. 2; pp. 1018 - 1029 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.02.2011
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 |
| DOI | 10.1016/j.energy.2010.12.006 |
Cover
| Abstract | An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research.
► Quantum Genetic Algorithm can effectively improve the global search ability. ► It can achieve the real objective of the global optimal solutions. ► The CPU computation time is less than that other algorithms adopted in this paper. |
|---|---|
| AbstractList | An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. ► Quantum Genetic Algorithm can effectively improve the global search ability. ► It can achieve the real objective of the global optimal solutions. ► The CPU computation time is less than that other algorithms adopted in this paper. |
| Author | Liao, Gwo-Ching |
| Author_xml | – sequence: 1 givenname: Gwo-Ching surname: Liao fullname: Liao, Gwo-Ching email: liaogwo@ms68.hinet.net organization: Fortune Institute of Technology, Department of Electrical Engineering, No. 1-10, Nwongchang Rd, Lyouciyou Village, Daliao Township, Kaohsiung 831, Taiwan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23860717$$DView record in Pascal Francis |
| BookMark | eNqFkkFvFCEUx-dQE9vqNzCRi9HLrsAAAx5MmkarSRMP2jOh8JiymYUV2G32O_ihZTqNBw_tCXj8_u893p-z7iSmCF33huA1wUR83KwhQh6Pa4rnEF1jLE66U9wLvOKM0ZfdWSkbjDGXSp12fy5QTAeYEBzStK8hRZOPyExjyqHebZFPGbljNNtgEdgU07xxoexMtXfovjFoqYeKOYQ4IhMdgm0opaVCGdzezklRiGiX7iGjciwVtu1cYcymgmtJmuTh8lX3wpupwOvH9by7-frl1-W31fWPq--XF9cry7isK_C97x3G3njpvVKsd0LeSsUFp9a0oFSE9lIoZv0tHrD11DPqmKKqV1Ly_rx7v-Td5fR7D6Xq1rCFaTIR0r5oKRjDjAvVyA9PkmQYBkJ6OcjnUSF6zglXc_13j6gp1kw-m2hD0bsctm36eu4dD2RoHFs4m1MpGfw_hGA9u603epm-nt3WhOrmdpN9-k9mQzWzDTWbMD0nfruIvUnajLn1dfOzAbx9mUEQOj_080JAs-gQIOtiA0QLLmSwVbsUni7xF9851_k |
| CODEN | ENEYDS |
| CitedBy_id | crossref_primary_10_1016_j_renene_2015_04_034 crossref_primary_10_3390_electricity3010005 crossref_primary_10_1155_2019_5679361 crossref_primary_10_1016_j_ijepes_2012_10_069 crossref_primary_10_1016_j_swevo_2017_06_002 crossref_primary_10_1016_j_energy_2012_10_030 crossref_primary_10_1109_JSYST_2012_2225732 crossref_primary_10_1080_0952813X_2016_1198935 crossref_primary_10_1016_j_energy_2016_03_083 crossref_primary_10_1016_j_energy_2012_07_053 crossref_primary_10_1016_j_energy_2014_11_037 crossref_primary_10_1016_j_energy_2012_01_071 crossref_primary_10_1007_s11047_017_9620_7 crossref_primary_10_1016_j_energy_2013_04_007 crossref_primary_10_1016_j_energy_2023_127636 crossref_primary_10_1016_j_energy_2011_09_017 crossref_primary_10_1007_s40974_022_00249_2 crossref_primary_10_1016_j_ijepes_2015_11_022 crossref_primary_10_1108_IJICC_07_2015_0026 crossref_primary_10_1016_j_enconman_2014_03_009 crossref_primary_10_1049_iet_rpg_2019_1080 crossref_primary_10_1016_j_energy_2011_11_023 crossref_primary_10_1016_j_energy_2013_02_045 crossref_primary_10_1155_2014_956405 crossref_primary_10_1016_j_matpr_2020_03_535 crossref_primary_10_3390_electronics12122742 crossref_primary_10_1002_etep_1635 crossref_primary_10_1016_j_suscom_2014_10_001 crossref_primary_10_1049_rpg2_12737 crossref_primary_10_4018_IJAMC_292510 crossref_primary_10_1155_2012_842716 crossref_primary_10_1016_j_renene_2021_06_032 crossref_primary_10_1007_s00500_023_09597_5 crossref_primary_10_3390_e18090317 crossref_primary_10_1002_2050_7038_12460 crossref_primary_10_1016_j_rser_2013_03_055 crossref_primary_10_1016_j_energy_2017_06_072 crossref_primary_10_1007_s00500_019_04431_3 crossref_primary_10_1049_iet_gtd_2013_0354 crossref_primary_10_1007_s11047_016_9598_6 crossref_primary_10_1016_j_energy_2011_11_052 crossref_primary_10_1016_j_renene_2012_11_004 crossref_primary_10_1080_15325008_2015_1050613 crossref_primary_10_1016_j_energy_2016_02_015 crossref_primary_10_1016_j_energy_2014_02_014 crossref_primary_10_1016_j_energy_2017_01_010 crossref_primary_10_1109_TII_2018_2796021 crossref_primary_10_1016_j_egyr_2023_10_078 crossref_primary_10_1007_s40031_020_00435_y crossref_primary_10_1016_j_asoc_2016_02_046 crossref_primary_10_1016_j_energy_2012_11_017 crossref_primary_10_1002_etep_1841 crossref_primary_10_1016_j_apenergy_2013_12_052 crossref_primary_10_3390_en13123252 crossref_primary_10_1007_s00202_024_02526_1 crossref_primary_10_1016_j_energy_2012_07_033 crossref_primary_10_1016_j_est_2024_114635 crossref_primary_10_1002_etep_2066 crossref_primary_10_1016_j_compeleceng_2021_107350 crossref_primary_10_1016_j_energy_2023_128901 crossref_primary_10_1007_s10668_023_03058_7 crossref_primary_10_1016_j_ijepes_2015_05_017 crossref_primary_10_1088_1742_6596_2878_1_012005 crossref_primary_10_1007_s10462_012_9330_6 crossref_primary_10_1016_j_rser_2015_01_056 crossref_primary_10_3390_en11051248 crossref_primary_10_1016_j_energy_2012_06_034 crossref_primary_10_1016_j_ijepes_2012_11_009 crossref_primary_10_1016_j_energy_2016_10_064 crossref_primary_10_1109_CJECE_2016_2611680 crossref_primary_10_1016_j_energy_2014_03_129 crossref_primary_10_1155_2015_342080 crossref_primary_10_1016_j_energy_2018_01_044 crossref_primary_10_4028_www_scientific_net_AMR_577_51 crossref_primary_10_1016_j_renene_2020_03_012 crossref_primary_10_1016_j_ijepes_2015_06_014 crossref_primary_10_1016_j_energy_2018_05_062 crossref_primary_10_1002_etep_2033 crossref_primary_10_1007_s00202_023_02117_6 crossref_primary_10_1016_j_scitotenv_2019_02_069 crossref_primary_10_1016_j_compstruc_2023_107255 crossref_primary_10_1016_j_energy_2013_10_044 crossref_primary_10_1016_j_energy_2013_04_011 crossref_primary_10_1016_j_energy_2014_10_024 crossref_primary_10_1016_j_energy_2017_06_046 crossref_primary_10_1016_j_energy_2012_02_041 crossref_primary_10_1016_j_enconman_2015_04_051 crossref_primary_10_1155_2015_562462 crossref_primary_10_1016_j_eswa_2013_05_048 crossref_primary_10_1016_j_ijepes_2013_03_032 crossref_primary_10_1111_nrm_12203 |
| Cites_doi | 10.1016/j.eswa.2008.07.070 10.1016/j.eswa.2009.07.042 10.1016/j.ijepes.2009.11.014 10.1016/j.ijepes.2009.09.016 10.1109/TPWRS.2006.873410 10.1049/iet-gtd:20060495 10.1109/TEVC.2005.857075 10.1109/TPWRS.1986.4334837 10.1016/j.energy.2009.12.007 10.1109/59.667339 10.1016/j.ijepes.2010.01.006 10.1016/j.neucom.2007.11.017 10.1109/59.651636 10.1109/59.49122 10.1109/59.476058 10.1016/j.eswa.2009.08.019 10.1016/j.camwa.2008.10.048 10.1109/TPAS.1980.319847 10.1109/59.485989 10.1109/59.651618 10.1016/j.enconman.2008.06.009 10.1016/j.enconman.2009.07.015 10.1016/j.epsr.2009.02.005 10.1016/j.chaos.2007.10.032 10.1016/j.ijepes.2007.06.023 10.1016/j.ijepes.2007.06.009 10.1109/59.801880 10.1016/j.enconman.2009.10.024 10.1016/j.energy.2009.12.029 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7SP 7SU 7TB 8FD C1K F28 FR3 KR7 L7M 7ST 7U6 SOI |
| DOI | 10.1016/j.energy.2010.12.006 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Sustainability Science Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts |
| DatabaseTitleList | Environment Abstracts AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Applied Sciences |
| EndPage | 1029 |
| ExternalDocumentID | 23860717 10_1016_j_energy_2010_12_006 US201500076128 S0360544210006961 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS IQODW 7S9 L.6 7SP 7SU 7TB 8FD C1K F28 FR3 KR7 L7M 7ST 7U6 SOI |
| ID | FETCH-LOGICAL-c458t-ef3f3d00faf8ff9943d68b895652caaf8891238694cfb070cf2f42d4929398853 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Tue Oct 07 10:07:42 EDT 2025 Tue Oct 07 09:19:30 EDT 2025 Sun Sep 28 15:39:51 EDT 2025 Mon Jul 21 09:15:01 EDT 2025 Thu Apr 24 23:16:13 EDT 2025 Wed Oct 01 01:34:05 EDT 2025 Thu Apr 03 09:46:03 EDT 2025 Fri Feb 23 02:16:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Emission reduction Chaotic quantum genetic algorithm Power system integrated wind power Energy saving Dynamic economic dispatch Cost minimization Optimal strategy Energy cost Wind energy Genetic algorithm Evolutionary algorithm Economic optimization Electric power production Constrained optimization |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-ef3f3d00faf8ff9943d68b895652caaf8891238694cfb070cf2f42d4929398853 |
| Notes | http://dx.doi.org/10.1016/j.energy.2010.12.006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1663551595 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_864404569 proquest_miscellaneous_1777113878 proquest_miscellaneous_1663551595 pascalfrancis_primary_23860717 crossref_primary_10_1016_j_energy_2010_12_006 crossref_citationtrail_10_1016_j_energy_2010_12_006 fao_agris_US201500076128 elsevier_sciencedirect_doi_10_1016_j_energy_2010_12_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-02-01 |
| PublicationDateYYYYMMDD | 2011-02-01 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Niu, Wang, Wu (bib22) Mar. 2010; 37 Basu (bib9) Feb. 2008; 30 Rajan (bib6) July 2010; 32 Meng, Wang, Dong, Wong (bib19) 2010; 25 Coeho, Mariani (bib32) May 2006; 21 Liao, Tsao (bib7) June 2006; 10 Lu, Sun, Lu (bib20) Mar. 2010; 51 Shoults, Venkatesh, Helmick, Lolla (bib2) 1986; PWRS-1 Zhao, Xu, Tao, Liang (bib28) Jun. 2009; 57 Li, Li (bib30) Dec. 2008; 72 Wong, Fung (bib4) 1993; 140 Wong, Yuryevich (bib12) 1998; 13 Ross, Kim (bib1) 1980; 99 He, Wang, Mao (bib10) Jan. 2008; 30 Zhisheng (bib26) Mar. 2010; 37 Kazarlis, Bakirtzis, Petridis (bib11) 1996; 11 Sun, Fang, Wang, Xu (bib27) Dec. 2009; 50 Zhuang, Glaiana (bib5) 1990; 5 Niknam, Mojarrad, Nayeripour (bib15) Apr. 2010; 35 Babu, Das, Patvardhan (bib23) 2008; 2 Pothiya, Ngamroo, Kongprawechnon (bib21) Jun 2010; 32 Tylavsky, Heydt (bib24) 2003; 2 Yuryevich, Wong (bib13) 1999; 14 Gong, Zhang, Qi (bib17) Jun 2010; 32 Coelho, Mariani (bib29) Apr. 2009; 36 Chen, Chang (bib8) 1995; 10 Gaul, Handschin, Lehmkoster (bib14) 1998; 13 Vahidinasab, Jadid (bib16) Mar. 2010; 35 Mantawy, Abdel-Magid, Selim (bib3) 1998; 13 Coelho, Mariani (bib25) Nov. 2008; 49 Coeho, Mariani (bib31) Jun. 2009; 40 Abido (bib18) July 2009; 79 Zhuang (10.1016/j.energy.2010.12.006_bib5) 1990; 5 Tylavsky (10.1016/j.energy.2010.12.006_bib24) 2003; 2 Rajan (10.1016/j.energy.2010.12.006_bib6) 2010; 32 Ross (10.1016/j.energy.2010.12.006_bib1) 1980; 99 Niknam (10.1016/j.energy.2010.12.006_bib15) 2010; 35 Li (10.1016/j.energy.2010.12.006_bib30) 2008; 72 Mantawy (10.1016/j.energy.2010.12.006_bib3) 1998; 13 Babu (10.1016/j.energy.2010.12.006_bib23) 2008; 2 Coelho (10.1016/j.energy.2010.12.006_bib29) 2009; 36 Kazarlis (10.1016/j.energy.2010.12.006_bib11) 1996; 11 Chen (10.1016/j.energy.2010.12.006_bib8) 1995; 10 Coelho (10.1016/j.energy.2010.12.006_bib25) 2008; 49 Liao (10.1016/j.energy.2010.12.006_bib7) 2006; 10 Gaul (10.1016/j.energy.2010.12.006_bib14) 1998; 13 Meng (10.1016/j.energy.2010.12.006_bib19) 2010; 25 Coeho (10.1016/j.energy.2010.12.006_bib31) 2009; 40 Wong (10.1016/j.energy.2010.12.006_bib4) 1993; 140 Coeho (10.1016/j.energy.2010.12.006_bib32) 2006; 21 Pothiya (10.1016/j.energy.2010.12.006_bib21) 2010; 32 Zhisheng (10.1016/j.energy.2010.12.006_bib26) 2010; 37 Abido (10.1016/j.energy.2010.12.006_bib18) 2009; 79 Sun (10.1016/j.energy.2010.12.006_bib27) 2009; 50 Wong (10.1016/j.energy.2010.12.006_bib12) 1998; 13 He (10.1016/j.energy.2010.12.006_bib10) 2008; 30 Yuryevich (10.1016/j.energy.2010.12.006_bib13) 1999; 14 Vahidinasab (10.1016/j.energy.2010.12.006_bib16) 2010; 35 Zhao (10.1016/j.energy.2010.12.006_bib28) 2009; 57 Shoults (10.1016/j.energy.2010.12.006_bib2) 1986; PWRS-1 Basu (10.1016/j.energy.2010.12.006_bib9) 2008; 30 Niu (10.1016/j.energy.2010.12.006_bib22) 2010; 37 Gong (10.1016/j.energy.2010.12.006_bib17) 2010; 32 Lu (10.1016/j.energy.2010.12.006_bib20) 2010; 51 |
| References_xml | – volume: 13 start-page: 86 year: 1998 end-page: 93 ident: bib14 article-title: Establishing a rule base for a hybrid ES/XPS approach to load management publication-title: IEEE Transactions on Power Systems – volume: 32 start-page: 583 year: July 2010 end-page: 591 ident: bib6 article-title: A solution to the economic dispatch using EP based SA algorithm on large scale power system publication-title: International Journal of Electrical Power & Energy Systems – volume: 10 start-page: 330 year: June 2006 end-page: 340 ident: bib7 article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting publication-title: IEEE Transactions on Evolutionary Computation – volume: 35 start-page: 1497 year: Mar. 2010 end-page: 1504 ident: bib16 article-title: Joint economic and emission dispatch in energy markets: a multiobjective mathematical programming approach publication-title: Energy – volume: 32 start-page: 478 year: Jun 2010 end-page: 487 ident: bib21 article-title: Ant colony optimization for economic dispatch problem with non-smooth cost functions publication-title: International Journal of Electrical Power & Energy Systems – volume: 79 start-page: 1105 year: July 2009 end-page: 1113 ident: bib18 article-title: Multiobjective particle swarm optimization for environmental/economic dispatch problem publication-title: Electric Power Systems Research – volume: 30 start-page: 31 year: Jan. 2008 end-page: 38 ident: bib10 article-title: A hybrid genetic algorithm approach based on differential evolution for dispatch with valve-point effect publication-title: International Journal of Electrical Power & Energy Systems – volume: 32 start-page: 337 year: Jun 2010 end-page: 344 ident: bib17 article-title: Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems – volume: 49 start-page: 3080 year: Nov. 2008 end-page: 3085 ident: bib25 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Conversion and Management – volume: 57 start-page: 2009 year: Jun. 2009 end-page: 2015 ident: bib28 article-title: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks publication-title: Computers & Mathematics with Applications – volume: 5 start-page: 311 year: 1990 end-page: 318 ident: bib5 article-title: Unit commitment by simulated annealing publication-title: IEEE Transactions on Power Systems – volume: 37 start-page: 2531 year: Mar. 2010 end-page: 2539 ident: bib22 article-title: Power load forecasting using support vector machine and ant colony publication-title: Expert Systems with Applications – volume: 37 start-page: 1800 year: Mar. 2010 end-page: 1803 ident: bib26 article-title: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system publication-title: Expert Systems with Applications – volume: 35 start-page: 1764 year: Apr. 2010 end-page: 1778 ident: bib15 article-title: A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch publication-title: Energy – volume: 13 start-page: 197 year: 1998 end-page: 204 ident: bib3 article-title: A simulated annealing algorithm for unit commitment publication-title: IEEE Transactions on Power Systems – volume: 10 start-page: 1919 year: 1995 end-page: 1926 ident: bib8 article-title: Large scale economic dispatch by genetic algorithm publication-title: IEEE Transactions on Power Systems – volume: 13 start-page: 301 year: 1998 end-page: 306 ident: bib12 article-title: Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch publication-title: IEEE Transactions on Power Systems – volume: 2 start-page: 13 year: 2003 end-page: 17 ident: bib24 article-title: Quantum computing power system simulation publication-title: IEEE Power Engineering Society General Meeting 2003 – volume: 14 start-page: 1245 year: 1999 end-page: 1250 ident: bib13 article-title: Evolutionary-programming-based optimal power flow algorithm publication-title: IEEE Transactions on Power Systems – volume: 99 start-page: 2060 year: 1980 end-page: 2088 ident: bib1 article-title: Dynamic economic dispatch of generation publication-title: IEEE Transactions on Power Apparatus and Systems – volume: 50 start-page: 2967 year: Dec. 2009 end-page: 2975 ident: bib27 article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method publication-title: Energy Conversion and Management – volume: PWRS-1 start-page: 10 year: 1986 end-page: 16 ident: bib2 article-title: A dynamic programming based method for developing dispatch curves when incremental heat rate curves are non-monotonically increasing publication-title: IEEE Transactions on Power Systems – volume: 140 start-page: 509 year: 1993 end-page: 515 ident: bib4 article-title: Simulated annealing based economic dispatch algorithm publication-title: IEE Proceeding-C – volume: 30 start-page: 140 year: Feb. 2008 end-page: 149 ident: bib9 article-title: Dynamic economic emission dispatch using non-dominated sorting genetic algorithm II publication-title: International Journal of Electrical Power & Energy Systems – volume: 21 start-page: 989 year: May 2006 end-page: 996 ident: bib32 article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Transactions on Power Systems – volume: 25 start-page: 1215 year: 2010 end-page: 1222 ident: bib19 article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch publication-title: IEEE Transactions on Power Systems – volume: 72 start-page: 581 year: Dec. 2008 end-page: 591 ident: bib30 article-title: Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits publication-title: Neurocomputing – volume: 40 start-page: 2376 year: Jun. 2009 end-page: 2383 ident: bib31 article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units publication-title: Chaos Solitons & Fractals – volume: 2 start-page: 22 year: 2008 end-page: 31 ident: bib23 article-title: Real parameter quantum evolutionary algorithm for economic load dispatch publication-title: IET Proceedings-Generation, Transmission & Distribution – volume: 11 start-page: 83 year: 1996 end-page: 92 ident: bib11 article-title: A genetic algorithm solution to the unit commitment problem publication-title: IEEE Transactions on Power Systems – volume: 51 start-page: 561 year: Mar. 2010 end-page: 571 ident: bib20 article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling publication-title: Energy Conversion and Management – volume: 36 start-page: 6118 year: Apr. 2009 end-page: 6126 ident: bib29 article-title: Reactive power and voltage control based on general quantum genetic algorithms publication-title: Expert Systems with Applications – volume: 36 start-page: 6118 issue: 3, Part 2 year: 2009 ident: 10.1016/j.energy.2010.12.006_bib29 article-title: Reactive power and voltage control based on general quantum genetic algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.07.070 – volume: 37 start-page: 1800 issue: 2 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib26 article-title: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.07.042 – volume: 32 start-page: 583 issue: 6 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib6 article-title: A solution to the economic dispatch using EP based SA algorithm on large scale power system publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2009.11.014 – volume: 32 start-page: 478 issue: 5 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib21 article-title: Ant colony optimization for economic dispatch problem with non-smooth cost functions publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2009.09.016 – volume: 21 start-page: 989 issue: 2 year: 2006 ident: 10.1016/j.energy.2010.12.006_bib32 article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2006.873410 – volume: 25 start-page: 1215 issue: 1 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib19 article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch publication-title: IEEE Transactions on Power Systems – volume: 2 start-page: 22 issue: 1 year: 2008 ident: 10.1016/j.energy.2010.12.006_bib23 article-title: Real parameter quantum evolutionary algorithm for economic load dispatch publication-title: IET Proceedings-Generation, Transmission & Distribution doi: 10.1049/iet-gtd:20060495 – volume: 10 start-page: 330 issue: 3 year: 2006 ident: 10.1016/j.energy.2010.12.006_bib7 article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857075 – volume: PWRS-1 start-page: 10 issue: 1 year: 1986 ident: 10.1016/j.energy.2010.12.006_bib2 article-title: A dynamic programming based method for developing dispatch curves when incremental heat rate curves are non-monotonically increasing publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.1986.4334837 – volume: 35 start-page: 1497 issue: 3 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib16 article-title: Joint economic and emission dispatch in energy markets: a multiobjective mathematical programming approach publication-title: Energy doi: 10.1016/j.energy.2009.12.007 – volume: 13 start-page: 301 issue: 2 year: 1998 ident: 10.1016/j.energy.2010.12.006_bib12 article-title: Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.667339 – volume: 32 start-page: 337 issue: 5 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib17 article-title: Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2010.01.006 – volume: 72 start-page: 581 issue: 1–3 year: 2008 ident: 10.1016/j.energy.2010.12.006_bib30 article-title: Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.11.017 – volume: 13 start-page: 197 issue: 1 year: 1998 ident: 10.1016/j.energy.2010.12.006_bib3 article-title: A simulated annealing algorithm for unit commitment publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.651636 – volume: 5 start-page: 311 issue: 1 year: 1990 ident: 10.1016/j.energy.2010.12.006_bib5 article-title: Unit commitment by simulated annealing publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.49122 – volume: 10 start-page: 1919 issue: 4 year: 1995 ident: 10.1016/j.energy.2010.12.006_bib8 article-title: Large scale economic dispatch by genetic algorithm publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.476058 – volume: 2 start-page: 13 year: 2003 ident: 10.1016/j.energy.2010.12.006_bib24 article-title: Quantum computing power system simulation publication-title: IEEE Power Engineering Society General Meeting 2003 – volume: 37 start-page: 2531 issue: 3 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib22 article-title: Power load forecasting using support vector machine and ant colony publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.08.019 – volume: 57 start-page: 2009 issue: 11–12 year: 2009 ident: 10.1016/j.energy.2010.12.006_bib28 article-title: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2008.10.048 – volume: 99 start-page: 2060 issue: 6 year: 1980 ident: 10.1016/j.energy.2010.12.006_bib1 article-title: Dynamic economic dispatch of generation publication-title: IEEE Transactions on Power Apparatus and Systems doi: 10.1109/TPAS.1980.319847 – volume: 11 start-page: 83 issue: 1 year: 1996 ident: 10.1016/j.energy.2010.12.006_bib11 article-title: A genetic algorithm solution to the unit commitment problem publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.485989 – volume: 13 start-page: 86 issue: 1 year: 1998 ident: 10.1016/j.energy.2010.12.006_bib14 article-title: Establishing a rule base for a hybrid ES/XPS approach to load management publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.651618 – volume: 49 start-page: 3080 issue: 11 year: 2008 ident: 10.1016/j.energy.2010.12.006_bib25 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2008.06.009 – volume: 50 start-page: 2967 issue: 12 year: 2009 ident: 10.1016/j.energy.2010.12.006_bib27 article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2009.07.015 – volume: 79 start-page: 1105 issue: 7 year: 2009 ident: 10.1016/j.energy.2010.12.006_bib18 article-title: Multiobjective particle swarm optimization for environmental/economic dispatch problem publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2009.02.005 – volume: 140 start-page: 509 issue: 6 year: 1993 ident: 10.1016/j.energy.2010.12.006_bib4 article-title: Simulated annealing based economic dispatch algorithm publication-title: IEE Proceeding-C – volume: 40 start-page: 2376 issue: 5 year: 2009 ident: 10.1016/j.energy.2010.12.006_bib31 article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units publication-title: Chaos Solitons & Fractals doi: 10.1016/j.chaos.2007.10.032 – volume: 30 start-page: 31 issue: 1 year: 2008 ident: 10.1016/j.energy.2010.12.006_bib10 article-title: A hybrid genetic algorithm approach based on differential evolution for dispatch with valve-point effect publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2007.06.023 – volume: 30 start-page: 140 issue: 2 year: 2008 ident: 10.1016/j.energy.2010.12.006_bib9 article-title: Dynamic economic emission dispatch using non-dominated sorting genetic algorithm II publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2007.06.009 – volume: 14 start-page: 1245 issue: 4 year: 1999 ident: 10.1016/j.energy.2010.12.006_bib13 article-title: Evolutionary-programming-based optimal power flow algorithm publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.801880 – volume: 51 start-page: 561 issue: 3 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib20 article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2009.10.024 – volume: 35 start-page: 1764 issue: 4 year: 2010 ident: 10.1016/j.energy.2010.12.006_bib15 article-title: A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch publication-title: Energy doi: 10.1016/j.energy.2009.12.029 |
| SSID | ssj0005899 |
| Score | 2.3562768 |
| Snippet | An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1018 |
| SubjectTerms | Algorithms Applied sciences Chaos theory Chaotic quantum genetic algorithm Dynamic economic dispatch Dynamical systems Dynamics econometric models Economic data Economics Electric energy Emission reduction Energy energy conservation Energy economics Energy saving Exact sciences and technology General, economic and professional studies Genetic algorithms Methodology. Modelling Natural energy Optimization power generation Power system integrated wind power wind power Wind power generation |
| Title | A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power |
| URI | https://dx.doi.org/10.1016/j.energy.2010.12.006 https://www.proquest.com/docview/1663551595 https://www.proquest.com/docview/1777113878 https://www.proquest.com/docview/864404569 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CrlABdEC1WXx2qQuIbdJE5sH1dVqy2IXspKvVlObJegbbLabCtx4Qv4aGbiZGlVoBJXZ-zYnsm8Mg_G3ss0FUWZCrRNBI84L0xkvMgji9qEKcTUm5hyhz-f5fMF_3iRXeywoyEXhsIqe94feHrHrfuRSX-bk1VVTc6R96K-wRPyUOeqM4E4F9TF4MOPW2EesushScARQQ_pc12Ml-vy60KAFzkFqe_Rn8XTI28aips0LV6dDz0v7rHvTiadPGfPemUSZmG_e2zH1fvsyZBr3O6zg-PfeWwI2H_I7Qv2cwZ1c-OW4G562jPr72CWl8262ny9AlRlwYZm9eD69cBWyH4Qy0DOWwingtaQSwJMbYFax5HzDdZUD5YWhaqGFfVhg1AxGrbVKSwuglO6hy_Z4uT4y9E86hszRCXP5CZyPvWpnSIivfReKZ7aXBYSTa0sKQ0OSoUCUeaKl75AnlL6xPPEclTFUiVRQThgu3VTu0MGaJ66qVQiI28Kz0vl0EaV1nCOyxTldMTSAR-67KuWU_OMpR7C077pcF5NWNRxohGLIxZtZ61C1Y4H4MWAan2H-jQKlgdmHiJlaHOJLFkvzhNyINHfTRT7Iza-Qy7bndDVkBk9Yu8G-tGIIPpTY2rXXLc67vRA1DSzf8AIIeI4lQJfBH-BkTmVf8xy9eq_D_iaPQ1udIrgecN2N-tr9xb1sE0x7j60MXs8O_00P_sFvdYz1Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CrlUC4IClWXQhkkrmE3iRPbx6pqtUDbS7tSb5aT2CXVkqw220pc-gV8NDOxs1DxqMTVGTu2ZzKvzIOx9zJNRVGmAm0TwSPOCxMZJ_KoQm3CFGLiTEy5w6dn-XTGP11mlxvscMiFobDKwPs9T--5dRgZh9scL-p6fI68F_UNnpCHOldkAj3mWSLIAvtw90uch-ybSBJ0ROBD_lwf5GX7BDsf4UVeQWp89Gf59MiZlgInTYd353zTi9_4dy-Ujp-xp0GbhAO_4edswzbbbGtINu622c7Rz0Q2BAxfcveCfT-Apr21c7C3gfjM8huY-VW7rFdfvgLqslD5bvVgw3pQ1ch_EM1A3lvwp4LOkE8CTFMB9Y4j7xssqSAsLQp1AwtqxAa-ZDSsy1NUuAhO6R--ZLPjo4vDaRQ6M0Qlz-Qqsi51aTVBTDrpnFI8rXJZSLS1sqQ0OCgVSkSZK166AplK6RLHk4qjLpYqiRrCDtts2sbuMkD71E6kEhm5U3heKotGqqwM57hMUU5GLB3woctQtpy6Z8z1EJ92rf15NWFRx4lGLI5YtJ618GU7HoAXA6r1PfLTKFkemLmLlKHNFfJkPTtPyINEvzdR7o_Y_j1yWe-Erobs6BF7N9CPRgTRrxrT2Pam03GvCKKqmf0DRggRx6kU-CL4C4zMqf5jlqtX_33At2xrenF6ok8-nn3eY0-8T53CeV6zzdXyxr5BpWxV7Pcf3Q-NkDVq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+evolutionary+algorithm+for+dynamic+economic+dispatch+with+energy+saving+and+emission+reduction+in+power+system+integrated+wind+power&rft.jtitle=Energy+%28Oxford%29&rft.au=LIAO%2C+Gwo-Ching&rft.date=2011-02-01&rft.pub=Elsevier&rft.issn=0360-5442&rft.volume=36&rft.issue=2&rft.spage=1018&rft.epage=1029&rft_id=info:doi/10.1016%2Fj.energy.2010.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=23860717 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |