UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises

Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 21; p. 8862
Main Authors Aguilar-Ortega, Rafael, Berral-Soler, Rafael, Jiménez-Velasco, Isabel, Romero-Ramírez, Francisco J., García-Marín, Manuel, Zafra-Palma, Jorge, Muñoz-Salinas, Rafael, Medina-Carnicer, Rafael, Marín-Jiménez, Manuel J.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.10.2023
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23218862

Cover

Abstract Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient’s mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject’s position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.
AbstractList Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors' ability to monitor patients' recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient's mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject's position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors' ability to monitor patients' recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient's mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject's position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.
Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient’s mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject’s position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.
Audience Academic
Author García-Marín, Manuel
Aguilar-Ortega, Rafael
Romero-Ramírez, Francisco J.
Zafra-Palma, Jorge
Medina-Carnicer, Rafael
Marín-Jiménez, Manuel J.
Berral-Soler, Rafael
Muñoz-Salinas, Rafael
Jiménez-Velasco, Isabel
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0001-7866-9925
  surname: Aguilar-Ortega
  fullname: Aguilar-Ortega, Rafael
– sequence: 2
  givenname: Rafael
  orcidid: 0000-0002-9105-1481
  surname: Berral-Soler
  fullname: Berral-Soler, Rafael
– sequence: 3
  givenname: Isabel
  orcidid: 0000-0003-1120-2874
  surname: Jiménez-Velasco
  fullname: Jiménez-Velasco, Isabel
– sequence: 4
  givenname: Francisco J.
  orcidid: 0000-0002-9572-0128
  surname: Romero-Ramírez
  fullname: Romero-Ramírez, Francisco J.
– sequence: 5
  givenname: Manuel
  orcidid: 0000-0002-5449-4961
  surname: García-Marín
  fullname: García-Marín, Manuel
– sequence: 6
  givenname: Jorge
  orcidid: 0000-0003-1735-8837
  surname: Zafra-Palma
  fullname: Zafra-Palma, Jorge
– sequence: 7
  givenname: Rafael
  orcidid: 0000-0002-8773-8571
  surname: Muñoz-Salinas
  fullname: Muñoz-Salinas, Rafael
– sequence: 8
  givenname: Rafael
  orcidid: 0000-0003-4481-0614
  surname: Medina-Carnicer
  fullname: Medina-Carnicer, Rafael
– sequence: 9
  givenname: Manuel J.
  orcidid: 0000-0001-9294-6714
  surname: Marín-Jiménez
  fullname: Marín-Jiménez, Manuel J.
BookMark eNp1kk1P3DAQhqOKSgXaQ_-BpV5apIX4I4ndG9ouBYkW1MLZGjtj1qtsvI0dwf77ellEKQL54NH4mdczr71X7PShx6L4SMtDzlV5FBlnVMqavSl2qWBiIhkrd57E74q9GBdlyTjncre4u55ekMv5OnoLHfmFczC-8wmSD_1X8hNvyTdIEDER6FvyO43tmgRHTscl9OQyRCSzmPzynic_MM1DG0kOX5EkszscrI8Y3xdvHXQRPzzs-8X1yexqejo5v_h-Nj0-n1hRyTQBbsBxUK60QjXUOGFqIRrMp0wASseFoBXjlrfGVbxV6IywjOdxReOU4PvF2Va3DbDQqyH3Oqx1AK_vE2G40TAkbzvUpubYuIYq0yqBpjJVTbk0VJStrKmos9bBVmvsV7C-ha57FKSl3vivH_3P8OctvBrCnxFj0ksfLXYd9BjGqJmUSinRVDKjn56hizAOfbZlQ0neSFrRf9QN5GZ970IawG5E9XHTsIrnS6tMHb5A5dXi0tv8WZzP-f8KjrYFdggxDui0fXisXOi7Fyf78qzidRf-Aspky8k
CitedBy_id crossref_primary_10_1371_journal_pone_0313707
Cites_doi 10.1007/978-3-031-19818-2
10.1186/1743-0003-11-3
10.1007/s00530-021-00815-4
10.1109/3DV53792.2021.00068
10.1016/j.imavis.2017.01.010
10.1109/CVPR.2018.00744
10.3390/data6050046
10.1109/EMBC48229.2022.9871106
10.1109/CVPR46437.2021.00339
10.3390/jcm10081611
10.1109/CVPR.2019.00794
10.1109/TMM.2022.3141231
10.3390/s23031400
10.3390/s23146449
10.3390/s22051729
10.4172/2329-9096.1000214
10.1080/10798587.2015.1095419
10.3390/s23010363
10.1080/01621459.1937.10503522
10.1037/0033-2909.84.5.1050
10.1109/ICCV.2017.256
10.1145/3154862.3154925
10.1038/s41467-020-17807-z
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/s23218862
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physical Therapy
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b63e7f719bd94eb5b56138b140d86146
10.3390/s23218862
A772536235
10_3390_s23218862
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c458t-a3baf3a9f0c4971bf4b6447ec4524ae8f3441523c3dbf53d9efb4c2342447f943
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 14:49:49 EDT 2025
Sun Oct 26 04:13:32 EDT 2025
Fri Sep 05 09:17:32 EDT 2025
Tue Oct 07 07:26:37 EDT 2025
Mon Oct 20 23:10:36 EDT 2025
Mon Oct 20 17:15:56 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Thu Oct 16 04:34:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-a3baf3a9f0c4971bf4b6447ec4524ae8f3441523c3dbf53d9efb4c2342447f943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-9572-0128
0000-0003-1735-8837
0000-0002-9105-1481
0000-0002-8773-8571
0000-0002-5449-4961
0000-0003-4481-0614
0000-0001-7866-9925
0000-0003-1120-2874
0000-0001-9294-6714
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/21/8862/pdf?version=1699580827
PQID 2888378151
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b63e7f719bd94eb5b56138b140d86146
unpaywall_primary_10_3390_s23218862
proquest_miscellaneous_2889994758
proquest_journals_2888378151
gale_infotracmisc_A772536235
gale_infotracacademiconefile_A772536235
crossref_citationtrail_10_3390_s23218862
crossref_primary_10_3390_s23218862
PublicationCentury 2000
PublicationDate 2023-10-31
PublicationDateYYYYMMDD 2023-10-31
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-31
  day: 31
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Maciejasz (ref_3) 2014; 11
ref_14
ref_13
Loper (ref_24) 2015; 34
Friedman (ref_25) 1937; 32
ref_11
ref_10
ref_30
Herath (ref_6) 2017; 60
ref_19
(ref_27) 2006; 7
ref_18
Keselman (ref_28) 1977; 84
ref_17
ref_16
ref_15
Debnath (ref_8) 2022; 28
Yang (ref_12) 2020; 11
Zhang (ref_4) 2016; 22
ref_23
ref_22
ref_20
Komatireddy (ref_2) 2014; 2
ref_1
ref_29
ref_26
ref_9
Li (ref_21) 2022; 25
ref_5
ref_7
References_xml – ident: ref_19
  doi: 10.1007/978-3-031-19818-2
– volume: 11
  start-page: 3
  year: 2014
  ident: ref_3
  article-title: A survey on robotic devices for upper limb rehabilitation
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-3
– volume: 28
  start-page: 209
  year: 2022
  ident: ref_8
  article-title: A review of computer vision-based approaches for physical rehabilitation and assessment
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-021-00815-4
– ident: ref_26
– ident: ref_22
  doi: 10.1109/3DV53792.2021.00068
– volume: 60
  start-page: 4
  year: 2017
  ident: ref_6
  article-title: Going Deeper into Action Recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.010
– ident: ref_17
  doi: 10.1109/CVPR.2018.00744
– ident: ref_16
– ident: ref_11
  doi: 10.3390/data6050046
– ident: ref_14
  doi: 10.1109/EMBC48229.2022.9871106
– ident: ref_20
  doi: 10.1109/CVPR46437.2021.00339
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_27
  article-title: Statistical Comparisons of Classifiers over Multiple Data Sets
  publication-title: J. Mach. Learn. Res.
– ident: ref_1
  doi: 10.3390/jcm10081611
– ident: ref_18
  doi: 10.1109/CVPR.2019.00794
– ident: ref_23
– volume: 25
  start-page: 1282
  year: 2022
  ident: ref_21
  article-title: Exploiting Temporal Contexts With Strided Transformer for 3D Human Pose Estimation
  publication-title: Trans. Multi.
  doi: 10.1109/TMM.2022.3141231
– ident: ref_7
  doi: 10.3390/s23031400
– ident: ref_5
  doi: 10.3390/s23146449
– ident: ref_29
– ident: ref_9
  doi: 10.3390/s22051729
– ident: ref_10
– volume: 2
  start-page: 214
  year: 2014
  ident: ref_2
  article-title: Quality and Quantity of Rehabilitation Exercises Delivered by a 3-D Motion Controlled Camera: A Pilot Study
  publication-title: Int. J. Phys. Med. Rehabil.
  doi: 10.4172/2329-9096.1000214
– volume: 34
  start-page: 248
  year: 2015
  ident: ref_24
  article-title: SMPL: A Skinned Multi-Person Linear Model
  publication-title: ACM Trans. Graphics (Proc. SIGGRAPH Asia)
– volume: 22
  start-page: 483
  year: 2016
  ident: ref_4
  article-title: A Survey on Human Pose Estimation
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2015.1095419
– ident: ref_13
  doi: 10.3390/s23010363
– volume: 32
  start-page: 675
  year: 1937
  ident: ref_25
  article-title: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 84
  start-page: 1050
  year: 1977
  ident: ref_28
  article-title: The Tukey multiple comparison test: 1953–1976
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.84.5.1050
– ident: ref_15
  doi: 10.1109/ICCV.2017.256
– ident: ref_30
  doi: 10.1145/3154862.3154925
– volume: 11
  start-page: 4054
  year: 2020
  ident: ref_12
  article-title: Deep neural networks enable quantitative movement analysis using single-camera videos
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17807-z
SSID ssj0023338
Score 2.4394486
Snippet Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8862
SubjectTerms Accuracy
Analysis
Cameras
Computer vision
dataset
Datasets
deep learning
human pose estimation
Joint surgery
Machine vision
Medical research
Medicine, Experimental
Methods
Motion capture
Patients
Performance evaluation
Physical therapy
Recovery (Medical)
Rehabilitation
rehabilitation exercises
Sensors
Smartphones
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLm0OIX2EOk2L-oDmYrLWw5Z6S9MNoZAHpQu5CUmWTot3qb2k-fcd2VqzSxt6yW1ZzS6SZsbffEb6BuCTCogyVaA5EtpJzi1TuayFzwMtreFCIAjGu8OXV-XFjH-_Fbcbrb7imbBBHnjYuBNbMl-FqlC2VtxbYWPFKy3ygloitPRi2xOp1mQqUS2GzGvQEWJI6k9arBsKKUu6hT69SP_fj-JdeLpqlub-zsznG1hzvg97qUgkp8PknsMT37yA3Q3pwJfwe3Z2TW7SJpMfW3rbXwg-usg30yFCdcQ0NYmnBe_JIpD-nT25WbSeTDG5h3uL5LJvI90S_PjAX5Jpas3UvoLZ-fTn2UWeuijkjgvZ5YZZE5hRYeK4qgobuMUaqPI4SrnxMrBIqShzrLZBsFr5YLmjLN6Aq4Li7AB2mkXjXwMplKcS-U_pAjJqBDJvHY1OcLwogqAZHK93V7s0v9jpYq6RakRH6NERGXwYTZeDrsa_jL5GF40GUQq7_wIDRKcA0f8LkAw-RwfrmLA4GWfSvQNcUpS-0qfILwTCOBMZHG1ZYqK57eF1iOiU6K2mUkZJfqybMng_DsdfxsNrjV-sehsswzkysww-jqH18LIPH2PZb-AZxTwYYPYIdrpfK_8W66fOvutT5Q_gXBUi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF64FFABAoyDwkuURvbeSEh1JatKqQuq6or9RbZjs1llSxNVtB_z0zihK6g3KJ4kjgZe2Y-x_MNwLvcoZdJHQ8R0B6EUos8zMrYho4nWsk4RidIucNns-R0Ib9expdbMBtyYWhb5WATO0Nd1obWyPc5QjWRZuigPq9-hFQ1iv6uDiU0lC-tUH7qKMbuwDYnZqwJbB9NZ_PzEYIJRGQ9v5BAsL_fYDwRZVnCN7xSR97_t4negbvraqWuf6rl8oYPOnkI933wyA57bT-CLVvtws4NSsFdeDD3H55d9HwBj-HX4vgbG0-fb1Bzf2Ro5dgX1aIza5mqSkYbC69Z7Vi3vM_mdWPZFO1An-LIzrqK0w3Dw1tuyaa-ilPzBBYn04vj09AXXAiNjLM2VEIrJ1TuDozM00g7qTFcSi22cqls5gShLy6MKLWLRZlbp6XhgpLlUpdL8RQmVV3ZZ8Ci3PIMoVJiHIJv9HlWGwRrMjEyilzMA_gwfPDC-P5RUYxlgaiEdFOMugngzSi66ik4_iV0RFobBYg1uztRX30v_CQsdCJs6tIo12UurY41oadMI8YsM-pbAO9J5wXNbeyMUT5FAV-JWLKKQ4QiMXp8EQewtyGJc9JsNg-jpvA2oSn-jOAAXo_NdCXtc6tsve5kMGKXCOICeDuOtttf-_n_H_QC7nEc9L2v3YNJe7W2LzGIavUrPzN-AzfVGio
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C7gH2wH0iMJC5SPCSpfEliXlBZXSakDYqRKXxFNmOjRBVUq0pMH49x4lbtcAkJN6i-CSy5eNzvi_x-QzwXDrMMrmjMRLaYcw1k3FRCRs7mmnFhcAk6GuHT06z4yl_dybONqr4_bZKpOJfuiDtq7BizGDDhLKEpkmB8DuZV-71t_AtKc2kFAVmsfwq7GQC0fgAdqank9GnrqgoPN0LCjFk98kCAUTqX7OVhjq1_j9j8i5cW9ZzdfFdzWYbSefoJqhVd_u9Jl8Plq0-MD9_U3L8n_HcghsBkZJR70K34Yqt78Duhk7hXfgxPXxPJmFGyYctce9XBOMkeataTIctUXVF_NbEC9I40v0gIJNmYckYI0lfJElOujOrFwQvL3klGYdzoBb3YHo0_nh4HIcjG2LDRdHGimnlmJJuaLjMU-24RsCVW2ylXNnCMc_fKDOs0k6wSlqnuaHMl9vlTnK2B4O6qe19IKm0tECylRmH9B2zptUG6R7PDE9TJ2gEL1czWJrQP3-sxqxEXuMnu1xPdgRP16bzXsTjb0ZvvBusDbzudnejOf9chmVc6ozZ3OWp1JXkVgvt-VehkaVWhe9bBC-8E5U-OmBnjApFDjgkr7NVjpDMCMQMTESwv2WJq9psN6_csAxRZVHSovD6_wjSIniybvZP-p1ytW2WnQ1ifo40MIJna_e9fNgP_snqIVyniO76pL0Pg_Z8aR8hGmv147DgfgFwoit1
  priority: 102
  providerName: Unpaywall
Title UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises
URI https://www.proquest.com/docview/2888378151
https://www.proquest.com/docview/2889994758
https://www.mdpi.com/1424-8220/23/21/8862/pdf?version=1699580827
https://doaj.org/article/b63e7f719bd94eb5b56138b140d86146
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69mHrQ9kn89oF7QO2F6-xJdvyYIy0S1YGyUKZIXsyki3tJdhd4rDmv9-d7ZiatbAXE6yzkXV3-t3P8d0BvI0tokxkfRcJ7dAVmseuzAPjWj_USgQBgiDlDk9n4UUivi2CxR7semy2C7i-ldpRP6lktfxw_Xv7GR3-EzFOpOyna4wKPClpJz5AgIqpg8NUdH8m-JzXDa0pp8tFPBw2BYb6l_Zgqa7e_-8efQj3N8WV2v5Ry-UNEJo8hKM2emSjRt2PYM8Uj-HwRk3BJ3CdnH9n83b12WWvEPdHhnsa-6IqhK6KqSJn9BnhlpWW1S_z2bxcGzZGr28SGtm07i-9Zvjzjluycduzaf0Uksn4x_mF27ZXcDMRyMpVXCvLVWyHmYgjT1uhMTiKDI76QhlpOXEtn2c81zbgeWysFpnPKTUusrHgz2C_KAvzHJgXG18iMQozi1QbEc7oDKmZCDPheTbwHXi_W900a-dHLTCWKXIQUkTaKcKB153oVVNw4zahM1JRJ0A1susT5epX2rpcqkNuIht5sc5jYXSgiStJjYwylzQ3B96RglOyLZxMptqEBHwkqomVjpB4BIjvPHDgpCeJHpj1h3cmku4MOPWlpFr9GFA58Kobpivpq7bClJtaBuNzgZTNgTedad392C_-e8bH8MBHw29A9gT2q9XGvMToqdIDuBctIjzKydcBHJyNZ_PLQf0mYlB7DZ5LZvPRz7_HXBqf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TD2wMcAERhgvsReojW284WE0Ng6dWwdE2qlvhnbsXmpkrKkGv2n-Bs5J2m2Csbb3qL4mjg53_3u1_juAN6mFlEmttRHQtvzuWKpn2Sh8S2NlORhiCDocoeHp9FgzL9Mwska_F7mwrhtlUufWDvqrNDuP_JdilSNxQkC1KfZT991jXJfV5ctNJplcWwWF0jZyo9HB6jfd5Qe9kf7A7_tKuBrHiaVL5mSlsnU9jRP40BZrjAmiA2OUi5NYpmjGJRplikbsiw1VnFNmcsIi23KGV73FtzmDH0J2k88uSR4DPleU72IsbS3W2K0EiRJRFcwr24N8DcAbMLGPJ_JxYWcTq8g3OF9uNuGpmSvWUsPYM3kW7B5pWDhFtw7a9VKRk01gofwa7z_lXSnv60U_v5A0IeSA1khVFZE5hlx2xYXpLCk_nhAzorSkD56mSaBkgzrftYlwcNrLkn6bY-o8hGMb-TFP4b1vMjNEyBBamiCRCzSFqk9IqpRGqkgjzQPAhtSD3aWL1zodn6u5cZUIOdxuhGdbjx43YnOmgIf_xL67LTWCbia3PWJ4vyHaE1cqIiZ2MZBqrKUGxUqx80ShQw2S9zcPHjvdC6c58DJaNkmQOAjuRpcYg-JTojxBAs92F6RRIvXq8PLVSNaj1OKS_vw4FU37H7pdtHlppjXMsgHOFJED950q-36x376_xu9hI3BaHgiTo5Oj5_BHYoG0KD6NqxX53PzHMO1Sr2obYTA95s2yj-PuFCn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qRQJ6YCkgDAWGTXCxEs_iBQmh0iRqKS0RaqTczMx4hktkh9pRyV_j1_HGdtxGUG69WZ4Xe-y3fvFbAF4nFr1MZKmPgLbvc8USP86E8S0NleRCoBN0tcNHx-H-hH-eiukG_F7Vwri0ypVNrA11Vmj3H3mPIlRjUYwOqmfbtIjxYPRx_tN3E6Tcl9bVOI1GRA7N8gzhW_nhYIC8fkPpaHiyt--3EwZ8zUVc-ZIpaZlMbF_zJAqU5Qrjg8jgKuXSxJY5uEGZZpmygmWJsYprylx1WGQTzvC61-B6xFji0gmj6TnYY4j9mk5GuNjvlRi5BHEc0jX_V48J-NsZbMHNRT6XyzM5m13wdqO7cLsNU8luI1f3YMPk27B1oXnhNtwZtywmJ01ngvvwa7L3lXSnv601AX9P0J6SgazQbVZE5hlxKYxLUlhSf0gg46I0ZIgWpymmJEf1bOuS4OEllyTDdl5U-QAmV_LiH8JmXuTmEZAgMTRGUBZqizAfvatRGmEhDzUPAiuoB-9WLzzV7f7c-I1ZivjH8SbteOPBy4503jT7-BfRJ8e1jsD1565PFKc_0lbdUxUyE9koSFSWcKOEcjgtVohms9jtzYO3juepsyK4GS3bYgh8JNePK91F0CMwtmDCg501StR-vb68kpq0tT5leq4rHrzolt0vXUZdbopFTYPYgCNc9OBVJ22XP_bj_9_oOdxAdUy_HBwfPoFbFOW_cfA7sFmdLsxTjNwq9axWEQLfr1on_wB2G1Tq
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C7gH2wH0iMJC5SPCSpfEliXlBZXSakDYqRKXxFNmOjRBVUq0pMH49x4lbtcAkJN6i-CSy5eNzvi_x-QzwXDrMMrmjMRLaYcw1k3FRCRs7mmnFhcAk6GuHT06z4yl_dybONqr4_bZKpOJfuiDtq7BizGDDhLKEpkmB8DuZV-71t_AtKc2kFAVmsfwq7GQC0fgAdqank9GnrqgoPN0LCjFk98kCAUTqX7OVhjq1_j9j8i5cW9ZzdfFdzWYbSefoJqhVd_u9Jl8Plq0-MD9_U3L8n_HcghsBkZJR70K34Yqt78Duhk7hXfgxPXxPJmFGyYctce9XBOMkeataTIctUXVF_NbEC9I40v0gIJNmYckYI0lfJElOujOrFwQvL3klGYdzoBb3YHo0_nh4HIcjG2LDRdHGimnlmJJuaLjMU-24RsCVW2ylXNnCMc_fKDOs0k6wSlqnuaHMl9vlTnK2B4O6qe19IKm0tECylRmH9B2zptUG6R7PDE9TJ2gEL1czWJrQP3-sxqxEXuMnu1xPdgRP16bzXsTjb0ZvvBusDbzudnejOf9chmVc6ozZ3OWp1JXkVgvt-VehkaVWhe9bBC-8E5U-OmBnjApFDjgkr7NVjpDMCMQMTESwv2WJq9psN6_csAxRZVHSovD6_wjSIniybvZP-p1ytW2WnQ1ifo40MIJna_e9fNgP_snqIVyniO76pL0Pg_Z8aR8hGmv147DgfgFwoit1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UCO+Physical+Rehabilitation%3A+New+Dataset+and+Study+of+Human+Pose+Estimation+Methods+on+Physical+Rehabilitation+Exercises&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Aguilar-Ortega%2C+Rafael&rft.au=Berral-Soler%2C+Rafael&rft.au=Jim%C3%A9nez-Velasco%2C+Isabel&rft.au=Romero-Ram%C3%ADrez%2C+Francisco+J&rft.date=2023-10-31&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=21&rft_id=info:doi/10.3390%2Fs23218862&rft.externalDocID=A772536235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon