UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises
Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 23; no. 21; p. 8862 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        31.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s23218862 | 
Cover
| Abstract | Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient’s mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject’s position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints. | 
    
|---|---|
| AbstractList | Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors' ability to monitor patients' recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient's mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject's position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors' ability to monitor patients' recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient's mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject's position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints. Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists often hampers doctors’ ability to monitor patients’ recovery progress in person. Deep Learning methods offer a solution by enabling doctors to optimize their time with each patient and distinguish between those requiring specific attention and those making positive progress. Doctors use the flexion angle of limbs as a cue to assess a patient’s mobility level during rehabilitation. From a Computer Vision perspective, this task can be framed as automatically estimating the pose of the target body limbs in an image. The objectives of this study can be summarized as follows: (i) evaluating and comparing multiple pose estimation methods; (ii) analyzing how the subject’s position and camera viewpoint impact the estimation; and (iii) determining whether 3D estimation methods are necessary or if 2D estimation suffices for this purpose. To conduct this technical study, and due to the limited availability of public datasets related to physical rehabilitation exercises, we introduced a new dataset featuring 27 individuals performing eight diverse physical rehabilitation exercises focusing on various limbs and body positions. Each exercise was recorded using five RGB cameras capturing different viewpoints of the person. An infrared tracking system named OptiTrack was utilized to establish the ground truth positions of the joints in the limbs under study. The results, supported by statistical tests, show that not all state-of-the-art pose estimators perform equally in the presented situations (e.g., patient lying on the stretcher vs. standing). Statistical differences exist between camera viewpoints, with the frontal view being the most convenient. Additionally, the study concludes that 2D pose estimators are adequate for estimating joint angles given the selected camera viewpoints.  | 
    
| Audience | Academic | 
    
| Author | García-Marín, Manuel Aguilar-Ortega, Rafael Romero-Ramírez, Francisco J. Zafra-Palma, Jorge Medina-Carnicer, Rafael Marín-Jiménez, Manuel J. Berral-Soler, Rafael Muñoz-Salinas, Rafael Jiménez-Velasco, Isabel  | 
    
| Author_xml | – sequence: 1 givenname: Rafael orcidid: 0000-0001-7866-9925 surname: Aguilar-Ortega fullname: Aguilar-Ortega, Rafael – sequence: 2 givenname: Rafael orcidid: 0000-0002-9105-1481 surname: Berral-Soler fullname: Berral-Soler, Rafael – sequence: 3 givenname: Isabel orcidid: 0000-0003-1120-2874 surname: Jiménez-Velasco fullname: Jiménez-Velasco, Isabel – sequence: 4 givenname: Francisco J. orcidid: 0000-0002-9572-0128 surname: Romero-Ramírez fullname: Romero-Ramírez, Francisco J. – sequence: 5 givenname: Manuel orcidid: 0000-0002-5449-4961 surname: García-Marín fullname: García-Marín, Manuel – sequence: 6 givenname: Jorge orcidid: 0000-0003-1735-8837 surname: Zafra-Palma fullname: Zafra-Palma, Jorge – sequence: 7 givenname: Rafael orcidid: 0000-0002-8773-8571 surname: Muñoz-Salinas fullname: Muñoz-Salinas, Rafael – sequence: 8 givenname: Rafael orcidid: 0000-0003-4481-0614 surname: Medina-Carnicer fullname: Medina-Carnicer, Rafael – sequence: 9 givenname: Manuel J. orcidid: 0000-0001-9294-6714 surname: Marín-Jiménez fullname: Marín-Jiménez, Manuel J.  | 
    
| BookMark | eNp1kk1P3DAQhqOKSgXaQ_-BpV5apIX4I4ndG9ouBYkW1MLZGjtj1qtsvI0dwf77ellEKQL54NH4mdczr71X7PShx6L4SMtDzlV5FBlnVMqavSl2qWBiIhkrd57E74q9GBdlyTjncre4u55ekMv5OnoLHfmFczC-8wmSD_1X8hNvyTdIEDER6FvyO43tmgRHTscl9OQyRCSzmPzynic_MM1DG0kOX5EkszscrI8Y3xdvHXQRPzzs-8X1yexqejo5v_h-Nj0-n1hRyTQBbsBxUK60QjXUOGFqIRrMp0wASseFoBXjlrfGVbxV6IywjOdxReOU4PvF2Va3DbDQqyH3Oqx1AK_vE2G40TAkbzvUpubYuIYq0yqBpjJVTbk0VJStrKmos9bBVmvsV7C-ha57FKSl3vivH_3P8OctvBrCnxFj0ksfLXYd9BjGqJmUSinRVDKjn56hizAOfbZlQ0neSFrRf9QN5GZ970IawG5E9XHTsIrnS6tMHb5A5dXi0tv8WZzP-f8KjrYFdggxDui0fXisXOi7Fyf78qzidRf-Aspky8k | 
    
| CitedBy_id | crossref_primary_10_1371_journal_pone_0313707 | 
    
| Cites_doi | 10.1007/978-3-031-19818-2 10.1186/1743-0003-11-3 10.1007/s00530-021-00815-4 10.1109/3DV53792.2021.00068 10.1016/j.imavis.2017.01.010 10.1109/CVPR.2018.00744 10.3390/data6050046 10.1109/EMBC48229.2022.9871106 10.1109/CVPR46437.2021.00339 10.3390/jcm10081611 10.1109/CVPR.2019.00794 10.1109/TMM.2022.3141231 10.3390/s23031400 10.3390/s23146449 10.3390/s22051729 10.4172/2329-9096.1000214 10.1080/10798587.2015.1095419 10.3390/s23010363 10.1080/01621459.1937.10503522 10.1037/0033-2909.84.5.1050 10.1109/ICCV.2017.256 10.1145/3154862.3154925 10.1038/s41467-020-17807-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s23218862 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physical Therapy  | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_b63e7f719bd94eb5b56138b140d86146 10.3390/s23218862 A772536235 10_3390_s23218862  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c458t-a3baf3a9f0c4971bf4b6447ec4524ae8f3441523c3dbf53d9efb4c2342447f943 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Tue Oct 14 14:49:49 EDT 2025 Sun Oct 26 04:13:32 EDT 2025 Fri Sep 05 09:17:32 EDT 2025 Tue Oct 07 07:26:37 EDT 2025 Mon Oct 20 23:10:36 EDT 2025 Mon Oct 20 17:15:56 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Thu Oct 16 04:34:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c458t-a3baf3a9f0c4971bf4b6447ec4524ae8f3441523c3dbf53d9efb4c2342447f943 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23  | 
    
| ORCID | 0000-0002-9572-0128 0000-0003-1735-8837 0000-0002-9105-1481 0000-0002-8773-8571 0000-0002-5449-4961 0000-0003-4481-0614 0000-0001-7866-9925 0000-0003-1120-2874 0000-0001-9294-6714  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/21/8862/pdf?version=1699580827 | 
    
| PQID | 2888378151 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b63e7f719bd94eb5b56138b140d86146 unpaywall_primary_10_3390_s23218862 proquest_miscellaneous_2889994758 proquest_journals_2888378151 gale_infotracmisc_A772536235 gale_infotracacademiconefile_A772536235 crossref_citationtrail_10_3390_s23218862 crossref_primary_10_3390_s23218862  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-31 | 
    
| PublicationDateYYYYMMDD | 2023-10-31 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-31 day: 31  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Maciejasz (ref_3) 2014; 11 ref_14 ref_13 Loper (ref_24) 2015; 34 Friedman (ref_25) 1937; 32 ref_11 ref_10 ref_30 Herath (ref_6) 2017; 60 ref_19 (ref_27) 2006; 7 ref_18 Keselman (ref_28) 1977; 84 ref_17 ref_16 ref_15 Debnath (ref_8) 2022; 28 Yang (ref_12) 2020; 11 Zhang (ref_4) 2016; 22 ref_23 ref_22 ref_20 Komatireddy (ref_2) 2014; 2 ref_1 ref_29 ref_26 ref_9 Li (ref_21) 2022; 25 ref_5 ref_7  | 
    
| References_xml | – ident: ref_19 doi: 10.1007/978-3-031-19818-2 – volume: 11 start-page: 3 year: 2014 ident: ref_3 article-title: A survey on robotic devices for upper limb rehabilitation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-3 – volume: 28 start-page: 209 year: 2022 ident: ref_8 article-title: A review of computer vision-based approaches for physical rehabilitation and assessment publication-title: Multimed. Syst. doi: 10.1007/s00530-021-00815-4 – ident: ref_26 – ident: ref_22 doi: 10.1109/3DV53792.2021.00068 – volume: 60 start-page: 4 year: 2017 ident: ref_6 article-title: Going Deeper into Action Recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.01.010 – ident: ref_17 doi: 10.1109/CVPR.2018.00744 – ident: ref_16 – ident: ref_11 doi: 10.3390/data6050046 – ident: ref_14 doi: 10.1109/EMBC48229.2022.9871106 – ident: ref_20 doi: 10.1109/CVPR46437.2021.00339 – volume: 7 start-page: 1 year: 2006 ident: ref_27 article-title: Statistical Comparisons of Classifiers over Multiple Data Sets publication-title: J. Mach. Learn. Res. – ident: ref_1 doi: 10.3390/jcm10081611 – ident: ref_18 doi: 10.1109/CVPR.2019.00794 – ident: ref_23 – volume: 25 start-page: 1282 year: 2022 ident: ref_21 article-title: Exploiting Temporal Contexts With Strided Transformer for 3D Human Pose Estimation publication-title: Trans. Multi. doi: 10.1109/TMM.2022.3141231 – ident: ref_7 doi: 10.3390/s23031400 – ident: ref_5 doi: 10.3390/s23146449 – ident: ref_29 – ident: ref_9 doi: 10.3390/s22051729 – ident: ref_10 – volume: 2 start-page: 214 year: 2014 ident: ref_2 article-title: Quality and Quantity of Rehabilitation Exercises Delivered by a 3-D Motion Controlled Camera: A Pilot Study publication-title: Int. J. Phys. Med. Rehabil. doi: 10.4172/2329-9096.1000214 – volume: 34 start-page: 248 year: 2015 ident: ref_24 article-title: SMPL: A Skinned Multi-Person Linear Model publication-title: ACM Trans. Graphics (Proc. SIGGRAPH Asia) – volume: 22 start-page: 483 year: 2016 ident: ref_4 article-title: A Survey on Human Pose Estimation publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2015.1095419 – ident: ref_13 doi: 10.3390/s23010363 – volume: 32 start-page: 675 year: 1937 ident: ref_25 article-title: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – volume: 84 start-page: 1050 year: 1977 ident: ref_28 article-title: The Tukey multiple comparison test: 1953–1976 publication-title: Psychol. Bull. doi: 10.1037/0033-2909.84.5.1050 – ident: ref_15 doi: 10.1109/ICCV.2017.256 – ident: ref_30 doi: 10.1145/3154862.3154925 – volume: 11 start-page: 4054 year: 2020 ident: ref_12 article-title: Deep neural networks enable quantitative movement analysis using single-camera videos publication-title: Nat. Commun. doi: 10.1038/s41467-020-17807-z  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.4394486 | 
    
| Snippet | Physical rehabilitation plays a crucial role in restoring motor function following injuries or surgeries. However, the challenge of overcrowded waiting lists... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 8862 | 
    
| SubjectTerms | Accuracy Analysis Cameras Computer vision dataset Datasets deep learning human pose estimation Joint surgery Machine vision Medical research Medicine, Experimental Methods Motion capture Patients Performance evaluation Physical therapy Recovery (Medical) Rehabilitation rehabilitation exercises Sensors Smartphones  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLm0OIX2EOk2L-oDmYrLWw5Z6S9MNoZAHpQu5CUmWTot3qb2k-fcd2VqzSxt6yW1ZzS6SZsbffEb6BuCTCogyVaA5EtpJzi1TuayFzwMtreFCIAjGu8OXV-XFjH-_Fbcbrb7imbBBHnjYuBNbMl-FqlC2VtxbYWPFKy3ygloitPRi2xOp1mQqUS2GzGvQEWJI6k9arBsKKUu6hT69SP_fj-JdeLpqlub-zsznG1hzvg97qUgkp8PknsMT37yA3Q3pwJfwe3Z2TW7SJpMfW3rbXwg-usg30yFCdcQ0NYmnBe_JIpD-nT25WbSeTDG5h3uL5LJvI90S_PjAX5Jpas3UvoLZ-fTn2UWeuijkjgvZ5YZZE5hRYeK4qgobuMUaqPI4SrnxMrBIqShzrLZBsFr5YLmjLN6Aq4Li7AB2mkXjXwMplKcS-U_pAjJqBDJvHY1OcLwogqAZHK93V7s0v9jpYq6RakRH6NERGXwYTZeDrsa_jL5GF40GUQq7_wIDRKcA0f8LkAw-RwfrmLA4GWfSvQNcUpS-0qfILwTCOBMZHG1ZYqK57eF1iOiU6K2mUkZJfqybMng_DsdfxsNrjV-sehsswzkysww-jqH18LIPH2PZb-AZxTwYYPYIdrpfK_8W66fOvutT5Q_gXBUi priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF64FFABAoyDwkuURvbeSEh1JatKqQuq6or9RbZjs1llSxNVtB_z0zihK6g3KJ4kjgZe2Y-x_MNwLvcoZdJHQ8R0B6EUos8zMrYho4nWsk4RidIucNns-R0Ib9expdbMBtyYWhb5WATO0Nd1obWyPc5QjWRZuigPq9-hFQ1iv6uDiU0lC-tUH7qKMbuwDYnZqwJbB9NZ_PzEYIJRGQ9v5BAsL_fYDwRZVnCN7xSR97_t4negbvraqWuf6rl8oYPOnkI933wyA57bT-CLVvtws4NSsFdeDD3H55d9HwBj-HX4vgbG0-fb1Bzf2Ro5dgX1aIza5mqSkYbC69Z7Vi3vM_mdWPZFO1An-LIzrqK0w3Dw1tuyaa-ilPzBBYn04vj09AXXAiNjLM2VEIrJ1TuDozM00g7qTFcSi22cqls5gShLy6MKLWLRZlbp6XhgpLlUpdL8RQmVV3ZZ8Ci3PIMoVJiHIJv9HlWGwRrMjEyilzMA_gwfPDC-P5RUYxlgaiEdFOMugngzSi66ik4_iV0RFobBYg1uztRX30v_CQsdCJs6tIo12UurY41oadMI8YsM-pbAO9J5wXNbeyMUT5FAV-JWLKKQ4QiMXp8EQewtyGJc9JsNg-jpvA2oSn-jOAAXo_NdCXtc6tsve5kMGKXCOICeDuOtttf-_n_H_QC7nEc9L2v3YNJe7W2LzGIavUrPzN-AzfVGio priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C7gH2wH0iMJC5SPCSpfEliXlBZXSakDYqRKXxFNmOjRBVUq0pMH49x4lbtcAkJN6i-CSy5eNzvi_x-QzwXDrMMrmjMRLaYcw1k3FRCRs7mmnFhcAk6GuHT06z4yl_dybONqr4_bZKpOJfuiDtq7BizGDDhLKEpkmB8DuZV-71t_AtKc2kFAVmsfwq7GQC0fgAdqank9GnrqgoPN0LCjFk98kCAUTqX7OVhjq1_j9j8i5cW9ZzdfFdzWYbSefoJqhVd_u9Jl8Plq0-MD9_U3L8n_HcghsBkZJR70K34Yqt78Duhk7hXfgxPXxPJmFGyYctce9XBOMkeataTIctUXVF_NbEC9I40v0gIJNmYckYI0lfJElOujOrFwQvL3klGYdzoBb3YHo0_nh4HIcjG2LDRdHGimnlmJJuaLjMU-24RsCVW2ylXNnCMc_fKDOs0k6wSlqnuaHMl9vlTnK2B4O6qe19IKm0tECylRmH9B2zptUG6R7PDE9TJ2gEL1czWJrQP3-sxqxEXuMnu1xPdgRP16bzXsTjb0ZvvBusDbzudnejOf9chmVc6ozZ3OWp1JXkVgvt-VehkaVWhe9bBC-8E5U-OmBnjApFDjgkr7NVjpDMCMQMTESwv2WJq9psN6_csAxRZVHSovD6_wjSIniybvZP-p1ytW2WnQ1ifo40MIJna_e9fNgP_snqIVyniO76pL0Pg_Z8aR8hGmv147DgfgFwoit1 priority: 102 providerName: Unpaywall  | 
    
| Title | UCO Physical Rehabilitation: New Dataset and Study of Human Pose Estimation Methods on Physical Rehabilitation Exercises | 
    
| URI | https://www.proquest.com/docview/2888378151 https://www.proquest.com/docview/2889994758 https://www.mdpi.com/1424-8220/23/21/8862/pdf?version=1699580827 https://doaj.org/article/b63e7f719bd94eb5b56138b140d86146  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69mHrQ9kn89oF7QO2F6-xJdvyYIy0S1YGyUKZIXsyki3tJdhd4rDmv9-d7ZiatbAXE6yzkXV3-t3P8d0BvI0tokxkfRcJ7dAVmseuzAPjWj_USgQBgiDlDk9n4UUivi2CxR7semy2C7i-ldpRP6lktfxw_Xv7GR3-EzFOpOyna4wKPClpJz5AgIqpg8NUdH8m-JzXDa0pp8tFPBw2BYb6l_Zgqa7e_-8efQj3N8WV2v5Ry-UNEJo8hKM2emSjRt2PYM8Uj-HwRk3BJ3CdnH9n83b12WWvEPdHhnsa-6IqhK6KqSJn9BnhlpWW1S_z2bxcGzZGr28SGtm07i-9Zvjzjluycduzaf0Uksn4x_mF27ZXcDMRyMpVXCvLVWyHmYgjT1uhMTiKDI76QhlpOXEtn2c81zbgeWysFpnPKTUusrHgz2C_KAvzHJgXG18iMQozi1QbEc7oDKmZCDPheTbwHXi_W900a-dHLTCWKXIQUkTaKcKB153oVVNw4zahM1JRJ0A1susT5epX2rpcqkNuIht5sc5jYXSgiStJjYwylzQ3B96RglOyLZxMptqEBHwkqomVjpB4BIjvPHDgpCeJHpj1h3cmku4MOPWlpFr9GFA58Kobpivpq7bClJtaBuNzgZTNgTedad392C_-e8bH8MBHw29A9gT2q9XGvMToqdIDuBctIjzKydcBHJyNZ_PLQf0mYlB7DZ5LZvPRz7_HXBqf | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TD2wMcAERhgvsReojW284WE0Ng6dWwdE2qlvhnbsXmpkrKkGv2n-Bs5J2m2Csbb3qL4mjg53_3u1_juAN6mFlEmttRHQtvzuWKpn2Sh8S2NlORhiCDocoeHp9FgzL9Mwska_F7mwrhtlUufWDvqrNDuP_JdilSNxQkC1KfZT991jXJfV5ctNJplcWwWF0jZyo9HB6jfd5Qe9kf7A7_tKuBrHiaVL5mSlsnU9jRP40BZrjAmiA2OUi5NYpmjGJRplikbsiw1VnFNmcsIi23KGV73FtzmDH0J2k88uSR4DPleU72IsbS3W2K0EiRJRFcwr24N8DcAbMLGPJ_JxYWcTq8g3OF9uNuGpmSvWUsPYM3kW7B5pWDhFtw7a9VKRk01gofwa7z_lXSnv60U_v5A0IeSA1khVFZE5hlx2xYXpLCk_nhAzorSkD56mSaBkgzrftYlwcNrLkn6bY-o8hGMb-TFP4b1vMjNEyBBamiCRCzSFqk9IqpRGqkgjzQPAhtSD3aWL1zodn6u5cZUIOdxuhGdbjx43YnOmgIf_xL67LTWCbia3PWJ4vyHaE1cqIiZ2MZBqrKUGxUqx80ShQw2S9zcPHjvdC6c58DJaNkmQOAjuRpcYg-JTojxBAs92F6RRIvXq8PLVSNaj1OKS_vw4FU37H7pdtHlppjXMsgHOFJED950q-36x376_xu9hI3BaHgiTo5Oj5_BHYoG0KD6NqxX53PzHMO1Sr2obYTA95s2yj-PuFCn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qRQJ6YCkgDAWGTXCxEs_iBQmh0iRqKS0RaqTczMx4hktkh9pRyV_j1_HGdtxGUG69WZ4Xe-y3fvFbAF4nFr1MZKmPgLbvc8USP86E8S0NleRCoBN0tcNHx-H-hH-eiukG_F7Vwri0ypVNrA11Vmj3H3mPIlRjUYwOqmfbtIjxYPRx_tN3E6Tcl9bVOI1GRA7N8gzhW_nhYIC8fkPpaHiyt--3EwZ8zUVc-ZIpaZlMbF_zJAqU5Qrjg8jgKuXSxJY5uEGZZpmygmWJsYprylx1WGQTzvC61-B6xFji0gmj6TnYY4j9mk5GuNjvlRi5BHEc0jX_V48J-NsZbMHNRT6XyzM5m13wdqO7cLsNU8luI1f3YMPk27B1oXnhNtwZtywmJ01ngvvwa7L3lXSnv601AX9P0J6SgazQbVZE5hlxKYxLUlhSf0gg46I0ZIgWpymmJEf1bOuS4OEllyTDdl5U-QAmV_LiH8JmXuTmEZAgMTRGUBZqizAfvatRGmEhDzUPAiuoB-9WLzzV7f7c-I1ZivjH8SbteOPBy4503jT7-BfRJ8e1jsD1565PFKc_0lbdUxUyE9koSFSWcKOEcjgtVohms9jtzYO3juepsyK4GS3bYgh8JNePK91F0CMwtmDCg501StR-vb68kpq0tT5leq4rHrzolt0vXUZdbopFTYPYgCNc9OBVJ22XP_bj_9_oOdxAdUy_HBwfPoFbFOW_cfA7sFmdLsxTjNwq9axWEQLfr1on_wB2G1Tq | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C7gH2wH0iMJC5SPCSpfEliXlBZXSakDYqRKXxFNmOjRBVUq0pMH49x4lbtcAkJN6i-CSy5eNzvi_x-QzwXDrMMrmjMRLaYcw1k3FRCRs7mmnFhcAk6GuHT06z4yl_dybONqr4_bZKpOJfuiDtq7BizGDDhLKEpkmB8DuZV-71t_AtKc2kFAVmsfwq7GQC0fgAdqank9GnrqgoPN0LCjFk98kCAUTqX7OVhjq1_j9j8i5cW9ZzdfFdzWYbSefoJqhVd_u9Jl8Plq0-MD9_U3L8n_HcghsBkZJR70K34Yqt78Duhk7hXfgxPXxPJmFGyYctce9XBOMkeataTIctUXVF_NbEC9I40v0gIJNmYckYI0lfJElOujOrFwQvL3klGYdzoBb3YHo0_nh4HIcjG2LDRdHGimnlmJJuaLjMU-24RsCVW2ylXNnCMc_fKDOs0k6wSlqnuaHMl9vlTnK2B4O6qe19IKm0tECylRmH9B2zptUG6R7PDE9TJ2gEL1czWJrQP3-sxqxEXuMnu1xPdgRP16bzXsTjb0ZvvBusDbzudnejOf9chmVc6ozZ3OWp1JXkVgvt-VehkaVWhe9bBC-8E5U-OmBnjApFDjgkr7NVjpDMCMQMTESwv2WJq9psN6_csAxRZVHSovD6_wjSIniybvZP-p1ytW2WnQ1ifo40MIJna_e9fNgP_snqIVyniO76pL0Pg_Z8aR8hGmv147DgfgFwoit1 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UCO+Physical+Rehabilitation%3A+New+Dataset+and+Study+of+Human+Pose+Estimation+Methods+on+Physical+Rehabilitation+Exercises&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Aguilar-Ortega%2C+Rafael&rft.au=Berral-Soler%2C+Rafael&rft.au=Jim%C3%A9nez-Velasco%2C+Isabel&rft.au=Romero-Ram%C3%ADrez%2C+Francisco+J&rft.date=2023-10-31&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=21&rft_id=info:doi/10.3390%2Fs23218862&rft.externalDocID=A772536235 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |