MINAS: multiclass learning algorithm for novelty detection in data streams
Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important...
Saved in:
| Published in | Data mining and knowledge discovery Vol. 30; no. 3; pp. 640 - 680 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1384-5810 1573-756X 1573-756X |
| DOI | 10.1007/s10618-015-0433-y |
Cover
| Abstract | Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as
unknown
. Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm. |
|---|---|
| AbstractList | Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as
unknown
. Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm. Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as unknown. Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm. |
| Author | Ponce de Leon Ferreira Carvalho, André Carlos de Faria, Elaine Ribeiro Gama, João |
| Author_xml | – sequence: 1 givenname: Elaine Ribeiro orcidid: 0000-0001-5242-9026 surname: de Faria fullname: de Faria, Elaine Ribeiro email: elaine@ufu.br organization: Faculty of Computer Science, Federal University of Uberlândia – sequence: 2 givenname: André Carlos surname: Ponce de Leon Ferreira Carvalho fullname: Ponce de Leon Ferreira Carvalho, André Carlos organization: Institute of Mathematics and Computer Science, University of São Paulo – sequence: 3 givenname: João surname: Gama fullname: Gama, João organization: Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto |
| BookMark | eNqNkE1PGzEQhq2KSuWjP6A3S71wWTqO12unN4SABqX0AJV6sxzvbGrktYPtBe2_Z6PkgJCKepo5vM98PEfkIMSAhHxhcMYA5LfMoGGqAiYqqDmvxg_kkAnJKymaPwdTz1VdCcXgEznK-QEAxIzDIbn5ubg9v_tO-8EXZ73JmXo0KbiwpsavY3Llb0-7mGiIT-jLSFssaIuLgbpAW1MMzSWh6fMJ-dgZn_Hzvh6T31eX9xc_quWv68XF-bKytVClWkls5pKhkIrzWcu6FedtyxuJQknktuViDu3KILB5JwRfobW8qdGCAdEi58dktps7hI0Zn433epNcb9KoGeitDb2zoScbemtDjxN0uoM2KT4OmIvuXbbovQkYh6yZAgWTHzafol_fRB_ikML0kmZS1nKmRANTiu1SNsWcE3b_dYR8w1hXzNZlScb5d8n9z3naEtaYXt30T-gFF_qgrQ |
| CitedBy_id | crossref_primary_10_1016_j_ipm_2023_103532 crossref_primary_10_1145_3373464_3373470 crossref_primary_10_1145_3657286 crossref_primary_10_20965_jaciii_2019_p0362 crossref_primary_10_3390_app11209580 crossref_primary_10_1007_s10586_023_04121_8 crossref_primary_10_3390_app12104931 crossref_primary_10_1016_j_jnca_2025_104128 crossref_primary_10_1109_TNNLS_2022_3149991 crossref_primary_10_1016_j_eswa_2020_114193 crossref_primary_10_1109_TNNLS_2021_3104882 crossref_primary_10_56083_RCV4N6_223 crossref_primary_10_1016_j_knosys_2021_106749 crossref_primary_10_3390_a15100342 crossref_primary_10_1007_s13042_024_02492_x crossref_primary_10_1007_s00500_020_04828_5 crossref_primary_10_1007_s10489_023_04812_0 crossref_primary_10_1016_j_cose_2023_103451 crossref_primary_10_1007_s10462_019_09771_y crossref_primary_10_1109_TKDE_2017_2691702 crossref_primary_10_1142_S0218001424500216 crossref_primary_10_1007_s10462_015_9444_8 crossref_primary_10_1016_j_future_2020_07_037 crossref_primary_10_1016_j_knosys_2022_109950 crossref_primary_10_1142_S2196888819500143 crossref_primary_10_1080_24725854_2017_1347984 crossref_primary_10_1016_j_asoc_2023_110265 crossref_primary_10_1109_TKDE_2022_3169229 crossref_primary_10_1016_j_ins_2019_08_050 crossref_primary_10_1109_ACCESS_2020_3017045 crossref_primary_10_1109_TPAMI_2020_2965531 crossref_primary_10_1007_s10115_018_1244_4 crossref_primary_10_1016_j_ins_2024_121762 crossref_primary_10_1016_j_knosys_2023_110771 crossref_primary_10_1016_j_knosys_2024_112831 crossref_primary_10_1007_s10115_021_01582_4 crossref_primary_10_1007_s10618_024_01011_4 crossref_primary_10_3390_app12189212 crossref_primary_10_1007_s10115_018_1266_y crossref_primary_10_1007_s10115_023_02018_x crossref_primary_10_1016_j_ins_2024_120933 |
| Cites_doi | 10.1109/TKDE.2010.61 10.1016/B978-012722442-8/50016-1 10.1109/CLOUD.2012.127 10.1145/233269.233324 10.1016/j.engappai.2008.05.003 10.3233/IDA-2009-0373 10.1109/BRACIS.2013.12 10.1201/EBK1439826119 10.1109/ICDM.2012.125 10.1016/j.asoc.2010.06.010 10.1109/ICECE.2012.6471629 10.1145/2480362.2480515 10.1007/978-3-319-00969-8_31 10.1109/TIT.1982.1056489 10.1002/sam.10080 10.1016/j.eswa.2013.05.001 10.1109/ICDM.2010.160 10.1109/SOCPAR.2010.5686734 10.1007/978-3-642-29347-4_21 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2015 The Author(s) 2016 |
| Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ADTOC UNPAY |
| DOI | 10.1007/s10618-015-0433-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 1573-756X |
| EndPage | 680 |
| ExternalDocumentID | 10.1007/s10618-015-0433-y 3992409081 10_1007_s10618_015_0433_y |
| GrantInformation_xml | – fundername: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) – fundername: Portuguese funding agency - Fundação para a Ciência e a Tecnologia (FCT) – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – fundername: European Commission (BE) grantid: ICT-2013-612944 funderid: http://dx.doi.org/10.13039/501100000780 – fundername: North Portugal Regional Operational Programme grantid: NORTE-07-0124-FEDER-000056/59 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c458t-b7e6971e578332d1fb33dd367e587e3cd3590dbae019f553becc364ec0a05de33 |
| IEDL.DBID | UNPAY |
| ISSN | 1384-5810 1573-756X |
| IngestDate | Sun Oct 26 04:10:25 EDT 2025 Fri Sep 05 11:57:01 EDT 2025 Sat Aug 16 03:01:06 EDT 2025 Wed Oct 01 01:07:26 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Concept evolution Data streams Multiclass classification Novelty detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-b7e6971e578332d1fb33dd367e587e3cd3590dbae019f553becc364ec0a05de33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5242-9026 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10618-015-0433-y.pdf |
| PQID | 1774728560 |
| PQPubID | 43030 |
| PageCount | 41 |
| ParticipantIDs | unpaywall_primary_10_1007_s10618_015_0433_y proquest_miscellaneous_1808058119 proquest_journals_1774728560 crossref_primary_10_1007_s10618_015_0433_y crossref_citationtrail_10_1007_s10618_015_0433_y springer_journals_10_1007_s10618_015_0433_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Data mining and knowledge discovery |
| PublicationTitleAbbrev | Data Min Knowl Disc |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Procedings of the 29th conference on very large data bases (VLDB’03), pp 81–92 Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 20 Aug 2015 VendraminLCampelloRHruschkaERelative clustering validity criteria: a comparative overviewStat Anal Data Min201032092352672774 MacQueen JB (1967) Some methods of classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297 SpinosaEJCarvalhoACPLFGamaJNovelty detection with application to data streamsIntell Data Anal2009133405422 Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of the 8th international conference on computer recognition systems (CORES’ 13), advances in intelligent systems and computing vol 226, pp 319–328 NaldiMCampelloRHruschkaECarvalhoAEfficiency issues of evolutionary k-meansAppl Soft Comput2011111938195210.1016/j.asoc.2010.06.010 Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of the 10th IEEE international conference on data mining (ICDM’10), pp 929–934 PernerPConcepts for novelty detection and handling based on a case-based reasoning process schemeEng Appl Artif Intell200822869110.1016/j.engappai.2008.05.003 Faria ER, Goncalves IJCR, Gama J, Carvalho ACPLF (2013) Evaluation methodology for multiclass novelty detection algorithms. In: 2nd Brazilian conference on intelligent systems (BRACIS’13), pp 19–25 MasudMGaoJKhanLHanJThuraisinghamBMClassification and novel class detection in concept-drifting data streams under time constraintsIEEE Trans Knowl Data Eng201123685987410.1109/TKDE.2010.61 Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012a) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of the IEEE 12th international conference on data mining (ICDM ’12), pp 31–40 Al-Khateeb TM, Masud MM, Khan L, Thuraisingham B (2012b) Cloud guided stream classification using class-based ensemble. In: Proceedings of the 2012 IEEE 5th international conference on computing (CLOUD’12), pp 694–701 GamaJKnowledge discovery from data streams20101AtlantaCRC press chapman hall10.1201/EBK14398261191230.68017 LiuJXuGXiaoDGuLNiuXA semi-supervised ensemble approach for mining data streamsJ Comput201381128732879 Hayat MZ, Hashemi MR (2010) A DCT based approach for detecting novelty and concept drift in data streams. In: Proceedings of the international conference on soft computing and pattern recognition (SoCPaR), pp 373–378 Faria ER, Gama J, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of the 28th symposium on applied computing (SAC’13), pp 795–800 Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of the 11th international conference on artificial intelligence and soft computing—volume part I (ICAISC’12), pp 178–186 BifetAHolmesGPfahringerBKranenPKremerHJansenTSeidlTMOA: massive online analysis, a framework for stream classification and clusteringJ Mach Learn Res2010114450 Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: 7th international conference on electrical computer engineering (ICECE’ 2012), pp 630–633 Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 103–114 FaridDMZhangLHossainARahmanCMStrachanRSextonGDahalKAn adaptive ensemble classifier for mining concept drifting data streamsExp Syst Appl201340155895590610.1016/j.eswa.2013.05.001 LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.10564890504.94015 433_CR15 L Vendramin (433_CR22) 2010; 3 J Gama (433_CR10) 2010 433_CR20 433_CR11 433_CR12 P Perner (433_CR19) 2008; 22 433_CR23 EJ Spinosa (433_CR21) 2009; 13 A Bifet (433_CR4) 2010; 11 J Liu (433_CR13) 2013; 8 433_CR1 M Naldi (433_CR18) 2011; 11 433_CR9 433_CR6 433_CR7 SP Lloyd (433_CR14) 1982; 28 433_CR17 433_CR5 433_CR2 M Masud (433_CR16) 2011; 23 433_CR3 DM Farid (433_CR8) 2013; 40 |
| References_xml | – reference: Faria ER, Gama J, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of the 28th symposium on applied computing (SAC’13), pp 795–800 – reference: PernerPConcepts for novelty detection and handling based on a case-based reasoning process schemeEng Appl Artif Intell200822869110.1016/j.engappai.2008.05.003 – reference: Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of the 8th international conference on computer recognition systems (CORES’ 13), advances in intelligent systems and computing vol 226, pp 319–328 – reference: Faria ER, Goncalves IJCR, Gama J, Carvalho ACPLF (2013) Evaluation methodology for multiclass novelty detection algorithms. In: 2nd Brazilian conference on intelligent systems (BRACIS’13), pp 19–25 – reference: BifetAHolmesGPfahringerBKranenPKremerHJansenTSeidlTMOA: massive online analysis, a framework for stream classification and clusteringJ Mach Learn Res2010114450 – reference: Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: 7th international conference on electrical computer engineering (ICECE’ 2012), pp 630–633 – reference: LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.10564890504.94015 – reference: Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 20 Aug 2015 – reference: VendraminLCampelloRHruschkaERelative clustering validity criteria: a comparative overviewStat Anal Data Min201032092352672774 – reference: Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 103–114 – reference: SpinosaEJCarvalhoACPLFGamaJNovelty detection with application to data streamsIntell Data Anal2009133405422 – reference: FaridDMZhangLHossainARahmanCMStrachanRSextonGDahalKAn adaptive ensemble classifier for mining concept drifting data streamsExp Syst Appl201340155895590610.1016/j.eswa.2013.05.001 – reference: Hayat MZ, Hashemi MR (2010) A DCT based approach for detecting novelty and concept drift in data streams. In: Proceedings of the international conference on soft computing and pattern recognition (SoCPaR), pp 373–378 – reference: Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of the 10th IEEE international conference on data mining (ICDM’10), pp 929–934 – reference: Al-Khateeb TM, Masud MM, Khan L, Thuraisingham B (2012b) Cloud guided stream classification using class-based ensemble. In: Proceedings of the 2012 IEEE 5th international conference on computing (CLOUD’12), pp 694–701 – reference: LiuJXuGXiaoDGuLNiuXA semi-supervised ensemble approach for mining data streamsJ Comput201381128732879 – reference: NaldiMCampelloRHruschkaECarvalhoAEfficiency issues of evolutionary k-meansAppl Soft Comput2011111938195210.1016/j.asoc.2010.06.010 – reference: Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Procedings of the 29th conference on very large data bases (VLDB’03), pp 81–92 – reference: MacQueen JB (1967) Some methods of classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297 – reference: GamaJKnowledge discovery from data streams20101AtlantaCRC press chapman hall10.1201/EBK14398261191230.68017 – reference: Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012a) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of the IEEE 12th international conference on data mining (ICDM ’12), pp 31–40 – reference: MasudMGaoJKhanLHanJThuraisinghamBMClassification and novel class detection in concept-drifting data streams under time constraintsIEEE Trans Knowl Data Eng201123685987410.1109/TKDE.2010.61 – reference: Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of the 11th international conference on artificial intelligence and soft computing—volume part I (ICAISC’12), pp 178–186 – ident: 433_CR15 – volume: 23 start-page: 859 issue: 6 year: 2011 ident: 433_CR16 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2010.61 – ident: 433_CR1 doi: 10.1016/B978-012722442-8/50016-1 – ident: 433_CR3 doi: 10.1109/CLOUD.2012.127 – ident: 433_CR23 doi: 10.1145/233269.233324 – ident: 433_CR9 – volume: 22 start-page: 86 year: 2008 ident: 433_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.05.003 – volume: 13 start-page: 405 issue: 3 year: 2009 ident: 433_CR21 publication-title: Intell Data Anal doi: 10.3233/IDA-2009-0373 – ident: 433_CR7 doi: 10.1109/BRACIS.2013.12 – volume-title: Knowledge discovery from data streams year: 2010 ident: 433_CR10 doi: 10.1201/EBK1439826119 – ident: 433_CR2 doi: 10.1109/ICDM.2012.125 – volume: 11 start-page: 1938 year: 2011 ident: 433_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.06.010 – volume: 8 start-page: 2873 issue: 11 year: 2013 ident: 433_CR13 publication-title: J Comput – ident: 433_CR5 doi: 10.1109/ICECE.2012.6471629 – ident: 433_CR6 doi: 10.1145/2480362.2480515 – volume: 11 start-page: 44 year: 2010 ident: 433_CR4 publication-title: J Mach Learn Res – ident: 433_CR12 doi: 10.1007/978-3-319-00969-8_31 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 433_CR14 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 3 start-page: 209 year: 2010 ident: 433_CR22 publication-title: Stat Anal Data Min doi: 10.1002/sam.10080 – volume: 40 start-page: 5895 issue: 15 year: 2013 ident: 433_CR8 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2013.05.001 – ident: 433_CR17 doi: 10.1109/ICDM.2010.160 – ident: 433_CR11 doi: 10.1109/SOCPAR.2010.5686734 – ident: 433_CR20 doi: 10.1007/978-3-642-29347-4_21 |
| SSID | ssj0005230 |
| Score | 2.4193785 |
| Snippet | Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 640 |
| SubjectTerms | Active learning Algorithms Artificial Intelligence Chemistry and Earth Sciences Classification Computer Science Construction Consumer goods Data mining Data Mining and Knowledge Discovery Data transmission Datasets Evolution Experiments Information Storage and Retrieval Physics Statistics for Engineering Tasks |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dD2QOkDdXnJlXoqsprEceJFQhUgEEViVbVF4hb5FVopZLcl22r_PTN57XIAznESZ8bj-Zz5ZgbgY5Q4i45b8zzMFY9FrrlBmMAjE2iJB6LI1Im0F-Pk7DI-v5JXKzDucmGIVtntifVG7SaW_pF_DhGnpJFCB_1l-odT1yiKrnYtNHTbWsEd1CXGnsFqRJWxBrB6dDL-9n2J9CGavGEVc6nCPs7ZJNMlIRG7JKeiXnx-31Mt4GcfMX0Jz2flVM__66JYckqn67DWokl22Kj_Naz48g286jo1sNZw38L5xdfx4Y99VtMHLQFm1raLuGa6uMbvrH7dMMSvrJz880U1Z85XNUmrZL9LRjRSRlkl-ub2HVyenvw8PuNtFwVuY6kqblKfjNLQo2kKEbkwN0I4J5LUS5V6YZ2Qo8AZ7RHs5VIKUqpIYm8DHUjnhdiAQTkp_Xtgo9xYbSl9VaHhO2k8scK8SJXTCs8xQwg6iWW2LTFOnS6KbFEcmYScoZAzEnI2H8Kn_pZpU1_jscHbnRqy1tRus8XCGMKH_jIaCUU-dOknMxxD1TNR3-FoCHud-pYe8fAL93oNPz29zcentwUvEG0lDVtyGwbV35nfQURTmd12md4B_RHwmA priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60IurBt1hfrOBJWUiy2WTrrYiigl604C3sKyrEVGyq9N87myZpBR94zmYSZnZ2vmW-mQE4CiKjMXBLmvqpoCFLJVUIE2igPMnxQhSospD25ja67IXXD_yhquMe1Gz3OiVZntRTxW6R74hXnLqmW3Q0C3PcdfPCTdwLulO8DjYuDRYh5cJvUpnfifgajCYIs0mKLsHCMH-Vow-ZZVNx52IVlivASLpjC6_BjM3XYaUexkAq31yH-ZLLqQcbcH1zddu9OyUlV1A7dEyq2RCPRGaP_bfn4umFIFglef_dZsWIGFuUjKycPOfEcUaJKyGRL4NN6F2c359d0mpkAtUhFwVVsY06sW_RDxkLjJ8qxoxhUWy5iC3ThvGOZ5S0iOxSzpmzIItCqz3pcWMZ24JW3s_tNpBOqrTUrlZVoJcbrqyjgFkWCyMFXlra4NW6S3TVT9yNtciSSSdkp-4E1Z04dSejNhw3r7yOm2n8tnivNkhS-dUg8RGtxoFAmNaGw-YxeoRLc8jc9oe4xrXKRMv7nTac1IacEvHzB08aW__9ezv_kr0Li4i0ojFTcg9axdvQ7iOaKdRBuXs_ASDS6gU priority: 102 providerName: Springer Nature |
| Title | MINAS: multiclass learning algorithm for novelty detection in data streams |
| URI | https://link.springer.com/article/10.1007/s10618-015-0433-y https://www.proquest.com/docview/1774728560 https://www.proquest.com/docview/1808058119 https://link.springer.com/content/pdf/10.1007/s10618-015-0433-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1573-756X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AMVHM dateStart: 20081001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-756X dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-756X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: U2A dateStart: 19970301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfgYeM20TEqI_HE5C6J48TlLUztylCrCSjqniI7dsZEllZbCiq_nuNcuoK4CPGUBztObJ9jf5a_8x2AF16gE9y4JU3dVFCfpZIqhAnUU47keCDyVBlIO54Eo6l_OuOzLThuYmFKtntzJVnFNFiVprw4Wuj0aCPwLXAtCYtTK8BFVz0s3YZ2wBGQt6A9nZxF5-VRS_iUi0qTgIeMhjyYNXebv2rnx93pFnKub0nvwZ1lvpCrrzLLNjai4S7opgsV_-Rzb1moXvLtJ3XH_-zjfdipgSqJKst6AFsmfwi7TRIIUq8Jj-B0_GYSvX9FSmZiYrE4qTNRXBCZXcyvL4tPVwShMcnnX0xWrIg2Rcn_ysllTixDldiAFXl18ximw8GH4xGtEzTQxOeioCo0QT90DXo9Y552U8WY1iwIDRehYYlmvO9oJQ3iyJRzZu2FBb5JHOlwbRjbg1Y-z80TIP1UJTKxkbEC1xTNlbGEM8NCoaXAI1IHnGZi4qRWL7dJNLL4VnfZjleM4xXb8YpXHXi5fmVRSXf8qfJBM9tx7cU3sYvYOPQEgsIOPF8Xo__ZSxWZm_kS61hhTjQxt9-Bw2ZSN5r4_QcP14b099_b_6faT-Eu4rqg4mUeQKu4XppniJ0K1YVtMTzpQjs6OX87sM_xx9EYn68Hk7N3WDr1om7tP98BiuYWXQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFw4I3YUsBIcKGySOI4cZAqVKDVbttdIWil3oJjO6VSml3YLFX-HL-NceJklwPl1HOc18x45hvPC-BVEGmFhlvS3M8FDVkuaYYwgQaZJzk6REHWFNKOJ9HwNDw842dr8LurhbFplZ1ObBS1nip7Rv7WR5wSBwIN9PvZD2qnRtnoajdCQ7rRCnq3aTHmCjuOTH2FLtx8d_QJ-f06CA72Tz4OqZsyQFXIRUWz2ERJ7BsUXcYC7ecZY1qzKDZcxIYpzXji6UwaBEM558z-NItCozzpcW3sgSiagI2QhQk6fxsf9iefv6wkmbC2TlmElAu_j6u2xXuRbxPJOLVNxGj9t2Vcwt0-QnsbNhflTNZXsihWjODBPbjj0CvZa8XtPqyZ8gHc7SZDEKcoHsLheDTZ-_qONOmKygJ04sZTnBNZnCNdq--XBPEyKae_TFHVRJuqSQoryUVJbNoqsVUs8nL-CE5vhJ6PYb2cluYJkCTPlFS2XFagotE8MzYLzbBYaCnQbxqA11EsVa6luZ2sUaTLZsyWyCkSObVETusBvOlvmbX9PK5bvN2xIXVbe54uBXEAL_vLuCltpEWWZrrANbZbJ_LbTwaw07Fv5RH_fuFOz-H_f97W9Z_3AjaHJ-Pj9Hg0OXoKtxDpRW2m5jasVz8X5hmiqSp77kSWwLeb3iV_ALxHLjM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQJ64I26tICR4EJlNYnjxIuEUEVZui1dIUGl3oIdOwUpzS7dLFX-Gr-Ombx2OVBOPcd5zYzHnz3fzAC8DCKb4sKteeZnioci09wgTOCB8bTEDVFg6kTa40l0cBIensrTNfjd5cIQrbLzibWjttOUzsh3fcQpcaBwgd7NWlrE5_3Ru9lPTh2kKNLatdNoTOTIVZe4fZu_He-jrl8FwejD1_cHvO0wwNNQqpKb2EXD2HdotkIE1s-MENaKKHZSxU6kVsihZ412CIQyKQX9sIhCl3rak9bRYSi6_xsxVXGnLPXRxxV6iWgylFXIpfL7iGqTthf5RCGTnMqH8ervNXEJdPvY7AbcWhQzXV3qPF9Z_kb34E6LW9leY2j3Yc0VD-Bu1xOCtS7iIRwejyd7X96wmqiYEjRnbWOKM6bzM5Ri-f2cIVJmxfSXy8uKWVfWdLCC_SgYEVYZ5a_o8_kjOLkWaT6G9WJauE1gw8ykOqVEWYUuxkrjiH_mRKysVrhjGoDXSSxJ22Lm1FMjT5ZlmEnICQo5ISEn1QBe97fMmkoeVw3e7tSQtJN6nixNcAAv-ss4HSnGogs3XeAYqtOJ-vaHA9jp1LfyiH-_cKfX8P8_78nVn_ccbuLcSD6NJ0dbcBshXtRQNLdhvbxYuKcIo0rzrLZXBt-ue4L8AWugK80 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPsgXHVygYyEk9M7pI4dlzeqolpTFqFBJXKU-RbxrTMrbZ0qPz6HefSFcRFiGc7TmKfY3_W-c53AN4kwho8uBUt4kLSlBWKaoQJNNGR4nghSnSdSHs6FseT9GTKpxtw2OXC1Gz3LiTZ5DQElSZfHcxtcbCW-CbiQMLiNAhw0eUAW-_BpuAIyHuwORl_HH2pr1oypVw2mgQ8YzTjYtrFNn81zo-n0x3kXEVJt-D-ws_V8psqy7WD6GgbbPcLDf_kYrCo9MB8_0nd8T__8RE8bIEqGTWW9Rg2nH8C210RCNLuCU_h5PTDePTpHamZiSZgcdJWojgjqjybXZ1XXy8JQmPiZzeurJbEuqrmf3ly7klgqJKQsKIur5_B5Oj958Nj2hZooCblsqI6c2KYxQ69nrHExoVmzFomMsdl5pixjA8jq5VDHFlwzoK9MJE6E6mIW8fYc-j5mXc7QIaFNsqEzFiJe4rl2gXCmWOZtEriFakPUbcwuWnVy0MRjTK_010O85XjfOVhvvJlH96uHpk30h1_6rzXrXbeevF1HiM2zhKJoLAPr1fN6H8hqKK8my2wTxDmRBOLh33Y7xZ1bYjfv3B_ZUh__7wX_9R7Fx4grhMNL3MPetXVwr1E7FTpV61v3ALorw_E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MINAS%3A+multiclass+learning+algorithm+for+novelty+detection+in+data+streams&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Faria%2C+Elaine+Ribeiro&rft.au=Ponce+de+Leon+Ferreira+Carvalho%2C+Andre+Carlos&rft.au=Gama%2C+Joao&rft.date=2016-05-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=3&rft.spage=640&rft.epage=680&rft_id=info:doi/10.1007%2Fs10618-015-0433-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |