The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction
Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduc...
Saved in:
Published in | Metabolic engineering Vol. 57; pp. 151 - 161 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Belgium
Elsevier Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1096-7176 1096-7184 1096-7184 |
DOI | 10.1016/j.ymben.2019.11.001 |
Cover
Abstract | Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.
•Yeast peroxisome is a dynamic storage depot for squalene.•Yeast peroxisome is an efficient subcellular factory for squalene synthesis.•Dual cytoplasmic and peroxisomal engineering is favorable to high yield of squalene. |
---|---|
AbstractList | Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering. Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering. •Yeast peroxisome is a dynamic storage depot for squalene.•Yeast peroxisome is an efficient subcellular factory for squalene synthesis.•Dual cytoplasmic and peroxisomal engineering is favorable to high yield of squalene. Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering. |
Author | Liu, Guo-Song Wei, Dong-Zhi Li, Tian Zhao, Ming Ren, Yu-Hong Wang, Feng-Qing Gao, Bei Jiang, Min Zhou, Wei Tao, Xin-Yi Liu, Min |
Author_xml | – sequence: 1 givenname: Guo-Song surname: Liu fullname: Liu, Guo-Song – sequence: 2 givenname: Tian surname: Li fullname: Li, Tian – sequence: 3 givenname: Wei surname: Zhou fullname: Zhou, Wei – sequence: 4 givenname: Min surname: Jiang fullname: Jiang, Min – sequence: 5 givenname: Xin-Yi surname: Tao fullname: Tao, Xin-Yi – sequence: 6 givenname: Min surname: Liu fullname: Liu, Min – sequence: 7 givenname: Ming surname: Zhao fullname: Zhao, Ming – sequence: 8 givenname: Yu-Hong surname: Ren fullname: Ren, Yu-Hong – sequence: 9 givenname: Bei surname: Gao fullname: Gao, Bei email: gaobei@ecust.edu.cn – sequence: 10 givenname: Feng-Qing surname: Wang fullname: Wang, Feng-Qing email: fqwang@ecust.edu.cn – sequence: 11 givenname: Dong-Zhi surname: Wei fullname: Wei, Dong-Zhi email: dzhwei@ecust.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31711816$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URD9_ARLykcsGj-N8GIlDVbUFqRKXcrYm9hi8SuKtnVTk35Ptlh44ACdb8vN4Ru97yo7GOBJjb0EUIKD-sC2WoaOxkAJ0AVAIAa_YCQhdbxpo1dHLvamP2WnO2xWASsMbdlxCA9BCfcLw_gfxhTBPfEcp_gw5DvSRX3K3jDgEy_MUE34n7mgXJ46j43nuLPX93GPiHu36vnAfE88PM_Y0Eo-PlHYputlOIY7n7LXHPtPF83nGvt1c31993tx9vf1ydXm3sapqp02raq1qpEbVDqwvldedF975VmhsnVQlNqpCIUlK0ig7R5Vu6hKtVxbbrjxj7w__rqMfZsqTGULeL4ojxTkbWVZSraPa6j9QUEJKVekVffeMzt1AzuxSGDAt5neCK1AeAJtizon8CwLC7HsyW_PUk9n3ZADMWsNq6T8sGybcxzUlDP0_3E8Hl9Y0HwMlk22g0ZILiexkXAx_9X8BCBqwZA |
CitedBy_id | crossref_primary_10_1016_j_coisb_2023_100502 crossref_primary_10_1073_pnas_2214941119 crossref_primary_10_1016_j_biortech_2024_131855 crossref_primary_10_1021_acs_jafc_2c03917 crossref_primary_10_1016_j_bej_2024_109361 crossref_primary_10_1021_acssuschemeng_1c05453 crossref_primary_10_1021_acssynbio_0c00521 crossref_primary_10_1016_j_ymben_2024_10_001 crossref_primary_10_1021_acs_jafc_3c01703 crossref_primary_10_1016_j_copbio_2024_103129 crossref_primary_10_1002_bit_28706 crossref_primary_10_1016_j_cogsc_2021_100572 crossref_primary_10_1016_j_ymben_2021_10_004 crossref_primary_10_1016_j_biotechadv_2023_108128 crossref_primary_10_1016_j_copbio_2022_102681 crossref_primary_10_2139_ssrn_4185482 crossref_primary_10_1021_acs_jafc_3c02076 crossref_primary_10_1002_biot_202300324 crossref_primary_10_1007_s11274_024_04057_0 crossref_primary_10_1093_bbb_zbad102 crossref_primary_10_3390_ijms24021767 crossref_primary_10_1021_acs_jafc_1c07869 crossref_primary_10_1016_j_ymben_2022_10_004 crossref_primary_10_1002_elsc_202100014 crossref_primary_10_1007_s12257_022_0195_5 crossref_primary_10_1016_j_biortech_2024_130379 crossref_primary_10_1016_j_jbiosc_2024_01_007 crossref_primary_10_1016_j_biortech_2022_127981 crossref_primary_10_1186_s40643_022_00493_8 crossref_primary_10_1016_j_biotechadv_2025_108541 crossref_primary_10_3389_fbioe_2020_00347 crossref_primary_10_1002_fbe2_12113 crossref_primary_10_1186_s13068_022_02242_7 crossref_primary_10_3389_fbioe_2022_919526 crossref_primary_10_1016_j_synbio_2025_02_014 crossref_primary_10_3390_microorganisms13010046 crossref_primary_10_1016_j_biotechadv_2023_108118 crossref_primary_10_1021_acssynbio_2c00673 crossref_primary_10_1016_j_biortech_2021_125978 crossref_primary_10_1016_j_biotechadv_2024_108497 crossref_primary_10_1016_j_algal_2022_102946 crossref_primary_10_3389_fbioe_2021_606795 crossref_primary_10_1021_acssynbio_2c00671 crossref_primary_10_3390_fermentation8110615 crossref_primary_10_1016_j_ymben_2024_06_011 crossref_primary_10_1016_j_biortech_2024_130786 crossref_primary_10_1038_s41557_023_01245_7 crossref_primary_10_1016_j_biortech_2022_126682 crossref_primary_10_3389_fmicb_2021_663973 crossref_primary_10_1021_acs_jafc_3c00515 crossref_primary_10_1093_lifemeta_loac019 crossref_primary_10_1016_j_bej_2024_109348 crossref_primary_10_1080_07388551_2024_2430476 crossref_primary_10_1016_j_chemosphere_2022_133616 crossref_primary_10_1021_acs_jafc_0c06020 crossref_primary_10_1021_acs_jafc_3c02932 crossref_primary_10_1021_acssuschemeng_2c03063 crossref_primary_10_1016_j_procbio_2024_06_002 crossref_primary_10_1186_s40643_021_00460_9 crossref_primary_10_1186_s12934_025_02667_3 crossref_primary_10_1093_femsle_fnac070 crossref_primary_10_1021_acs_jafc_2c06888 crossref_primary_10_1021_acs_jafc_0c00967 crossref_primary_10_1186_s12934_024_02569_w crossref_primary_10_1016_j_micres_2024_127815 crossref_primary_10_1021_acssynbio_1c00437 crossref_primary_10_1002_biot_202300383 crossref_primary_10_1016_j_synbio_2022_06_008 crossref_primary_10_1016_j_biortech_2024_131888 crossref_primary_10_1016_j_biotechadv_2025_108560 crossref_primary_10_1021_acssynbio_4c00061 crossref_primary_10_1186_s40694_024_00186_1 crossref_primary_10_1002_bit_28176 crossref_primary_10_1080_10409238_2021_1937928 crossref_primary_10_1021_acssynbio_4c00104 crossref_primary_10_34133_2022_9871087 crossref_primary_10_1016_j_biotechadv_2020_107628 crossref_primary_10_1016_j_isci_2020_100879 crossref_primary_10_1016_j_mec_2022_e00213 crossref_primary_10_1039_D3GC01936E crossref_primary_10_1021_jacsau_4c00106 crossref_primary_10_1021_acs_jafc_2c08416 crossref_primary_10_1186_s13068_022_02160_8 crossref_primary_10_1002_fbe2_12021 crossref_primary_10_1002_biot_202300710 crossref_primary_10_1039_D3NP00005B crossref_primary_10_1007_s11274_023_03689_y crossref_primary_10_1016_j_tibtech_2024_08_011 crossref_primary_10_1016_j_bioorg_2024_107737 crossref_primary_10_1016_j_tibtech_2020_08_010 crossref_primary_10_3389_fbioe_2021_659431 crossref_primary_10_1021_acssynbio_2c00626 crossref_primary_10_1016_j_engmic_2022_100013 crossref_primary_10_1016_j_mec_2022_e00197 crossref_primary_10_1016_j_biortech_2020_123991 crossref_primary_10_1016_j_ymben_2025_03_013 crossref_primary_10_1007_s11274_022_03276_7 crossref_primary_10_1038_s42003_022_04202_1 crossref_primary_10_3390_microorganisms10030650 crossref_primary_10_1016_j_ymben_2023_01_005 crossref_primary_10_1038_s41467_023_40027_0 crossref_primary_10_1021_acssynbio_3c00310 crossref_primary_10_1007_s11274_022_03273_w crossref_primary_10_3389_fbioe_2020_582052 crossref_primary_10_1093_hr_uhae254 crossref_primary_10_3389_fbioe_2022_1079801 crossref_primary_10_1021_acs_jnatprod_3c00674 crossref_primary_10_1021_acs_jafc_4c09608 crossref_primary_10_1021_acs_chemrev_2c00403 crossref_primary_10_1038_s41579_021_00600_0 crossref_primary_10_1038_s44160_023_00429_w crossref_primary_10_1128_mBio_01976_21 crossref_primary_10_1073_pnas_2013968117 crossref_primary_10_1016_j_bej_2020_107768 crossref_primary_10_1186_s12934_022_01819_z crossref_primary_10_1016_j_biotechadv_2021_107866 crossref_primary_10_1007_s00253_024_13037_1 crossref_primary_10_1016_j_bej_2025_109677 crossref_primary_10_1007_s43393_025_00340_9 crossref_primary_10_1016_j_ymben_2024_07_010 crossref_primary_10_1016_j_biotechadv_2020_107649 crossref_primary_10_1021_acssynbio_2c00112 crossref_primary_10_3389_fceng_2021_790261 crossref_primary_10_1007_s11274_022_03241_4 crossref_primary_10_1021_acssynbio_2c00635 crossref_primary_10_1016_j_cjche_2020_12_015 crossref_primary_10_1002_elsc_202400003 crossref_primary_10_1016_j_biotechadv_2024_108453 crossref_primary_10_1021_acs_jafc_1c05897 crossref_primary_10_1016_j_pbi_2022_102200 crossref_primary_10_1016_j_biortech_2021_125071 crossref_primary_10_3389_fbioe_2021_633741 crossref_primary_10_1007_s00253_022_11887_1 crossref_primary_10_1073_pnas_2220816120 crossref_primary_10_1016_j_jbiosc_2022_04_004 crossref_primary_10_1002_bit_27717 crossref_primary_10_1016_j_tibtech_2024_02_005 crossref_primary_10_1016_j_jhazmat_2021_127627 crossref_primary_10_1021_acs_jafc_4c08372 crossref_primary_10_1021_acssynbio_2c00607 crossref_primary_10_1016_j_bcab_2024_103130 crossref_primary_10_1016_j_biortech_2025_132171 crossref_primary_10_1016_j_ymben_2024_06_007 crossref_primary_10_3389_fbioe_2023_1132244 crossref_primary_10_1016_j_biortech_2025_132294 crossref_primary_10_1016_j_tifs_2024_104392 crossref_primary_10_1021_acs_jafc_1c06712 crossref_primary_10_1016_j_ymben_2021_06_002 crossref_primary_10_1002_biot_202400712 crossref_primary_10_1016_j_biortech_2024_130596 crossref_primary_10_1021_jacsau_2c00344 crossref_primary_10_3390_cells11132067 crossref_primary_10_1016_j_tibtech_2021_10_010 crossref_primary_10_3390_fermentation9090779 crossref_primary_10_3390_microorganisms10071402 crossref_primary_10_1021_acs_iecr_2c03764 crossref_primary_10_1111_1751_7915_14072 crossref_primary_10_1021_acs_jafc_3c09764 crossref_primary_10_1016_j_biotechadv_2025_108525 crossref_primary_10_1073_pnas_2314798121 crossref_primary_10_1002_biot_201900494 crossref_primary_10_1016_j_synbio_2020_06_005 crossref_primary_10_1021_acssuschemeng_1c06776 crossref_primary_10_1128_AEM_00481_21 crossref_primary_10_1002_biot_202400286 crossref_primary_10_1016_j_copbio_2023_103004 crossref_primary_10_1016_j_bios_2021_113897 crossref_primary_10_1016_j_ymben_2021_10_011 crossref_primary_10_1021_acssynbio_1c00186 crossref_primary_10_1016_j_copbio_2020_02_001 crossref_primary_10_1021_acs_jafc_2c05468 crossref_primary_10_1002_yea_3559 crossref_primary_10_1002_biot_202300590 crossref_primary_10_1038_s41589_020_00691_5 |
Cites_doi | 10.1016/j.ymben.2006.10.005 10.1186/s12934-016-0447-1 10.1016/j.bbadis.2011.12.011 10.1016/j.jbiotec.2010.06.013 10.1111/febs.12015 10.1016/j.ymben.2019.08.013 10.1111/j.1574-6976.2008.00157.x 10.1063/1.1565992 10.1111/j.1742-4658.2010.07740.x 10.1021/jf201328a 10.1007/s002530051138 10.1016/j.copbio.2017.07.002 10.1016/j.ymben.2014.05.010 10.1093/nar/29.12.e59 10.1016/j.ymben.2012.11.002 10.1038/35021219 10.1002/bit.24536 10.1128/MCB.21.13.4321-4329.2001 10.1002/bit.25499 10.1016/j.bbamem.2010.07.020 10.1016/j.ymben.2018.11.009 10.1002/j.1460-2075.1995.tb07354.x 10.1007/s00425-018-3056-x 10.1016/j.ymben.2016.12.003 10.1021/acssynbio.7b00368 10.1016/j.ymben.2016.07.008 10.1016/j.ymben.2018.07.010 10.3389/fbioe.2014.00032 10.1038/nature07341 10.1016/j.ymben.2017.03.005 10.1038/ncomms11152 10.1073/pnas.1110740109 10.1007/s00253-019-09892-y 10.1021/sb400115e 10.1534/genetics.112.143362 10.1038/ncomms12851 10.1016/j.enzmictec.2007.02.008 10.1016/j.ymben.2017.02.007 10.1534/g3.117.300347 10.1016/j.meteno.2018.01.002 10.1016/j.ymben.2015.04.009 10.1021/acssynbio.8b00289 10.1016/S0966-842X(97)01156-6 10.1074/jbc.M109.074229 10.1002/bit.26595 10.1016/j.ymben.2016.07.005 10.1002/bit.26473 10.1093/emboj/17.3.677 10.3389/fcell.2019.00092 10.1128/MCB.15.3.1564 10.1039/C3NP70124G 10.1038/nature19769 10.1111/lam.12874 10.1366/0003702041389328 10.1016/j.ymben.2014.11.007 10.1016/j.ymben.2019.06.004 10.1080/07388551.2017.1299679 10.1186/s12934-017-0641-9 |
ContentType | Journal Article |
Copyright | 2019 International Metabolic Engineering Society Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 International Metabolic Engineering Society – notice: Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ymben.2019.11.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1096-7184 |
EndPage | 161 |
ExternalDocumentID | 31711816 10_1016_j_ymben_2019_11_001 S1096717619303738 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LG5 LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K UHS XPP ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c458t-846946ae746d1cf34f9bf0fdf809a8d243a745a02e22e9a2bde59763acf4ca8b3 |
IEDL.DBID | AIKHN |
ISSN | 1096-7176 1096-7184 |
IngestDate | Sun Sep 28 06:21:11 EDT 2025 Sat Sep 27 22:10:06 EDT 2025 Mon Jul 21 05:50:50 EDT 2025 Tue Jul 01 00:51:26 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 23 02:49:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peroxisome Subcellular factory Terpene Synthetic biology Saccharomyces cerevisiae Storage depot |
Language | English |
License | Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-846946ae746d1cf34f9bf0fdf809a8d243a745a02e22e9a2bde59763acf4ca8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31711816 |
PQID | 2314022459 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2352445885 proquest_miscellaneous_2314022459 pubmed_primary_31711816 crossref_primary_10_1016_j_ymben_2019_11_001 crossref_citationtrail_10_1016_j_ymben_2019_11_001 elsevier_sciencedirect_doi_10_1016_j_ymben_2019_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Belgium |
PublicationPlace_xml | – name: Belgium |
PublicationTitle | Metabolic engineering |
PublicationTitleAlternate | Metab Eng |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Van Roermund, Hettema, Kal, Berg, Van den Tabak, Wanders (bib37) 2014; 17 Zhao, Li, Zhang, Shen, Hou, Bao (bib60) 2017; 16 Xie, Ye, Lv, Xu, Yu (bib50) 2015; 28 van Roermund, Drissen, van den Berg, Ijlst, Hettema, Tabak, Waterham, Wanders (bib44) 2001; 21 Van Roermund, Elgersma, Singh, Wanders, Tabak (bib36) 1995; 14 Joshi, Cohen (bib15) 2019; 7 Ma, Shi, Ye, Li, Liu, Chen, Xia, Nielsen, Deng, Liu (bib26) 2019; 52 Westfall, Pitera, Lenihan, Eng, Woolard, Regentin, Horning, Tsuruta, Melis, Owens, Fickes, Diola, Benjamin, Keasling, Leavell, McPhee, Renninger, Newman, Paddon (bib48) 2012; 109 Paramasivan, Mutturi (bib32) 2017; 37 Polakowski, Stahl, Lang (bib34) 1998; 49 Lian, Si, Nair, Zhao (bib24) 2014; 24 Zhao, Kim, Zeng, Li, Wang, Hu, Gorman, Dai, Ding, Yuan (bib59) 2018; 7 Yao, Zhou, Su, Su, Ye, Yu (bib53) 2018; 7 Moser, Pichler (bib29) 2019; 103 Tetali (bib43) 2019; 249 Arendt, Miettinen, Pollier, De Rycke, Callewaert, Goossens (bib2) 2017; 40 Zhang, Liu, Zhao, Lu, Zhao, Lu (bib58) 2018; 49 Kim, Jang, Son, Ko, Cho, Kim, Lee (bib16) 2019; 56 Meadows, Hawkins, Tsegaye, Antipov, Kim, Raetz, Dahl, Tai, Mahatdejkul-Meadows, Xu, Zhao, Dasika, Murarka, Lenihan, Eng, Leng, Liu, Wenger, Jiang, Chao, Westfall, Lai, Ganesan, Jackson, Mans, Platt, Reeves, Saija, Wichmann, Holmes, Benjamin, Hill, Gardner, Tsong (bib28) 2016; 537 Shiba, Paradise, Kirby, Ro, Keasing (bib40) 2007; 9 DeLoache, Russ, Dueber (bib10) 2016; 7 Bian, Deng, Liu (bib4) 2017; 48 Ignea, Pontini, Maffei, Makris, Kampranis (bib13) 2014; 3 Kohlwein, Veenhuis, van der Klei (bib18) 2013; 193 Ta, Kapterian, Fei, Du, Brown, Dawes, Yang (bib42) 2012; 279 de Godoy, Olsen, Cox, Nielsen, Hubner, Frohlich, Walther, Mann (bib9) 2008; 455 Klei, Van der Veenhuis (bib17) 1997; 5 Chen, Siewers, Nielsen (bib7) 2012; 7 Xie, Lv, Ye, Zhou, Yu (bib49) 2015; 30 Ye, Lv, Yu (bib54) 2016; 38 Zhou, Buijs, Siewers, Nielsen (bib61) 2014; 2 Xie, Mitchell, Liu, Li, Liu, Agmon, Wu, Li, Zhou, Li, Xiao, Ding, Wang, Yuan, Boeke (bib51) 2018; 8 Li, Hou, Wu, Jiang, Li, Liu, Xian, Zhang (bib22) 2019 Saraya, Veenhuis, van der Klei (bib39) 2010; 277 Rucktaschel, Girzalsky, Erdmann (bib38) 2011; 1808 Yablon, Schilowitz (bib52) 2004; 58 Voth, Richards, Shaw, Stillman (bib45) 2001; 29 Yuan, Veenhuis, van der Klei (bib57) 2016; 1863 Li, Cheng, Ding, Yuan (bib21) 2010; 148 Lv, Wang, Zhou, Ye, Xie, Xu, Yu (bib25) 2016; 7 Brennan, Turner, Kromer, Nielsen (bib5) 2012; 109 Antonenkov, Hiltunen (bib1) 2012; 1822 Peng, Plan, Chrysanthopoulos, Hodson, Nielsen, Vickers (bib33) 2017; 39 Martinez, Sanchez, Martinez-Solano, Hernandez, Garmendia, Fajardo, Alvarez-Ortega (bib27) 2009; 33 Naziri, Mantzouridou, Tsimidou (bib30) 2011; 59 Ferreira, Teixeira, Gossing, David, Siewers, Nielsen (bib12) 2018; 6 Larroude, Celinska, Back, Thomas, Nicaud, Ledesma-Amaro (bib20) 2018; 115 Jiang, Yao, Wang, Zhou, Song, Liu, Xiao, Yuan (bib14) 2017; 41 Lane, Zhang, Wei, Rao, Jin (bib19) 2015; 112 Yuan, Ching (bib56) 2016; 38 Chen, Daviet, Schalk, Siewers, Nielsen (bib6) 2013; 15 Yee, DeNicola, Billingsley, Creso, Subrahmanyam, Tang (bib55) 2019; 55 Choi, Sim, Choi, Woo (bib8) 2018; 66 Banerjee, Sharkey (bib3) 2014; 31 Dutt, Sachdeva (bib11) 2003; 118 Walsh (bib46) 2000; 406 Ozcan, Johnston (bib31) 1995; 15 Wei, Kwak, Liu, Lane, Hua, Kweon, Jin (bib47) 2018; 115 Li, Zhao, Bai (bib23) 2007; 41 Rodriguez, Denby, Van Vu, Baidoo, Wang, Keasling (bib35) 2016; 15 Spanova, Czabany, Zellnig, Leitner, Hapala, Daum (bib41) 2010; 285 Xie (10.1016/j.ymben.2019.11.001_bib51) 2018; 8 Yuan (10.1016/j.ymben.2019.11.001_bib56) 2016; 38 Walsh (10.1016/j.ymben.2019.11.001_bib46) 2000; 406 Yao (10.1016/j.ymben.2019.11.001_bib53) 2018; 7 Arendt (10.1016/j.ymben.2019.11.001_bib2) 2017; 40 Antonenkov (10.1016/j.ymben.2019.11.001_bib1) 2012; 1822 de Godoy (10.1016/j.ymben.2019.11.001_bib9) 2008; 455 Kohlwein (10.1016/j.ymben.2019.11.001_bib18) 2013; 193 Chen (10.1016/j.ymben.2019.11.001_bib7) 2012; 7 Lane (10.1016/j.ymben.2019.11.001_bib19) 2015; 112 Lv (10.1016/j.ymben.2019.11.001_bib25) 2016; 7 Li (10.1016/j.ymben.2019.11.001_bib22) 2019 Yablon (10.1016/j.ymben.2019.11.001_bib52) 2004; 58 Zhang (10.1016/j.ymben.2019.11.001_bib58) 2018; 49 Bian (10.1016/j.ymben.2019.11.001_bib4) 2017; 48 Paramasivan (10.1016/j.ymben.2019.11.001_bib32) 2017; 37 Li (10.1016/j.ymben.2019.11.001_bib23) 2007; 41 Moser (10.1016/j.ymben.2019.11.001_bib29) 2019; 103 Voth (10.1016/j.ymben.2019.11.001_bib45) 2001; 29 Tetali (10.1016/j.ymben.2019.11.001_bib43) 2019; 249 Martinez (10.1016/j.ymben.2019.11.001_bib27) 2009; 33 Westfall (10.1016/j.ymben.2019.11.001_bib48) 2012; 109 Wei (10.1016/j.ymben.2019.11.001_bib47) 2018; 115 Lian (10.1016/j.ymben.2019.11.001_bib24) 2014; 24 Yuan (10.1016/j.ymben.2019.11.001_bib57) 2016; 1863 Ta (10.1016/j.ymben.2019.11.001_bib42) 2012; 279 DeLoache (10.1016/j.ymben.2019.11.001_bib10) 2016; 7 Ma (10.1016/j.ymben.2019.11.001_bib26) 2019; 52 Saraya (10.1016/j.ymben.2019.11.001_bib39) 2010; 277 Rodriguez (10.1016/j.ymben.2019.11.001_bib35) 2016; 15 van Roermund (10.1016/j.ymben.2019.11.001_bib44) 2001; 21 Li (10.1016/j.ymben.2019.11.001_bib21) 2010; 148 Polakowski (10.1016/j.ymben.2019.11.001_bib34) 1998; 49 Naziri (10.1016/j.ymben.2019.11.001_bib30) 2011; 59 Meadows (10.1016/j.ymben.2019.11.001_bib28) 2016; 537 Dutt (10.1016/j.ymben.2019.11.001_bib11) 2003; 118 Zhao (10.1016/j.ymben.2019.11.001_bib60) 2017; 16 Yee (10.1016/j.ymben.2019.11.001_bib55) 2019; 55 Rucktaschel (10.1016/j.ymben.2019.11.001_bib38) 2011; 1808 Chen (10.1016/j.ymben.2019.11.001_bib6) 2013; 15 Ye (10.1016/j.ymben.2019.11.001_bib54) 2016; 38 Van Roermund (10.1016/j.ymben.2019.11.001_bib37) 2014; 17 Xie (10.1016/j.ymben.2019.11.001_bib50) 2015; 28 Brennan (10.1016/j.ymben.2019.11.001_bib5) 2012; 109 Zhou (10.1016/j.ymben.2019.11.001_bib61) 2014; 2 Shiba (10.1016/j.ymben.2019.11.001_bib40) 2007; 9 Jiang (10.1016/j.ymben.2019.11.001_bib14) 2017; 41 Kim (10.1016/j.ymben.2019.11.001_bib16) 2019; 56 Choi (10.1016/j.ymben.2019.11.001_bib8) 2018; 66 Banerjee (10.1016/j.ymben.2019.11.001_bib3) 2014; 31 Peng (10.1016/j.ymben.2019.11.001_bib33) 2017; 39 Ferreira (10.1016/j.ymben.2019.11.001_bib12) 2018; 6 Joshi (10.1016/j.ymben.2019.11.001_bib15) 2019; 7 Xie (10.1016/j.ymben.2019.11.001_bib49) 2015; 30 Van Roermund (10.1016/j.ymben.2019.11.001_bib36) 1995; 14 Klei (10.1016/j.ymben.2019.11.001_bib17) 1997; 5 Spanova (10.1016/j.ymben.2019.11.001_bib41) 2010; 285 Larroude (10.1016/j.ymben.2019.11.001_bib20) 2018; 115 Ozcan (10.1016/j.ymben.2019.11.001_bib31) 1995; 15 Zhao (10.1016/j.ymben.2019.11.001_bib59) 2018; 7 Ignea (10.1016/j.ymben.2019.11.001_bib13) 2014; 3 |
References_xml | – volume: 29 year: 2001 ident: bib45 article-title: Yeast vectors for integration at the HO locus publication-title: Nucleic Acids Res. – volume: 24 start-page: 139 year: 2014 end-page: 149 ident: bib24 article-title: Design and construction of acetyl-CoA overproducing publication-title: Metab. Eng. – volume: 6 start-page: 22 year: 2018 end-page: 27 ident: bib12 article-title: Metabolic engineering of publication-title: Metab. Eng. Commun. – volume: 17 start-page: 677 year: 2014 end-page: 687 ident: bib37 article-title: Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions publication-title: EMBO J. – volume: 118 start-page: 8307 year: 2003 end-page: 8314 ident: bib11 article-title: Temperature-dependent rotational relaxation in a viscous alkane: interplay of shape factor and boundary condition on molecular rotation publication-title: J. Chem. Phys. – volume: 28 start-page: 8 year: 2015 end-page: 18 ident: bib50 article-title: Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in publication-title: Metab. Eng. – volume: 41 start-page: 312 year: 2007 end-page: 317 ident: bib23 article-title: High-density cultivation of oleaginous yeast publication-title: Enzym. Microb. Technol. – volume: 537 year: 2016 ident: bib28 article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production publication-title: Nature – volume: 41 start-page: 57 year: 2017 end-page: 66 ident: bib14 article-title: Manipulation of GES and ERG20 for geraniol overproduction in publication-title: Metab. Eng. – volume: 52 start-page: 134 year: 2019 end-page: 142 ident: bib26 article-title: Lipid engineering combined with systematic metabolic engineering of publication-title: Metab. Eng. – volume: 7 start-page: 11 year: 2016 ident: bib10 article-title: Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways publication-title: Nat. Commun. – volume: 7 start-page: 774 year: 2018 end-page: 781 ident: bib59 article-title: Co-compartmentation of terpene biosynthesis and storage via synthetic droplet publication-title: ACS Synth. Biol. – volume: 15 year: 2016 ident: bib35 article-title: ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in publication-title: Microb. Cell Factories – volume: 103 start-page: 5501 year: 2019 end-page: 5516 ident: bib29 article-title: Identifying and engineering the ideal microbial terpenoid production host publication-title: Appl. Microbiol. Biotechnol. – volume: 55 start-page: 76 year: 2019 end-page: 84 ident: bib55 article-title: Engineered mitochondrial production of monoterpenes in publication-title: Metab. Eng. – volume: 30 start-page: 69 year: 2015 end-page: 78 ident: bib49 article-title: Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering publication-title: Metab. Eng. – volume: 193 start-page: 1 year: 2013 end-page: 50 ident: bib18 article-title: Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or A matter of fat-store 'em up or burn 'em down publication-title: Genetics – volume: 112 start-page: 1012 year: 2015 end-page: 1022 ident: bib19 article-title: Development and physiological characterization of cellobiose-consuming publication-title: Biotechnol. Bioeng. – volume: 40 start-page: 165 year: 2017 end-page: 175 ident: bib2 article-title: An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids publication-title: Metab. Eng. – volume: 109 start-page: 111 year: 2012 end-page: 118 ident: bib48 article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 66 start-page: 523 year: 2018 end-page: 529 ident: bib8 article-title: Identification of small droplets of photosynthetic squalene in engineered publication-title: Lett. Appl. Microbiol. – volume: 21 start-page: 4321 year: 2001 end-page: 4329 ident: bib44 article-title: Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in publication-title: Mol. Cell. Biol. – volume: 7 year: 2012 ident: bib7 article-title: Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in publication-title: PLoS One – volume: 406 start-page: 775 year: 2000 end-page: 781 ident: bib46 article-title: Molecular mechanisms that confer antibacterial drug resistance publication-title: Nature – volume: 1863 start-page: 902 year: 2016 end-page: 910 ident: bib57 article-title: The birth of yeast peroxisomes publication-title: Bba-Mol Cell Res. – year: 2019 ident: bib22 article-title: Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories publication-title: Nat. Prod. Rep. – volume: 285 start-page: 6127 year: 2010 end-page: 6133 ident: bib41 article-title: Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast publication-title: J. Biol. Chem. – volume: 38 start-page: 303 year: 2016 end-page: 309 ident: bib56 article-title: Mitochondrial acetyl-CoA utilization pathway for terpenoid productions publication-title: Metab. Eng. – volume: 56 start-page: 50 year: 2019 end-page: 59 ident: bib16 article-title: Tailoring the publication-title: Metab. Eng. – volume: 38 start-page: 125 year: 2016 end-page: 138 ident: bib54 article-title: Engineering microbes for isoprene production publication-title: Metab. Eng. – volume: 1822 start-page: 1374 year: 2012 end-page: 1386 ident: bib1 article-title: Transfer of metabolites across the peroxisomal membrane publication-title: Bba-Mol Basis Dis. – volume: 59 start-page: 9980 year: 2011 end-page: 9989 ident: bib30 article-title: Enhanced squalene production by wild-type publication-title: J. Agric. Food Chem. – volume: 37 start-page: 974 year: 2017 end-page: 989 ident: bib32 article-title: Progress in terpene synthesis strategies through engineering of publication-title: Crit. Rev. Biotechnol. – volume: 15 start-page: 1564 year: 1995 end-page: 1572 ident: bib31 article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose publication-title: Mol. Cell. Biol. – volume: 5 start-page: 502 year: 1997 end-page: 509 ident: bib17 article-title: Yeast peroxisomes: function and biogenesis of a versatile cell organelle publication-title: Trends Microbiol. – volume: 1808 start-page: 892 year: 2011 end-page: 900 ident: bib38 article-title: Protein import machineries of peroxisomes publication-title: Bba-Biomembranes – volume: 15 start-page: 48 year: 2013 end-page: 54 ident: bib6 article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism publication-title: Metab. Eng. – volume: 39 start-page: 209 year: 2017 end-page: 219 ident: bib33 article-title: A squalene synthase protein degradation method for improved sesquiterpene production in publication-title: Metab. Eng. – volume: 455 year: 2008 ident: bib9 article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast publication-title: Nature – volume: 49 start-page: 28 year: 2018 end-page: 35 ident: bib58 article-title: Production of sesquiterpenoid zerumbone from metabolic engineered publication-title: Metab. Eng. – volume: 279 start-page: 4231 year: 2012 end-page: 4244 ident: bib42 article-title: Accumulation of squalene is associated with the clustering of lipid droplets publication-title: FEBS J. – volume: 115 start-page: 1793 year: 2018 end-page: 1800 ident: bib47 article-title: Improved squalene production through increasing lipid contents in publication-title: Biotechnol. Bioeng. – volume: 58 start-page: 843 year: 2004 end-page: 847 ident: bib52 article-title: Solvatochromism of nile red in nonpolar solvents publication-title: Appl. Spectrosc. – volume: 31 start-page: 1043 year: 2014 end-page: 1055 ident: bib3 article-title: Methylerythritol 4-phosphate (MEP) pathway metabolic regulation publication-title: Nat. Prod. Rep. – volume: 148 start-page: 194 year: 2010 end-page: 203 ident: bib21 article-title: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress publication-title: J. Biotechnol. – volume: 49 start-page: 66 year: 1998 end-page: 71 ident: bib34 article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast publication-title: Appl. Microbiol. Biotechnol. – volume: 7 year: 2019 ident: bib15 article-title: Lipid droplet and peroxisome biogenesis: do they go hand-in-hand? publication-title: Front Cell Dev. Biol. – volume: 3 start-page: 298 year: 2014 end-page: 306 ident: bib13 article-title: Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase publication-title: ACS Synth. Biol. – volume: 16 year: 2017 ident: bib60 article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in publication-title: Microb. Cell Factories – volume: 115 start-page: 464 year: 2018 end-page: 472 ident: bib20 article-title: A synthetic biology approach to transform publication-title: Biotechnol. Bioeng. – volume: 109 start-page: 2513 year: 2012 end-page: 2522 ident: bib5 article-title: Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in publication-title: Biotechnol. Bioeng. – volume: 48 start-page: 234 year: 2017 end-page: 241 ident: bib4 article-title: Strategies for terpenoid overproduction and new terpenoid discovery publication-title: Curr. Opin. Biotechnol. – volume: 7 start-page: 12 year: 2016 ident: bib25 article-title: Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in publication-title: Nat. Commun. – volume: 7 start-page: 2308 year: 2018 end-page: 2316 ident: bib53 article-title: Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in publication-title: ACS Synth. Biol. – volume: 9 start-page: 160 year: 2007 end-page: 168 ident: bib40 article-title: Engineering of the pyruvate dehydrogenase bypass in publication-title: Metab. Eng. – volume: 14 start-page: 3480 year: 1995 end-page: 3486 ident: bib36 article-title: The membrane of peroxisomes in publication-title: EMBO J. – volume: 33 start-page: 430 year: 2009 end-page: 449 ident: bib27 article-title: Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems publication-title: FEMS Microbiol. Rev. – volume: 249 start-page: 1 year: 2019 end-page: 8 ident: bib43 article-title: Terpenes and isoprenoids: a wealth of compounds for global use publication-title: Planta – volume: 8 start-page: 173 year: 2018 end-page: 183 ident: bib51 article-title: Rapid and efficient CRISPR/Cas9-Based mating-type switching of publication-title: G3-Genes Genom Genet. – volume: 2 year: 2014 ident: bib61 article-title: Fatty acid-derived biofuels and chemicals production in publication-title: Front. Bioeng. Biotechnol. – volume: 277 start-page: 3279 year: 2010 end-page: 3288 ident: bib39 article-title: Peroxisomes as dynamic organelles: peroxisome abundance in yeast publication-title: FEBS J. – volume: 7 year: 2012 ident: 10.1016/j.ymben.2019.11.001_bib7 article-title: Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae publication-title: PLoS One – volume: 9 start-page: 160 year: 2007 ident: 10.1016/j.ymben.2019.11.001_bib40 article-title: Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids publication-title: Metab. Eng. doi: 10.1016/j.ymben.2006.10.005 – volume: 15 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib35 article-title: ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/s12934-016-0447-1 – year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib22 article-title: Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories publication-title: Nat. Prod. Rep. – volume: 1822 start-page: 1374 year: 2012 ident: 10.1016/j.ymben.2019.11.001_bib1 article-title: Transfer of metabolites across the peroxisomal membrane publication-title: Bba-Mol Basis Dis. doi: 10.1016/j.bbadis.2011.12.011 – volume: 148 start-page: 194 year: 2010 ident: 10.1016/j.ymben.2019.11.001_bib21 article-title: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.06.013 – volume: 279 start-page: 4231 year: 2012 ident: 10.1016/j.ymben.2019.11.001_bib42 article-title: Accumulation of squalene is associated with the clustering of lipid droplets publication-title: FEBS J. doi: 10.1111/febs.12015 – volume: 56 start-page: 50 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib16 article-title: Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.08.013 – volume: 33 start-page: 430 year: 2009 ident: 10.1016/j.ymben.2019.11.001_bib27 article-title: Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2008.00157.x – volume: 118 start-page: 8307 year: 2003 ident: 10.1016/j.ymben.2019.11.001_bib11 article-title: Temperature-dependent rotational relaxation in a viscous alkane: interplay of shape factor and boundary condition on molecular rotation publication-title: J. Chem. Phys. doi: 10.1063/1.1565992 – volume: 277 start-page: 3279 year: 2010 ident: 10.1016/j.ymben.2019.11.001_bib39 article-title: Peroxisomes as dynamic organelles: peroxisome abundance in yeast publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07740.x – volume: 59 start-page: 9980 year: 2011 ident: 10.1016/j.ymben.2019.11.001_bib30 article-title: Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means publication-title: J. Agric. Food Chem. doi: 10.1021/jf201328a – volume: 49 start-page: 66 year: 1998 ident: 10.1016/j.ymben.2019.11.001_bib34 article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051138 – volume: 48 start-page: 234 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib4 article-title: Strategies for terpenoid overproduction and new terpenoid discovery publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.07.002 – volume: 24 start-page: 139 year: 2014 ident: 10.1016/j.ymben.2019.11.001_bib24 article-title: Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.05.010 – volume: 29 year: 2001 ident: 10.1016/j.ymben.2019.11.001_bib45 article-title: Yeast vectors for integration at the HO locus publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.12.e59 – volume: 15 start-page: 48 year: 2013 ident: 10.1016/j.ymben.2019.11.001_bib6 article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.11.002 – volume: 406 start-page: 775 year: 2000 ident: 10.1016/j.ymben.2019.11.001_bib46 article-title: Molecular mechanisms that confer antibacterial drug resistance publication-title: Nature doi: 10.1038/35021219 – volume: 109 start-page: 2513 year: 2012 ident: 10.1016/j.ymben.2019.11.001_bib5 article-title: Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24536 – volume: 21 start-page: 4321 year: 2001 ident: 10.1016/j.ymben.2019.11.001_bib44 article-title: Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.13.4321-4329.2001 – volume: 112 start-page: 1012 year: 2015 ident: 10.1016/j.ymben.2019.11.001_bib19 article-title: Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25499 – volume: 1808 start-page: 892 year: 2011 ident: 10.1016/j.ymben.2019.11.001_bib38 article-title: Protein import machineries of peroxisomes publication-title: Bba-Biomembranes doi: 10.1016/j.bbamem.2010.07.020 – volume: 52 start-page: 134 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib26 article-title: Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.11.009 – volume: 14 start-page: 3480 year: 1995 ident: 10.1016/j.ymben.2019.11.001_bib36 article-title: The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb07354.x – volume: 249 start-page: 1 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib43 article-title: Terpenes and isoprenoids: a wealth of compounds for global use publication-title: Planta doi: 10.1007/s00425-018-3056-x – volume: 39 start-page: 209 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib33 article-title: A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.12.003 – volume: 7 start-page: 774 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib59 article-title: Co-compartmentation of terpene biosynthesis and storage via synthetic droplet publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00368 – volume: 38 start-page: 303 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib56 article-title: Mitochondrial acetyl-CoA utilization pathway for terpenoid productions publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.07.008 – volume: 49 start-page: 28 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib58 article-title: Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.07.010 – volume: 2 year: 2014 ident: 10.1016/j.ymben.2019.11.001_bib61 article-title: Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2014.00032 – volume: 455 year: 2008 ident: 10.1016/j.ymben.2019.11.001_bib9 article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast publication-title: Nature doi: 10.1038/nature07341 – volume: 41 start-page: 57 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib14 article-title: Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2017.03.005 – volume: 7 start-page: 11 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib10 article-title: Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways publication-title: Nat. Commun. doi: 10.1038/ncomms11152 – volume: 109 start-page: 111 year: 2012 ident: 10.1016/j.ymben.2019.11.001_bib48 article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1110740109 – volume: 103 start-page: 5501 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib29 article-title: Identifying and engineering the ideal microbial terpenoid production host publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09892-y – volume: 3 start-page: 298 year: 2014 ident: 10.1016/j.ymben.2019.11.001_bib13 article-title: Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase publication-title: ACS Synth. Biol. doi: 10.1021/sb400115e – volume: 193 start-page: 1 year: 2013 ident: 10.1016/j.ymben.2019.11.001_bib18 article-title: Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or A matter of fat-store 'em up or burn 'em down publication-title: Genetics doi: 10.1534/genetics.112.143362 – volume: 7 start-page: 12 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib25 article-title: Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae publication-title: Nat. Commun. doi: 10.1038/ncomms12851 – volume: 41 start-page: 312 year: 2007 ident: 10.1016/j.ymben.2019.11.001_bib23 article-title: High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2007.02.008 – volume: 40 start-page: 165 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib2 article-title: An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids publication-title: Metab. Eng. doi: 10.1016/j.ymben.2017.02.007 – volume: 8 start-page: 173 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib51 article-title: Rapid and efficient CRISPR/Cas9-Based mating-type switching of Saccharomyces cerevisiae publication-title: G3-Genes Genom Genet. doi: 10.1534/g3.117.300347 – volume: 6 start-page: 22 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib12 article-title: Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols publication-title: Metab. Eng. Commun. doi: 10.1016/j.meteno.2018.01.002 – volume: 30 start-page: 69 year: 2015 ident: 10.1016/j.ymben.2019.11.001_bib49 article-title: Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.04.009 – volume: 7 start-page: 2308 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib53 article-title: Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00289 – volume: 5 start-page: 502 year: 1997 ident: 10.1016/j.ymben.2019.11.001_bib17 article-title: Yeast peroxisomes: function and biogenesis of a versatile cell organelle publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(97)01156-6 – volume: 285 start-page: 6127 year: 2010 ident: 10.1016/j.ymben.2019.11.001_bib41 article-title: Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.074229 – volume: 115 start-page: 1793 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib47 article-title: Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26595 – volume: 38 start-page: 125 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib54 article-title: Engineering microbes for isoprene production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.07.005 – volume: 115 start-page: 464 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib20 article-title: A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26473 – volume: 17 start-page: 677 year: 2014 ident: 10.1016/j.ymben.2019.11.001_bib37 article-title: Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions publication-title: EMBO J. doi: 10.1093/emboj/17.3.677 – volume: 7 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib15 article-title: Lipid droplet and peroxisome biogenesis: do they go hand-in-hand? publication-title: Front Cell Dev. Biol. doi: 10.3389/fcell.2019.00092 – volume: 15 start-page: 1564 year: 1995 ident: 10.1016/j.ymben.2019.11.001_bib31 article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.3.1564 – volume: 31 start-page: 1043 year: 2014 ident: 10.1016/j.ymben.2019.11.001_bib3 article-title: Methylerythritol 4-phosphate (MEP) pathway metabolic regulation publication-title: Nat. Prod. Rep. doi: 10.1039/C3NP70124G – volume: 537 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib28 article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production publication-title: Nature doi: 10.1038/nature19769 – volume: 66 start-page: 523 year: 2018 ident: 10.1016/j.ymben.2019.11.001_bib8 article-title: Identification of small droplets of photosynthetic squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12874 – volume: 58 start-page: 843 year: 2004 ident: 10.1016/j.ymben.2019.11.001_bib52 article-title: Solvatochromism of nile red in nonpolar solvents publication-title: Appl. Spectrosc. doi: 10.1366/0003702041389328 – volume: 1863 start-page: 902 year: 2016 ident: 10.1016/j.ymben.2019.11.001_bib57 article-title: The birth of yeast peroxisomes publication-title: Bba-Mol Cell Res. – volume: 28 start-page: 8 year: 2015 ident: 10.1016/j.ymben.2019.11.001_bib50 article-title: Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.11.007 – volume: 55 start-page: 76 year: 2019 ident: 10.1016/j.ymben.2019.11.001_bib55 article-title: Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.06.004 – volume: 37 start-page: 974 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib32 article-title: Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2017.1299679 – volume: 16 year: 2017 ident: 10.1016/j.ymben.2019.11.001_bib60 article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/s12934-017-0641-9 |
SSID | ssj0011591 |
Score | 2.626985 |
Snippet | Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151 |
SubjectTerms | batch fermentation droplets engineering feedstocks Metabolic Engineering oils Peroxisome peroxisomes Peroxisomes - genetics Peroxisomes - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development squalene Squalene - metabolism Storage depot Subcellular factory Synthetic biology Terpene terpenoids yeasts |
Title | The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction |
URI | https://dx.doi.org/10.1016/j.ymben.2019.11.001 https://www.ncbi.nlm.nih.gov/pubmed/31711816 https://www.proquest.com/docview/2314022459 https://www.proquest.com/docview/2352445885 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2RIKRyqIDSkhaQK3Fkk6zX9tq9RREogODSIuW28u7aUlCziUgikQu_nZn9iFqpzYGrZUvWzHjmjT1-A3DRT1XsfGbxiDsViDCOAouBJ-BZ7DDCKiFzShTvH9ToUdyO5XgHhs1fGCqrrH1_5dNLb12P9Gpp9uaTSe9niOgbkxHMANANx5FuwS7HaK_bsDu4uRs9bB4TMGKXeRfOD2hBQz5Ulnmtp6kjHtTQdInNs24O848A9T8AWgai6wP4WCNINqg2eQg7rjiCvaqn5PoI9v9gGPwEFs2Arak_DyNG8JfJYjZ1P9iA5VUnekbFkehSWI5AfMlskbPFKqXbfCpPZVU3njVDZMsW9P8SPSOjos95RRSLSj2Gx-urX8NRUHdVCDIh9TJAwGGEsi4WKg8zHwlvUt_3udd9Y3XORWRjIW2fO86dsTzNHSYdKrKZF5nVafQZ2sWscCfAIpPJ0NJLpZfCpkZ77YVxygphUCG8A7wRZZLVlOPU-eJ30tSWPSWl_BOSPyYjVGHXgcvNonnFuLF9ump0lPxlOAnGhO0LvzcaTfBIkWRt4WarRYKQVxC0kWbbHInASGotO_ClMofNbhGS0Xde9fW9W_sGHzil9eVNzym0l88rd4bYZ5meQ6v7Gp7XFv4GD5ADIQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BFaIcEOXVUKBG6rFLsl7ba_eGUFFKgQsgcbO8u7YUBJuoSaTmwm9nZh9RkSCHXldjyZoZz3zjHc8H8K2XqdSH3OER9yoScZpEDhNPxPPUY4ZVQhZUKF5dq_6duLiX90tw1r6FobbKJvbXMb2K1s2XbqPN7mgw6N7EiL6xGMEKAMNwmuhl-CCI5gCd-uR53ueBiKeizSPpiMTb0UNVk9fsKfM0BTU2JzTLs6GGeSM9vQc_qzR0vgkbDX5kp_UWP8GSL7dgtWaUnG3B-j_zBbfBoROwGbHzMJoH_ncwHj75H-yUFTUPPaPWSAworEAYPmGuLNh4mtFdPjWnspqLZ8YQ17Ixvb7EuMio5XNUj4lFk-7A3fnP27N-1HAqRLmQehIh3DBCOZ8KVcR5SEQwWeiFIuiecbrgInGpkK7HPefeOJ4VHksOlbg8iNzpLNmFlXJY-s_AEpPL2NF_yiCFy4wOOgjjlRPCoDl4B3irSps3A8eJ9-LRtp1lD7bSvyX9YylC_XUd-D5fNKrnbSwWV62N7Cu3sZgRFi88bi1q8UCRZl3ph9OxRcArCNhIs0hGIiySWssO7NXuMN8tAjJ6zKv2_3drX2Gtf3t1aS9_Xf_-Ah85FfjVnc8BrEz-TP0hoqBJdlR5-Qso3wPj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+peroxisome%3A+A+dynamic+storage+depot+and+subcellular+factory+for+squalene+overproduction&rft.jtitle=Metabolic+engineering&rft.au=Liu%2C+Guo-Song&rft.au=Li%2C+Tian&rft.au=Zhou%2C+Wei&rft.au=Jiang%2C+Min&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=1096-7176&rft.eissn=1096-7184&rft.volume=57&rft.spage=151&rft.epage=161&rft_id=info:doi/10.1016%2Fj.ymben.2019.11.001&rft.externalDocID=S1096717619303738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon |