A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power

An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 36; no. 2; pp. 1018 - 1029
Main Author Liao, Gwo-Ching
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2010.12.006

Cover

Abstract An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. ► Quantum Genetic Algorithm can effectively improve the global search ability. ► It can achieve the real objective of the global optimal solutions. ► The CPU computation time is less than that other algorithms adopted in this paper.
AbstractList An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research.
An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm (CQGA). In addition to the detailed models of economic dispatch introduction and their associated constraints, the wind power effect is also included in this paper. The chaotic quantum genetic algorithm used to solve the economic dispatch process and discussed with real scenarios used for the simulation tests. After comparing the proposed algorithm with several other algorithms commonly used to solve optimization problems, the results show that the proposed algorithm is able to find the optimal solution quickly and accurately (i.e. to obtain the minimum cost for power generation in the shortest time). At the end, the impact to the total cost savings for power generation after adding (or not adding) wind power generation is also discussed. The actual implementation results prove that the proposed algorithm is economical, fast and practical. They are quite valuable for further research. ► Quantum Genetic Algorithm can effectively improve the global search ability. ► It can achieve the real objective of the global optimal solutions. ► The CPU computation time is less than that other algorithms adopted in this paper.
Author Liao, Gwo-Ching
Author_xml – sequence: 1
  givenname: Gwo-Ching
  surname: Liao
  fullname: Liao, Gwo-Ching
  email: liaogwo@ms68.hinet.net
  organization: Fortune Institute of Technology, Department of Electrical Engineering, No. 1-10, Nwongchang Rd, Lyouciyou Village, Daliao Township, Kaohsiung 831, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23860717$$DView record in Pascal Francis
BookMark eNqFkkFvFCEUx-dQE9vqNzCRi9HLrsAAAx5MmkarSRMP2jOh8JiymYUV2G32O_ihZTqNBw_tCXj8_u893p-z7iSmCF33huA1wUR83KwhQh6Pa4rnEF1jLE66U9wLvOKM0ZfdWSkbjDGXSp12fy5QTAeYEBzStK8hRZOPyExjyqHebZFPGbljNNtgEdgU07xxoexMtXfovjFoqYeKOYQ4IhMdgm0opaVCGdzezklRiGiX7iGjciwVtu1cYcymgmtJmuTh8lX3wpupwOvH9by7-frl1-W31fWPq--XF9cry7isK_C97x3G3njpvVKsd0LeSsUFp9a0oFSE9lIoZv0tHrD11DPqmKKqV1Ly_rx7v-Td5fR7D6Xq1rCFaTIR0r5oKRjDjAvVyA9PkmQYBkJ6OcjnUSF6zglXc_13j6gp1kw-m2hD0bsctm36eu4dD2RoHFs4m1MpGfw_hGA9u603epm-nt3WhOrmdpN9-k9mQzWzDTWbMD0nfruIvUnajLn1dfOzAbx9mUEQOj_080JAs-gQIOtiA0QLLmSwVbsUni7xF9851_k
CODEN ENEYDS
CitedBy_id crossref_primary_10_1016_j_renene_2015_04_034
crossref_primary_10_3390_electricity3010005
crossref_primary_10_1155_2019_5679361
crossref_primary_10_1016_j_ijepes_2012_10_069
crossref_primary_10_1016_j_swevo_2017_06_002
crossref_primary_10_1016_j_energy_2012_10_030
crossref_primary_10_1109_JSYST_2012_2225732
crossref_primary_10_1080_0952813X_2016_1198935
crossref_primary_10_1016_j_energy_2016_03_083
crossref_primary_10_1016_j_energy_2012_07_053
crossref_primary_10_1016_j_energy_2014_11_037
crossref_primary_10_1016_j_energy_2012_01_071
crossref_primary_10_1007_s11047_017_9620_7
crossref_primary_10_1016_j_energy_2013_04_007
crossref_primary_10_1016_j_energy_2023_127636
crossref_primary_10_1016_j_energy_2011_09_017
crossref_primary_10_1007_s40974_022_00249_2
crossref_primary_10_1016_j_ijepes_2015_11_022
crossref_primary_10_1108_IJICC_07_2015_0026
crossref_primary_10_1016_j_enconman_2014_03_009
crossref_primary_10_1049_iet_rpg_2019_1080
crossref_primary_10_1016_j_energy_2011_11_023
crossref_primary_10_1016_j_energy_2013_02_045
crossref_primary_10_1155_2014_956405
crossref_primary_10_1016_j_matpr_2020_03_535
crossref_primary_10_3390_electronics12122742
crossref_primary_10_1002_etep_1635
crossref_primary_10_1016_j_suscom_2014_10_001
crossref_primary_10_1049_rpg2_12737
crossref_primary_10_4018_IJAMC_292510
crossref_primary_10_1155_2012_842716
crossref_primary_10_1016_j_renene_2021_06_032
crossref_primary_10_1007_s00500_023_09597_5
crossref_primary_10_3390_e18090317
crossref_primary_10_1002_2050_7038_12460
crossref_primary_10_1016_j_rser_2013_03_055
crossref_primary_10_1016_j_energy_2017_06_072
crossref_primary_10_1007_s00500_019_04431_3
crossref_primary_10_1049_iet_gtd_2013_0354
crossref_primary_10_1007_s11047_016_9598_6
crossref_primary_10_1016_j_energy_2011_11_052
crossref_primary_10_1016_j_renene_2012_11_004
crossref_primary_10_1080_15325008_2015_1050613
crossref_primary_10_1016_j_energy_2016_02_015
crossref_primary_10_1016_j_energy_2014_02_014
crossref_primary_10_1016_j_energy_2017_01_010
crossref_primary_10_1109_TII_2018_2796021
crossref_primary_10_1016_j_egyr_2023_10_078
crossref_primary_10_1007_s40031_020_00435_y
crossref_primary_10_1016_j_asoc_2016_02_046
crossref_primary_10_1016_j_energy_2012_11_017
crossref_primary_10_1002_etep_1841
crossref_primary_10_1016_j_apenergy_2013_12_052
crossref_primary_10_3390_en13123252
crossref_primary_10_1007_s00202_024_02526_1
crossref_primary_10_1016_j_energy_2012_07_033
crossref_primary_10_1016_j_est_2024_114635
crossref_primary_10_1002_etep_2066
crossref_primary_10_1016_j_compeleceng_2021_107350
crossref_primary_10_1016_j_energy_2023_128901
crossref_primary_10_1007_s10668_023_03058_7
crossref_primary_10_1016_j_ijepes_2015_05_017
crossref_primary_10_1088_1742_6596_2878_1_012005
crossref_primary_10_1007_s10462_012_9330_6
crossref_primary_10_1016_j_rser_2015_01_056
crossref_primary_10_3390_en11051248
crossref_primary_10_1016_j_energy_2012_06_034
crossref_primary_10_1016_j_ijepes_2012_11_009
crossref_primary_10_1016_j_energy_2016_10_064
crossref_primary_10_1109_CJECE_2016_2611680
crossref_primary_10_1016_j_energy_2014_03_129
crossref_primary_10_1155_2015_342080
crossref_primary_10_1016_j_energy_2018_01_044
crossref_primary_10_4028_www_scientific_net_AMR_577_51
crossref_primary_10_1016_j_renene_2020_03_012
crossref_primary_10_1016_j_ijepes_2015_06_014
crossref_primary_10_1016_j_energy_2018_05_062
crossref_primary_10_1002_etep_2033
crossref_primary_10_1007_s00202_023_02117_6
crossref_primary_10_1016_j_scitotenv_2019_02_069
crossref_primary_10_1016_j_compstruc_2023_107255
crossref_primary_10_1016_j_energy_2013_10_044
crossref_primary_10_1016_j_energy_2013_04_011
crossref_primary_10_1016_j_energy_2014_10_024
crossref_primary_10_1016_j_energy_2017_06_046
crossref_primary_10_1016_j_energy_2012_02_041
crossref_primary_10_1016_j_enconman_2015_04_051
crossref_primary_10_1155_2015_562462
crossref_primary_10_1016_j_eswa_2013_05_048
crossref_primary_10_1016_j_ijepes_2013_03_032
crossref_primary_10_1111_nrm_12203
Cites_doi 10.1016/j.eswa.2008.07.070
10.1016/j.eswa.2009.07.042
10.1016/j.ijepes.2009.11.014
10.1016/j.ijepes.2009.09.016
10.1109/TPWRS.2006.873410
10.1049/iet-gtd:20060495
10.1109/TEVC.2005.857075
10.1109/TPWRS.1986.4334837
10.1016/j.energy.2009.12.007
10.1109/59.667339
10.1016/j.ijepes.2010.01.006
10.1016/j.neucom.2007.11.017
10.1109/59.651636
10.1109/59.49122
10.1109/59.476058
10.1016/j.eswa.2009.08.019
10.1016/j.camwa.2008.10.048
10.1109/TPAS.1980.319847
10.1109/59.485989
10.1109/59.651618
10.1016/j.enconman.2008.06.009
10.1016/j.enconman.2009.07.015
10.1016/j.epsr.2009.02.005
10.1016/j.chaos.2007.10.032
10.1016/j.ijepes.2007.06.023
10.1016/j.ijepes.2007.06.009
10.1109/59.801880
10.1016/j.enconman.2009.10.024
10.1016/j.energy.2009.12.029
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7SP
7SU
7TB
8FD
C1K
F28
FR3
KR7
L7M
7ST
7U6
SOI
DOI 10.1016/j.energy.2010.12.006
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList

Environment Abstracts
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Applied Sciences
EndPage 1029
ExternalDocumentID 23860717
10_1016_j_energy_2010_12_006
US201500076128
S0360544210006961
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
IQODW
7S9
L.6
7SP
7SU
7TB
8FD
C1K
F28
FR3
KR7
L7M
7ST
7U6
SOI
ID FETCH-LOGICAL-c458t-ef3f3d00faf8ff9943d68b895652caaf8891238694cfb070cf2f42d4929398853
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Tue Oct 07 10:07:42 EDT 2025
Tue Oct 07 09:19:30 EDT 2025
Sun Sep 28 15:39:51 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Thu Apr 24 23:16:13 EDT 2025
Wed Oct 01 01:34:05 EDT 2025
Thu Apr 03 09:46:03 EDT 2025
Fri Feb 23 02:16:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Emission reduction
Chaotic quantum genetic algorithm
Power system integrated wind power
Energy saving
Dynamic economic dispatch
Cost minimization
Optimal strategy
Energy cost
Wind energy
Genetic algorithm
Evolutionary algorithm
Economic optimization
Electric power production
Constrained optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-ef3f3d00faf8ff9943d68b895652caaf8891238694cfb070cf2f42d4929398853
Notes http://dx.doi.org/10.1016/j.energy.2010.12.006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663551595
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_864404569
proquest_miscellaneous_1777113878
proquest_miscellaneous_1663551595
pascalfrancis_primary_23860717
crossref_primary_10_1016_j_energy_2010_12_006
crossref_citationtrail_10_1016_j_energy_2010_12_006
fao_agris_US201500076128
elsevier_sciencedirect_doi_10_1016_j_energy_2010_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy (Oxford)
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Niu, Wang, Wu (bib22) Mar. 2010; 37
Basu (bib9) Feb. 2008; 30
Rajan (bib6) July 2010; 32
Meng, Wang, Dong, Wong (bib19) 2010; 25
Coeho, Mariani (bib32) May 2006; 21
Liao, Tsao (bib7) June 2006; 10
Lu, Sun, Lu (bib20) Mar. 2010; 51
Shoults, Venkatesh, Helmick, Lolla (bib2) 1986; PWRS-1
Zhao, Xu, Tao, Liang (bib28) Jun. 2009; 57
Li, Li (bib30) Dec. 2008; 72
Wong, Fung (bib4) 1993; 140
Wong, Yuryevich (bib12) 1998; 13
Ross, Kim (bib1) 1980; 99
He, Wang, Mao (bib10) Jan. 2008; 30
Zhisheng (bib26) Mar. 2010; 37
Kazarlis, Bakirtzis, Petridis (bib11) 1996; 11
Sun, Fang, Wang, Xu (bib27) Dec. 2009; 50
Zhuang, Glaiana (bib5) 1990; 5
Niknam, Mojarrad, Nayeripour (bib15) Apr. 2010; 35
Babu, Das, Patvardhan (bib23) 2008; 2
Pothiya, Ngamroo, Kongprawechnon (bib21) Jun 2010; 32
Tylavsky, Heydt (bib24) 2003; 2
Yuryevich, Wong (bib13) 1999; 14
Gong, Zhang, Qi (bib17) Jun 2010; 32
Coelho, Mariani (bib29) Apr. 2009; 36
Chen, Chang (bib8) 1995; 10
Gaul, Handschin, Lehmkoster (bib14) 1998; 13
Vahidinasab, Jadid (bib16) Mar. 2010; 35
Mantawy, Abdel-Magid, Selim (bib3) 1998; 13
Coelho, Mariani (bib25) Nov. 2008; 49
Coeho, Mariani (bib31) Jun. 2009; 40
Abido (bib18) July 2009; 79
Zhuang (10.1016/j.energy.2010.12.006_bib5) 1990; 5
Tylavsky (10.1016/j.energy.2010.12.006_bib24) 2003; 2
Rajan (10.1016/j.energy.2010.12.006_bib6) 2010; 32
Ross (10.1016/j.energy.2010.12.006_bib1) 1980; 99
Niknam (10.1016/j.energy.2010.12.006_bib15) 2010; 35
Li (10.1016/j.energy.2010.12.006_bib30) 2008; 72
Mantawy (10.1016/j.energy.2010.12.006_bib3) 1998; 13
Babu (10.1016/j.energy.2010.12.006_bib23) 2008; 2
Coelho (10.1016/j.energy.2010.12.006_bib29) 2009; 36
Kazarlis (10.1016/j.energy.2010.12.006_bib11) 1996; 11
Chen (10.1016/j.energy.2010.12.006_bib8) 1995; 10
Coelho (10.1016/j.energy.2010.12.006_bib25) 2008; 49
Liao (10.1016/j.energy.2010.12.006_bib7) 2006; 10
Gaul (10.1016/j.energy.2010.12.006_bib14) 1998; 13
Meng (10.1016/j.energy.2010.12.006_bib19) 2010; 25
Coeho (10.1016/j.energy.2010.12.006_bib31) 2009; 40
Wong (10.1016/j.energy.2010.12.006_bib4) 1993; 140
Coeho (10.1016/j.energy.2010.12.006_bib32) 2006; 21
Pothiya (10.1016/j.energy.2010.12.006_bib21) 2010; 32
Zhisheng (10.1016/j.energy.2010.12.006_bib26) 2010; 37
Abido (10.1016/j.energy.2010.12.006_bib18) 2009; 79
Sun (10.1016/j.energy.2010.12.006_bib27) 2009; 50
Wong (10.1016/j.energy.2010.12.006_bib12) 1998; 13
He (10.1016/j.energy.2010.12.006_bib10) 2008; 30
Yuryevich (10.1016/j.energy.2010.12.006_bib13) 1999; 14
Vahidinasab (10.1016/j.energy.2010.12.006_bib16) 2010; 35
Zhao (10.1016/j.energy.2010.12.006_bib28) 2009; 57
Shoults (10.1016/j.energy.2010.12.006_bib2) 1986; PWRS-1
Basu (10.1016/j.energy.2010.12.006_bib9) 2008; 30
Niu (10.1016/j.energy.2010.12.006_bib22) 2010; 37
Gong (10.1016/j.energy.2010.12.006_bib17) 2010; 32
Lu (10.1016/j.energy.2010.12.006_bib20) 2010; 51
References_xml – volume: 13
  start-page: 86
  year: 1998
  end-page: 93
  ident: bib14
  article-title: Establishing a rule base for a hybrid ES/XPS approach to load management
  publication-title: IEEE Transactions on Power Systems
– volume: 32
  start-page: 583
  year: July 2010
  end-page: 591
  ident: bib6
  article-title: A solution to the economic dispatch using EP based SA algorithm on large scale power system
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 10
  start-page: 330
  year: June 2006
  end-page: 340
  ident: bib7
  article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 35
  start-page: 1497
  year: Mar. 2010
  end-page: 1504
  ident: bib16
  article-title: Joint economic and emission dispatch in energy markets: a multiobjective mathematical programming approach
  publication-title: Energy
– volume: 32
  start-page: 478
  year: Jun 2010
  end-page: 487
  ident: bib21
  article-title: Ant colony optimization for economic dispatch problem with non-smooth cost functions
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 79
  start-page: 1105
  year: July 2009
  end-page: 1113
  ident: bib18
  article-title: Multiobjective particle swarm optimization for environmental/economic dispatch problem
  publication-title: Electric Power Systems Research
– volume: 30
  start-page: 31
  year: Jan. 2008
  end-page: 38
  ident: bib10
  article-title: A hybrid genetic algorithm approach based on differential evolution for dispatch with valve-point effect
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 32
  start-page: 337
  year: Jun 2010
  end-page: 344
  ident: bib17
  article-title: Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 49
  start-page: 3080
  year: Nov. 2008
  end-page: 3085
  ident: bib25
  article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects
  publication-title: Energy Conversion and Management
– volume: 57
  start-page: 2009
  year: Jun. 2009
  end-page: 2015
  ident: bib28
  article-title: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks
  publication-title: Computers & Mathematics with Applications
– volume: 5
  start-page: 311
  year: 1990
  end-page: 318
  ident: bib5
  article-title: Unit commitment by simulated annealing
  publication-title: IEEE Transactions on Power Systems
– volume: 37
  start-page: 2531
  year: Mar. 2010
  end-page: 2539
  ident: bib22
  article-title: Power load forecasting using support vector machine and ant colony
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 1800
  year: Mar. 2010
  end-page: 1803
  ident: bib26
  article-title: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system
  publication-title: Expert Systems with Applications
– volume: 35
  start-page: 1764
  year: Apr. 2010
  end-page: 1778
  ident: bib15
  article-title: A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch
  publication-title: Energy
– volume: 13
  start-page: 197
  year: 1998
  end-page: 204
  ident: bib3
  article-title: A simulated annealing algorithm for unit commitment
  publication-title: IEEE Transactions on Power Systems
– volume: 10
  start-page: 1919
  year: 1995
  end-page: 1926
  ident: bib8
  article-title: Large scale economic dispatch by genetic algorithm
  publication-title: IEEE Transactions on Power Systems
– volume: 13
  start-page: 301
  year: 1998
  end-page: 306
  ident: bib12
  article-title: Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch
  publication-title: IEEE Transactions on Power Systems
– volume: 2
  start-page: 13
  year: 2003
  end-page: 17
  ident: bib24
  article-title: Quantum computing power system simulation
  publication-title: IEEE Power Engineering Society General Meeting 2003
– volume: 14
  start-page: 1245
  year: 1999
  end-page: 1250
  ident: bib13
  article-title: Evolutionary-programming-based optimal power flow algorithm
  publication-title: IEEE Transactions on Power Systems
– volume: 99
  start-page: 2060
  year: 1980
  end-page: 2088
  ident: bib1
  article-title: Dynamic economic dispatch of generation
  publication-title: IEEE Transactions on Power Apparatus and Systems
– volume: 50
  start-page: 2967
  year: Dec. 2009
  end-page: 2975
  ident: bib27
  article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
  publication-title: Energy Conversion and Management
– volume: PWRS-1
  start-page: 10
  year: 1986
  end-page: 16
  ident: bib2
  article-title: A dynamic programming based method for developing dispatch curves when incremental heat rate curves are non-monotonically increasing
  publication-title: IEEE Transactions on Power Systems
– volume: 140
  start-page: 509
  year: 1993
  end-page: 515
  ident: bib4
  article-title: Simulated annealing based economic dispatch algorithm
  publication-title: IEE Proceeding-C
– volume: 30
  start-page: 140
  year: Feb. 2008
  end-page: 149
  ident: bib9
  article-title: Dynamic economic emission dispatch using non-dominated sorting genetic algorithm II
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 21
  start-page: 989
  year: May 2006
  end-page: 996
  ident: bib32
  article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Transactions on Power Systems
– volume: 25
  start-page: 1215
  year: 2010
  end-page: 1222
  ident: bib19
  article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch
  publication-title: IEEE Transactions on Power Systems
– volume: 72
  start-page: 581
  year: Dec. 2008
  end-page: 591
  ident: bib30
  article-title: Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits
  publication-title: Neurocomputing
– volume: 40
  start-page: 2376
  year: Jun. 2009
  end-page: 2383
  ident: bib31
  article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units
  publication-title: Chaos Solitons & Fractals
– volume: 2
  start-page: 22
  year: 2008
  end-page: 31
  ident: bib23
  article-title: Real parameter quantum evolutionary algorithm for economic load dispatch
  publication-title: IET Proceedings-Generation, Transmission & Distribution
– volume: 11
  start-page: 83
  year: 1996
  end-page: 92
  ident: bib11
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Transactions on Power Systems
– volume: 51
  start-page: 561
  year: Mar. 2010
  end-page: 571
  ident: bib20
  article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling
  publication-title: Energy Conversion and Management
– volume: 36
  start-page: 6118
  year: Apr. 2009
  end-page: 6126
  ident: bib29
  article-title: Reactive power and voltage control based on general quantum genetic algorithms
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 6118
  issue: 3, Part 2
  year: 2009
  ident: 10.1016/j.energy.2010.12.006_bib29
  article-title: Reactive power and voltage control based on general quantum genetic algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.07.070
– volume: 37
  start-page: 1800
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib26
  article-title: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.07.042
– volume: 32
  start-page: 583
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib6
  article-title: A solution to the economic dispatch using EP based SA algorithm on large scale power system
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2009.11.014
– volume: 32
  start-page: 478
  issue: 5
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib21
  article-title: Ant colony optimization for economic dispatch problem with non-smooth cost functions
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2009.09.016
– volume: 21
  start-page: 989
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2010.12.006_bib32
  article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2006.873410
– volume: 25
  start-page: 1215
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib19
  article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch
  publication-title: IEEE Transactions on Power Systems
– volume: 2
  start-page: 22
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2010.12.006_bib23
  article-title: Real parameter quantum evolutionary algorithm for economic load dispatch
  publication-title: IET Proceedings-Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd:20060495
– volume: 10
  start-page: 330
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2010.12.006_bib7
  article-title: Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857075
– volume: PWRS-1
  start-page: 10
  issue: 1
  year: 1986
  ident: 10.1016/j.energy.2010.12.006_bib2
  article-title: A dynamic programming based method for developing dispatch curves when incremental heat rate curves are non-monotonically increasing
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.1986.4334837
– volume: 35
  start-page: 1497
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib16
  article-title: Joint economic and emission dispatch in energy markets: a multiobjective mathematical programming approach
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.007
– volume: 13
  start-page: 301
  issue: 2
  year: 1998
  ident: 10.1016/j.energy.2010.12.006_bib12
  article-title: Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.667339
– volume: 32
  start-page: 337
  issue: 5
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib17
  article-title: Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2010.01.006
– volume: 72
  start-page: 581
  issue: 1–3
  year: 2008
  ident: 10.1016/j.energy.2010.12.006_bib30
  article-title: Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.11.017
– volume: 13
  start-page: 197
  issue: 1
  year: 1998
  ident: 10.1016/j.energy.2010.12.006_bib3
  article-title: A simulated annealing algorithm for unit commitment
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.651636
– volume: 5
  start-page: 311
  issue: 1
  year: 1990
  ident: 10.1016/j.energy.2010.12.006_bib5
  article-title: Unit commitment by simulated annealing
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.49122
– volume: 10
  start-page: 1919
  issue: 4
  year: 1995
  ident: 10.1016/j.energy.2010.12.006_bib8
  article-title: Large scale economic dispatch by genetic algorithm
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.476058
– volume: 2
  start-page: 13
  year: 2003
  ident: 10.1016/j.energy.2010.12.006_bib24
  article-title: Quantum computing power system simulation
  publication-title: IEEE Power Engineering Society General Meeting 2003
– volume: 37
  start-page: 2531
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib22
  article-title: Power load forecasting using support vector machine and ant colony
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.08.019
– volume: 57
  start-page: 2009
  issue: 11–12
  year: 2009
  ident: 10.1016/j.energy.2010.12.006_bib28
  article-title: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2008.10.048
– volume: 99
  start-page: 2060
  issue: 6
  year: 1980
  ident: 10.1016/j.energy.2010.12.006_bib1
  article-title: Dynamic economic dispatch of generation
  publication-title: IEEE Transactions on Power Apparatus and Systems
  doi: 10.1109/TPAS.1980.319847
– volume: 11
  start-page: 83
  issue: 1
  year: 1996
  ident: 10.1016/j.energy.2010.12.006_bib11
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.485989
– volume: 13
  start-page: 86
  issue: 1
  year: 1998
  ident: 10.1016/j.energy.2010.12.006_bib14
  article-title: Establishing a rule base for a hybrid ES/XPS approach to load management
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.651618
– volume: 49
  start-page: 3080
  issue: 11
  year: 2008
  ident: 10.1016/j.energy.2010.12.006_bib25
  article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2008.06.009
– volume: 50
  start-page: 2967
  issue: 12
  year: 2009
  ident: 10.1016/j.energy.2010.12.006_bib27
  article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2009.07.015
– volume: 79
  start-page: 1105
  issue: 7
  year: 2009
  ident: 10.1016/j.energy.2010.12.006_bib18
  article-title: Multiobjective particle swarm optimization for environmental/economic dispatch problem
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2009.02.005
– volume: 140
  start-page: 509
  issue: 6
  year: 1993
  ident: 10.1016/j.energy.2010.12.006_bib4
  article-title: Simulated annealing based economic dispatch algorithm
  publication-title: IEE Proceeding-C
– volume: 40
  start-page: 2376
  issue: 5
  year: 2009
  ident: 10.1016/j.energy.2010.12.006_bib31
  article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units
  publication-title: Chaos Solitons & Fractals
  doi: 10.1016/j.chaos.2007.10.032
– volume: 30
  start-page: 31
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2010.12.006_bib10
  article-title: A hybrid genetic algorithm approach based on differential evolution for dispatch with valve-point effect
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2007.06.023
– volume: 30
  start-page: 140
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2010.12.006_bib9
  article-title: Dynamic economic emission dispatch using non-dominated sorting genetic algorithm II
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2007.06.009
– volume: 14
  start-page: 1245
  issue: 4
  year: 1999
  ident: 10.1016/j.energy.2010.12.006_bib13
  article-title: Evolutionary-programming-based optimal power flow algorithm
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.801880
– volume: 51
  start-page: 561
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib20
  article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2009.10.024
– volume: 35
  start-page: 1764
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2010.12.006_bib15
  article-title: A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.029
SSID ssj0005899
Score 2.3562768
Snippet An optimization algorithm is proposed in this paper to solve the economic dispatch problem that includes wind farm using the Chaotic Quantum Genetic Algorithm...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1018
SubjectTerms Algorithms
Applied sciences
Chaos theory
Chaotic quantum genetic algorithm
Dynamic economic dispatch
Dynamical systems
Dynamics
econometric models
Economic data
Economics
Electric energy
Emission reduction
Energy
energy conservation
Energy economics
Energy saving
Exact sciences and technology
General, economic and professional studies
Genetic algorithms
Methodology. Modelling
Natural energy
Optimization
power generation
Power system integrated wind power
wind power
Wind power generation
Title A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power
URI https://dx.doi.org/10.1016/j.energy.2010.12.006
https://www.proquest.com/docview/1663551595
https://www.proquest.com/docview/1777113878
https://www.proquest.com/docview/864404569
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CrlABdEC1WXx2qQuIbdJE5sH1dVqy2IXspKvVlObJegbbLabCtx4Qv4aGbiZGlVoBJXZ-zYnsm8Mg_G3ss0FUWZCrRNBI84L0xkvMgji9qEKcTUm5hyhz-f5fMF_3iRXeywoyEXhsIqe94feHrHrfuRSX-bk1VVTc6R96K-wRPyUOeqM4E4F9TF4MOPW2EesushScARQQ_pc12Ml-vy60KAFzkFqe_Rn8XTI28aips0LV6dDz0v7rHvTiadPGfPemUSZmG_e2zH1fvsyZBr3O6zg-PfeWwI2H_I7Qv2cwZ1c-OW4G562jPr72CWl8262ny9AlRlwYZm9eD69cBWyH4Qy0DOWwingtaQSwJMbYFax5HzDdZUD5YWhaqGFfVhg1AxGrbVKSwuglO6hy_Z4uT4y9E86hszRCXP5CZyPvWpnSIivfReKZ7aXBYSTa0sKQ0OSoUCUeaKl75AnlL6xPPEclTFUiVRQThgu3VTu0MGaJ66qVQiI28Kz0vl0EaV1nCOyxTldMTSAR-67KuWU_OMpR7C077pcF5NWNRxohGLIxZtZ61C1Y4H4MWAan2H-jQKlgdmHiJlaHOJLFkvzhNyINHfTRT7Iza-Qy7bndDVkBk9Yu8G-tGIIPpTY2rXXLc67vRA1DSzf8AIIeI4lQJfBH-BkTmVf8xy9eq_D_iaPQ1udIrgecN2N-tr9xb1sE0x7j60MXs8O_00P_sFvdYz1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CrlUC4IClWXQhkkrmE3iRPbx6pqtUDbS7tSb5aT2CXVkqw220pc-gV8NDOxs1DxqMTVGTu2ZzKvzIOx9zJNRVGmAm0TwSPOCxMZJ_KoQm3CFGLiTEy5w6dn-XTGP11mlxvscMiFobDKwPs9T--5dRgZh9scL-p6fI68F_UNnpCHOldkAj3mWSLIAvtw90uch-ybSBJ0ROBD_lwf5GX7BDsf4UVeQWp89Gf59MiZlgInTYd353zTi9_4dy-Ujp-xp0GbhAO_4edswzbbbGtINu622c7Rz0Q2BAxfcveCfT-Apr21c7C3gfjM8huY-VW7rFdfvgLqslD5bvVgw3pQ1ch_EM1A3lvwp4LOkE8CTFMB9Y4j7xssqSAsLQp1AwtqxAa-ZDSsy1NUuAhO6R--ZLPjo4vDaRQ6M0Qlz-Qqsi51aTVBTDrpnFI8rXJZSLS1sqQ0OCgVSkSZK166AplK6RLHk4qjLpYqiRrCDtts2sbuMkD71E6kEhm5U3heKotGqqwM57hMUU5GLB3woctQtpy6Z8z1EJ92rf15NWFRx4lGLI5YtJ618GU7HoAXA6r1PfLTKFkemLmLlKHNFfJkPTtPyINEvzdR7o_Y_j1yWe-Erobs6BF7N9CPRgTRrxrT2Pam03GvCKKqmf0DRggRx6kU-CL4C4zMqf5jlqtX_33At2xrenF6ok8-nn3eY0-8T53CeV6zzdXyxr5BpWxV7Pcf3Q-NkDVq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+evolutionary+algorithm+for+dynamic+economic+dispatch+with+energy+saving+and+emission+reduction+in+power+system+integrated+wind+power&rft.jtitle=Energy+%28Oxford%29&rft.au=LIAO%2C+Gwo-Ching&rft.date=2011-02-01&rft.pub=Elsevier&rft.issn=0360-5442&rft.volume=36&rft.issue=2&rft.spage=1018&rft.epage=1029&rft_id=info:doi/10.1016%2Fj.energy.2010.12.006&rft.externalDBID=n%2Fa&rft.externalDocID=23860717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon