A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease

Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantita...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 7; no. 7
Main Authors Zhang, Hongjiu, Zhu, Fan, Dodge, Hiroko H, Higgins, Gerald A, Omenn, Gilbert S, Guan, Yuanfang
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.07.2018
Subjects
Online AccessGet full text
ISSN2047-217X
2047-217X
DOI10.1093/gigascience/giy085

Cover

Abstract Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging. We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.
AbstractList Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging. We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.
Motivation Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging. Results We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.
Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.MotivationHeterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.ResultsWe have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.
Author Zhang, Hongjiu
Guan, Yuanfang
Dodge, Hiroko H
Higgins, Gerald A
Omenn, Gilbert S
Zhu, Fan
AuthorAffiliation 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
2 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, China 400714
4 Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center SPC 5316, Ann Arbor, MI, USA 48109
5 Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L226, Portland, OR, USA 97239
3 Michigan Alzheimer's Disease Center, University of Michigan, 2101 Commonwealth Blvd, Ann Arbor, MI, USA 48105
7 Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI, USA 48109
8 School of Public Health, University of Michigan,
AuthorAffiliation_xml – name: 5 Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L226, Portland, OR, USA 97239
– name: 4 Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center SPC 5316, Ann Arbor, MI, USA 48109
– name: 6 Department of Internal Medicine, University of Michigan, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, USA 48109
– name: 7 Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI, USA 48109
– name: 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
– name: 2 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, China 400714
– name: 3 Michigan Alzheimer's Disease Center, University of Michigan, 2101 Commonwealth Blvd, Ann Arbor, MI, USA 48105
– name: 8 School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA 48109
– name: 9 Department of Electronic Engineering and Computer Science, Bob and Betty Beyster Building, 2260 Hayward Street, University of Michigan, Ann Arbor, MI, USA 48109
Author_xml – sequence: 1
  givenname: Hongjiu
  surname: Zhang
  fullname: Zhang, Hongjiu
– sequence: 2
  givenname: Fan
  surname: Zhu
  fullname: Zhu, Fan
– sequence: 3
  givenname: Hiroko H
  surname: Dodge
  fullname: Dodge, Hiroko H
– sequence: 4
  givenname: Gerald A
  surname: Higgins
  fullname: Higgins, Gerald A
– sequence: 5
  givenname: Gilbert S
  surname: Omenn
  fullname: Omenn, Gilbert S
– sequence: 6
  givenname: Yuanfang
  orcidid: 0000-0001-8275-2852
  surname: Guan
  fullname: Guan, Yuanfang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30010762$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUhiemxtbaP-DCkLjQzSjMMHxsTG4av5ImbjRxR85lmBkaBkZg2lx_vTT3qtcuGmHBITzvy-HlaXXigzdV9ZzgNwTL9u1oR0jaGq9NqXdYdI-qswZTXjeEfz85qk-ri5SucRmcC8HbJ9VpizHBnDVn1e0GJTtbB9HmXb2FZHoEyxID6AnlgJy5MRFGg-bVZVvrMIWY0Wx6q8GhHjKg4FGeDOotjD4kmxD4HhWHwy4MaON-TsbOJr5KBUum3PKsejyAS-bisJ5X3z68_3r5qb768vHz5eaq1rQTuZb9oDUTBCjwRjeyZ3TbUWiGnmrGWgmyFR30g-iHroMtJ1rIlgoxGMoZo7o9r9q97-oX2N2Cc2qJdoa4UwSruyTVUZJqn2RRvdurlnVb3qqNzxH-KgNY9e-Jt5Maw41iuKNE8mLw-mAQw4_VpKxmm7RxDrwJa1IN5phLKXFb0Jf30OuwRl9CUS1hklPWyQephpNO4DJJoV4c9_2n4d__XYBmD-gYUopm-L80xD2RthmyDXdvt-4h6S9mqdpi
CitedBy_id crossref_primary_10_1093_gigascience_giy085
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1093_jamiaopen_ooab052
crossref_primary_10_2196_18389
Cites_doi 10.1126/scitranslmed.aaa9364
10.1109/FTC.2016.7821697
10.1016/S1474-4422(07)70178-3
10.1177/016555150202800601
10.1371/journal.pmed.1002270
10.1016/S1474-4422(10)70223-4
10.1016/S0140-6736(12)61689-4
10.1038/srep34567
10.1016/j.jneumeth.2016.10.007
10.1146/annurev-bioeng-071516-044442
10.1016/j.neuroimage.2004.09.016
10.1212/WNL.0b013e3181af79e5
10.1371/journal.pone.0026752
10.1037/a0019502
10.1016/j.jalz.2017.02.001
10.1176/appi.ajp.2011.10111690
10.1038/ncomms12460
10.2196/medinform.6730
10.1016/j.neurobiolaging.2010.05.023
10.1212/WNL.0b013e3181af79fb
10.1093/gigascience/giy085
10.3389/fmolb.2015.00054
10.2307/2533516
10.1016/j.neuroimage.2016.05.030
10.7551/mitpress/4057.001.0001
10.3389/fphys.2016.00561
10.1007/s40266-015-0266-9
10.1016/j.jalz.2011.03.004
10.1080/19585969.2022.12130515
10.1016/j.neuroimage.2014.05.044
10.1016/j.jalz.2014.04.513
10.1001/jama.2010.2008
10.1016/j.neuroimage.2004.03.040
10.1371/journal.pcbi.1002251
10.1371/journal.pmed.1002258
10.1016/j.ebiom.2014.10.012
10.2174/156720509788929273
10.1523/JNEUROSCI.23-03-00994.2003
10.1002/jmri.21049
10.1109/CVPRW.2015.7301312
10.1109/TCYB.2014.2305974
10.1111/j.1749-6632.2009.05064.x
10.1016/j.pneurobio.2011.09.005
10.1038/nrneurol.2009.215
10.1142/S0129065716500258
10.1016/j.jalz.2015.02.004
10.1016/S0893-6080(05)80023-1
10.1515/revneuro-2016-0029
10.3122/jabfm.2012.03.100181
10.3389/fnagi.2012.00017
10.1016/j.jalz.2016.02.006
10.1002/gps.2191
10.1371/journal.pmed.1002266
10.3233/JAD-2012-120712
10.1016/j.jalz.2011.03.003
10.1016/j.neuroimage.2011.11.002
10.1016/j.neuroimage.2012.01.021
10.1016/j.csda.2009.04.009
10.1602/neurorx.1.2.213
10.1177/1756285612461679
10.1145/2783258.2788613
10.1186/s13195-016-0176-z
10.1586/ern.10.162
10.1016/j.jalz.2011.03.008
10.1016/j.jalz.2011.03.005
10.1186/alzrt155
10.1016/j.nic.2005.09.008
10.1586/14737175.7.4.407
10.1212/WNL.0000000000002923
ContentType Journal Article
Copyright The Authors 2018. Published by Oxford University Press.
The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Authors 2018. Published by Oxford University Press. 2018
Copyright_xml – notice: The Authors 2018. Published by Oxford University Press.
– notice: The Authors 2018. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Authors 2018. Published by Oxford University Press. 2018
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/gigascience/giy085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2047-217X
ExternalDocumentID 10.1093/gigascience/giy085
PMC6054197
30010762
10_1093_gigascience_giy085
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG008017
– fundername: NIA NIH HHS
  grantid: P30 AG053760
– fundername: NIEHS NIH HHS
  grantid: P30 ES017885
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID 0R~
53G
5VS
7X7
AAFWJ
AAHBH
AAPXW
AAVAP
AAYXX
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
AEGXH
AENZO
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AOIJS
BAWUL
BAYMD
BBNVY
BCNDV
BFQNJ
C6C
CITATION
DIK
EBS
EJD
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
IHW
INR
KQ8
KSI
M48
M~E
O9-
OK1
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TJX
TOX
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
5PM
4.4
88E
88I
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
ADUKV
AFKRA
AHSBF
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
IGS
INH
IPNFZ
ITC
K6V
K7-
LK8
M1P
M2P
M7P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RIG
UKHRP
UNPAY
ID FETCH-LOGICAL-c458t-9dfcc681a4a72c29d64b54a2fd4c6639a9385adf8df55ab71c893488fe47664c3
IEDL.DBID M48
ISSN 2047-217X
IngestDate Sun Oct 26 02:40:49 EDT 2025
Thu Aug 21 14:30:36 EDT 2025
Wed Oct 01 14:39:42 EDT 2025
Tue Oct 07 06:54:43 EDT 2025
Tue Oct 07 06:35:19 EDT 2025
Thu Apr 03 06:53:34 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Oct 01 01:52:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-9dfcc681a4a72c29d64b54a2fd4c6639a9385adf8df55ab71c893488fe47664c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp+content/up+loads/how_to_apply/ADNI_Acknowledgement_List.pdf.
H.Z. and F.Z. equally contributed to the work.
ORCID 0000-0001-8275-2852
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/gigascience/giy085
PMID 30010762
PQID 2715808081
PQPubID 2040230
ParticipantIDs unpaywall_primary_10_1093_gigascience_giy085
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054197
proquest_miscellaneous_2070799903
proquest_journals_3169746593
proquest_journals_2715808081
pubmed_primary_30010762
crossref_primary_10_1093_gigascience_giy085
crossref_citationtrail_10_1093_gigascience_giy085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Gigascience
PublicationTitleAlternate Gigascience
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jack (2024111706534393600_bib31) 2016; 87
Varol (2024111706534393600_bib88_939_164218) 2012
Wolpert (2024111706534393600_bib70) 1992; 5
Huo (2024111706534393600_bib78) 2016; 138
Ng (2024111706534393600_bib56) 2015; 2015
Galvin (2024111706534393600_bib8) 2012; 25
Liu (2024111706534393600_bib52) 2014; 44
Nickerson (2024111706534393600_bib51) 1997; 53
Klöppel (2024111706534393600_bib26) 2012; 61
Fischl (2024111706534393600_bib43) 2012; 62
Snowden (2024111706534393600_bib11) 2017; 14
2024111706534393600_bib80
Jack (2024111706534393600_bib41) 2008; 27
Yiannopoulou (2024111706534393600_bib7) 2012; 6
Dubois (2024111706534393600_bib24) 2010; 9
Li (2024111706534393600_bib67) 2014; 17
Dubois (2024111706534393600_bib25) 2007; 6
Lanoiselée (2024111706534393600_bib74) 2017; 14
Wollman (2024111706534393600_bib28) 2003; 5
Tustison (2024111706534393600_bib44) 2014; 99
Ortiz (2024111706534393600_bib66) 2016; 26
Desikan (2024111706534393600_bib75) 2017; 14
Albert (2024111706534393600_bib21) 2011; 7
Zhu (2024111706534393600_bib84_243_162918) 2016; 6
Brown (2024111706534393600_bib73) 2016; 7
Kennedy (2024111706534393600_bib32) 2015; 1
Sabri (2024111706534393600_bib17) 2015; 11
Lam (2024111706534393600_bib29) 2013; 5
Komarova (2024111706534393600_bib49) 2011; 7
Banerjee (2024111706534393600_bib2) 2009; 24
Vemuri (2024111706534393600_bib14) 2009; 73
Otte (2024111706534393600_bib53) 2002; 28
Wilson (2024111706534393600_bib60) 2015
Che (2024111706534393600_bib69) 2016; 2016
Dodds (2024111706534393600_bib54) 2011; 6
Alzheimer's Association (2024111706534393600_bib3) 2017; 13
Pengas (2024111706534393600_bib77) 2012; 4
Suk (2024111706534393600_bib83_634_162418) 2013; 16
Dodge (2024111706534393600_bib50) 2014; 10
Agrawal (2024111706534393600_bib9) 2015; 2
McEvoy (2024111706534393600_bib27) 2010; 10
Blennow (2024111706534393600_bib10) 2004; 1
Clark (2024111706534393600_bib19) 2011; 305
Klein (2024111706534393600_bib45) 2005; 24
Mungas (2024111706534393600_bib62) 2010; 25
Risacher (2024111706534393600_bib71) 2009; 6
Sharafoddini (2024111706534393600_bib55) 2017; 5
Lovestone (2024111706534393600_bib42) 2009; 1180
Davatzikos (2024111706534393600_bib72) 2011; 32
Caruana (2024111706534393600_bib37) 2015
Rasmussen (2024111706534393600_bib61) 2006
Thakur (2024111706534393600_bib5) 2016
Vemuri (2024111706534393600_bib13) 2009; 73
Jack (2024111706534393600_bib23) 2011; 7
Thompson (2024111706534393600_bib30) 2011; 168
Sarraf (2024111706534393600_bib35) 2016
Sieberts (2024111706534393600_bib58) 2016; 7
Wachinger (2024111706534393600_bib81_815_161918) 2018; 170
de Brebisson (2024111706534393600_bib34) 2015
Buckley (2024111706534393600_bib6) 2015; 32
Allen (2024111706534393600_bib38) 2016; 12
Mirzaei (2024111706534393600_bib86_889_163218) 2016; 27
Thompson (2024111706534393600_bib16) 2003; 23
Schölkopf (2024111706534393600_bib48) 2004
McKhann (2024111706534393600_bib20) 2011; 7
Chapman (2024111706534393600_bib87_147_163418) 2016; 8
Mueller (2024111706534393600_bib40) 2005; 15
Kim (2024111706534393600_bib47) 2009; 53
Choi (2024111706534393600_bib79) 2016; 274
Murray (2024111706534393600_bib4) 2012; 380
Shen (2024111706534393600_bib65) 2017; 19
Zhang (2024111706534393600_bib18) 2012; 31
Frisoni (2024111706534393600_bib12) 2010; 6
Sperling (2024111706534393600_bib22) 2011; 7
Parkinson Progression Marker Initiative (2024111706534393600_bib46) 2011; 95
Chen (2024111706534393600_bib63) 2014; 1
Scott (2024111706534393600_bib1) 2007; 7
Li (2024111706534393600_bib57) 2015; 7
Thompson (2024111706534393600_bib15) 2004; 22
Denker (2024111706534393600_bib68) 1987; 1
References_xml – volume: 7
  start-page: 311ra174
  year: 2015
  ident: 2024111706534393600_bib57
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa9364
– volume-title: 2016 Future Technologies Conference (FTC)
  year: 2016
  ident: 2024111706534393600_bib35
  article-title: Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data
  doi: 10.1109/FTC.2016.7821697
– volume: 6
  start-page: 734
  year: 2007
  ident: 2024111706534393600_bib25
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 28
  start-page: 441
  year: 2002
  ident: 2024111706534393600_bib53
  article-title: Social network analysis: a powerful strategy, also for the information sciences
  publication-title: J Inf Sci Eng
  doi: 10.1177/016555150202800601
– volume: 14
  start-page: e1002270
  year: 2017
  ident: 2024111706534393600_bib74
  article-title: APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002270
– volume: 170
  start-page: 434
  year: 2018
  ident: 2024111706534393600_bib81_815_161918
– volume: 9
  start-page: 1118
  year: 2010
  ident: 2024111706534393600_bib24
  article-title: Revising the definition of Alzheimer's disease: a new lexicon
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70223-4
– volume: 380
  start-page: 2197
  year: 2012
  ident: 2024111706534393600_bib4
  article-title: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61689-4
– volume: 6
  start-page: 34567
  year: 2016
  ident: 2024111706534393600_bib84_243_162918
  doi: 10.1038/srep34567
– volume: 274
  start-page: 146
  year: 2016
  ident: 2024111706534393600_bib79
  article-title: Fast and robust segmentation of the striatum using deep convolutional neural networks
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.10.007
– volume: 19
  start-page: 221
  year: 2017
  ident: 2024111706534393600_bib65
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 24
  start-page: 261
  year: 2005
  ident: 2024111706534393600_bib45
  article-title: Mindboggle: a scatterbrained approach to automate brain labeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.016
– volume: 17
  start-page: 305
  year: 2014
  ident: 2024111706534393600_bib67
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: Med Image Comput Comput Assist Interv
– volume: 73
  start-page: 287
  year: 2009
  ident: 2024111706534393600_bib13
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79e5
– volume: 1
  start-page: 877
  year: 1987
  ident: 2024111706534393600_bib68
  article-title: Large automatic learning, rule extraction, and generalization
  publication-title: Complex Systems
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 2024111706534393600_bib61
– volume: 6
  start-page: e26752
  year: 2011
  ident: 2024111706534393600_bib54
  article-title: Temporal patterns of happiness and information in a global social network: hedonometrics and Twitter
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026752
– volume: 25
  start-page: 606
  year: 2010
  ident: 2024111706534393600_bib62
  article-title: Heterogeneity of cognitive trajectories in diverse older persons
  publication-title: Psychol Aging
  doi: 10.1037/a0019502
– volume: 13
  start-page: 325
  year: 2017
  ident: 2024111706534393600_bib3
  article-title: 2017 Alzheimer's disease facts and figures
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.02.001
– volume: 168
  start-page: 894
  year: 2011
  ident: 2024111706534393600_bib30
  article-title: Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer's disease
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2011.10111690
– volume: 7
  start-page: 12460
  year: 2016
  ident: 2024111706534393600_bib58
  article-title: Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
  publication-title: Nat Commun
  doi: 10.1038/ncomms12460
– volume: 5
  start-page: e7
  year: 2017
  ident: 2024111706534393600_bib55
  article-title: Patient similarity in prediction models based on health data: a scoping review
  publication-title: JMIR Med Inform
  doi: 10.2196/medinform.6730
– volume: 32
  start-page: 2322.e19
  year: 2011
  ident: 2024111706534393600_bib72
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.05.023
– volume: 73
  start-page: 294
  year: 2009
  ident: 2024111706534393600_bib14
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79fb
– ident: 2024111706534393600_bib80
  doi: 10.1093/gigascience/giy085
– volume: 2
  start-page: 54
  year: 2015
  ident: 2024111706534393600_bib9
  article-title: Molecular diagnostics of neurodegenerative disorders
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2015.00054
– volume: 53
  start-page: 1503
  year: 1997
  ident: 2024111706534393600_bib51
  article-title: A note on “A Concordance Correlation Coefficient to Evaluate Reproducibility.”
  publication-title: Biometrics
  doi: 10.2307/2533516
– volume: 138
  start-page: 197
  year: 2016
  ident: 2024111706534393600_bib78
  article-title: Consistent cortical reconstruction and multi-atlas brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.030
– volume-title: Kernel Methods in Computational Biology
  year: 2004
  ident: 2024111706534393600_bib48
  doi: 10.7551/mitpress/4057.001.0001
– volume: 7
  start-page: 561
  year: 2016
  ident: 2024111706534393600_bib73
  article-title: Patient similarity: emerging concepts in systems and precision medicine
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00561
– volume: 32
  start-page: 453
  year: 2015
  ident: 2024111706534393600_bib6
  article-title: A risk-benefit assessment of dementia medications: systematic review of the evidence
  publication-title: Drugs Aging
  doi: 10.1007/s40266-015-0266-9
– volume: 7
  start-page: 257
  year: 2011
  ident: 2024111706534393600_bib23
  article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.004
– volume: 5
  start-page: 89
  year: 2003
  ident: 2024111706534393600_bib28
  article-title: Sensitivity and specificity of neuroimaging for the diagnosis of Alzheimer's disease
  publication-title: Dialogues Clin Neurosci
  doi: 10.1080/19585969.2022.12130515
– volume: 99
  start-page: 166
  year: 2014
  ident: 2024111706534393600_bib44
  article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.044
– volume: 10
  start-page: 690
  year: 2014
  ident: 2024111706534393600_bib50
  article-title: Biomarker progressions explain higher variability in stage-specific cognitive decline than baseline values in Alzheimer disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.04.513
– volume: 305
  start-page: 275
  year: 2011
  ident: 2024111706534393600_bib19
  article-title: Use of florbetapir-PET for imaging beta-amyloid pathology
  publication-title: JAMA
  doi: 10.1001/jama.2010.2008
– volume: 22
  start-page: 1754
  year: 2004
  ident: 2024111706534393600_bib15
  article-title: Mapping hippocampal and ventricular change in Alzheimer disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.040
– volume: 7
  start-page: e1002251
  year: 2011
  ident: 2024111706534393600_bib49
  article-title: High degree of heterogeneity in Alzheimer's disease progression patterns
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002251
– volume: 14
  start-page: e1002258
  year: 2017
  ident: 2024111706534393600_bib75
  article-title: Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002258
– volume-title: Neurological Disorders
  year: 2016
  ident: 2024111706534393600_bib5
– volume: 1
  start-page: 156
  year: 2014
  ident: 2024111706534393600_bib63
  article-title: Prediction of clinical outcome for all stages and multiple cell types of non-small cell lung cancer in five countries using lung cancer prognostic index
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2014.10.012
– volume: 6
  start-page: 347
  year: 2009
  ident: 2024111706534393600_bib71
  article-title: Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720509788929273
– volume: 23
  start-page: 994
  year: 2003
  ident: 2024111706534393600_bib16
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-03-00994.2003
– start-page: 146
  year: 2012
  ident: 2024111706534393600_bib88_939_164218
  article-title: Feature ranking based nested support vector machine ensemble for medical image classification
  publication-title: Proc IEEE Int Symp Biomed Imaging
– volume: 27
  start-page: 685
  year: 2008
  ident: 2024111706534393600_bib41
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
  year: 2015
  ident: 2024111706534393600_bib34
  article-title: Deep neural networks for anatomical brain segmentation
  doi: 10.1109/CVPRW.2015.7301312
– volume: 44
  start-page: 2274
  year: 2014
  ident: 2024111706534393600_bib52
  article-title: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2305974
– volume: 2016
  start-page: 371
  year: 2016
  ident: 2024111706534393600_bib69
  article-title: Interpretable deep models for ICU outcome prediction
  publication-title: AMIA Annu Symp Proc
– volume: 1180
  start-page: 36
  year: 2009
  ident: 2024111706534393600_bib42
  article-title: AddNeuroMed–the European collaboration for the discovery of novel biomarkers for Alzheimer's disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2009.05064.x
– volume: 95
  start-page: 629
  year: 2011
  ident: 2024111706534393600_bib46
  article-title: The Parkinson Progression Marker Initiative (PPMI)
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 6
  start-page: 67
  year: 2010
  ident: 2024111706534393600_bib12
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.215
– volume: 26
  start-page: 1650025
  year: 2016
  ident: 2024111706534393600_bib66
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065716500258
– volume: 11
  start-page: 964
  year: 2015
  ident: 2024111706534393600_bib17
  article-title: Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: phase 3 study
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2015.02.004
– volume: 5
  start-page: 241
  year: 1992
  ident: 2024111706534393600_bib70
  article-title: Stacked generalization
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 27
  start-page: 857
  year: 2016
  ident: 2024111706534393600_bib86_889_163218
  doi: 10.1515/revneuro-2016-0029
– volume: 25
  start-page: 367
  year: 2012
  ident: 2024111706534393600_bib8
  article-title: Practical guidelines for the recognition and diagnosis of dementia
  publication-title: J Am Board Fam Med
  doi: 10.3122/jabfm.2012.03.100181
– volume: 4
  start-page: 17
  year: 2012
  ident: 2024111706534393600_bib77
  article-title: The relationship of topographical memory performance to regional neurodegeneration in Alzheimer's disease
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2012.00017
– year: 2015
  ident: 2024111706534393600_bib60
  article-title: Thoughts on massively scalable Gaussian processes [Internet]
– volume: 12
  start-page: 645
  year: 2016
  ident: 2024111706534393600_bib38
  article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.02.006
– volume: 24
  start-page: 748
  year: 2009
  ident: 2024111706534393600_bib2
  article-title: Clinical and cost effectiveness of services for early diagnosis and intervention in dementia
  publication-title: Int J Geriatr Psychiatry
  doi: 10.1002/gps.2191
– volume: 14
  start-page: e1002266
  year: 2017
  ident: 2024111706534393600_bib11
  article-title: Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: a nontargeted metabolomic study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002266
– volume: 31
  start-page: 601
  year: 2012
  ident: 2024111706534393600_bib18
  article-title: A highly selective and specific PET tracer for imaging of tau pathologies
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2012-120712
– volume: 16
  start-page: 583
  year: 2013
  ident: 2024111706534393600_bib83_634_162418
– volume: 7
  start-page: 280
  year: 2011
  ident: 2024111706534393600_bib22
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.003
– volume: 61
  start-page: 457
  year: 2012
  ident: 2024111706534393600_bib26
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 62
  start-page: 774
  year: 2012
  ident: 2024111706534393600_bib43
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 53
  start-page: 3735
  year: 2009
  ident: 2024111706534393600_bib47
  article-title: Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.04.009
– volume: 1
  start-page: 213
  year: 2004
  ident: 2024111706534393600_bib10
  article-title: Cerebrospinal fluid protein biomarkers for Alzheimer's disease
  publication-title: NeuroRx
  doi: 10.1602/neurorx.1.2.213
– volume: 6
  start-page: 19
  year: 2012
  ident: 2024111706534393600_bib7
  article-title: Current and future treatments for Alzheimer's disease
  publication-title: Ther Adv Neurol Disord
  doi: 10.1177/1756285612461679
– volume: 2015
  start-page: 132
  year: 2015
  ident: 2024111706534393600_bib56
  article-title: Personalized predictive modeling and risk factor identification using patient similarity
  publication-title: AMIA Jt Summits Transl Sci Proc
– start-page: 1721
  volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD'15
  year: 2015
  ident: 2024111706534393600_bib37
  article-title: Intelligible models for health care
  doi: 10.1145/2783258.2788613
– volume: 8
  start-page: 9
  year: 2016
  ident: 2024111706534393600_bib87_147_163418
  doi: 10.1186/s13195-016-0176-z
– volume: 10
  start-page: 1675
  year: 2010
  ident: 2024111706534393600_bib27
  article-title: Quantitative structural MRI for early detection of Alzheimer's disease
  publication-title: Expert Rev Neurother
  doi: 10.1586/ern.10.162
– volume: 7
  start-page: 270
  year: 2011
  ident: 2024111706534393600_bib21
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.008
– volume: 1
  start-page: 46
  year: 2015
  ident: 2024111706534393600_bib32
  article-title: Using baseline cognitive severity for enriching Alzheimer's disease clinical trials: how does Mini-Mental State Examination predict rate of change ?
  publication-title: Alzheimers Dement
– volume: 7
  start-page: 263
  year: 2011
  ident: 2024111706534393600_bib20
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 5
  start-page: 1
  year: 2013
  ident: 2024111706534393600_bib29
  article-title: Clinical, imaging, and pathological heterogeneity of the Alzheimer's disease syndrome
  publication-title: Alzheimers Res Ther
  doi: 10.1186/alzrt155
– volume: 15
  start-page: 869
  year: 2005
  ident: 2024111706534393600_bib40
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2005.09.008
– volume: 7
  start-page: 407
  year: 2007
  ident: 2024111706534393600_bib1
  article-title: Dementia syndromes: evaluation and treatment
  publication-title: Expert Rev Neurother
  doi: 10.1586/14737175.7.4.407
– volume: 87
  start-page: 539
  year: 2016
  ident: 2024111706534393600_bib31
  article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002923
SSID ssj0000778873
Score 2.1181211
Snippet Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost...
Motivation Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - genetics
Alzheimer's disease
Big Data
Biomarkers
Cognition Disorders - diagnosis
Cognitive ability
Cognitive Dysfunction - diagnosis
Cohort Studies
Diagnosis
Diagnosis, Computer-Assisted
Diagnostic systems
Disease
Disease Progression
Gaussian process
Heterogeneity
Humans
Impairment
Machine Learning
Magnetic Resonance Imaging
Medical Informatics - methods
Movement disorders
Neurodegenerative diseases
Normal Distribution
Parkinson Disease - diagnosis
Parkinson's disease
Patients
Phenotype
Phenotypes
Principal Component Analysis
Prognosis
ROC Curve
Sensitivity and Specificity
Similarity
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7gEuvB-BXWQkBAdwWyeOnRwrxGqFxMKBSuUU-ZVuRJtWbarV7q9nHDvRlkUIJJRT5IfieDzzjTzzDUKv-djqPJGaGJ5LwgDAklwoRSy1Y02NYaKtovD5jJ9O2adZOjtAX7pcGBmiwoddSsO8mstgDEbhZ5K1KUcCnnl1CYhh5JIvwY9h4X0IzbfQIU8BnA_Q4fTs6-S7KzHXchJQMQupM-DK703uB--bpxuY82bo5O1dvZaXF3KxuGaXTu6hdbciH47yY7hr1FBf_UL2-B-XfB_dDRgWT_ygB-jA1g_RcciAwG9wSHFyW46D7niELiZ4Wy0rcKQB9xNnPA3uCM1xs8ILC4cKlBtuQxyJK9y7afDS3yNhF8iKYTqAq9j46MBqi2VtsAsw82-rEk8WV-e2WtrN2y0OV0-P0fTk47cPpyRUfSCapVlDclNqzTMqmRSxjnPDmUqZjEvDNMCjXOZJlkpTZqZMU6kE1QC5QA2VlgnOmU6eoEG9qu0zhFk51obFKmcqYbHQkhuQw0wpwy0DzRoh2m12oQMluqvMsSj81XxSXNuKwv_qCL3rx6w9Icgfex91MlQE5bAtYkFTR-eZ0d82J5SDkwfim0ToVd8Mp95d5cjarnYwRctsCEgC-jz1Etl_TeL8fLBxERJ7stp3cIzi-y11dd4yi4Nvy2guIvS-l-q_WOTzf-v-At0B1Jn5mOcjNGg2O3sMyK5RL8Np_Qk1KlhK
  priority: 102
  providerName: Unpaywall
Title A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/30010762
https://www.proquest.com/docview/2715808081
https://www.proquest.com/docview/3169746593
https://www.proquest.com/docview/2070799903
https://pubmed.ncbi.nlm.nih.gov/PMC6054197
https://academic.oup.com/gigascience/article-pdf/7/7/giy085/25192114/giy085.pdf
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: RBZ
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: ABDBF
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: TOX
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2047-217X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000778873
  issn: 2047-217X
  databaseCode: M48
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC9oX8dtoW1YQfdDUS3azm30QOaSlCC0-eFCfwmZ30wZyuXqXo54P_u3OJpvQo4eILyFhP5LszOz8hpmdAXjNR1ZLqnRouFQhQwAbSpHnoY3sSEfGMNFWUTg94ycT9uU8Od-CvtyRX8DFRtPO1ZOazKvDnz9Wn1DgP_pkSB8uygvl9QXerxBE3IEd1FTSlXI49XC_3ZmFi52j_uzM5qG7cJc6Q0nweF1V3cKft8Mo7y3rK7W6VlV1Q0cdP4D7HlyScccND2HL1o9g3x9NIG-IP3vkaEG8UD-G6zFZlNMSlwEBeei0miF9pnHSzEhlkdtx1yFt7GHoKurOGzLtHDzERZgSnA5xJDFd2F65IKo2xEV-dU-zgoyrX5e2nNr52wXxPqEnMDk--vb5JPTlGELNkrQJpSm05mmkmBKxjqXhLE-YigvDNOIWqSRNE2WK1BRJonIRacRCuD8UlgnOmaZPYbue1fY5EFaMtGFxLllOWSy04gYZJM1zwy3DLS-AqF_5TPtc5a5kRpV1PnOa3SBc1hEugHfDmKsuU8dfe-_1BM16pstiESUuz2YabWymEUfriyeSBvBqaEZxdD4WVdvZEqdoUw6iisc-zzr2GL6m56sAxBrjDB1cqu_1lrq8bFN-o9HJIikCeD-w2D_85Iv_ftFL2EVkmHZxyXuw3cyXdh_RV5MftCLlrr-PDmBncvZ1_P0PNyI8tg
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW7gEuvB-BXWQkBAdwWyeOnRwrxGqFxMKBSuUU-ZVuRJtWbarV7q9nHDvRlkUIJJRT5IfieDzzjTzzDUKv-djqPJGaGJ5LwgDAklwoRSy1Y02NYaKtovD5jJ9O2adZOjtAX7pcGBmiwoddSsO8mstgDEbhZ5K1KUcCnnl1CYhh5JIvwY9h4X0IzbfQIU8BnA_Q4fTs6-S7KzHXchJQMQupM-DK703uB--bpxuY82bo5O1dvZaXF3KxuGaXTu6hdbciH47yY7hr1FBf_UL2-B-XfB_dDRgWT_ygB-jA1g_RcciAwG9wSHFyW46D7niELiZ4Wy0rcKQB9xNnPA3uCM1xs8ILC4cKlBtuQxyJK9y7afDS3yNhF8iKYTqAq9j46MBqi2VtsAsw82-rEk8WV-e2WtrN2y0OV0-P0fTk47cPpyRUfSCapVlDclNqzTMqmRSxjnPDmUqZjEvDNMCjXOZJlkpTZqZMU6kE1QC5QA2VlgnOmU6eoEG9qu0zhFk51obFKmcqYbHQkhuQw0wpwy0DzRoh2m12oQMluqvMsSj81XxSXNuKwv_qCL3rx6w9Icgfex91MlQE5bAtYkFTR-eZ0d82J5SDkwfim0ToVd8Mp95d5cjarnYwRctsCEgC-jz1Etl_TeL8fLBxERJ7stp3cIzi-y11dd4yi4Nvy2guIvS-l-q_WOTzf-v-At0B1Jn5mOcjNGg2O3sMyK5RL8Np_Qk1KlhK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+similarity-based+approach+to+leverage+multi-cohort+medical+data+on+the+diagnosis+and+prognosis+of+Alzheimer%27s+disease&rft.jtitle=Gigascience&rft.au=Zhang%2C+Hongjiu&rft.au=Zhu%2C+Fan&rft.au=Dodge%2C+Hiroko+H&rft.au=Higgins%2C+Gerald+A&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.eissn=2047-217X&rft.volume=7&rft.issue=7&rft_id=info:doi/10.1093%2Fgigascience%2Fgiy085&rft_id=info%3Apmid%2F30010762&rft.externalDocID=PMC6054197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon