Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction
► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable fo...
Saved in:
| Published in | Ultrasonics Vol. 52; no. 8; pp. 1046 - 1055 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.12.2012
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0041-624X 1874-9968 1874-9968 |
| DOI | 10.1016/j.ultras.2012.08.012 |
Cover
| Abstract | ► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable for PAI under sparse-view condition.
In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction. |
|---|---|
| AbstractList | In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction. ► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable for PAI under sparse-view condition. In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction. In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction. |
| Author | Wang, Yuanyuan Zhang, Chen Zhang, Yan |
| Author_xml | – sequence: 1 givenname: Yan surname: Zhang fullname: Zhang, Yan – sequence: 2 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan email: yywang@fudan.edu.cn – sequence: 3 givenname: Chen surname: Zhang fullname: Zhang, Chen |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26564754$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22986153$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk9rFEEUxBuJmE30G4jMRfAyY_-b7h4PQggmCgEvEbw1b3rebHqZnV67eyJ-e3vdDYIH91SXXxWPV3VBzuYwIyGvGW0YZer9plmmHCE1nDLeUNMUeUZWzGhZd50yZ2RFqWS14vL7OblIaUMpk4aJF-Sc884o1ooVcfchw1Q9QvSQfZirHhIO1TrC4HHO1YDJ7RWmdYg-P2yrMcQq7SAmrB89_qx2DyEHcGFJ2bvKb2GNVUQX5pTj4vaZL8nzEaaEr456Sb7dfLq__lzffb39cn11VzvZmlyD7oVwTKE2SCkF1vIORtGPagBNUerRSWOEBkd7bkbK9ThwqpV2UqJynbgk7w65uxh-LJiy3fpy_TTBjOU8y7QQLReCm9Mo58wY3glxGmVMaio5pwV9c0SXfouD3cXyjvjLPr27AG-PACQH0xhhdj795VSrpG5l4T4cOBdDShFH63z-009p3E-WUbvfgN3YwwbsfgOWGlukmOU_5qf8E7aPBxuWikqz0SZXJuBw8KXObIfg_x_wG0KJzcI |
| CODEN | ULTRA3 |
| CitedBy_id | crossref_primary_10_1155_2014_329350 crossref_primary_10_3389_fphy_2022_1028258 crossref_primary_10_1109_JSEN_2021_3089479 crossref_primary_10_1364_BOE_415182 crossref_primary_10_3390_app7050505 crossref_primary_10_1016_j_pacs_2024_100618 crossref_primary_10_1364_BOE_469460 crossref_primary_10_1109_ACCESS_2019_2930650 crossref_primary_10_1364_OE_486846 crossref_primary_10_1016_j_neunet_2024_106515 crossref_primary_10_1002_jbio_202400128 crossref_primary_10_1080_09500340_2024_2367036 crossref_primary_10_1186_1475_925X_13_117 crossref_primary_10_1088_1674_1056_24_2_024304 crossref_primary_10_1016_j_pacs_2018_09_001 crossref_primary_10_1109_TMI_2020_2996240 crossref_primary_10_1155_2021_6622255 crossref_primary_10_1364_AO_487957 crossref_primary_10_1016_j_dsp_2024_104515 crossref_primary_10_1186_s12938_018_0537_x crossref_primary_10_1016_j_pacs_2024_100607 crossref_primary_10_1007_s42967_024_00468_w crossref_primary_10_1088_0266_5611_32_4_045005 crossref_primary_10_1088_1361_6560_aaaa4a crossref_primary_10_1364_BOE_10_004803 crossref_primary_10_1002_mp_12635 crossref_primary_10_1016_j_cmpb_2021_106562 crossref_primary_10_1016_j_bspc_2015_12_003 crossref_primary_10_1016_j_pacs_2020_100197 crossref_primary_10_1117_1_JBO_24_12_121907 crossref_primary_10_1137_18M1170066 crossref_primary_10_1088_1361_6560_aa7e5a crossref_primary_10_1364_BOE_9_002544 crossref_primary_10_1364_BOE_9_004569 crossref_primary_10_1088_1361_6560_61_24_8908 crossref_primary_10_2174_1573405618666220920114813 crossref_primary_10_1186_s12938_017_0366_3 crossref_primary_10_3390_app8091570 crossref_primary_10_1007_s11633_018_1159_2 crossref_primary_10_1016_j_pacs_2013_07_003 |
| Cites_doi | 10.1109/TMI.2004.843199 10.1109/TIT.2006.871582 10.1109/TIT.2005.862083 10.1109/TMI.2008.2007825 10.1117/1.3381187 10.1118/1.3533669 10.1063/1.2195024 10.1364/OL.35.000270 10.1016/0167-2789(92)90242-F 10.1117/12.761325 10.1364/BOE.2.002649 10.1088/0031-9155/54/19/R01 10.1088/0031-9155/54/4/014 10.1121/1.1501898 10.1364/JOSAA.25.002436 10.1038/nbt839 10.1364/JOSAA.25.001772 10.1118/1.1493778 10.1118/1.2911157 10.1103/PhysRevE.71.016706 10.1117/1.3302807 10.1118/1.597429 10.1109/TMI.2002.801171 10.1109/TBME.2003.816081 10.1109/TMI.2002.801172 10.1109/TMI.2002.801176 10.1109/JPHOT.2010.2042801 10.1364/OL.29.002506 10.1118/1.3013698 10.1088/0031-9155/53/17/021 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS Copyright © 2012 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SP 7U5 8FD H8D L7M 7S9 L.6 |
| DOI | 10.1016/j.ultras.2012.08.012 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Applied Sciences |
| EISSN | 1874-9968 |
| EndPage | 1055 |
| ExternalDocumentID | 22986153 26564754 10_1016_j_ultras_2012_08_012 S0041624X12001655 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS IQODW CGR CUY CVF ECM EIF NPM 7X8 7SP 7U5 8FD H8D L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c458t-a7b33c16e78e000a1529af3bf6da70e47fc48837ac0b28f027fd20767c44e6c93 |
| IEDL.DBID | .~1 |
| ISSN | 0041-624X 1874-9968 |
| IngestDate | Sat Sep 27 23:20:24 EDT 2025 Sun Sep 28 00:26:17 EDT 2025 Sun Sep 28 07:19:39 EDT 2025 Thu Apr 03 06:59:53 EDT 2025 Mon Jul 21 09:14:12 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Wed Oct 01 01:43:31 EDT 2025 Fri Feb 23 02:27:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Total variation Photoacoustic imaging Image reconstruction Compressed sensing compressed sensing Image processing Updating Modeling Gradient descent Model matching Imaging Sparse representation Robustness Acoustic image Signal detection Numerical algorithm Gradient Energy distribution Digitizing Experimental study Real time In vitro Search algorithm Inverse problem Television Objective function Added value Signal to noise ratio Photoacoustic effect |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-a7b33c16e78e000a1529af3bf6da70e47fc48837ac0b28f027fd20767c44e6c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 22986153 |
| PQID | 1114704220 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1733523328 proquest_miscellaneous_1221882933 proquest_miscellaneous_1114704220 pubmed_primary_22986153 pascalfrancis_primary_26564754 crossref_citationtrail_10_1016_j_ultras_2012_08_012 crossref_primary_10_1016_j_ultras_2012_08_012 elsevier_sciencedirect_doi_10_1016_j_ultras_2012_08_012 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | Ultrasonics |
| PublicationTitleAlternate | Ultrasonics |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Xu, Wang (b0010) 2006; 77 Paltauf, Viator, Prahl, Jacques (b0090) 2002; 112 Xu, Wang (b0050) 2002; 21 Wang, Sidky, Anastasioa, Oraevsky, Pan (b0160) 2011; 7899 Zhang, Li, Wang (b0085) 2010; 2 Rudin, Osher, Fatemi (b0135) 1992; 60 Modgil, La Rivière (b0100) 2008; 6856 LaRoque, Sidky, Pan (b0145) 2008; 25 Xu, Wang (b0070) 2002; 29 Provost, Lesage (b0120) 2009; 28 Yao, Jiang (b0155) 2011; 2 Xu, Xu, Wang (b0065) 2002; 21 Liao, Li, Li (b0095) 2004; 29 Sidky, Pan (b0150) 2008; 53 Guo, Li, Song, Wang (b0125) 2010; 15 Pramanik, Ku, Li, Wang (b0025) 2008; 35 Xu, Wang (b0075) 2005; 71 Xu, Feng, Wang (b0060) 2002; 21 Zhang, Wang (b0080) 2008; 25 Candes, Romberg, Tao (b0130) 2006; 52 Zhang, Laufer, Pedley, Beard (b0035) 2009; 54 Donoho (b0115) 2006; 52 Gamelin, Aguirre, Zhu (b0110) 2011; 38 de la Zerda, Paulus, Teed, Bodapati, Dollberg, Khuri-Yakub, Blumenkranz, Moshfeghi, Gambhir (b0045) 2010; 35 Li, Aguirre, Gamelin, Maurudis, Zhu, Wang (b0105) 2010; 15 Li, Wang (b0005) 2009; 54 Wang (b0015) 2008; 35 Wang, Pang, Ku, Xie, Stoica, Wang (b0040) 2003; 21 Guo, Li, Zmuda, Sheplak (b0020) 2007; 54 Niederhauser, Jaeger, Lemor, Weber, Frenz (b0030) 2005; 24 Sidky, Kao, Pan (b0140) 2006; 14 Kruger, Liu, Fang, Appledorn (b0165) 1995; 22 Xu, Xu, Wang (b0055) 2003; 50 Rudin (10.1016/j.ultras.2012.08.012_b0135) 1992; 60 Liao (10.1016/j.ultras.2012.08.012_b0095) 2004; 29 Provost (10.1016/j.ultras.2012.08.012_b0120) 2009; 28 Niederhauser (10.1016/j.ultras.2012.08.012_b0030) 2005; 24 Guo (10.1016/j.ultras.2012.08.012_b0020) 2007; 54 Gamelin (10.1016/j.ultras.2012.08.012_b0110) 2011; 38 Zhang (10.1016/j.ultras.2012.08.012_b0085) 2010; 2 Xu (10.1016/j.ultras.2012.08.012_b0050) 2002; 21 Sidky (10.1016/j.ultras.2012.08.012_b0140) 2006; 14 Xu (10.1016/j.ultras.2012.08.012_b0075) 2005; 71 Donoho (10.1016/j.ultras.2012.08.012_b0115) 2006; 52 Wang (10.1016/j.ultras.2012.08.012_b0160) 2011; 7899 Paltauf (10.1016/j.ultras.2012.08.012_b0090) 2002; 112 Kruger (10.1016/j.ultras.2012.08.012_b0165) 1995; 22 Xu (10.1016/j.ultras.2012.08.012_b0070) 2002; 29 Pramanik (10.1016/j.ultras.2012.08.012_b0025) 2008; 35 Xu (10.1016/j.ultras.2012.08.012_b0055) 2003; 50 Zhang (10.1016/j.ultras.2012.08.012_b0080) 2008; 25 LaRoque (10.1016/j.ultras.2012.08.012_b0145) 2008; 25 Guo (10.1016/j.ultras.2012.08.012_b0125) 2010; 15 Xu (10.1016/j.ultras.2012.08.012_b0060) 2002; 21 Wang (10.1016/j.ultras.2012.08.012_b0015) 2008; 35 Candes (10.1016/j.ultras.2012.08.012_b0130) 2006; 52 Li (10.1016/j.ultras.2012.08.012_b0005) 2009; 54 Zhang (10.1016/j.ultras.2012.08.012_b0035) 2009; 54 Xu (10.1016/j.ultras.2012.08.012_b0010) 2006; 77 Sidky (10.1016/j.ultras.2012.08.012_b0150) 2008; 53 Xu (10.1016/j.ultras.2012.08.012_b0065) 2002; 21 de la Zerda (10.1016/j.ultras.2012.08.012_b0045) 2010; 35 Wang (10.1016/j.ultras.2012.08.012_b0040) 2003; 21 Modgil (10.1016/j.ultras.2012.08.012_b0100) 2008; 6856 Li (10.1016/j.ultras.2012.08.012_b0105) 2010; 15 Yao (10.1016/j.ultras.2012.08.012_b0155) 2011; 2 |
| References_xml | – volume: 24 start-page: 436 year: 2005 end-page: 440 ident: b0030 article-title: Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo publication-title: IEEE Trans. Med. Imag. – volume: 54 start-page: 2000 year: 2007 end-page: 2010 ident: b0020 article-title: Multyfrequency microwave-induced thermal acoustic imaging for breast cancer detection publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 21 start-page: 814 year: 2002 end-page: 822 ident: b0050 article-title: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry publication-title: IEEE Trans. Med. Imag. – volume: 6856 year: 2008 ident: b0100 article-title: Implementation and comparison of reconstruction algorithms for 2D optoacoustic tomography using a linear array publication-title: Proc. SPIE – volume: 50 start-page: 1086 year: 2003 end-page: 1099 ident: b0055 article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 1661 year: 2002 end-page: 1669 ident: b0070 article-title: Pulsed-microwave-induced thermoacoustic tomography: filtered back-projection in a circular measurement configuration publication-title: Med. Phys. – volume: 54 start-page: 1035 year: 2009 end-page: 1046 ident: b0035 article-title: In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy publication-title: Phys. Med. Biol. – volume: 25 start-page: 1772 year: 2008 end-page: 1782 ident: b0145 article-title: Accurate image reconstruction from few-view and limited-angle data in diffraction tomography publication-title: J. Opt. Soc. Am. A – volume: 71 year: 2005 ident: b0075 article-title: Universal back-projection algorithm for photoacoustic computed tomography publication-title: Phys. Rev. E – volume: 35 start-page: 2218 year: 2008 end-page: 2223 ident: b0025 article-title: Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography publication-title: Med. Phys. – volume: 112 start-page: 1536 year: 2002 end-page: 1544 ident: b0090 article-title: Iterative reconstruction algorithm for optoacoustic imaging publication-title: J. Opt. Soc. Am. A – volume: 77 year: 2006 ident: b0010 article-title: Photoacoustic imaging in biomedicine publication-title: Rev. Sci. Instrum. – volume: 21 start-page: 803 year: 2003 end-page: 806 ident: b0040 article-title: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain publication-title: Nat. Biotechnol. – volume: 29 start-page: 2506 year: 2004 end-page: 2508 ident: b0095 article-title: Optoacoustic imaging with synthetic aperture focusing and coherence weighting publication-title: Opt. Lett. – volume: 60 start-page: 259 year: 1992 end-page: 268 ident: b0135 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b0115 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 21 start-page: 829 year: 2002 end-page: 833 ident: b0065 article-title: Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography-II: Cylindrical Geometry publication-title: IEEE Trans. Med. Imag. – volume: 21 start-page: 823 year: 2002 end-page: 828 ident: b0060 article-title: Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry publication-title: IEEE Trans. Med. Imag. – volume: 35 start-page: 5758 year: 2008 end-page: 5767 ident: b0015 article-title: Prospects of photoacoustic tomography publication-title: Med. Phys. – volume: 14 start-page: 119 year: 2006 end-page: 139 ident: b0140 article-title: Accurate image reconstruction from few-views and limited-angle data indivergent-beam CT publication-title: J. X-Ray Sci. Technol. – volume: 25 start-page: 2436 year: 2008 end-page: 2443 ident: b0080 article-title: Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study publication-title: J. Opt. Soc. Am. A – volume: 15 year: 2010 ident: b0125 article-title: Compressed sensing in photoacoustic tomography in vivo publication-title: J. Biomed. Opt. – volume: 53 start-page: 4777 year: 2008 end-page: 4807 ident: b0150 article-title: Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization publication-title: Phys. Med. Biol. – volume: 22 start-page: 1605 year: 1995 end-page: 1609 ident: b0165 article-title: Photoacoustic ultrasound (PAUS)-reconstruction tomography publication-title: Med. Phys. – volume: 2 start-page: 2649 year: 2011 end-page: 2654 ident: b0155 article-title: Photoacoustic image reconstruction from few-detector and limited-angle data publication-title: Biomed. Opt. Express – volume: 28 start-page: 585 year: 2009 end-page: 594 ident: b0120 article-title: The application of compressed sensing for photo-acoustic tomography publication-title: IEEE Trans. Med. Imag. – volume: 2 start-page: 57 year: 2010 end-page: 66 ident: b0085 article-title: Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry experimental validation publication-title: IEEE Photonics J. – volume: 54 start-page: R59 year: 2009 end-page: R97 ident: b0005 article-title: Photoacoustic tomography and sensing in biomedicine publication-title: Phys. Med. Biol. – volume: 38 start-page: 1503 year: 2011 end-page: 1818 ident: b0110 article-title: Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique publication-title: Med. Phys. – volume: 15 year: 2010 ident: b0105 article-title: Real-time photoacoustic tomography of cortical hemodynamics in small animals publication-title: J. Biomed. Opt. – volume: 35 start-page: 270 year: 2010 end-page: 272 ident: b0045 article-title: Photoacoustic ocular imaging publication-title: Opt. Lett. – volume: 7899 year: 2011 ident: b0160 article-title: Limited data image reconstruction in optoacoustic tomography by constrained, total variation minimization publication-title: Proc. SPIE – volume: 52 start-page: 489 year: 2006 end-page: 509 ident: b0130 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 24 start-page: 436 issue: 4 year: 2005 ident: 10.1016/j.ultras.2012.08.012_b0030 article-title: Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2004.843199 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.ultras.2012.08.012_b0115 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 52 start-page: 489 issue: 2 year: 2006 ident: 10.1016/j.ultras.2012.08.012_b0130 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 28 start-page: 585 issue: 4 year: 2009 ident: 10.1016/j.ultras.2012.08.012_b0120 article-title: The application of compressed sensing for photo-acoustic tomography publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2008.2007825 – volume: 15 issue: 2 year: 2010 ident: 10.1016/j.ultras.2012.08.012_b0125 article-title: Compressed sensing in photoacoustic tomography in vivo publication-title: J. Biomed. Opt. doi: 10.1117/1.3381187 – volume: 38 start-page: 1503 issue: 3 year: 2011 ident: 10.1016/j.ultras.2012.08.012_b0110 article-title: Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique publication-title: Med. Phys. doi: 10.1118/1.3533669 – volume: 77 issue: 4 year: 2006 ident: 10.1016/j.ultras.2012.08.012_b0010 article-title: Photoacoustic imaging in biomedicine publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2195024 – volume: 35 start-page: 270 issue: 3 year: 2010 ident: 10.1016/j.ultras.2012.08.012_b0045 article-title: Photoacoustic ocular imaging publication-title: Opt. Lett. doi: 10.1364/OL.35.000270 – volume: 60 start-page: 259 issue: 1–4 year: 1992 ident: 10.1016/j.ultras.2012.08.012_b0135 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume: 6856 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0100 article-title: Implementation and comparison of reconstruction algorithms for 2D optoacoustic tomography using a linear array publication-title: Proc. SPIE doi: 10.1117/12.761325 – volume: 2 start-page: 2649 issue: 9 year: 2011 ident: 10.1016/j.ultras.2012.08.012_b0155 article-title: Photoacoustic image reconstruction from few-detector and limited-angle data publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002649 – volume: 54 start-page: R59 issue: 19 year: 2009 ident: 10.1016/j.ultras.2012.08.012_b0005 article-title: Photoacoustic tomography and sensing in biomedicine publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/19/R01 – volume: 54 start-page: 1035 issue: 4 year: 2009 ident: 10.1016/j.ultras.2012.08.012_b0035 article-title: In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/4/014 – volume: 112 start-page: 1536 issue: 4 year: 2002 ident: 10.1016/j.ultras.2012.08.012_b0090 article-title: Iterative reconstruction algorithm for optoacoustic imaging publication-title: J. Opt. Soc. Am. A doi: 10.1121/1.1501898 – volume: 25 start-page: 2436 issue: 10 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0080 article-title: Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.25.002436 – volume: 21 start-page: 803 issue: 7 year: 2003 ident: 10.1016/j.ultras.2012.08.012_b0040 article-title: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain publication-title: Nat. Biotechnol. doi: 10.1038/nbt839 – volume: 14 start-page: 119 issue: 2 year: 2006 ident: 10.1016/j.ultras.2012.08.012_b0140 article-title: Accurate image reconstruction from few-views and limited-angle data indivergent-beam CT publication-title: J. X-Ray Sci. Technol. – volume: 25 start-page: 1772 issue: 7 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0145 article-title: Accurate image reconstruction from few-view and limited-angle data in diffraction tomography publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.25.001772 – volume: 29 start-page: 1661 issue: 8 year: 2002 ident: 10.1016/j.ultras.2012.08.012_b0070 article-title: Pulsed-microwave-induced thermoacoustic tomography: filtered back-projection in a circular measurement configuration publication-title: Med. Phys. doi: 10.1118/1.1493778 – volume: 35 start-page: 2218 issue: 6 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0025 article-title: Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography publication-title: Med. Phys. doi: 10.1118/1.2911157 – volume: 71 issue: 1 year: 2005 ident: 10.1016/j.ultras.2012.08.012_b0075 article-title: Universal back-projection algorithm for photoacoustic computed tomography publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.016706 – volume: 15 issue: 1 year: 2010 ident: 10.1016/j.ultras.2012.08.012_b0105 article-title: Real-time photoacoustic tomography of cortical hemodynamics in small animals publication-title: J. Biomed. Opt. doi: 10.1117/1.3302807 – volume: 7899 year: 2011 ident: 10.1016/j.ultras.2012.08.012_b0160 article-title: Limited data image reconstruction in optoacoustic tomography by constrained, total variation minimization publication-title: Proc. SPIE – volume: 22 start-page: 1605 issue: 10 year: 1995 ident: 10.1016/j.ultras.2012.08.012_b0165 article-title: Photoacoustic ultrasound (PAUS)-reconstruction tomography publication-title: Med. Phys. doi: 10.1118/1.597429 – volume: 21 start-page: 829 issue: 7 year: 2002 ident: 10.1016/j.ultras.2012.08.012_b0065 article-title: Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography-II: Cylindrical Geometry publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2002.801171 – volume: 50 start-page: 1086 issue: 9 year: 2003 ident: 10.1016/j.ultras.2012.08.012_b0055 article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.816081 – volume: 21 start-page: 823 issue: 7 year: 2002 ident: 10.1016/j.ultras.2012.08.012_b0060 article-title: Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2002.801172 – volume: 21 start-page: 814 issue: 7 year: 2002 ident: 10.1016/j.ultras.2012.08.012_b0050 article-title: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2002.801176 – volume: 2 start-page: 57 issue: 1 year: 2010 ident: 10.1016/j.ultras.2012.08.012_b0085 article-title: Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry experimental validation publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2010.2042801 – volume: 29 start-page: 2506 issue: 21 year: 2004 ident: 10.1016/j.ultras.2012.08.012_b0095 article-title: Optoacoustic imaging with synthetic aperture focusing and coherence weighting publication-title: Opt. Lett. doi: 10.1364/OL.29.002506 – volume: 54 start-page: 2000 issue: 11 year: 2007 ident: 10.1016/j.ultras.2012.08.012_b0020 article-title: Multyfrequency microwave-induced thermal acoustic imaging for breast cancer detection publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 35 start-page: 5758 issue: 12 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0015 article-title: Prospects of photoacoustic tomography publication-title: Med. Phys. doi: 10.1118/1.3013698 – volume: 53 start-page: 4777 issue: 17 year: 2008 ident: 10.1016/j.ultras.2012.08.012_b0150 article-title: Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/17/021 |
| SSID | ssj0014813 |
| Score | 2.27718 |
| Snippet | ► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The... In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1046 |
| SubjectTerms | Acoustic signal processing Acoustics Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Biological and medical sciences Compressed sensing Computer science; control theory; systems Computer Simulation energy Equipment Design Exact sciences and technology Fundamental areas of phenomenology (including applications) image analysis Image Processing, Computer-Assisted - methods Image reconstruction Imaging in vitro studies Investigative techniques, diagnostic techniques (general aspects) Lasers, Solid-State Mathematical analysis Mathematical models Medical sciences Miscellaneous. Technology Pattern recognition. Digital image processing. Computational geometry Phantoms, Imaging Photoacoustic imaging Physics Polyamide-imides Reconstruction Signal-To-Noise Ratio Television Theoretical computing Total variation Transducers Ultrasonic investigative techniques Ultrasonography - methods |
| Title | Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction |
| URI | https://dx.doi.org/10.1016/j.ultras.2012.08.012 https://www.ncbi.nlm.nih.gov/pubmed/22986153 https://www.proquest.com/docview/1114704220 https://www.proquest.com/docview/1221882933 https://www.proquest.com/docview/1733523328 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUgghKC8lsfKSFzdxo_EzrGqqBYQPbXS3iLHsdtF281qN3DktzPjJAs9tJU4JrIVx2PPfGN_MwPwyRcuc0Zo3ti8QAclal6XVnBbiMKXPlNlinr_flbMLvTXeT7fg5MxFoZolYPu73V60tbDm6NhNo_WiwXF-CKYkHouiBZU5BRorrWhKgaHv3c0D0T7YrhlFpxaj-FzieP1c9ltHCXtphNBe5gJeZt5erJ2W5y02Fe7uB2OJrN0-gyeDniSHfdDfg57YXUAj__JMngADxPL029fgD9vEWuzX-gfJ4EwsmENu9wk3lfHmj63E3PLy3az6K6uGUJahjpnsw2c7hDY-qrtWlSiqQYYW1yjNmLJp97loX0JF6efz09mfKiywL3ObcedqZXyogjGBtSPDg166aKqY9E4kwVtosdNrozzWS1tRDc2NjIzhfFaB5SnegX7q3YV3gDLjfRlY4iG5bSPTV3KqEIMmk67mjKbgBont_JDCnKqhLGsRq7Zj6oXSUUiqahAppAT4Lte6z4Fxz3tzSi36sZSqtBK3NNzekPMu89JRL3a5HoCH0e5V7gN6W7FrQLOOTlS2lA-teyONhLxlEV8pe5oYygITilpJ_C6X1h_RyFLS_j87X__4Dt4RE89Hec97OPSCB8QVHX1NO2aKTw4_vJtdvYHEewiWQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQIISiv5VGMxDVtYju2c0QV1QJtT1tpb5Hj2O1W281qN-2R386Mkyz00FbimtiK47FnvrG_mQH46pRNrc5kUptcoYMSZFIVJkuMypQrXCqKGPV-fKLGp_LnNJ9uwcEQC0O0yl73dzo9auv-yX4_m_vL2YxifBFMcDnNiBak8vwBPJQ51-SB7f3e8DwQ7mf9NXOWUPMhfi6SvK7m7cpS1m46EjR7acZvs0_PlnaNsxa6che349Folw5fwPMeULJv3ZhfwpZf7MDTf9IM7sCjSPN061fgJg2CbXaNDnKUCCMjVrOzVSR-tazukjsxOz9rVrP2_JIhpmWodFZrn9AlAlueN22DWjQWAWOzS1RHLDrVm0S0r-H08PvkYJz0ZRYSJ3PTJlZXQrhMeW08KkiLFr2wQVRB1VanXurgcJcLbV1acRPQjw01T7XSTkqPAhVvYHvRLPw7YLnmrqg18bCsdKGuCh6ED17ScVddpCMQw-SWrs9BTqUw5uVANrsoO5GUJJKSKmRmfATJpteyy8FxT3s9yK28sZZKNBP39Ny9IebN5zjCXqlzOYIvg9xL3Id0uWIXHuecPCmpKaFaekcbjoDKIMASd7TRFAUnBDcjeNstrL-j4IUhgP7-v3_wMzweT46PyqMfJ78-wBN603FzPsI2LhP_CRFWW-3GHfQHj6kj7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+variation+based+gradient+descent+algorithm+for+sparse-view+photoacoustic+image+reconstruction&rft.jtitle=Ultrasonics&rft.au=Zhang%2C+Yan&rft.au=Wang%2C+Yuanyuan&rft.au=Zhang%2C+Chen&rft.date=2012-12-01&rft.eissn=1874-9968&rft.volume=52&rft.issue=8&rft.spage=1046&rft_id=info:doi/10.1016%2Fj.ultras.2012.08.012&rft_id=info%3Apmid%2F22986153&rft.externalDocID=22986153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |