A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease
Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantita...
        Saved in:
      
    
          | Published in | Gigascience Vol. 7; no. 7 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Oxford University Press
    
        01.07.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2047-217X 2047-217X  | 
| DOI | 10.1093/gigascience/giy085 | 
Cover
| Abstract | Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.
We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease. | 
    
|---|---|
| AbstractList | Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.
We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease. Motivation Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging. Results We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease. Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.MotivationHeterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.ResultsWe have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.  | 
    
| Author | Zhang, Hongjiu Guan, Yuanfang Dodge, Hiroko H Higgins, Gerald A Omenn, Gilbert S Zhu, Fan  | 
    
| AuthorAffiliation | 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109 2 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, China 400714 4 Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center SPC 5316, Ann Arbor, MI, USA 48109 5 Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L226, Portland, OR, USA 97239 3 Michigan Alzheimer's Disease Center, University of Michigan, 2101 Commonwealth Blvd, Ann Arbor, MI, USA 48105 7 Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI, USA 48109 8 School of Public Health, University of Michigan,  | 
    
| AuthorAffiliation_xml | – name: 5 Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L226, Portland, OR, USA 97239 – name: 4 Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center SPC 5316, Ann Arbor, MI, USA 48109 – name: 6 Department of Internal Medicine, University of Michigan, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, USA 48109 – name: 7 Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI, USA 48109 – name: 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109 – name: 2 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, China 400714 – name: 3 Michigan Alzheimer's Disease Center, University of Michigan, 2101 Commonwealth Blvd, Ann Arbor, MI, USA 48105 – name: 8 School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA 48109 – name: 9 Department of Electronic Engineering and Computer Science, Bob and Betty Beyster Building, 2260 Hayward Street, University of Michigan, Ann Arbor, MI, USA 48109  | 
    
| Author_xml | – sequence: 1 givenname: Hongjiu surname: Zhang fullname: Zhang, Hongjiu – sequence: 2 givenname: Fan surname: Zhu fullname: Zhu, Fan – sequence: 3 givenname: Hiroko H surname: Dodge fullname: Dodge, Hiroko H – sequence: 4 givenname: Gerald A surname: Higgins fullname: Higgins, Gerald A – sequence: 5 givenname: Gilbert S surname: Omenn fullname: Omenn, Gilbert S – sequence: 6 givenname: Yuanfang orcidid: 0000-0001-8275-2852 surname: Guan fullname: Guan, Yuanfang  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30010762$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1vFSEUhiemxtbaP-DCkLjQzSjMMHxsTG4av5ImbjRxR85lmBkaBkZg2lx_vTT3qtcuGmHBITzvy-HlaXXigzdV9ZzgNwTL9u1oR0jaGq9NqXdYdI-qswZTXjeEfz85qk-ri5SucRmcC8HbJ9VpizHBnDVn1e0GJTtbB9HmXb2FZHoEyxID6AnlgJy5MRFGg-bVZVvrMIWY0Wx6q8GhHjKg4FGeDOotjD4kmxD4HhWHwy4MaON-TsbOJr5KBUum3PKsejyAS-bisJ5X3z68_3r5qb768vHz5eaq1rQTuZb9oDUTBCjwRjeyZ3TbUWiGnmrGWgmyFR30g-iHroMtJ1rIlgoxGMoZo7o9r9q97-oX2N2Cc2qJdoa4UwSruyTVUZJqn2RRvdurlnVb3qqNzxH-KgNY9e-Jt5Maw41iuKNE8mLw-mAQw4_VpKxmm7RxDrwJa1IN5phLKXFb0Jf30OuwRl9CUS1hklPWyQephpNO4DJJoV4c9_2n4d__XYBmD-gYUopm-L80xD2RthmyDXdvt-4h6S9mqdpi | 
    
| CitedBy_id | crossref_primary_10_1093_gigascience_giy085 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_1093_jamiaopen_ooab052 crossref_primary_10_2196_18389  | 
    
| Cites_doi | 10.1126/scitranslmed.aaa9364 10.1109/FTC.2016.7821697 10.1016/S1474-4422(07)70178-3 10.1177/016555150202800601 10.1371/journal.pmed.1002270 10.1016/S1474-4422(10)70223-4 10.1016/S0140-6736(12)61689-4 10.1038/srep34567 10.1016/j.jneumeth.2016.10.007 10.1146/annurev-bioeng-071516-044442 10.1016/j.neuroimage.2004.09.016 10.1212/WNL.0b013e3181af79e5 10.1371/journal.pone.0026752 10.1037/a0019502 10.1016/j.jalz.2017.02.001 10.1176/appi.ajp.2011.10111690 10.1038/ncomms12460 10.2196/medinform.6730 10.1016/j.neurobiolaging.2010.05.023 10.1212/WNL.0b013e3181af79fb 10.1093/gigascience/giy085 10.3389/fmolb.2015.00054 10.2307/2533516 10.1016/j.neuroimage.2016.05.030 10.7551/mitpress/4057.001.0001 10.3389/fphys.2016.00561 10.1007/s40266-015-0266-9 10.1016/j.jalz.2011.03.004 10.1080/19585969.2022.12130515 10.1016/j.neuroimage.2014.05.044 10.1016/j.jalz.2014.04.513 10.1001/jama.2010.2008 10.1016/j.neuroimage.2004.03.040 10.1371/journal.pcbi.1002251 10.1371/journal.pmed.1002258 10.1016/j.ebiom.2014.10.012 10.2174/156720509788929273 10.1523/JNEUROSCI.23-03-00994.2003 10.1002/jmri.21049 10.1109/CVPRW.2015.7301312 10.1109/TCYB.2014.2305974 10.1111/j.1749-6632.2009.05064.x 10.1016/j.pneurobio.2011.09.005 10.1038/nrneurol.2009.215 10.1142/S0129065716500258 10.1016/j.jalz.2015.02.004 10.1016/S0893-6080(05)80023-1 10.1515/revneuro-2016-0029 10.3122/jabfm.2012.03.100181 10.3389/fnagi.2012.00017 10.1016/j.jalz.2016.02.006 10.1002/gps.2191 10.1371/journal.pmed.1002266 10.3233/JAD-2012-120712 10.1016/j.jalz.2011.03.003 10.1016/j.neuroimage.2011.11.002 10.1016/j.neuroimage.2012.01.021 10.1016/j.csda.2009.04.009 10.1602/neurorx.1.2.213 10.1177/1756285612461679 10.1145/2783258.2788613 10.1186/s13195-016-0176-z 10.1586/ern.10.162 10.1016/j.jalz.2011.03.008 10.1016/j.jalz.2011.03.005 10.1186/alzrt155 10.1016/j.nic.2005.09.008 10.1586/14737175.7.4.407 10.1212/WNL.0000000000002923  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Authors 2018. Published by Oxford University Press. The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Authors 2018. Published by Oxford University Press. 2018  | 
    
| Copyright_xml | – notice: The Authors 2018. Published by Oxford University Press. – notice: The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Authors 2018. Published by Oxford University Press. 2018  | 
    
| CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative  | 
    
| CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/gigascience/giy085 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Library & Information Science | 
    
| EISSN | 2047-217X | 
    
| ExternalDocumentID | 10.1093/gigascience/giy085 PMC6054197 30010762 10_1093_gigascience_giy085  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG008017 – fundername: NIA NIH HHS grantid: P30 AG053760 – fundername: NIEHS NIH HHS grantid: P30 ES017885 – fundername: NIA NIH HHS grantid: U01 AG024904  | 
    
| GroupedDBID | 0R~ 53G 5VS 7X7 AAFWJ AAHBH AAPXW AAVAP AAYXX ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACPRK ACUHS ADBBV ADRAZ AEGXH AENZO AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS BAWUL BAYMD BBNVY BCNDV BFQNJ C6C CITATION DIK EBS EJD GROUPED_DOAJ GX1 H13 HYE IAO IHR IHW INR KQ8 KSI M48 M~E O9- OK1 RBZ RNS ROL RPM RSV SBL SOJ TJX TOX ALIPV CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 5PM 4.4 88E 88I 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC ADUKV AFKRA AHSBF ARAPS AZQEC BENPR BGLVJ BHPHI BMC BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK IGS INH IPNFZ ITC K6V K7- LK8 M1P M2P M7P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RIG UKHRP UNPAY  | 
    
| ID | FETCH-LOGICAL-c458t-9dfcc681a4a72c29d64b54a2fd4c6639a9385adf8df55ab71c893488fe47664c3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2047-217X | 
    
| IngestDate | Sun Oct 26 02:40:49 EDT 2025 Thu Aug 21 14:30:36 EDT 2025 Wed Oct 01 14:39:42 EDT 2025 Tue Oct 07 06:54:43 EDT 2025 Tue Oct 07 06:35:19 EDT 2025 Thu Apr 03 06:53:34 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Wed Oct 01 01:52:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c458t-9dfcc681a4a72c29d64b54a2fd4c6639a9385adf8df55ab71c893488fe47664c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp+content/up+loads/how_to_apply/ADNI_Acknowledgement_List.pdf. H.Z. and F.Z. equally contributed to the work.  | 
    
| ORCID | 0000-0001-8275-2852 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gigascience/giy085 | 
    
| PMID | 30010762 | 
    
| PQID | 2715808081 | 
    
| PQPubID | 2040230 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_gigascience_giy085 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054197 proquest_miscellaneous_2070799903 proquest_journals_3169746593 proquest_journals_2715808081 pubmed_primary_30010762 crossref_primary_10_1093_gigascience_giy085 crossref_citationtrail_10_1093_gigascience_giy085  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-07-01 | 
    
| PublicationDateYYYYMMDD | 2018-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Gigascience | 
    
| PublicationTitleAlternate | Gigascience | 
    
| PublicationYear | 2018 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Jack (2024111706534393600_bib31) 2016; 87 Varol (2024111706534393600_bib88_939_164218) 2012 Wolpert (2024111706534393600_bib70) 1992; 5 Huo (2024111706534393600_bib78) 2016; 138 Ng (2024111706534393600_bib56) 2015; 2015 Galvin (2024111706534393600_bib8) 2012; 25 Liu (2024111706534393600_bib52) 2014; 44 Nickerson (2024111706534393600_bib51) 1997; 53 Klöppel (2024111706534393600_bib26) 2012; 61 Fischl (2024111706534393600_bib43) 2012; 62 Snowden (2024111706534393600_bib11) 2017; 14 2024111706534393600_bib80 Jack (2024111706534393600_bib41) 2008; 27 Yiannopoulou (2024111706534393600_bib7) 2012; 6 Dubois (2024111706534393600_bib24) 2010; 9 Li (2024111706534393600_bib67) 2014; 17 Dubois (2024111706534393600_bib25) 2007; 6 Lanoiselée (2024111706534393600_bib74) 2017; 14 Wollman (2024111706534393600_bib28) 2003; 5 Tustison (2024111706534393600_bib44) 2014; 99 Ortiz (2024111706534393600_bib66) 2016; 26 Desikan (2024111706534393600_bib75) 2017; 14 Albert (2024111706534393600_bib21) 2011; 7 Zhu (2024111706534393600_bib84_243_162918) 2016; 6 Brown (2024111706534393600_bib73) 2016; 7 Kennedy (2024111706534393600_bib32) 2015; 1 Sabri (2024111706534393600_bib17) 2015; 11 Lam (2024111706534393600_bib29) 2013; 5 Komarova (2024111706534393600_bib49) 2011; 7 Banerjee (2024111706534393600_bib2) 2009; 24 Vemuri (2024111706534393600_bib14) 2009; 73 Otte (2024111706534393600_bib53) 2002; 28 Wilson (2024111706534393600_bib60) 2015 Che (2024111706534393600_bib69) 2016; 2016 Dodds (2024111706534393600_bib54) 2011; 6 Alzheimer's Association (2024111706534393600_bib3) 2017; 13 Pengas (2024111706534393600_bib77) 2012; 4 Suk (2024111706534393600_bib83_634_162418) 2013; 16 Dodge (2024111706534393600_bib50) 2014; 10 Agrawal (2024111706534393600_bib9) 2015; 2 McEvoy (2024111706534393600_bib27) 2010; 10 Blennow (2024111706534393600_bib10) 2004; 1 Clark (2024111706534393600_bib19) 2011; 305 Klein (2024111706534393600_bib45) 2005; 24 Mungas (2024111706534393600_bib62) 2010; 25 Risacher (2024111706534393600_bib71) 2009; 6 Sharafoddini (2024111706534393600_bib55) 2017; 5 Lovestone (2024111706534393600_bib42) 2009; 1180 Davatzikos (2024111706534393600_bib72) 2011; 32 Caruana (2024111706534393600_bib37) 2015 Rasmussen (2024111706534393600_bib61) 2006 Thakur (2024111706534393600_bib5) 2016 Vemuri (2024111706534393600_bib13) 2009; 73 Jack (2024111706534393600_bib23) 2011; 7 Thompson (2024111706534393600_bib30) 2011; 168 Sarraf (2024111706534393600_bib35) 2016 Sieberts (2024111706534393600_bib58) 2016; 7 Wachinger (2024111706534393600_bib81_815_161918) 2018; 170 de Brebisson (2024111706534393600_bib34) 2015 Buckley (2024111706534393600_bib6) 2015; 32 Allen (2024111706534393600_bib38) 2016; 12 Mirzaei (2024111706534393600_bib86_889_163218) 2016; 27 Thompson (2024111706534393600_bib16) 2003; 23 Schölkopf (2024111706534393600_bib48) 2004 McKhann (2024111706534393600_bib20) 2011; 7 Chapman (2024111706534393600_bib87_147_163418) 2016; 8 Mueller (2024111706534393600_bib40) 2005; 15 Kim (2024111706534393600_bib47) 2009; 53 Choi (2024111706534393600_bib79) 2016; 274 Murray (2024111706534393600_bib4) 2012; 380 Shen (2024111706534393600_bib65) 2017; 19 Zhang (2024111706534393600_bib18) 2012; 31 Frisoni (2024111706534393600_bib12) 2010; 6 Sperling (2024111706534393600_bib22) 2011; 7 Parkinson Progression Marker Initiative (2024111706534393600_bib46) 2011; 95 Chen (2024111706534393600_bib63) 2014; 1 Scott (2024111706534393600_bib1) 2007; 7 Li (2024111706534393600_bib57) 2015; 7 Thompson (2024111706534393600_bib15) 2004; 22 Denker (2024111706534393600_bib68) 1987; 1  | 
    
| References_xml | – volume: 7 start-page: 311ra174 year: 2015 ident: 2024111706534393600_bib57 article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa9364 – volume-title: 2016 Future Technologies Conference (FTC) year: 2016 ident: 2024111706534393600_bib35 article-title: Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data doi: 10.1109/FTC.2016.7821697 – volume: 6 start-page: 734 year: 2007 ident: 2024111706534393600_bib25 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 28 start-page: 441 year: 2002 ident: 2024111706534393600_bib53 article-title: Social network analysis: a powerful strategy, also for the information sciences publication-title: J Inf Sci Eng doi: 10.1177/016555150202800601 – volume: 14 start-page: e1002270 year: 2017 ident: 2024111706534393600_bib74 article-title: APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases publication-title: PLoS Med doi: 10.1371/journal.pmed.1002270 – volume: 170 start-page: 434 year: 2018 ident: 2024111706534393600_bib81_815_161918 – volume: 9 start-page: 1118 year: 2010 ident: 2024111706534393600_bib24 article-title: Revising the definition of Alzheimer's disease: a new lexicon publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70223-4 – volume: 380 start-page: 2197 year: 2012 ident: 2024111706534393600_bib4 article-title: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010 publication-title: Lancet doi: 10.1016/S0140-6736(12)61689-4 – volume: 6 start-page: 34567 year: 2016 ident: 2024111706534393600_bib84_243_162918 doi: 10.1038/srep34567 – volume: 274 start-page: 146 year: 2016 ident: 2024111706534393600_bib79 article-title: Fast and robust segmentation of the striatum using deep convolutional neural networks publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2016.10.007 – volume: 19 start-page: 221 year: 2017 ident: 2024111706534393600_bib65 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 24 start-page: 261 year: 2005 ident: 2024111706534393600_bib45 article-title: Mindboggle: a scatterbrained approach to automate brain labeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.016 – volume: 17 start-page: 305 year: 2014 ident: 2024111706534393600_bib67 article-title: Deep learning based imaging data completion for improved brain disease diagnosis publication-title: Med Image Comput Comput Assist Interv – volume: 73 start-page: 287 year: 2009 ident: 2024111706534393600_bib13 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79e5 – volume: 1 start-page: 877 year: 1987 ident: 2024111706534393600_bib68 article-title: Large automatic learning, rule extraction, and generalization publication-title: Complex Systems – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 2024111706534393600_bib61 – volume: 6 start-page: e26752 year: 2011 ident: 2024111706534393600_bib54 article-title: Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter publication-title: PLoS One doi: 10.1371/journal.pone.0026752 – volume: 25 start-page: 606 year: 2010 ident: 2024111706534393600_bib62 article-title: Heterogeneity of cognitive trajectories in diverse older persons publication-title: Psychol Aging doi: 10.1037/a0019502 – volume: 13 start-page: 325 year: 2017 ident: 2024111706534393600_bib3 article-title: 2017 Alzheimer's disease facts and figures publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2017.02.001 – volume: 168 start-page: 894 year: 2011 ident: 2024111706534393600_bib30 article-title: Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer's disease publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2011.10111690 – volume: 7 start-page: 12460 year: 2016 ident: 2024111706534393600_bib58 article-title: Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis publication-title: Nat Commun doi: 10.1038/ncomms12460 – volume: 5 start-page: e7 year: 2017 ident: 2024111706534393600_bib55 article-title: Patient similarity in prediction models based on health data: a scoping review publication-title: JMIR Med Inform doi: 10.2196/medinform.6730 – volume: 32 start-page: 2322.e19 year: 2011 ident: 2024111706534393600_bib72 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.05.023 – volume: 73 start-page: 294 year: 2009 ident: 2024111706534393600_bib14 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79fb – ident: 2024111706534393600_bib80 doi: 10.1093/gigascience/giy085 – volume: 2 start-page: 54 year: 2015 ident: 2024111706534393600_bib9 article-title: Molecular diagnostics of neurodegenerative disorders publication-title: Front Mol Biosci doi: 10.3389/fmolb.2015.00054 – volume: 53 start-page: 1503 year: 1997 ident: 2024111706534393600_bib51 article-title: A note on “A Concordance Correlation Coefficient to Evaluate Reproducibility.” publication-title: Biometrics doi: 10.2307/2533516 – volume: 138 start-page: 197 year: 2016 ident: 2024111706534393600_bib78 article-title: Consistent cortical reconstruction and multi-atlas brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.030 – volume-title: Kernel Methods in Computational Biology year: 2004 ident: 2024111706534393600_bib48 doi: 10.7551/mitpress/4057.001.0001 – volume: 7 start-page: 561 year: 2016 ident: 2024111706534393600_bib73 article-title: Patient similarity: emerging concepts in systems and precision medicine publication-title: Front Physiol doi: 10.3389/fphys.2016.00561 – volume: 32 start-page: 453 year: 2015 ident: 2024111706534393600_bib6 article-title: A risk-benefit assessment of dementia medications: systematic review of the evidence publication-title: Drugs Aging doi: 10.1007/s40266-015-0266-9 – volume: 7 start-page: 257 year: 2011 ident: 2024111706534393600_bib23 article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.004 – volume: 5 start-page: 89 year: 2003 ident: 2024111706534393600_bib28 article-title: Sensitivity and specificity of neuroimaging for the diagnosis of Alzheimer's disease publication-title: Dialogues Clin Neurosci doi: 10.1080/19585969.2022.12130515 – volume: 99 start-page: 166 year: 2014 ident: 2024111706534393600_bib44 article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.044 – volume: 10 start-page: 690 year: 2014 ident: 2024111706534393600_bib50 article-title: Biomarker progressions explain higher variability in stage-specific cognitive decline than baseline values in Alzheimer disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.04.513 – volume: 305 start-page: 275 year: 2011 ident: 2024111706534393600_bib19 article-title: Use of florbetapir-PET for imaging beta-amyloid pathology publication-title: JAMA doi: 10.1001/jama.2010.2008 – volume: 22 start-page: 1754 year: 2004 ident: 2024111706534393600_bib15 article-title: Mapping hippocampal and ventricular change in Alzheimer disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.040 – volume: 7 start-page: e1002251 year: 2011 ident: 2024111706534393600_bib49 article-title: High degree of heterogeneity in Alzheimer's disease progression patterns publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002251 – volume: 14 start-page: e1002258 year: 2017 ident: 2024111706534393600_bib75 article-title: Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score publication-title: PLoS Med doi: 10.1371/journal.pmed.1002258 – volume-title: Neurological Disorders year: 2016 ident: 2024111706534393600_bib5 – volume: 1 start-page: 156 year: 2014 ident: 2024111706534393600_bib63 article-title: Prediction of clinical outcome for all stages and multiple cell types of non-small cell lung cancer in five countries using lung cancer prognostic index publication-title: EBioMedicine doi: 10.1016/j.ebiom.2014.10.012 – volume: 6 start-page: 347 year: 2009 ident: 2024111706534393600_bib71 article-title: Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort publication-title: Curr Alzheimer Res doi: 10.2174/156720509788929273 – volume: 23 start-page: 994 year: 2003 ident: 2024111706534393600_bib16 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-03-00994.2003 – start-page: 146 year: 2012 ident: 2024111706534393600_bib88_939_164218 article-title: Feature ranking based nested support vector machine ensemble for medical image classification publication-title: Proc IEEE Int Symp Biomed Imaging – volume: 27 start-page: 685 year: 2008 ident: 2024111706534393600_bib41 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21049 – volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) year: 2015 ident: 2024111706534393600_bib34 article-title: Deep neural networks for anatomical brain segmentation doi: 10.1109/CVPRW.2015.7301312 – volume: 44 start-page: 2274 year: 2014 ident: 2024111706534393600_bib52 article-title: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2305974 – volume: 2016 start-page: 371 year: 2016 ident: 2024111706534393600_bib69 article-title: Interpretable deep models for ICU outcome prediction publication-title: AMIA Annu Symp Proc – volume: 1180 start-page: 36 year: 2009 ident: 2024111706534393600_bib42 article-title: AddNeuroMed–the European collaboration for the discovery of novel biomarkers for Alzheimer's disease publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2009.05064.x – volume: 95 start-page: 629 year: 2011 ident: 2024111706534393600_bib46 article-title: The Parkinson Progression Marker Initiative (PPMI) publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2011.09.005 – volume: 6 start-page: 67 year: 2010 ident: 2024111706534393600_bib12 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – volume: 26 start-page: 1650025 year: 2016 ident: 2024111706534393600_bib66 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease publication-title: Int J Neural Syst doi: 10.1142/S0129065716500258 – volume: 11 start-page: 964 year: 2015 ident: 2024111706534393600_bib17 article-title: Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: phase 3 study publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2015.02.004 – volume: 5 start-page: 241 year: 1992 ident: 2024111706534393600_bib70 article-title: Stacked generalization publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 – volume: 27 start-page: 857 year: 2016 ident: 2024111706534393600_bib86_889_163218 doi: 10.1515/revneuro-2016-0029 – volume: 25 start-page: 367 year: 2012 ident: 2024111706534393600_bib8 article-title: Practical guidelines for the recognition and diagnosis of dementia publication-title: J Am Board Fam Med doi: 10.3122/jabfm.2012.03.100181 – volume: 4 start-page: 17 year: 2012 ident: 2024111706534393600_bib77 article-title: The relationship of topographical memory performance to regional neurodegeneration in Alzheimer's disease publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2012.00017 – year: 2015 ident: 2024111706534393600_bib60 article-title: Thoughts on massively scalable Gaussian processes [Internet] – volume: 12 start-page: 645 year: 2016 ident: 2024111706534393600_bib38 article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2016.02.006 – volume: 24 start-page: 748 year: 2009 ident: 2024111706534393600_bib2 article-title: Clinical and cost effectiveness of services for early diagnosis and intervention in dementia publication-title: Int J Geriatr Psychiatry doi: 10.1002/gps.2191 – volume: 14 start-page: e1002266 year: 2017 ident: 2024111706534393600_bib11 article-title: Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: a nontargeted metabolomic study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002266 – volume: 31 start-page: 601 year: 2012 ident: 2024111706534393600_bib18 article-title: A highly selective and specific PET tracer for imaging of tau pathologies publication-title: J Alzheimers Dis doi: 10.3233/JAD-2012-120712 – volume: 16 start-page: 583 year: 2013 ident: 2024111706534393600_bib83_634_162418 – volume: 7 start-page: 280 year: 2011 ident: 2024111706534393600_bib22 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 61 start-page: 457 year: 2012 ident: 2024111706534393600_bib26 article-title: Diagnostic neuroimaging across diseases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.002 – volume: 62 start-page: 774 year: 2012 ident: 2024111706534393600_bib43 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 53 start-page: 3735 year: 2009 ident: 2024111706534393600_bib47 article-title: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.04.009 – volume: 1 start-page: 213 year: 2004 ident: 2024111706534393600_bib10 article-title: Cerebrospinal fluid protein biomarkers for Alzheimer's disease publication-title: NeuroRx doi: 10.1602/neurorx.1.2.213 – volume: 6 start-page: 19 year: 2012 ident: 2024111706534393600_bib7 article-title: Current and future treatments for Alzheimer's disease publication-title: Ther Adv Neurol Disord doi: 10.1177/1756285612461679 – volume: 2015 start-page: 132 year: 2015 ident: 2024111706534393600_bib56 article-title: Personalized predictive modeling and risk factor identification using patient similarity publication-title: AMIA Jt Summits Transl Sci Proc – start-page: 1721 volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD'15 year: 2015 ident: 2024111706534393600_bib37 article-title: Intelligible models for health care doi: 10.1145/2783258.2788613 – volume: 8 start-page: 9 year: 2016 ident: 2024111706534393600_bib87_147_163418 doi: 10.1186/s13195-016-0176-z – volume: 10 start-page: 1675 year: 2010 ident: 2024111706534393600_bib27 article-title: Quantitative structural MRI for early detection of Alzheimer's disease publication-title: Expert Rev Neurother doi: 10.1586/ern.10.162 – volume: 7 start-page: 270 year: 2011 ident: 2024111706534393600_bib21 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.008 – volume: 1 start-page: 46 year: 2015 ident: 2024111706534393600_bib32 article-title: Using baseline cognitive severity for enriching Alzheimer's disease clinical trials: how does Mini-Mental State Examination predict rate of change ? publication-title: Alzheimers Dement – volume: 7 start-page: 263 year: 2011 ident: 2024111706534393600_bib20 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 5 start-page: 1 year: 2013 ident: 2024111706534393600_bib29 article-title: Clinical, imaging, and pathological heterogeneity of the Alzheimer's disease syndrome publication-title: Alzheimers Res Ther doi: 10.1186/alzrt155 – volume: 15 start-page: 869 year: 2005 ident: 2024111706534393600_bib40 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2005.09.008 – volume: 7 start-page: 407 year: 2007 ident: 2024111706534393600_bib1 article-title: Dementia syndromes: evaluation and treatment publication-title: Expert Rev Neurother doi: 10.1586/14737175.7.4.407 – volume: 87 start-page: 539 year: 2016 ident: 2024111706534393600_bib31 article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000002923  | 
    
| SSID | ssj0000778873 | 
    
| Score | 2.1181211 | 
    
| Snippet | Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost... Motivation Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| SubjectTerms | Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - genetics Alzheimer's disease Big Data Biomarkers Cognition Disorders - diagnosis Cognitive ability Cognitive Dysfunction - diagnosis Cohort Studies Diagnosis Diagnosis, Computer-Assisted Diagnostic systems Disease Disease Progression Gaussian process Heterogeneity Humans Impairment Machine Learning Magnetic Resonance Imaging Medical Informatics - methods Movement disorders Neurodegenerative diseases Normal Distribution Parkinson Disease - diagnosis Parkinson's disease Patients Phenotype Phenotypes Principal Component Analysis Prognosis ROC Curve Sensitivity and Specificity Similarity  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7gEuvB-BXWQkBAdwWyeOnRwrxGqFxMKBSuUU-ZVuRJtWbarV7q9nHDvRlkUIJJRT5IfieDzzjTzzDUKv-djqPJGaGJ5LwgDAklwoRSy1Y02NYaKtovD5jJ9O2adZOjtAX7pcGBmiwoddSsO8mstgDEbhZ5K1KUcCnnl1CYhh5JIvwY9h4X0IzbfQIU8BnA_Q4fTs6-S7KzHXchJQMQupM-DK703uB--bpxuY82bo5O1dvZaXF3KxuGaXTu6hdbciH47yY7hr1FBf_UL2-B-XfB_dDRgWT_ygB-jA1g_RcciAwG9wSHFyW46D7niELiZ4Wy0rcKQB9xNnPA3uCM1xs8ILC4cKlBtuQxyJK9y7afDS3yNhF8iKYTqAq9j46MBqi2VtsAsw82-rEk8WV-e2WtrN2y0OV0-P0fTk47cPpyRUfSCapVlDclNqzTMqmRSxjnPDmUqZjEvDNMCjXOZJlkpTZqZMU6kE1QC5QA2VlgnOmU6eoEG9qu0zhFk51obFKmcqYbHQkhuQw0wpwy0DzRoh2m12oQMluqvMsSj81XxSXNuKwv_qCL3rx6w9Icgfex91MlQE5bAtYkFTR-eZ0d82J5SDkwfim0ToVd8Mp95d5cjarnYwRctsCEgC-jz1Etl_TeL8fLBxERJ7stp3cIzi-y11dd4yi4Nvy2guIvS-l-q_WOTzf-v-At0B1Jn5mOcjNGg2O3sMyK5RL8Np_Qk1KlhK priority: 102 providerName: Unpaywall  | 
    
| Title | A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30010762 https://www.proquest.com/docview/2715808081 https://www.proquest.com/docview/3169746593 https://www.proquest.com/docview/2070799903 https://pubmed.ncbi.nlm.nih.gov/PMC6054197 https://academic.oup.com/gigascience/article-pdf/7/7/giy085/25192114/giy085.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: RBZ dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: ABDBF dateStart: 20131201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2047-217X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: TOX dateStart: 20110101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2047-217X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000778873 issn: 2047-217X databaseCode: M48 dateStart: 20120701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC9oX8dtoW1YQfdDUS3azm30QOaSlCC0-eFCfwmZ30wZyuXqXo54P_u3OJpvQo4eILyFhP5LszOz8hpmdAXjNR1ZLqnRouFQhQwAbSpHnoY3sSEfGMNFWUTg94ycT9uU8Od-CvtyRX8DFRtPO1ZOazKvDnz9Wn1DgP_pkSB8uygvl9QXerxBE3IEd1FTSlXI49XC_3ZmFi52j_uzM5qG7cJc6Q0nweF1V3cKft8Mo7y3rK7W6VlV1Q0cdP4D7HlyScccND2HL1o9g3x9NIG-IP3vkaEG8UD-G6zFZlNMSlwEBeei0miF9pnHSzEhlkdtx1yFt7GHoKurOGzLtHDzERZgSnA5xJDFd2F65IKo2xEV-dU-zgoyrX5e2nNr52wXxPqEnMDk--vb5JPTlGELNkrQJpSm05mmkmBKxjqXhLE-YigvDNOIWqSRNE2WK1BRJonIRacRCuD8UlgnOmaZPYbue1fY5EFaMtGFxLllOWSy04gYZJM1zwy3DLS-AqF_5TPtc5a5kRpV1PnOa3SBc1hEugHfDmKsuU8dfe-_1BM16pstiESUuz2YabWymEUfriyeSBvBqaEZxdD4WVdvZEqdoUw6iisc-zzr2GL6m56sAxBrjDB1cqu_1lrq8bFN-o9HJIikCeD-w2D_85Iv_ftFL2EVkmHZxyXuw3cyXdh_RV5MftCLlrr-PDmBncvZ1_P0PNyI8tg | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7gEuvB-BXWQkBAdwWyeOnRwrxGqFxMKBSuUU-ZVuRJtWbarV7q9nHDvRlkUIJJRT5IfieDzzjTzzDUKv-djqPJGaGJ5LwgDAklwoRSy1Y02NYaKtovD5jJ9O2adZOjtAX7pcGBmiwoddSsO8mstgDEbhZ5K1KUcCnnl1CYhh5JIvwY9h4X0IzbfQIU8BnA_Q4fTs6-S7KzHXchJQMQupM-DK703uB--bpxuY82bo5O1dvZaXF3KxuGaXTu6hdbciH47yY7hr1FBf_UL2-B-XfB_dDRgWT_ygB-jA1g_RcciAwG9wSHFyW46D7niELiZ4Wy0rcKQB9xNnPA3uCM1xs8ILC4cKlBtuQxyJK9y7afDS3yNhF8iKYTqAq9j46MBqi2VtsAsw82-rEk8WV-e2WtrN2y0OV0-P0fTk47cPpyRUfSCapVlDclNqzTMqmRSxjnPDmUqZjEvDNMCjXOZJlkpTZqZMU6kE1QC5QA2VlgnOmU6eoEG9qu0zhFk51obFKmcqYbHQkhuQw0wpwy0DzRoh2m12oQMluqvMsSj81XxSXNuKwv_qCL3rx6w9Icgfex91MlQE5bAtYkFTR-eZ0d82J5SDkwfim0ToVd8Mp95d5cjarnYwRctsCEgC-jz1Etl_TeL8fLBxERJ7stp3cIzi-y11dd4yi4Nvy2guIvS-l-q_WOTzf-v-At0B1Jn5mOcjNGg2O3sMyK5RL8Np_Qk1KlhK | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+similarity-based+approach+to+leverage+multi-cohort+medical+data+on+the+diagnosis+and+prognosis+of+Alzheimer%27s+disease&rft.jtitle=Gigascience&rft.au=Zhang%2C+Hongjiu&rft.au=Zhu%2C+Fan&rft.au=Dodge%2C+Hiroko+H&rft.au=Higgins%2C+Gerald+A&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.eissn=2047-217X&rft.volume=7&rft.issue=7&rft_id=info:doi/10.1093%2Fgigascience%2Fgiy085&rft_id=info%3Apmid%2F30010762&rft.externalDocID=PMC6054197 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon |