Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction

► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable fo...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 52; no. 8; pp. 1046 - 1055
Main Authors Zhang, Yan, Wang, Yuanyuan, Zhang, Chen
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0041-624X
1874-9968
1874-9968
DOI10.1016/j.ultras.2012.08.012

Cover

Abstract ► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable for PAI under sparse-view condition. In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.
AbstractList In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.
► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The reconstruction speed is enhanced with a equivalent reconstruction quality as existed methods. ► The proposed algorithm is stable and suitable for PAI under sparse-view condition. In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.
In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.
Author Wang, Yuanyuan
Zhang, Chen
Zhang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
– sequence: 2
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
  email: yywang@fudan.edu.cn
– sequence: 3
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26564754$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22986153$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9rFEEUxBuJmE30G4jMRfAyY_-b7h4PQggmCgEvEbw1b3rebHqZnV67eyJ-e3vdDYIH91SXXxWPV3VBzuYwIyGvGW0YZer9plmmHCE1nDLeUNMUeUZWzGhZd50yZ2RFqWS14vL7OblIaUMpk4aJF-Sc884o1ooVcfchw1Q9QvSQfZirHhIO1TrC4HHO1YDJ7RWmdYg-P2yrMcQq7SAmrB89_qx2DyEHcGFJ2bvKb2GNVUQX5pTj4vaZL8nzEaaEr456Sb7dfLq__lzffb39cn11VzvZmlyD7oVwTKE2SCkF1vIORtGPagBNUerRSWOEBkd7bkbK9ThwqpV2UqJynbgk7w65uxh-LJiy3fpy_TTBjOU8y7QQLReCm9Mo58wY3glxGmVMaio5pwV9c0SXfouD3cXyjvjLPr27AG-PACQH0xhhdj795VSrpG5l4T4cOBdDShFH63z-009p3E-WUbvfgN3YwwbsfgOWGlukmOU_5qf8E7aPBxuWikqz0SZXJuBw8KXObIfg_x_wG0KJzcI
CODEN ULTRA3
CitedBy_id crossref_primary_10_1155_2014_329350
crossref_primary_10_3389_fphy_2022_1028258
crossref_primary_10_1109_JSEN_2021_3089479
crossref_primary_10_1364_BOE_415182
crossref_primary_10_3390_app7050505
crossref_primary_10_1016_j_pacs_2024_100618
crossref_primary_10_1364_BOE_469460
crossref_primary_10_1109_ACCESS_2019_2930650
crossref_primary_10_1364_OE_486846
crossref_primary_10_1016_j_neunet_2024_106515
crossref_primary_10_1002_jbio_202400128
crossref_primary_10_1080_09500340_2024_2367036
crossref_primary_10_1186_1475_925X_13_117
crossref_primary_10_1088_1674_1056_24_2_024304
crossref_primary_10_1016_j_pacs_2018_09_001
crossref_primary_10_1109_TMI_2020_2996240
crossref_primary_10_1155_2021_6622255
crossref_primary_10_1364_AO_487957
crossref_primary_10_1016_j_dsp_2024_104515
crossref_primary_10_1186_s12938_018_0537_x
crossref_primary_10_1016_j_pacs_2024_100607
crossref_primary_10_1007_s42967_024_00468_w
crossref_primary_10_1088_0266_5611_32_4_045005
crossref_primary_10_1088_1361_6560_aaaa4a
crossref_primary_10_1364_BOE_10_004803
crossref_primary_10_1002_mp_12635
crossref_primary_10_1016_j_cmpb_2021_106562
crossref_primary_10_1016_j_bspc_2015_12_003
crossref_primary_10_1016_j_pacs_2020_100197
crossref_primary_10_1117_1_JBO_24_12_121907
crossref_primary_10_1137_18M1170066
crossref_primary_10_1088_1361_6560_aa7e5a
crossref_primary_10_1364_BOE_9_002544
crossref_primary_10_1364_BOE_9_004569
crossref_primary_10_1088_1361_6560_61_24_8908
crossref_primary_10_2174_1573405618666220920114813
crossref_primary_10_1186_s12938_017_0366_3
crossref_primary_10_3390_app8091570
crossref_primary_10_1007_s11633_018_1159_2
crossref_primary_10_1016_j_pacs_2013_07_003
Cites_doi 10.1109/TMI.2004.843199
10.1109/TIT.2006.871582
10.1109/TIT.2005.862083
10.1109/TMI.2008.2007825
10.1117/1.3381187
10.1118/1.3533669
10.1063/1.2195024
10.1364/OL.35.000270
10.1016/0167-2789(92)90242-F
10.1117/12.761325
10.1364/BOE.2.002649
10.1088/0031-9155/54/19/R01
10.1088/0031-9155/54/4/014
10.1121/1.1501898
10.1364/JOSAA.25.002436
10.1038/nbt839
10.1364/JOSAA.25.001772
10.1118/1.1493778
10.1118/1.2911157
10.1103/PhysRevE.71.016706
10.1117/1.3302807
10.1118/1.597429
10.1109/TMI.2002.801171
10.1109/TBME.2003.816081
10.1109/TMI.2002.801172
10.1109/TMI.2002.801176
10.1109/JPHOT.2010.2042801
10.1364/OL.29.002506
10.1118/1.3013698
10.1088/0031-9155/53/17/021
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SP
7U5
8FD
H8D
L7M
7S9
L.6
DOI 10.1016/j.ultras.2012.08.012
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1874-9968
EndPage 1055
ExternalDocumentID 22986153
26564754
10_1016_j_ultras_2012_08_012
S0041624X12001655
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SP
7U5
8FD
H8D
L7M
7S9
L.6
ID FETCH-LOGICAL-c458t-a7b33c16e78e000a1529af3bf6da70e47fc48837ac0b28f027fd20767c44e6c93
IEDL.DBID .~1
ISSN 0041-624X
1874-9968
IngestDate Sat Sep 27 23:20:24 EDT 2025
Sun Sep 28 00:26:17 EDT 2025
Sun Sep 28 07:19:39 EDT 2025
Thu Apr 03 06:59:53 EDT 2025
Mon Jul 21 09:14:12 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Wed Oct 01 01:43:31 EDT 2025
Fri Feb 23 02:27:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Total variation
Photoacoustic imaging
Image reconstruction
Compressed sensing
compressed sensing
Image processing
Updating
Modeling
Gradient descent
Model matching
Imaging
Sparse representation
Robustness
Acoustic image
Signal detection
Numerical algorithm
Gradient
Energy distribution
Digitizing
Experimental study
Real time
In vitro
Search algorithm
Inverse problem
Television
Objective function
Added value
Signal to noise ratio
Photoacoustic effect
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-a7b33c16e78e000a1529af3bf6da70e47fc48837ac0b28f027fd20767c44e6c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22986153
PQID 1114704220
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1733523328
proquest_miscellaneous_1221882933
proquest_miscellaneous_1114704220
pubmed_primary_22986153
pascalfrancis_primary_26564754
crossref_citationtrail_10_1016_j_ultras_2012_08_012
crossref_primary_10_1016_j_ultras_2012_08_012
elsevier_sciencedirect_doi_10_1016_j_ultras_2012_08_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Xu, Wang (b0010) 2006; 77
Paltauf, Viator, Prahl, Jacques (b0090) 2002; 112
Xu, Wang (b0050) 2002; 21
Wang, Sidky, Anastasioa, Oraevsky, Pan (b0160) 2011; 7899
Zhang, Li, Wang (b0085) 2010; 2
Rudin, Osher, Fatemi (b0135) 1992; 60
Modgil, La Rivière (b0100) 2008; 6856
LaRoque, Sidky, Pan (b0145) 2008; 25
Xu, Wang (b0070) 2002; 29
Provost, Lesage (b0120) 2009; 28
Yao, Jiang (b0155) 2011; 2
Xu, Xu, Wang (b0065) 2002; 21
Liao, Li, Li (b0095) 2004; 29
Sidky, Pan (b0150) 2008; 53
Guo, Li, Song, Wang (b0125) 2010; 15
Pramanik, Ku, Li, Wang (b0025) 2008; 35
Xu, Wang (b0075) 2005; 71
Xu, Feng, Wang (b0060) 2002; 21
Zhang, Wang (b0080) 2008; 25
Candes, Romberg, Tao (b0130) 2006; 52
Zhang, Laufer, Pedley, Beard (b0035) 2009; 54
Donoho (b0115) 2006; 52
Gamelin, Aguirre, Zhu (b0110) 2011; 38
de la Zerda, Paulus, Teed, Bodapati, Dollberg, Khuri-Yakub, Blumenkranz, Moshfeghi, Gambhir (b0045) 2010; 35
Li, Aguirre, Gamelin, Maurudis, Zhu, Wang (b0105) 2010; 15
Li, Wang (b0005) 2009; 54
Wang (b0015) 2008; 35
Wang, Pang, Ku, Xie, Stoica, Wang (b0040) 2003; 21
Guo, Li, Zmuda, Sheplak (b0020) 2007; 54
Niederhauser, Jaeger, Lemor, Weber, Frenz (b0030) 2005; 24
Sidky, Kao, Pan (b0140) 2006; 14
Kruger, Liu, Fang, Appledorn (b0165) 1995; 22
Xu, Xu, Wang (b0055) 2003; 50
Rudin (10.1016/j.ultras.2012.08.012_b0135) 1992; 60
Liao (10.1016/j.ultras.2012.08.012_b0095) 2004; 29
Provost (10.1016/j.ultras.2012.08.012_b0120) 2009; 28
Niederhauser (10.1016/j.ultras.2012.08.012_b0030) 2005; 24
Guo (10.1016/j.ultras.2012.08.012_b0020) 2007; 54
Gamelin (10.1016/j.ultras.2012.08.012_b0110) 2011; 38
Zhang (10.1016/j.ultras.2012.08.012_b0085) 2010; 2
Xu (10.1016/j.ultras.2012.08.012_b0050) 2002; 21
Sidky (10.1016/j.ultras.2012.08.012_b0140) 2006; 14
Xu (10.1016/j.ultras.2012.08.012_b0075) 2005; 71
Donoho (10.1016/j.ultras.2012.08.012_b0115) 2006; 52
Wang (10.1016/j.ultras.2012.08.012_b0160) 2011; 7899
Paltauf (10.1016/j.ultras.2012.08.012_b0090) 2002; 112
Kruger (10.1016/j.ultras.2012.08.012_b0165) 1995; 22
Xu (10.1016/j.ultras.2012.08.012_b0070) 2002; 29
Pramanik (10.1016/j.ultras.2012.08.012_b0025) 2008; 35
Xu (10.1016/j.ultras.2012.08.012_b0055) 2003; 50
Zhang (10.1016/j.ultras.2012.08.012_b0080) 2008; 25
LaRoque (10.1016/j.ultras.2012.08.012_b0145) 2008; 25
Guo (10.1016/j.ultras.2012.08.012_b0125) 2010; 15
Xu (10.1016/j.ultras.2012.08.012_b0060) 2002; 21
Wang (10.1016/j.ultras.2012.08.012_b0015) 2008; 35
Candes (10.1016/j.ultras.2012.08.012_b0130) 2006; 52
Li (10.1016/j.ultras.2012.08.012_b0005) 2009; 54
Zhang (10.1016/j.ultras.2012.08.012_b0035) 2009; 54
Xu (10.1016/j.ultras.2012.08.012_b0010) 2006; 77
Sidky (10.1016/j.ultras.2012.08.012_b0150) 2008; 53
Xu (10.1016/j.ultras.2012.08.012_b0065) 2002; 21
de la Zerda (10.1016/j.ultras.2012.08.012_b0045) 2010; 35
Wang (10.1016/j.ultras.2012.08.012_b0040) 2003; 21
Modgil (10.1016/j.ultras.2012.08.012_b0100) 2008; 6856
Li (10.1016/j.ultras.2012.08.012_b0105) 2010; 15
Yao (10.1016/j.ultras.2012.08.012_b0155) 2011; 2
References_xml – volume: 24
  start-page: 436
  year: 2005
  end-page: 440
  ident: b0030
  article-title: Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo
  publication-title: IEEE Trans. Med. Imag.
– volume: 54
  start-page: 2000
  year: 2007
  end-page: 2010
  ident: b0020
  article-title: Multyfrequency microwave-induced thermal acoustic imaging for breast cancer detection
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 21
  start-page: 814
  year: 2002
  end-page: 822
  ident: b0050
  article-title: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry
  publication-title: IEEE Trans. Med. Imag.
– volume: 6856
  year: 2008
  ident: b0100
  article-title: Implementation and comparison of reconstruction algorithms for 2D optoacoustic tomography using a linear array
  publication-title: Proc. SPIE
– volume: 50
  start-page: 1086
  year: 2003
  end-page: 1099
  ident: b0055
  article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 1661
  year: 2002
  end-page: 1669
  ident: b0070
  article-title: Pulsed-microwave-induced thermoacoustic tomography: filtered back-projection in a circular measurement configuration
  publication-title: Med. Phys.
– volume: 54
  start-page: 1035
  year: 2009
  end-page: 1046
  ident: b0035
  article-title: In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 1772
  year: 2008
  end-page: 1782
  ident: b0145
  article-title: Accurate image reconstruction from few-view and limited-angle data in diffraction tomography
  publication-title: J. Opt. Soc. Am. A
– volume: 71
  year: 2005
  ident: b0075
  article-title: Universal back-projection algorithm for photoacoustic computed tomography
  publication-title: Phys. Rev. E
– volume: 35
  start-page: 2218
  year: 2008
  end-page: 2223
  ident: b0025
  article-title: Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography
  publication-title: Med. Phys.
– volume: 112
  start-page: 1536
  year: 2002
  end-page: 1544
  ident: b0090
  article-title: Iterative reconstruction algorithm for optoacoustic imaging
  publication-title: J. Opt. Soc. Am. A
– volume: 77
  year: 2006
  ident: b0010
  article-title: Photoacoustic imaging in biomedicine
  publication-title: Rev. Sci. Instrum.
– volume: 21
  start-page: 803
  year: 2003
  end-page: 806
  ident: b0040
  article-title: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain
  publication-title: Nat. Biotechnol.
– volume: 29
  start-page: 2506
  year: 2004
  end-page: 2508
  ident: b0095
  article-title: Optoacoustic imaging with synthetic aperture focusing and coherence weighting
  publication-title: Opt. Lett.
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  ident: b0135
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0115
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 21
  start-page: 829
  year: 2002
  end-page: 833
  ident: b0065
  article-title: Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography-II: Cylindrical Geometry
  publication-title: IEEE Trans. Med. Imag.
– volume: 21
  start-page: 823
  year: 2002
  end-page: 828
  ident: b0060
  article-title: Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry
  publication-title: IEEE Trans. Med. Imag.
– volume: 35
  start-page: 5758
  year: 2008
  end-page: 5767
  ident: b0015
  article-title: Prospects of photoacoustic tomography
  publication-title: Med. Phys.
– volume: 14
  start-page: 119
  year: 2006
  end-page: 139
  ident: b0140
  article-title: Accurate image reconstruction from few-views and limited-angle data indivergent-beam CT
  publication-title: J. X-Ray Sci. Technol.
– volume: 25
  start-page: 2436
  year: 2008
  end-page: 2443
  ident: b0080
  article-title: Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study
  publication-title: J. Opt. Soc. Am. A
– volume: 15
  year: 2010
  ident: b0125
  article-title: Compressed sensing in photoacoustic tomography in vivo
  publication-title: J. Biomed. Opt.
– volume: 53
  start-page: 4777
  year: 2008
  end-page: 4807
  ident: b0150
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization
  publication-title: Phys. Med. Biol.
– volume: 22
  start-page: 1605
  year: 1995
  end-page: 1609
  ident: b0165
  article-title: Photoacoustic ultrasound (PAUS)-reconstruction tomography
  publication-title: Med. Phys.
– volume: 2
  start-page: 2649
  year: 2011
  end-page: 2654
  ident: b0155
  article-title: Photoacoustic image reconstruction from few-detector and limited-angle data
  publication-title: Biomed. Opt. Express
– volume: 28
  start-page: 585
  year: 2009
  end-page: 594
  ident: b0120
  article-title: The application of compressed sensing for photo-acoustic tomography
  publication-title: IEEE Trans. Med. Imag.
– volume: 2
  start-page: 57
  year: 2010
  end-page: 66
  ident: b0085
  article-title: Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry experimental validation
  publication-title: IEEE Photonics J.
– volume: 54
  start-page: R59
  year: 2009
  end-page: R97
  ident: b0005
  article-title: Photoacoustic tomography and sensing in biomedicine
  publication-title: Phys. Med. Biol.
– volume: 38
  start-page: 1503
  year: 2011
  end-page: 1818
  ident: b0110
  article-title: Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique
  publication-title: Med. Phys.
– volume: 15
  year: 2010
  ident: b0105
  article-title: Real-time photoacoustic tomography of cortical hemodynamics in small animals
  publication-title: J. Biomed. Opt.
– volume: 35
  start-page: 270
  year: 2010
  end-page: 272
  ident: b0045
  article-title: Photoacoustic ocular imaging
  publication-title: Opt. Lett.
– volume: 7899
  year: 2011
  ident: b0160
  article-title: Limited data image reconstruction in optoacoustic tomography by constrained, total variation minimization
  publication-title: Proc. SPIE
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: b0130
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 24
  start-page: 436
  issue: 4
  year: 2005
  ident: 10.1016/j.ultras.2012.08.012_b0030
  article-title: Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.843199
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.ultras.2012.08.012_b0115
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 10.1016/j.ultras.2012.08.012_b0130
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 28
  start-page: 585
  issue: 4
  year: 2009
  ident: 10.1016/j.ultras.2012.08.012_b0120
  article-title: The application of compressed sensing for photo-acoustic tomography
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2008.2007825
– volume: 15
  issue: 2
  year: 2010
  ident: 10.1016/j.ultras.2012.08.012_b0125
  article-title: Compressed sensing in photoacoustic tomography in vivo
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3381187
– volume: 38
  start-page: 1503
  issue: 3
  year: 2011
  ident: 10.1016/j.ultras.2012.08.012_b0110
  article-title: Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique
  publication-title: Med. Phys.
  doi: 10.1118/1.3533669
– volume: 77
  issue: 4
  year: 2006
  ident: 10.1016/j.ultras.2012.08.012_b0010
  article-title: Photoacoustic imaging in biomedicine
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2195024
– volume: 35
  start-page: 270
  issue: 3
  year: 2010
  ident: 10.1016/j.ultras.2012.08.012_b0045
  article-title: Photoacoustic ocular imaging
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.000270
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 10.1016/j.ultras.2012.08.012_b0135
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 6856
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0100
  article-title: Implementation and comparison of reconstruction algorithms for 2D optoacoustic tomography using a linear array
  publication-title: Proc. SPIE
  doi: 10.1117/12.761325
– volume: 2
  start-page: 2649
  issue: 9
  year: 2011
  ident: 10.1016/j.ultras.2012.08.012_b0155
  article-title: Photoacoustic image reconstruction from few-detector and limited-angle data
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.002649
– volume: 54
  start-page: R59
  issue: 19
  year: 2009
  ident: 10.1016/j.ultras.2012.08.012_b0005
  article-title: Photoacoustic tomography and sensing in biomedicine
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/19/R01
– volume: 54
  start-page: 1035
  issue: 4
  year: 2009
  ident: 10.1016/j.ultras.2012.08.012_b0035
  article-title: In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/4/014
– volume: 112
  start-page: 1536
  issue: 4
  year: 2002
  ident: 10.1016/j.ultras.2012.08.012_b0090
  article-title: Iterative reconstruction algorithm for optoacoustic imaging
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1121/1.1501898
– volume: 25
  start-page: 2436
  issue: 10
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0080
  article-title: Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.25.002436
– volume: 21
  start-page: 803
  issue: 7
  year: 2003
  ident: 10.1016/j.ultras.2012.08.012_b0040
  article-title: Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt839
– volume: 14
  start-page: 119
  issue: 2
  year: 2006
  ident: 10.1016/j.ultras.2012.08.012_b0140
  article-title: Accurate image reconstruction from few-views and limited-angle data indivergent-beam CT
  publication-title: J. X-Ray Sci. Technol.
– volume: 25
  start-page: 1772
  issue: 7
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0145
  article-title: Accurate image reconstruction from few-view and limited-angle data in diffraction tomography
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.25.001772
– volume: 29
  start-page: 1661
  issue: 8
  year: 2002
  ident: 10.1016/j.ultras.2012.08.012_b0070
  article-title: Pulsed-microwave-induced thermoacoustic tomography: filtered back-projection in a circular measurement configuration
  publication-title: Med. Phys.
  doi: 10.1118/1.1493778
– volume: 35
  start-page: 2218
  issue: 6
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0025
  article-title: Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography
  publication-title: Med. Phys.
  doi: 10.1118/1.2911157
– volume: 71
  issue: 1
  year: 2005
  ident: 10.1016/j.ultras.2012.08.012_b0075
  article-title: Universal back-projection algorithm for photoacoustic computed tomography
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.016706
– volume: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.ultras.2012.08.012_b0105
  article-title: Real-time photoacoustic tomography of cortical hemodynamics in small animals
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3302807
– volume: 7899
  year: 2011
  ident: 10.1016/j.ultras.2012.08.012_b0160
  article-title: Limited data image reconstruction in optoacoustic tomography by constrained, total variation minimization
  publication-title: Proc. SPIE
– volume: 22
  start-page: 1605
  issue: 10
  year: 1995
  ident: 10.1016/j.ultras.2012.08.012_b0165
  article-title: Photoacoustic ultrasound (PAUS)-reconstruction tomography
  publication-title: Med. Phys.
  doi: 10.1118/1.597429
– volume: 21
  start-page: 829
  issue: 7
  year: 2002
  ident: 10.1016/j.ultras.2012.08.012_b0065
  article-title: Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography-II: Cylindrical Geometry
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2002.801171
– volume: 50
  start-page: 1086
  issue: 9
  year: 2003
  ident: 10.1016/j.ultras.2012.08.012_b0055
  article-title: Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.816081
– volume: 21
  start-page: 823
  issue: 7
  year: 2002
  ident: 10.1016/j.ultras.2012.08.012_b0060
  article-title: Exact frequency-domain reconstruction for thermoacoustic tomography-I: Planar geometry
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2002.801172
– volume: 21
  start-page: 814
  issue: 7
  year: 2002
  ident: 10.1016/j.ultras.2012.08.012_b0050
  article-title: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2002.801176
– volume: 2
  start-page: 57
  issue: 1
  year: 2010
  ident: 10.1016/j.ultras.2012.08.012_b0085
  article-title: Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry experimental validation
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2010.2042801
– volume: 29
  start-page: 2506
  issue: 21
  year: 2004
  ident: 10.1016/j.ultras.2012.08.012_b0095
  article-title: Optoacoustic imaging with synthetic aperture focusing and coherence weighting
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.002506
– volume: 54
  start-page: 2000
  issue: 11
  year: 2007
  ident: 10.1016/j.ultras.2012.08.012_b0020
  article-title: Multyfrequency microwave-induced thermal acoustic imaging for breast cancer detection
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 35
  start-page: 5758
  issue: 12
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0015
  article-title: Prospects of photoacoustic tomography
  publication-title: Med. Phys.
  doi: 10.1118/1.3013698
– volume: 53
  start-page: 4777
  issue: 17
  year: 2008
  ident: 10.1016/j.ultras.2012.08.012_b0150
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
SSID ssj0014813
Score 2.27718
Snippet ► We proposed a new image reconstruction algorithm for photoacoustic imaging. ► The total variation method is involved into the image reconstruction. ► The...
In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms Acoustic signal processing
Acoustics
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Biological and medical sciences
Compressed sensing
Computer science; control theory; systems
Computer Simulation
energy
Equipment Design
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
image analysis
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging
in vitro studies
Investigative techniques, diagnostic techniques (general aspects)
Lasers, Solid-State
Mathematical analysis
Mathematical models
Medical sciences
Miscellaneous. Technology
Pattern recognition. Digital image processing. Computational geometry
Phantoms, Imaging
Photoacoustic imaging
Physics
Polyamide-imides
Reconstruction
Signal-To-Noise Ratio
Television
Theoretical computing
Total variation
Transducers
Ultrasonic investigative techniques
Ultrasonography - methods
Title Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction
URI https://dx.doi.org/10.1016/j.ultras.2012.08.012
https://www.ncbi.nlm.nih.gov/pubmed/22986153
https://www.proquest.com/docview/1114704220
https://www.proquest.com/docview/1221882933
https://www.proquest.com/docview/1733523328
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUgghKC8lsfKSFzdxo_EzrGqqBYQPbXS3iLHsdtF281qN3DktzPjJAs9tJU4JrIVx2PPfGN_MwPwyRcuc0Zo3ti8QAclal6XVnBbiMKXPlNlinr_flbMLvTXeT7fg5MxFoZolYPu73V60tbDm6NhNo_WiwXF-CKYkHouiBZU5BRorrWhKgaHv3c0D0T7YrhlFpxaj-FzieP1c9ltHCXtphNBe5gJeZt5erJ2W5y02Fe7uB2OJrN0-gyeDniSHfdDfg57YXUAj__JMngADxPL029fgD9vEWuzX-gfJ4EwsmENu9wk3lfHmj63E3PLy3az6K6uGUJahjpnsw2c7hDY-qrtWlSiqQYYW1yjNmLJp97loX0JF6efz09mfKiywL3ObcedqZXyogjGBtSPDg166aKqY9E4kwVtosdNrozzWS1tRDc2NjIzhfFaB5SnegX7q3YV3gDLjfRlY4iG5bSPTV3KqEIMmk67mjKbgBont_JDCnKqhLGsRq7Zj6oXSUUiqahAppAT4Lte6z4Fxz3tzSi36sZSqtBK3NNzekPMu89JRL3a5HoCH0e5V7gN6W7FrQLOOTlS2lA-teyONhLxlEV8pe5oYygITilpJ_C6X1h_RyFLS_j87X__4Dt4RE89Hec97OPSCB8QVHX1NO2aKTw4_vJtdvYHEewiWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQIISiv5VGMxDVtYju2c0QV1QJtT1tpb5Hj2O1W281qN-2R386Mkyz00FbimtiK47FnvrG_mQH46pRNrc5kUptcoYMSZFIVJkuMypQrXCqKGPV-fKLGp_LnNJ9uwcEQC0O0yl73dzo9auv-yX4_m_vL2YxifBFMcDnNiBak8vwBPJQ51-SB7f3e8DwQ7mf9NXOWUPMhfi6SvK7m7cpS1m46EjR7acZvs0_PlnaNsxa6che349Folw5fwPMeULJv3ZhfwpZf7MDTf9IM7sCjSPN061fgJg2CbXaNDnKUCCMjVrOzVSR-tazukjsxOz9rVrP2_JIhpmWodFZrn9AlAlueN22DWjQWAWOzS1RHLDrVm0S0r-H08PvkYJz0ZRYSJ3PTJlZXQrhMeW08KkiLFr2wQVRB1VanXurgcJcLbV1acRPQjw01T7XSTkqPAhVvYHvRLPw7YLnmrqg18bCsdKGuCh6ED17ScVddpCMQw-SWrs9BTqUw5uVANrsoO5GUJJKSKmRmfATJpteyy8FxT3s9yK28sZZKNBP39Ny9IebN5zjCXqlzOYIvg9xL3Id0uWIXHuecPCmpKaFaekcbjoDKIMASd7TRFAUnBDcjeNstrL-j4IUhgP7-v3_wMzweT46PyqMfJ78-wBN603FzPsI2LhP_CRFWW-3GHfQHj6kj7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+variation+based+gradient+descent+algorithm+for+sparse-view+photoacoustic+image+reconstruction&rft.jtitle=Ultrasonics&rft.au=Zhang%2C+Yan&rft.au=Wang%2C+Yuanyuan&rft.au=Zhang%2C+Chen&rft.date=2012-12-01&rft.eissn=1874-9968&rft.volume=52&rft.issue=8&rft.spage=1046&rft_id=info:doi/10.1016%2Fj.ultras.2012.08.012&rft_id=info%3Apmid%2F22986153&rft.externalDocID=22986153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon