MINAS: multiclass learning algorithm for novelty detection in data streams

Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 30; no. 3; pp. 640 - 680
Main Authors de Faria, Elaine Ribeiro, Ponce de Leon Ferreira Carvalho, André Carlos, Gama, João
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
1573-756X
DOI10.1007/s10618-015-0433-y

Cover

Abstract Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as unknown . Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm.
AbstractList Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as unknown . Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm.
Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is a classification task that assesses if one or a set of examples differ significantly from the previously seen examples. This is an important task for data stream, as new concepts may appear, disappear or evolve over time. Most of the works found in the ND literature presents it as a binary classification task. In several data stream real life problems, ND must be treated as a multiclass task, in which, the known concept is composed by one or more classes and different new classes may appear. This work proposes MINAS, an algorithm for ND in data streams. MINAS deals with ND as a multiclass task. In the initial training phase, MINAS builds a decision model based on a labeled data set. In the online phase, new examples are classified using this model, or marked as unknown. Groups of unknown examples can be used later to create valid novelty patterns (NP), which are added to the current model. The decision model is updated as new data come over the stream in order to reflect changes in the known classes and allow the addition of NP. This work also presents a set of experiments carried out comparing MINAS and the main novelty detection algorithms found in the literature, using artificial and real data sets. The experimental results show the potential of the proposed algorithm.
Author Ponce de Leon Ferreira Carvalho, André Carlos
de Faria, Elaine Ribeiro
Gama, João
Author_xml – sequence: 1
  givenname: Elaine Ribeiro
  orcidid: 0000-0001-5242-9026
  surname: de Faria
  fullname: de Faria, Elaine Ribeiro
  email: elaine@ufu.br
  organization: Faculty of Computer Science, Federal University of Uberlândia
– sequence: 2
  givenname: André Carlos
  surname: Ponce de Leon Ferreira Carvalho
  fullname: Ponce de Leon Ferreira Carvalho, André Carlos
  organization: Institute of Mathematics and Computer Science, University of São Paulo
– sequence: 3
  givenname: João
  surname: Gama
  fullname: Gama, João
  organization: Laboratory of Artificial Intelligence and Decision Support (LIAAD), University of Porto
BookMark eNqNkE1PGzEQhq2KSuWjP6A3S71wWTqO12unN4SABqX0AJV6sxzvbGrktYPtBe2_Z6PkgJCKepo5vM98PEfkIMSAhHxhcMYA5LfMoGGqAiYqqDmvxg_kkAnJKymaPwdTz1VdCcXgEznK-QEAxIzDIbn5ubg9v_tO-8EXZ73JmXo0KbiwpsavY3Llb0-7mGiIT-jLSFssaIuLgbpAW1MMzSWh6fMJ-dgZn_Hzvh6T31eX9xc_quWv68XF-bKytVClWkls5pKhkIrzWcu6FedtyxuJQknktuViDu3KILB5JwRfobW8qdGCAdEi58dktps7hI0Zn433epNcb9KoGeitDb2zoScbemtDjxN0uoM2KT4OmIvuXbbovQkYh6yZAgWTHzafol_fRB_ikML0kmZS1nKmRANTiu1SNsWcE3b_dYR8w1hXzNZlScb5d8n9z3naEtaYXt30T-gFF_qgrQ
CitedBy_id crossref_primary_10_1016_j_ipm_2023_103532
crossref_primary_10_1145_3373464_3373470
crossref_primary_10_1145_3657286
crossref_primary_10_20965_jaciii_2019_p0362
crossref_primary_10_3390_app11209580
crossref_primary_10_1007_s10586_023_04121_8
crossref_primary_10_3390_app12104931
crossref_primary_10_1016_j_jnca_2025_104128
crossref_primary_10_1109_TNNLS_2022_3149991
crossref_primary_10_1016_j_eswa_2020_114193
crossref_primary_10_1109_TNNLS_2021_3104882
crossref_primary_10_56083_RCV4N6_223
crossref_primary_10_1016_j_knosys_2021_106749
crossref_primary_10_3390_a15100342
crossref_primary_10_1007_s13042_024_02492_x
crossref_primary_10_1007_s00500_020_04828_5
crossref_primary_10_1007_s10489_023_04812_0
crossref_primary_10_1016_j_cose_2023_103451
crossref_primary_10_1007_s10462_019_09771_y
crossref_primary_10_1109_TKDE_2017_2691702
crossref_primary_10_1142_S0218001424500216
crossref_primary_10_1007_s10462_015_9444_8
crossref_primary_10_1016_j_future_2020_07_037
crossref_primary_10_1016_j_knosys_2022_109950
crossref_primary_10_1142_S2196888819500143
crossref_primary_10_1080_24725854_2017_1347984
crossref_primary_10_1016_j_asoc_2023_110265
crossref_primary_10_1109_TKDE_2022_3169229
crossref_primary_10_1016_j_ins_2019_08_050
crossref_primary_10_1109_ACCESS_2020_3017045
crossref_primary_10_1109_TPAMI_2020_2965531
crossref_primary_10_1007_s10115_018_1244_4
crossref_primary_10_1016_j_ins_2024_121762
crossref_primary_10_1016_j_knosys_2023_110771
crossref_primary_10_1016_j_knosys_2024_112831
crossref_primary_10_1007_s10115_021_01582_4
crossref_primary_10_1007_s10618_024_01011_4
crossref_primary_10_3390_app12189212
crossref_primary_10_1007_s10115_018_1266_y
crossref_primary_10_1007_s10115_023_02018_x
crossref_primary_10_1016_j_ins_2024_120933
Cites_doi 10.1109/TKDE.2010.61
10.1016/B978-012722442-8/50016-1
10.1109/CLOUD.2012.127
10.1145/233269.233324
10.1016/j.engappai.2008.05.003
10.3233/IDA-2009-0373
10.1109/BRACIS.2013.12
10.1201/EBK1439826119
10.1109/ICDM.2012.125
10.1016/j.asoc.2010.06.010
10.1109/ICECE.2012.6471629
10.1145/2480362.2480515
10.1007/978-3-319-00969-8_31
10.1109/TIT.1982.1056489
10.1002/sam.10080
10.1016/j.eswa.2013.05.001
10.1109/ICDM.2010.160
10.1109/SOCPAR.2010.5686734
10.1007/978-3-642-29347-4_21
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2016
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
DOI 10.1007/s10618-015-0433-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 680
ExternalDocumentID 10.1007/s10618-015-0433-y
3992409081
10_1007_s10618_015_0433_y
GrantInformation_xml – fundername: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)
– fundername: Portuguese funding agency - Fundação para a Ciência e a Tecnologia (FCT)
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
– fundername: European Commission (BE)
  grantid: ICT-2013-612944
  funderid: http://dx.doi.org/10.13039/501100000780
– fundername: North Portugal Regional Operational Programme
  grantid: NORTE-07-0124-FEDER-000056/59
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c458t-b7e6971e578332d1fb33dd367e587e3cd3590dbae019f553becc364ec0a05de33
IEDL.DBID UNPAY
ISSN 1384-5810
1573-756X
IngestDate Sun Oct 26 04:10:25 EDT 2025
Fri Sep 05 11:57:01 EDT 2025
Sat Aug 16 03:01:06 EDT 2025
Wed Oct 01 01:07:26 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Concept evolution
Data streams
Multiclass classification
Novelty detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-b7e6971e578332d1fb33dd367e587e3cd3590dbae019f553becc364ec0a05de33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5242-9026
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10618-015-0433-y.pdf
PQID 1774728560
PQPubID 43030
PageCount 41
ParticipantIDs unpaywall_primary_10_1007_s10618_015_0433_y
proquest_miscellaneous_1808058119
proquest_journals_1774728560
crossref_primary_10_1007_s10618_015_0433_y
crossref_citationtrail_10_1007_s10618_015_0433_y
springer_journals_10_1007_s10618_015_0433_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Procedings of the 29th conference on very large data bases (VLDB’03), pp 81–92
Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 20 Aug 2015
VendraminLCampelloRHruschkaERelative clustering validity criteria: a comparative overviewStat Anal Data Min201032092352672774
MacQueen JB (1967) Some methods of classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297
SpinosaEJCarvalhoACPLFGamaJNovelty detection with application to data streamsIntell Data Anal2009133405422
Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of the 8th international conference on computer recognition systems (CORES’ 13), advances in intelligent systems and computing vol 226, pp 319–328
NaldiMCampelloRHruschkaECarvalhoAEfficiency issues of evolutionary k-meansAppl Soft Comput2011111938195210.1016/j.asoc.2010.06.010
Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of the 10th IEEE international conference on data mining (ICDM’10), pp 929–934
PernerPConcepts for novelty detection and handling based on a case-based reasoning process schemeEng Appl Artif Intell200822869110.1016/j.engappai.2008.05.003
Faria ER, Goncalves IJCR, Gama J, Carvalho ACPLF (2013) Evaluation methodology for multiclass novelty detection algorithms. In: 2nd Brazilian conference on intelligent systems (BRACIS’13), pp 19–25
MasudMGaoJKhanLHanJThuraisinghamBMClassification and novel class detection in concept-drifting data streams under time constraintsIEEE Trans Knowl Data Eng201123685987410.1109/TKDE.2010.61
Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012a) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of the IEEE 12th international conference on data mining (ICDM ’12), pp 31–40
Al-Khateeb TM, Masud MM, Khan L, Thuraisingham B (2012b) Cloud guided stream classification using class-based ensemble. In: Proceedings of the 2012 IEEE 5th international conference on computing (CLOUD’12), pp 694–701
GamaJKnowledge discovery from data streams20101AtlantaCRC press chapman hall10.1201/EBK14398261191230.68017
LiuJXuGXiaoDGuLNiuXA semi-supervised ensemble approach for mining data streamsJ Comput201381128732879
Hayat MZ, Hashemi MR (2010) A DCT based approach for detecting novelty and concept drift in data streams. In: Proceedings of the international conference on soft computing and pattern recognition (SoCPaR), pp 373–378
Faria ER, Gama J, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of the 28th symposium on applied computing (SAC’13), pp 795–800
Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of the 11th international conference on artificial intelligence and soft computing—volume part I (ICAISC’12), pp 178–186
BifetAHolmesGPfahringerBKranenPKremerHJansenTSeidlTMOA: massive online analysis, a framework for stream classification and clusteringJ Mach Learn Res2010114450
Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: 7th international conference on electrical computer engineering (ICECE’ 2012), pp 630–633
Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 103–114
FaridDMZhangLHossainARahmanCMStrachanRSextonGDahalKAn adaptive ensemble classifier for mining concept drifting data streamsExp Syst Appl201340155895590610.1016/j.eswa.2013.05.001
LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.10564890504.94015
433_CR15
L Vendramin (433_CR22) 2010; 3
J Gama (433_CR10) 2010
433_CR20
433_CR11
433_CR12
P Perner (433_CR19) 2008; 22
433_CR23
EJ Spinosa (433_CR21) 2009; 13
A Bifet (433_CR4) 2010; 11
J Liu (433_CR13) 2013; 8
433_CR1
M Naldi (433_CR18) 2011; 11
433_CR9
433_CR6
433_CR7
SP Lloyd (433_CR14) 1982; 28
433_CR17
433_CR5
433_CR2
M Masud (433_CR16) 2011; 23
433_CR3
DM Farid (433_CR8) 2013; 40
References_xml – reference: Faria ER, Gama J, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of the 28th symposium on applied computing (SAC’13), pp 795–800
– reference: PernerPConcepts for novelty detection and handling based on a case-based reasoning process schemeEng Appl Artif Intell200822869110.1016/j.engappai.2008.05.003
– reference: Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of the 8th international conference on computer recognition systems (CORES’ 13), advances in intelligent systems and computing vol 226, pp 319–328
– reference: Faria ER, Goncalves IJCR, Gama J, Carvalho ACPLF (2013) Evaluation methodology for multiclass novelty detection algorithms. In: 2nd Brazilian conference on intelligent systems (BRACIS’13), pp 19–25
– reference: BifetAHolmesGPfahringerBKranenPKremerHJansenTSeidlTMOA: massive online analysis, a framework for stream classification and clusteringJ Mach Learn Res2010114450
– reference: Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: 7th international conference on electrical computer engineering (ICECE’ 2012), pp 630–633
– reference: LloydSPLeast squares quantization in PCMIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.10564890504.94015
– reference: Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 20 Aug 2015
– reference: VendraminLCampelloRHruschkaERelative clustering validity criteria: a comparative overviewStat Anal Data Min201032092352672774
– reference: Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 103–114
– reference: SpinosaEJCarvalhoACPLFGamaJNovelty detection with application to data streamsIntell Data Anal2009133405422
– reference: FaridDMZhangLHossainARahmanCMStrachanRSextonGDahalKAn adaptive ensemble classifier for mining concept drifting data streamsExp Syst Appl201340155895590610.1016/j.eswa.2013.05.001
– reference: Hayat MZ, Hashemi MR (2010) A DCT based approach for detecting novelty and concept drift in data streams. In: Proceedings of the international conference on soft computing and pattern recognition (SoCPaR), pp 373–378
– reference: Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of the 10th IEEE international conference on data mining (ICDM’10), pp 929–934
– reference: Al-Khateeb TM, Masud MM, Khan L, Thuraisingham B (2012b) Cloud guided stream classification using class-based ensemble. In: Proceedings of the 2012 IEEE 5th international conference on computing (CLOUD’12), pp 694–701
– reference: LiuJXuGXiaoDGuLNiuXA semi-supervised ensemble approach for mining data streamsJ Comput201381128732879
– reference: NaldiMCampelloRHruschkaECarvalhoAEfficiency issues of evolutionary k-meansAppl Soft Comput2011111938195210.1016/j.asoc.2010.06.010
– reference: Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Procedings of the 29th conference on very large data bases (VLDB’03), pp 81–92
– reference: MacQueen JB (1967) Some methods of classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297
– reference: GamaJKnowledge discovery from data streams20101AtlantaCRC press chapman hall10.1201/EBK14398261191230.68017
– reference: Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012a) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of the IEEE 12th international conference on data mining (ICDM ’12), pp 31–40
– reference: MasudMGaoJKhanLHanJThuraisinghamBMClassification and novel class detection in concept-drifting data streams under time constraintsIEEE Trans Knowl Data Eng201123685987410.1109/TKDE.2010.61
– reference: Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of the 11th international conference on artificial intelligence and soft computing—volume part I (ICAISC’12), pp 178–186
– ident: 433_CR15
– volume: 23
  start-page: 859
  issue: 6
  year: 2011
  ident: 433_CR16
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.61
– ident: 433_CR1
  doi: 10.1016/B978-012722442-8/50016-1
– ident: 433_CR3
  doi: 10.1109/CLOUD.2012.127
– ident: 433_CR23
  doi: 10.1145/233269.233324
– ident: 433_CR9
– volume: 22
  start-page: 86
  year: 2008
  ident: 433_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.05.003
– volume: 13
  start-page: 405
  issue: 3
  year: 2009
  ident: 433_CR21
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2009-0373
– ident: 433_CR7
  doi: 10.1109/BRACIS.2013.12
– volume-title: Knowledge discovery from data streams
  year: 2010
  ident: 433_CR10
  doi: 10.1201/EBK1439826119
– ident: 433_CR2
  doi: 10.1109/ICDM.2012.125
– volume: 11
  start-page: 1938
  year: 2011
  ident: 433_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.06.010
– volume: 8
  start-page: 2873
  issue: 11
  year: 2013
  ident: 433_CR13
  publication-title: J Comput
– ident: 433_CR5
  doi: 10.1109/ICECE.2012.6471629
– ident: 433_CR6
  doi: 10.1145/2480362.2480515
– volume: 11
  start-page: 44
  year: 2010
  ident: 433_CR4
  publication-title: J Mach Learn Res
– ident: 433_CR12
  doi: 10.1007/978-3-319-00969-8_31
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 433_CR14
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 3
  start-page: 209
  year: 2010
  ident: 433_CR22
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.10080
– volume: 40
  start-page: 5895
  issue: 15
  year: 2013
  ident: 433_CR8
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2013.05.001
– ident: 433_CR17
  doi: 10.1109/ICDM.2010.160
– ident: 433_CR11
  doi: 10.1109/SOCPAR.2010.5686734
– ident: 433_CR20
  doi: 10.1007/978-3-642-29347-4_21
SSID ssj0005230
Score 2.4193785
Snippet Data stream mining is an emergent research area that aims at extracting knowledge from large amounts of continuously generated data. Novelty detection (ND) is...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 640
SubjectTerms Active learning
Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Classification
Computer Science
Construction
Consumer goods
Data mining
Data Mining and Knowledge Discovery
Data transmission
Datasets
Evolution
Experiments
Information Storage and Retrieval
Physics
Statistics for Engineering
Tasks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R5dD2QOkDdXnJlXoqsprEceJFQhUgEEViVbVF4hb5FVopZLcl22r_PTN57XIAznESZ8bj-Zz5ZgbgY5Q4i45b8zzMFY9FrrlBmMAjE2iJB6LI1Im0F-Pk7DI-v5JXKzDucmGIVtntifVG7SaW_pF_DhGnpJFCB_1l-odT1yiKrnYtNHTbWsEd1CXGnsFqRJWxBrB6dDL-9n2J9CGavGEVc6nCPs7ZJNMlIRG7JKeiXnx-31Mt4GcfMX0Jz2flVM__66JYckqn67DWokl22Kj_Naz48g286jo1sNZw38L5xdfx4Y99VtMHLQFm1raLuGa6uMbvrH7dMMSvrJz880U1Z85XNUmrZL9LRjRSRlkl-ub2HVyenvw8PuNtFwVuY6kqblKfjNLQo2kKEbkwN0I4J5LUS5V6YZ2Qo8AZ7RHs5VIKUqpIYm8DHUjnhdiAQTkp_Xtgo9xYbSl9VaHhO2k8scK8SJXTCs8xQwg6iWW2LTFOnS6KbFEcmYScoZAzEnI2H8Kn_pZpU1_jscHbnRqy1tRus8XCGMKH_jIaCUU-dOknMxxD1TNR3-FoCHud-pYe8fAL93oNPz29zcentwUvEG0lDVtyGwbV35nfQURTmd12md4B_RHwmA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60IurBt1hfrOBJWUiy2WTrrYiigl604C3sKyrEVGyq9N87myZpBR94zmYSZnZ2vmW-mQE4CiKjMXBLmvqpoCFLJVUIE2igPMnxQhSospD25ja67IXXD_yhquMe1Gz3OiVZntRTxW6R74hXnLqmW3Q0C3PcdfPCTdwLulO8DjYuDRYh5cJvUpnfifgajCYIs0mKLsHCMH-Vow-ZZVNx52IVlivASLpjC6_BjM3XYaUexkAq31yH-ZLLqQcbcH1zddu9OyUlV1A7dEyq2RCPRGaP_bfn4umFIFglef_dZsWIGFuUjKycPOfEcUaJKyGRL4NN6F2c359d0mpkAtUhFwVVsY06sW_RDxkLjJ8qxoxhUWy5iC3ThvGOZ5S0iOxSzpmzIItCqz3pcWMZ24JW3s_tNpBOqrTUrlZVoJcbrqyjgFkWCyMFXlra4NW6S3TVT9yNtciSSSdkp-4E1Z04dSejNhw3r7yOm2n8tnivNkhS-dUg8RGtxoFAmNaGw-YxeoRLc8jc9oe4xrXKRMv7nTac1IacEvHzB08aW__9ezv_kr0Li4i0ojFTcg9axdvQ7iOaKdRBuXs_ASDS6gU
  priority: 102
  providerName: Springer Nature
Title MINAS: multiclass learning algorithm for novelty detection in data streams
URI https://link.springer.com/article/10.1007/s10618-015-0433-y
https://www.proquest.com/docview/1774728560
https://www.proquest.com/docview/1808058119
https://link.springer.com/content/pdf/10.1007/s10618-015-0433-y.pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AMVHM
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-756X
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfgYeM20TEqI_HE5C6J48TlLUztylCrCSjqniI7dsZEllZbCiq_nuNcuoK4CPGUBztObJ9jf5a_8x2AF16gE9y4JU3dVFCfpZIqhAnUU47keCDyVBlIO54Eo6l_OuOzLThuYmFKtntzJVnFNFiVprw4Wuj0aCPwLXAtCYtTK8BFVz0s3YZ2wBGQt6A9nZxF5-VRS_iUi0qTgIeMhjyYNXebv2rnx93pFnKub0nvwZ1lvpCrrzLLNjai4S7opgsV_-Rzb1moXvLtJ3XH_-zjfdipgSqJKst6AFsmfwi7TRIIUq8Jj-B0_GYSvX9FSmZiYrE4qTNRXBCZXcyvL4tPVwShMcnnX0xWrIg2Rcn_ysllTixDldiAFXl18ximw8GH4xGtEzTQxOeioCo0QT90DXo9Y552U8WY1iwIDRehYYlmvO9oJQ3iyJRzZu2FBb5JHOlwbRjbg1Y-z80TIP1UJTKxkbEC1xTNlbGEM8NCoaXAI1IHnGZi4qRWL7dJNLL4VnfZjleM4xXb8YpXHXi5fmVRSXf8qfJBM9tx7cU3sYvYOPQEgsIOPF8Xo__ZSxWZm_kS61hhTjQxt9-Bw2ZSN5r4_QcP14b099_b_6faT-Eu4rqg4mUeQKu4XppniJ0K1YVtMTzpQjs6OX87sM_xx9EYn68Hk7N3WDr1om7tP98BiuYWXQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aFw4I3YUsBIcKGySOI4cZAqVKDVbttdIWil3oJjO6VSml3YLFX-HL-NceJklwPl1HOc18x45hvPC-BVEGmFhlvS3M8FDVkuaYYwgQaZJzk6REHWFNKOJ9HwNDw842dr8LurhbFplZ1ObBS1nip7Rv7WR5wSBwIN9PvZD2qnRtnoajdCQ7rRCnq3aTHmCjuOTH2FLtx8d_QJ-f06CA72Tz4OqZsyQFXIRUWz2ERJ7BsUXcYC7ecZY1qzKDZcxIYpzXji6UwaBEM558z-NItCozzpcW3sgSiagI2QhQk6fxsf9iefv6wkmbC2TlmElAu_j6u2xXuRbxPJOLVNxGj9t2Vcwt0-QnsbNhflTNZXsihWjODBPbjj0CvZa8XtPqyZ8gHc7SZDEKcoHsLheDTZ-_qONOmKygJ04sZTnBNZnCNdq--XBPEyKae_TFHVRJuqSQoryUVJbNoqsVUs8nL-CE5vhJ6PYb2cluYJkCTPlFS2XFagotE8MzYLzbBYaCnQbxqA11EsVa6luZ2sUaTLZsyWyCkSObVETusBvOlvmbX9PK5bvN2xIXVbe54uBXEAL_vLuCltpEWWZrrANbZbJ_LbTwaw07Fv5RH_fuFOz-H_f97W9Z_3AjaHJ-Pj9Hg0OXoKtxDpRW2m5jasVz8X5hmiqSp77kSWwLeb3iV_ALxHLjM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQJ64I26tICR4EJlNYnjxIuEUEVZui1dIUGl3oIdOwUpzS7dLFX-Gr-Ombx2OVBOPcd5zYzHnz3fzAC8DCKb4sKteeZnioci09wgTOCB8bTEDVFg6kTa40l0cBIensrTNfjd5cIQrbLzibWjttOUzsh3fcQpcaBwgd7NWlrE5_3Ru9lPTh2kKNLatdNoTOTIVZe4fZu_He-jrl8FwejD1_cHvO0wwNNQqpKb2EXD2HdotkIE1s-MENaKKHZSxU6kVsihZ412CIQyKQX9sIhCl3rak9bRYSi6_xsxVXGnLPXRxxV6iWgylFXIpfL7iGqTthf5RCGTnMqH8ervNXEJdPvY7AbcWhQzXV3qPF9Z_kb34E6LW9leY2j3Yc0VD-Bu1xOCtS7iIRwejyd7X96wmqiYEjRnbWOKM6bzM5Ri-f2cIVJmxfSXy8uKWVfWdLCC_SgYEVYZ5a_o8_kjOLkWaT6G9WJauE1gw8ykOqVEWYUuxkrjiH_mRKysVrhjGoDXSSxJ22Lm1FMjT5ZlmEnICQo5ISEn1QBe97fMmkoeVw3e7tSQtJN6nixNcAAv-ss4HSnGogs3XeAYqtOJ-vaHA9jp1LfyiH-_cKfX8P8_78nVn_ccbuLcSD6NJ0dbcBshXtRQNLdhvbxYuKcIo0rzrLZXBt-ue4L8AWugK80
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a3QPsgXHVygYyEk9M7pI4dlzeqolpTFqFBJXKU-RbxrTMrbZ0qPz6HefSFcRFiGc7TmKfY3_W-c53AN4kwho8uBUt4kLSlBWKaoQJNNGR4nghSnSdSHs6FseT9GTKpxtw2OXC1Gz3LiTZ5DQElSZfHcxtcbCW-CbiQMLiNAhw0eUAW-_BpuAIyHuwORl_HH2pr1oypVw2mgQ8YzTjYtrFNn81zo-n0x3kXEVJt-D-ws_V8psqy7WD6GgbbPcLDf_kYrCo9MB8_0nd8T__8RE8bIEqGTWW9Rg2nH8C210RCNLuCU_h5PTDePTpHamZiSZgcdJWojgjqjybXZ1XXy8JQmPiZzeurJbEuqrmf3ly7klgqJKQsKIur5_B5Oj958Nj2hZooCblsqI6c2KYxQ69nrHExoVmzFomMsdl5pixjA8jq5VDHFlwzoK9MJE6E6mIW8fYc-j5mXc7QIaFNsqEzFiJe4rl2gXCmWOZtEriFakPUbcwuWnVy0MRjTK_010O85XjfOVhvvJlH96uHpk30h1_6rzXrXbeevF1HiM2zhKJoLAPr1fN6H8hqKK8my2wTxDmRBOLh33Y7xZ1bYjfv3B_ZUh__7wX_9R7Fx4grhMNL3MPetXVwr1E7FTpV61v3ALorw_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MINAS%3A+multiclass+learning+algorithm+for+novelty+detection+in+data+streams&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Faria%2C+Elaine+Ribeiro&rft.au=Ponce+de+Leon+Ferreira+Carvalho%2C+Andre+Carlos&rft.au=Gama%2C+Joao&rft.date=2016-05-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=3&rft.spage=640&rft.epage=680&rft_id=info:doi/10.1007%2Fs10618-015-0433-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon