The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction

Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduc...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering Vol. 57; pp. 151 - 161
Main Authors Liu, Guo-Song, Li, Tian, Zhou, Wei, Jiang, Min, Tao, Xin-Yi, Liu, Min, Zhao, Ming, Ren, Yu-Hong, Gao, Bei, Wang, Feng-Qing, Wei, Dong-Zhi
Format Journal Article
LanguageEnglish
Published Belgium Elsevier Inc 01.01.2020
Subjects
Online AccessGet full text
ISSN1096-7176
1096-7184
1096-7184
DOI10.1016/j.ymben.2019.11.001

Cover

Abstract Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering. •Yeast peroxisome is a dynamic storage depot for squalene.•Yeast peroxisome is an efficient subcellular factory for squalene synthesis.•Dual cytoplasmic and peroxisomal engineering is favorable to high yield of squalene.
AbstractList Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.
Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering. •Yeast peroxisome is a dynamic storage depot for squalene.•Yeast peroxisome is an efficient subcellular factory for squalene synthesis.•Dual cytoplasmic and peroxisomal engineering is favorable to high yield of squalene.
Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.
Author Liu, Guo-Song
Wei, Dong-Zhi
Li, Tian
Zhao, Ming
Ren, Yu-Hong
Wang, Feng-Qing
Gao, Bei
Jiang, Min
Zhou, Wei
Tao, Xin-Yi
Liu, Min
Author_xml – sequence: 1
  givenname: Guo-Song
  surname: Liu
  fullname: Liu, Guo-Song
– sequence: 2
  givenname: Tian
  surname: Li
  fullname: Li, Tian
– sequence: 3
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
– sequence: 4
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
– sequence: 5
  givenname: Xin-Yi
  surname: Tao
  fullname: Tao, Xin-Yi
– sequence: 6
  givenname: Min
  surname: Liu
  fullname: Liu, Min
– sequence: 7
  givenname: Ming
  surname: Zhao
  fullname: Zhao, Ming
– sequence: 8
  givenname: Yu-Hong
  surname: Ren
  fullname: Ren, Yu-Hong
– sequence: 9
  givenname: Bei
  surname: Gao
  fullname: Gao, Bei
  email: gaobei@ecust.edu.cn
– sequence: 10
  givenname: Feng-Qing
  surname: Wang
  fullname: Wang, Feng-Qing
  email: fqwang@ecust.edu.cn
– sequence: 11
  givenname: Dong-Zhi
  surname: Wei
  fullname: Wei, Dong-Zhi
  email: dzhwei@ecust.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31711816$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD9_ARLykcsGj-N8GIlDVbUFqRKXcrYm9hi8SuKtnVTk35Ptlh44ACdb8vN4Ru97yo7GOBJjb0EUIKD-sC2WoaOxkAJ0AVAIAa_YCQhdbxpo1dHLvamP2WnO2xWASsMbdlxCA9BCfcLw_gfxhTBPfEcp_gw5DvSRX3K3jDgEy_MUE34n7mgXJ46j43nuLPX93GPiHu36vnAfE88PM_Y0Eo-PlHYputlOIY7n7LXHPtPF83nGvt1c31993tx9vf1ydXm3sapqp02raq1qpEbVDqwvldedF975VmhsnVQlNqpCIUlK0ig7R5Vu6hKtVxbbrjxj7w__rqMfZsqTGULeL4ojxTkbWVZSraPa6j9QUEJKVekVffeMzt1AzuxSGDAt5neCK1AeAJtizon8CwLC7HsyW_PUk9n3ZADMWsNq6T8sGybcxzUlDP0_3E8Hl9Y0HwMlk22g0ZILiexkXAx_9X8BCBqwZA
CitedBy_id crossref_primary_10_1016_j_coisb_2023_100502
crossref_primary_10_1073_pnas_2214941119
crossref_primary_10_1016_j_biortech_2024_131855
crossref_primary_10_1021_acs_jafc_2c03917
crossref_primary_10_1016_j_bej_2024_109361
crossref_primary_10_1021_acssuschemeng_1c05453
crossref_primary_10_1021_acssynbio_0c00521
crossref_primary_10_1016_j_ymben_2024_10_001
crossref_primary_10_1021_acs_jafc_3c01703
crossref_primary_10_1016_j_copbio_2024_103129
crossref_primary_10_1002_bit_28706
crossref_primary_10_1016_j_cogsc_2021_100572
crossref_primary_10_1016_j_ymben_2021_10_004
crossref_primary_10_1016_j_biotechadv_2023_108128
crossref_primary_10_1016_j_copbio_2022_102681
crossref_primary_10_2139_ssrn_4185482
crossref_primary_10_1021_acs_jafc_3c02076
crossref_primary_10_1002_biot_202300324
crossref_primary_10_1007_s11274_024_04057_0
crossref_primary_10_1093_bbb_zbad102
crossref_primary_10_3390_ijms24021767
crossref_primary_10_1021_acs_jafc_1c07869
crossref_primary_10_1016_j_ymben_2022_10_004
crossref_primary_10_1002_elsc_202100014
crossref_primary_10_1007_s12257_022_0195_5
crossref_primary_10_1016_j_biortech_2024_130379
crossref_primary_10_1016_j_jbiosc_2024_01_007
crossref_primary_10_1016_j_biortech_2022_127981
crossref_primary_10_1186_s40643_022_00493_8
crossref_primary_10_1016_j_biotechadv_2025_108541
crossref_primary_10_3389_fbioe_2020_00347
crossref_primary_10_1002_fbe2_12113
crossref_primary_10_1186_s13068_022_02242_7
crossref_primary_10_3389_fbioe_2022_919526
crossref_primary_10_1016_j_synbio_2025_02_014
crossref_primary_10_3390_microorganisms13010046
crossref_primary_10_1016_j_biotechadv_2023_108118
crossref_primary_10_1021_acssynbio_2c00673
crossref_primary_10_1016_j_biortech_2021_125978
crossref_primary_10_1016_j_biotechadv_2024_108497
crossref_primary_10_1016_j_algal_2022_102946
crossref_primary_10_3389_fbioe_2021_606795
crossref_primary_10_1021_acssynbio_2c00671
crossref_primary_10_3390_fermentation8110615
crossref_primary_10_1016_j_ymben_2024_06_011
crossref_primary_10_1016_j_biortech_2024_130786
crossref_primary_10_1038_s41557_023_01245_7
crossref_primary_10_1016_j_biortech_2022_126682
crossref_primary_10_3389_fmicb_2021_663973
crossref_primary_10_1021_acs_jafc_3c00515
crossref_primary_10_1093_lifemeta_loac019
crossref_primary_10_1016_j_bej_2024_109348
crossref_primary_10_1080_07388551_2024_2430476
crossref_primary_10_1016_j_chemosphere_2022_133616
crossref_primary_10_1021_acs_jafc_0c06020
crossref_primary_10_1021_acs_jafc_3c02932
crossref_primary_10_1021_acssuschemeng_2c03063
crossref_primary_10_1016_j_procbio_2024_06_002
crossref_primary_10_1186_s40643_021_00460_9
crossref_primary_10_1186_s12934_025_02667_3
crossref_primary_10_1093_femsle_fnac070
crossref_primary_10_1021_acs_jafc_2c06888
crossref_primary_10_1021_acs_jafc_0c00967
crossref_primary_10_1186_s12934_024_02569_w
crossref_primary_10_1016_j_micres_2024_127815
crossref_primary_10_1021_acssynbio_1c00437
crossref_primary_10_1002_biot_202300383
crossref_primary_10_1016_j_synbio_2022_06_008
crossref_primary_10_1016_j_biortech_2024_131888
crossref_primary_10_1016_j_biotechadv_2025_108560
crossref_primary_10_1021_acssynbio_4c00061
crossref_primary_10_1186_s40694_024_00186_1
crossref_primary_10_1002_bit_28176
crossref_primary_10_1080_10409238_2021_1937928
crossref_primary_10_1021_acssynbio_4c00104
crossref_primary_10_34133_2022_9871087
crossref_primary_10_1016_j_biotechadv_2020_107628
crossref_primary_10_1016_j_isci_2020_100879
crossref_primary_10_1016_j_mec_2022_e00213
crossref_primary_10_1039_D3GC01936E
crossref_primary_10_1021_jacsau_4c00106
crossref_primary_10_1021_acs_jafc_2c08416
crossref_primary_10_1186_s13068_022_02160_8
crossref_primary_10_1002_fbe2_12021
crossref_primary_10_1002_biot_202300710
crossref_primary_10_1039_D3NP00005B
crossref_primary_10_1007_s11274_023_03689_y
crossref_primary_10_1016_j_tibtech_2024_08_011
crossref_primary_10_1016_j_bioorg_2024_107737
crossref_primary_10_1016_j_tibtech_2020_08_010
crossref_primary_10_3389_fbioe_2021_659431
crossref_primary_10_1021_acssynbio_2c00626
crossref_primary_10_1016_j_engmic_2022_100013
crossref_primary_10_1016_j_mec_2022_e00197
crossref_primary_10_1016_j_biortech_2020_123991
crossref_primary_10_1016_j_ymben_2025_03_013
crossref_primary_10_1007_s11274_022_03276_7
crossref_primary_10_1038_s42003_022_04202_1
crossref_primary_10_3390_microorganisms10030650
crossref_primary_10_1016_j_ymben_2023_01_005
crossref_primary_10_1038_s41467_023_40027_0
crossref_primary_10_1021_acssynbio_3c00310
crossref_primary_10_1007_s11274_022_03273_w
crossref_primary_10_3389_fbioe_2020_582052
crossref_primary_10_1093_hr_uhae254
crossref_primary_10_3389_fbioe_2022_1079801
crossref_primary_10_1021_acs_jnatprod_3c00674
crossref_primary_10_1021_acs_jafc_4c09608
crossref_primary_10_1021_acs_chemrev_2c00403
crossref_primary_10_1038_s41579_021_00600_0
crossref_primary_10_1038_s44160_023_00429_w
crossref_primary_10_1128_mBio_01976_21
crossref_primary_10_1073_pnas_2013968117
crossref_primary_10_1016_j_bej_2020_107768
crossref_primary_10_1186_s12934_022_01819_z
crossref_primary_10_1016_j_biotechadv_2021_107866
crossref_primary_10_1007_s00253_024_13037_1
crossref_primary_10_1016_j_bej_2025_109677
crossref_primary_10_1007_s43393_025_00340_9
crossref_primary_10_1016_j_ymben_2024_07_010
crossref_primary_10_1016_j_biotechadv_2020_107649
crossref_primary_10_1021_acssynbio_2c00112
crossref_primary_10_3389_fceng_2021_790261
crossref_primary_10_1007_s11274_022_03241_4
crossref_primary_10_1021_acssynbio_2c00635
crossref_primary_10_1016_j_cjche_2020_12_015
crossref_primary_10_1002_elsc_202400003
crossref_primary_10_1016_j_biotechadv_2024_108453
crossref_primary_10_1021_acs_jafc_1c05897
crossref_primary_10_1016_j_pbi_2022_102200
crossref_primary_10_1016_j_biortech_2021_125071
crossref_primary_10_3389_fbioe_2021_633741
crossref_primary_10_1007_s00253_022_11887_1
crossref_primary_10_1073_pnas_2220816120
crossref_primary_10_1016_j_jbiosc_2022_04_004
crossref_primary_10_1002_bit_27717
crossref_primary_10_1016_j_tibtech_2024_02_005
crossref_primary_10_1016_j_jhazmat_2021_127627
crossref_primary_10_1021_acs_jafc_4c08372
crossref_primary_10_1021_acssynbio_2c00607
crossref_primary_10_1016_j_bcab_2024_103130
crossref_primary_10_1016_j_biortech_2025_132171
crossref_primary_10_1016_j_ymben_2024_06_007
crossref_primary_10_3389_fbioe_2023_1132244
crossref_primary_10_1016_j_biortech_2025_132294
crossref_primary_10_1016_j_tifs_2024_104392
crossref_primary_10_1021_acs_jafc_1c06712
crossref_primary_10_1016_j_ymben_2021_06_002
crossref_primary_10_1002_biot_202400712
crossref_primary_10_1016_j_biortech_2024_130596
crossref_primary_10_1021_jacsau_2c00344
crossref_primary_10_3390_cells11132067
crossref_primary_10_1016_j_tibtech_2021_10_010
crossref_primary_10_3390_fermentation9090779
crossref_primary_10_3390_microorganisms10071402
crossref_primary_10_1021_acs_iecr_2c03764
crossref_primary_10_1111_1751_7915_14072
crossref_primary_10_1021_acs_jafc_3c09764
crossref_primary_10_1016_j_biotechadv_2025_108525
crossref_primary_10_1073_pnas_2314798121
crossref_primary_10_1002_biot_201900494
crossref_primary_10_1016_j_synbio_2020_06_005
crossref_primary_10_1021_acssuschemeng_1c06776
crossref_primary_10_1128_AEM_00481_21
crossref_primary_10_1002_biot_202400286
crossref_primary_10_1016_j_copbio_2023_103004
crossref_primary_10_1016_j_bios_2021_113897
crossref_primary_10_1016_j_ymben_2021_10_011
crossref_primary_10_1021_acssynbio_1c00186
crossref_primary_10_1016_j_copbio_2020_02_001
crossref_primary_10_1021_acs_jafc_2c05468
crossref_primary_10_1002_yea_3559
crossref_primary_10_1002_biot_202300590
crossref_primary_10_1038_s41589_020_00691_5
Cites_doi 10.1016/j.ymben.2006.10.005
10.1186/s12934-016-0447-1
10.1016/j.bbadis.2011.12.011
10.1016/j.jbiotec.2010.06.013
10.1111/febs.12015
10.1016/j.ymben.2019.08.013
10.1111/j.1574-6976.2008.00157.x
10.1063/1.1565992
10.1111/j.1742-4658.2010.07740.x
10.1021/jf201328a
10.1007/s002530051138
10.1016/j.copbio.2017.07.002
10.1016/j.ymben.2014.05.010
10.1093/nar/29.12.e59
10.1016/j.ymben.2012.11.002
10.1038/35021219
10.1002/bit.24536
10.1128/MCB.21.13.4321-4329.2001
10.1002/bit.25499
10.1016/j.bbamem.2010.07.020
10.1016/j.ymben.2018.11.009
10.1002/j.1460-2075.1995.tb07354.x
10.1007/s00425-018-3056-x
10.1016/j.ymben.2016.12.003
10.1021/acssynbio.7b00368
10.1016/j.ymben.2016.07.008
10.1016/j.ymben.2018.07.010
10.3389/fbioe.2014.00032
10.1038/nature07341
10.1016/j.ymben.2017.03.005
10.1038/ncomms11152
10.1073/pnas.1110740109
10.1007/s00253-019-09892-y
10.1021/sb400115e
10.1534/genetics.112.143362
10.1038/ncomms12851
10.1016/j.enzmictec.2007.02.008
10.1016/j.ymben.2017.02.007
10.1534/g3.117.300347
10.1016/j.meteno.2018.01.002
10.1016/j.ymben.2015.04.009
10.1021/acssynbio.8b00289
10.1016/S0966-842X(97)01156-6
10.1074/jbc.M109.074229
10.1002/bit.26595
10.1016/j.ymben.2016.07.005
10.1002/bit.26473
10.1093/emboj/17.3.677
10.3389/fcell.2019.00092
10.1128/MCB.15.3.1564
10.1039/C3NP70124G
10.1038/nature19769
10.1111/lam.12874
10.1366/0003702041389328
10.1016/j.ymben.2014.11.007
10.1016/j.ymben.2019.06.004
10.1080/07388551.2017.1299679
10.1186/s12934-017-0641-9
ContentType Journal Article
Copyright 2019 International Metabolic Engineering Society
Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 International Metabolic Engineering Society
– notice: Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymben.2019.11.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1096-7184
EndPage 161
ExternalDocumentID 31711816
10_1016_j_ymben_2019_11_001
S1096717619303738
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
UHS
XPP
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
~HD
7S9
L.6
ID FETCH-LOGICAL-c458t-846946ae746d1cf34f9bf0fdf809a8d243a745a02e22e9a2bde59763acf4ca8b3
IEDL.DBID AIKHN
ISSN 1096-7176
1096-7184
IngestDate Sun Sep 28 06:21:11 EDT 2025
Sat Sep 27 22:10:06 EDT 2025
Mon Jul 21 05:50:50 EDT 2025
Tue Jul 01 00:51:26 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peroxisome
Subcellular factory
Terpene
Synthetic biology
Saccharomyces cerevisiae
Storage depot
Language English
License Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-846946ae746d1cf34f9bf0fdf809a8d243a745a02e22e9a2bde59763acf4ca8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31711816
PQID 2314022459
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2352445885
proquest_miscellaneous_2314022459
pubmed_primary_31711816
crossref_primary_10_1016_j_ymben_2019_11_001
crossref_citationtrail_10_1016_j_ymben_2019_11_001
elsevier_sciencedirect_doi_10_1016_j_ymben_2019_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Belgium
PublicationPlace_xml – name: Belgium
PublicationTitle Metabolic engineering
PublicationTitleAlternate Metab Eng
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Van Roermund, Hettema, Kal, Berg, Van den Tabak, Wanders (bib37) 2014; 17
Zhao, Li, Zhang, Shen, Hou, Bao (bib60) 2017; 16
Xie, Ye, Lv, Xu, Yu (bib50) 2015; 28
van Roermund, Drissen, van den Berg, Ijlst, Hettema, Tabak, Waterham, Wanders (bib44) 2001; 21
Van Roermund, Elgersma, Singh, Wanders, Tabak (bib36) 1995; 14
Joshi, Cohen (bib15) 2019; 7
Ma, Shi, Ye, Li, Liu, Chen, Xia, Nielsen, Deng, Liu (bib26) 2019; 52
Westfall, Pitera, Lenihan, Eng, Woolard, Regentin, Horning, Tsuruta, Melis, Owens, Fickes, Diola, Benjamin, Keasling, Leavell, McPhee, Renninger, Newman, Paddon (bib48) 2012; 109
Paramasivan, Mutturi (bib32) 2017; 37
Polakowski, Stahl, Lang (bib34) 1998; 49
Lian, Si, Nair, Zhao (bib24) 2014; 24
Zhao, Kim, Zeng, Li, Wang, Hu, Gorman, Dai, Ding, Yuan (bib59) 2018; 7
Yao, Zhou, Su, Su, Ye, Yu (bib53) 2018; 7
Moser, Pichler (bib29) 2019; 103
Tetali (bib43) 2019; 249
Arendt, Miettinen, Pollier, De Rycke, Callewaert, Goossens (bib2) 2017; 40
Zhang, Liu, Zhao, Lu, Zhao, Lu (bib58) 2018; 49
Kim, Jang, Son, Ko, Cho, Kim, Lee (bib16) 2019; 56
Meadows, Hawkins, Tsegaye, Antipov, Kim, Raetz, Dahl, Tai, Mahatdejkul-Meadows, Xu, Zhao, Dasika, Murarka, Lenihan, Eng, Leng, Liu, Wenger, Jiang, Chao, Westfall, Lai, Ganesan, Jackson, Mans, Platt, Reeves, Saija, Wichmann, Holmes, Benjamin, Hill, Gardner, Tsong (bib28) 2016; 537
Shiba, Paradise, Kirby, Ro, Keasing (bib40) 2007; 9
DeLoache, Russ, Dueber (bib10) 2016; 7
Bian, Deng, Liu (bib4) 2017; 48
Ignea, Pontini, Maffei, Makris, Kampranis (bib13) 2014; 3
Kohlwein, Veenhuis, van der Klei (bib18) 2013; 193
Ta, Kapterian, Fei, Du, Brown, Dawes, Yang (bib42) 2012; 279
de Godoy, Olsen, Cox, Nielsen, Hubner, Frohlich, Walther, Mann (bib9) 2008; 455
Klei, Van der Veenhuis (bib17) 1997; 5
Chen, Siewers, Nielsen (bib7) 2012; 7
Xie, Lv, Ye, Zhou, Yu (bib49) 2015; 30
Ye, Lv, Yu (bib54) 2016; 38
Zhou, Buijs, Siewers, Nielsen (bib61) 2014; 2
Xie, Mitchell, Liu, Li, Liu, Agmon, Wu, Li, Zhou, Li, Xiao, Ding, Wang, Yuan, Boeke (bib51) 2018; 8
Li, Hou, Wu, Jiang, Li, Liu, Xian, Zhang (bib22) 2019
Saraya, Veenhuis, van der Klei (bib39) 2010; 277
Rucktaschel, Girzalsky, Erdmann (bib38) 2011; 1808
Yablon, Schilowitz (bib52) 2004; 58
Voth, Richards, Shaw, Stillman (bib45) 2001; 29
Yuan, Veenhuis, van der Klei (bib57) 2016; 1863
Li, Cheng, Ding, Yuan (bib21) 2010; 148
Lv, Wang, Zhou, Ye, Xie, Xu, Yu (bib25) 2016; 7
Brennan, Turner, Kromer, Nielsen (bib5) 2012; 109
Antonenkov, Hiltunen (bib1) 2012; 1822
Peng, Plan, Chrysanthopoulos, Hodson, Nielsen, Vickers (bib33) 2017; 39
Martinez, Sanchez, Martinez-Solano, Hernandez, Garmendia, Fajardo, Alvarez-Ortega (bib27) 2009; 33
Naziri, Mantzouridou, Tsimidou (bib30) 2011; 59
Ferreira, Teixeira, Gossing, David, Siewers, Nielsen (bib12) 2018; 6
Larroude, Celinska, Back, Thomas, Nicaud, Ledesma-Amaro (bib20) 2018; 115
Jiang, Yao, Wang, Zhou, Song, Liu, Xiao, Yuan (bib14) 2017; 41
Lane, Zhang, Wei, Rao, Jin (bib19) 2015; 112
Yuan, Ching (bib56) 2016; 38
Chen, Daviet, Schalk, Siewers, Nielsen (bib6) 2013; 15
Yee, DeNicola, Billingsley, Creso, Subrahmanyam, Tang (bib55) 2019; 55
Choi, Sim, Choi, Woo (bib8) 2018; 66
Banerjee, Sharkey (bib3) 2014; 31
Dutt, Sachdeva (bib11) 2003; 118
Walsh (bib46) 2000; 406
Ozcan, Johnston (bib31) 1995; 15
Wei, Kwak, Liu, Lane, Hua, Kweon, Jin (bib47) 2018; 115
Li, Zhao, Bai (bib23) 2007; 41
Rodriguez, Denby, Van Vu, Baidoo, Wang, Keasling (bib35) 2016; 15
Spanova, Czabany, Zellnig, Leitner, Hapala, Daum (bib41) 2010; 285
Xie (10.1016/j.ymben.2019.11.001_bib51) 2018; 8
Yuan (10.1016/j.ymben.2019.11.001_bib56) 2016; 38
Walsh (10.1016/j.ymben.2019.11.001_bib46) 2000; 406
Yao (10.1016/j.ymben.2019.11.001_bib53) 2018; 7
Arendt (10.1016/j.ymben.2019.11.001_bib2) 2017; 40
Antonenkov (10.1016/j.ymben.2019.11.001_bib1) 2012; 1822
de Godoy (10.1016/j.ymben.2019.11.001_bib9) 2008; 455
Kohlwein (10.1016/j.ymben.2019.11.001_bib18) 2013; 193
Chen (10.1016/j.ymben.2019.11.001_bib7) 2012; 7
Lane (10.1016/j.ymben.2019.11.001_bib19) 2015; 112
Lv (10.1016/j.ymben.2019.11.001_bib25) 2016; 7
Li (10.1016/j.ymben.2019.11.001_bib22) 2019
Yablon (10.1016/j.ymben.2019.11.001_bib52) 2004; 58
Zhang (10.1016/j.ymben.2019.11.001_bib58) 2018; 49
Bian (10.1016/j.ymben.2019.11.001_bib4) 2017; 48
Paramasivan (10.1016/j.ymben.2019.11.001_bib32) 2017; 37
Li (10.1016/j.ymben.2019.11.001_bib23) 2007; 41
Moser (10.1016/j.ymben.2019.11.001_bib29) 2019; 103
Voth (10.1016/j.ymben.2019.11.001_bib45) 2001; 29
Tetali (10.1016/j.ymben.2019.11.001_bib43) 2019; 249
Martinez (10.1016/j.ymben.2019.11.001_bib27) 2009; 33
Westfall (10.1016/j.ymben.2019.11.001_bib48) 2012; 109
Wei (10.1016/j.ymben.2019.11.001_bib47) 2018; 115
Lian (10.1016/j.ymben.2019.11.001_bib24) 2014; 24
Yuan (10.1016/j.ymben.2019.11.001_bib57) 2016; 1863
Ta (10.1016/j.ymben.2019.11.001_bib42) 2012; 279
DeLoache (10.1016/j.ymben.2019.11.001_bib10) 2016; 7
Ma (10.1016/j.ymben.2019.11.001_bib26) 2019; 52
Saraya (10.1016/j.ymben.2019.11.001_bib39) 2010; 277
Rodriguez (10.1016/j.ymben.2019.11.001_bib35) 2016; 15
van Roermund (10.1016/j.ymben.2019.11.001_bib44) 2001; 21
Li (10.1016/j.ymben.2019.11.001_bib21) 2010; 148
Polakowski (10.1016/j.ymben.2019.11.001_bib34) 1998; 49
Naziri (10.1016/j.ymben.2019.11.001_bib30) 2011; 59
Meadows (10.1016/j.ymben.2019.11.001_bib28) 2016; 537
Dutt (10.1016/j.ymben.2019.11.001_bib11) 2003; 118
Zhao (10.1016/j.ymben.2019.11.001_bib60) 2017; 16
Yee (10.1016/j.ymben.2019.11.001_bib55) 2019; 55
Rucktaschel (10.1016/j.ymben.2019.11.001_bib38) 2011; 1808
Chen (10.1016/j.ymben.2019.11.001_bib6) 2013; 15
Ye (10.1016/j.ymben.2019.11.001_bib54) 2016; 38
Van Roermund (10.1016/j.ymben.2019.11.001_bib37) 2014; 17
Xie (10.1016/j.ymben.2019.11.001_bib50) 2015; 28
Brennan (10.1016/j.ymben.2019.11.001_bib5) 2012; 109
Zhou (10.1016/j.ymben.2019.11.001_bib61) 2014; 2
Shiba (10.1016/j.ymben.2019.11.001_bib40) 2007; 9
Jiang (10.1016/j.ymben.2019.11.001_bib14) 2017; 41
Kim (10.1016/j.ymben.2019.11.001_bib16) 2019; 56
Choi (10.1016/j.ymben.2019.11.001_bib8) 2018; 66
Banerjee (10.1016/j.ymben.2019.11.001_bib3) 2014; 31
Peng (10.1016/j.ymben.2019.11.001_bib33) 2017; 39
Ferreira (10.1016/j.ymben.2019.11.001_bib12) 2018; 6
Joshi (10.1016/j.ymben.2019.11.001_bib15) 2019; 7
Xie (10.1016/j.ymben.2019.11.001_bib49) 2015; 30
Van Roermund (10.1016/j.ymben.2019.11.001_bib36) 1995; 14
Klei (10.1016/j.ymben.2019.11.001_bib17) 1997; 5
Spanova (10.1016/j.ymben.2019.11.001_bib41) 2010; 285
Larroude (10.1016/j.ymben.2019.11.001_bib20) 2018; 115
Ozcan (10.1016/j.ymben.2019.11.001_bib31) 1995; 15
Zhao (10.1016/j.ymben.2019.11.001_bib59) 2018; 7
Ignea (10.1016/j.ymben.2019.11.001_bib13) 2014; 3
References_xml – volume: 29
  year: 2001
  ident: bib45
  article-title: Yeast vectors for integration at the HO locus
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 139
  year: 2014
  end-page: 149
  ident: bib24
  article-title: Design and construction of acetyl-CoA overproducing
  publication-title: Metab. Eng.
– volume: 6
  start-page: 22
  year: 2018
  end-page: 27
  ident: bib12
  article-title: Metabolic engineering of
  publication-title: Metab. Eng. Commun.
– volume: 17
  start-page: 677
  year: 2014
  end-page: 687
  ident: bib37
  article-title: Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions
  publication-title: EMBO J.
– volume: 118
  start-page: 8307
  year: 2003
  end-page: 8314
  ident: bib11
  article-title: Temperature-dependent rotational relaxation in a viscous alkane: interplay of shape factor and boundary condition on molecular rotation
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 8
  year: 2015
  end-page: 18
  ident: bib50
  article-title: Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in
  publication-title: Metab. Eng.
– volume: 41
  start-page: 312
  year: 2007
  end-page: 317
  ident: bib23
  article-title: High-density cultivation of oleaginous yeast
  publication-title: Enzym. Microb. Technol.
– volume: 537
  year: 2016
  ident: bib28
  article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production
  publication-title: Nature
– volume: 41
  start-page: 57
  year: 2017
  end-page: 66
  ident: bib14
  article-title: Manipulation of GES and ERG20 for geraniol overproduction in
  publication-title: Metab. Eng.
– volume: 52
  start-page: 134
  year: 2019
  end-page: 142
  ident: bib26
  article-title: Lipid engineering combined with systematic metabolic engineering of
  publication-title: Metab. Eng.
– volume: 7
  start-page: 11
  year: 2016
  ident: bib10
  article-title: Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
  publication-title: Nat. Commun.
– volume: 7
  start-page: 774
  year: 2018
  end-page: 781
  ident: bib59
  article-title: Co-compartmentation of terpene biosynthesis and storage via synthetic droplet
  publication-title: ACS Synth. Biol.
– volume: 15
  year: 2016
  ident: bib35
  article-title: ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in
  publication-title: Microb. Cell Factories
– volume: 103
  start-page: 5501
  year: 2019
  end-page: 5516
  ident: bib29
  article-title: Identifying and engineering the ideal microbial terpenoid production host
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 55
  start-page: 76
  year: 2019
  end-page: 84
  ident: bib55
  article-title: Engineered mitochondrial production of monoterpenes in
  publication-title: Metab. Eng.
– volume: 30
  start-page: 69
  year: 2015
  end-page: 78
  ident: bib49
  article-title: Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering
  publication-title: Metab. Eng.
– volume: 193
  start-page: 1
  year: 2013
  end-page: 50
  ident: bib18
  article-title: Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or A matter of fat-store 'em up or burn 'em down
  publication-title: Genetics
– volume: 112
  start-page: 1012
  year: 2015
  end-page: 1022
  ident: bib19
  article-title: Development and physiological characterization of cellobiose-consuming
  publication-title: Biotechnol. Bioeng.
– volume: 40
  start-page: 165
  year: 2017
  end-page: 175
  ident: bib2
  article-title: An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids
  publication-title: Metab. Eng.
– volume: 109
  start-page: 111
  year: 2012
  end-page: 118
  ident: bib48
  article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 66
  start-page: 523
  year: 2018
  end-page: 529
  ident: bib8
  article-title: Identification of small droplets of photosynthetic squalene in engineered
  publication-title: Lett. Appl. Microbiol.
– volume: 21
  start-page: 4321
  year: 2001
  end-page: 4329
  ident: bib44
  article-title: Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in
  publication-title: Mol. Cell. Biol.
– volume: 7
  year: 2012
  ident: bib7
  article-title: Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in
  publication-title: PLoS One
– volume: 406
  start-page: 775
  year: 2000
  end-page: 781
  ident: bib46
  article-title: Molecular mechanisms that confer antibacterial drug resistance
  publication-title: Nature
– volume: 1863
  start-page: 902
  year: 2016
  end-page: 910
  ident: bib57
  article-title: The birth of yeast peroxisomes
  publication-title: Bba-Mol Cell Res.
– year: 2019
  ident: bib22
  article-title: Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories
  publication-title: Nat. Prod. Rep.
– volume: 285
  start-page: 6127
  year: 2010
  end-page: 6133
  ident: bib41
  article-title: Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 303
  year: 2016
  end-page: 309
  ident: bib56
  article-title: Mitochondrial acetyl-CoA utilization pathway for terpenoid productions
  publication-title: Metab. Eng.
– volume: 56
  start-page: 50
  year: 2019
  end-page: 59
  ident: bib16
  article-title: Tailoring the
  publication-title: Metab. Eng.
– volume: 38
  start-page: 125
  year: 2016
  end-page: 138
  ident: bib54
  article-title: Engineering microbes for isoprene production
  publication-title: Metab. Eng.
– volume: 1822
  start-page: 1374
  year: 2012
  end-page: 1386
  ident: bib1
  article-title: Transfer of metabolites across the peroxisomal membrane
  publication-title: Bba-Mol Basis Dis.
– volume: 59
  start-page: 9980
  year: 2011
  end-page: 9989
  ident: bib30
  article-title: Enhanced squalene production by wild-type
  publication-title: J. Agric. Food Chem.
– volume: 37
  start-page: 974
  year: 2017
  end-page: 989
  ident: bib32
  article-title: Progress in terpene synthesis strategies through engineering of
  publication-title: Crit. Rev. Biotechnol.
– volume: 15
  start-page: 1564
  year: 1995
  end-page: 1572
  ident: bib31
  article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
  publication-title: Mol. Cell. Biol.
– volume: 5
  start-page: 502
  year: 1997
  end-page: 509
  ident: bib17
  article-title: Yeast peroxisomes: function and biogenesis of a versatile cell organelle
  publication-title: Trends Microbiol.
– volume: 1808
  start-page: 892
  year: 2011
  end-page: 900
  ident: bib38
  article-title: Protein import machineries of peroxisomes
  publication-title: Bba-Biomembranes
– volume: 15
  start-page: 48
  year: 2013
  end-page: 54
  ident: bib6
  article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
  publication-title: Metab. Eng.
– volume: 39
  start-page: 209
  year: 2017
  end-page: 219
  ident: bib33
  article-title: A squalene synthase protein degradation method for improved sesquiterpene production in
  publication-title: Metab. Eng.
– volume: 455
  year: 2008
  ident: bib9
  article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
– volume: 49
  start-page: 28
  year: 2018
  end-page: 35
  ident: bib58
  article-title: Production of sesquiterpenoid zerumbone from metabolic engineered
  publication-title: Metab. Eng.
– volume: 279
  start-page: 4231
  year: 2012
  end-page: 4244
  ident: bib42
  article-title: Accumulation of squalene is associated with the clustering of lipid droplets
  publication-title: FEBS J.
– volume: 115
  start-page: 1793
  year: 2018
  end-page: 1800
  ident: bib47
  article-title: Improved squalene production through increasing lipid contents in
  publication-title: Biotechnol. Bioeng.
– volume: 58
  start-page: 843
  year: 2004
  end-page: 847
  ident: bib52
  article-title: Solvatochromism of nile red in nonpolar solvents
  publication-title: Appl. Spectrosc.
– volume: 31
  start-page: 1043
  year: 2014
  end-page: 1055
  ident: bib3
  article-title: Methylerythritol 4-phosphate (MEP) pathway metabolic regulation
  publication-title: Nat. Prod. Rep.
– volume: 148
  start-page: 194
  year: 2010
  end-page: 203
  ident: bib21
  article-title: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress
  publication-title: J. Biotechnol.
– volume: 49
  start-page: 66
  year: 1998
  end-page: 71
  ident: bib34
  article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 7
  year: 2019
  ident: bib15
  article-title: Lipid droplet and peroxisome biogenesis: do they go hand-in-hand?
  publication-title: Front Cell Dev. Biol.
– volume: 3
  start-page: 298
  year: 2014
  end-page: 306
  ident: bib13
  article-title: Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase
  publication-title: ACS Synth. Biol.
– volume: 16
  year: 2017
  ident: bib60
  article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in
  publication-title: Microb. Cell Factories
– volume: 115
  start-page: 464
  year: 2018
  end-page: 472
  ident: bib20
  article-title: A synthetic biology approach to transform
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 2513
  year: 2012
  end-page: 2522
  ident: bib5
  article-title: Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in
  publication-title: Biotechnol. Bioeng.
– volume: 48
  start-page: 234
  year: 2017
  end-page: 241
  ident: bib4
  article-title: Strategies for terpenoid overproduction and new terpenoid discovery
  publication-title: Curr. Opin. Biotechnol.
– volume: 7
  start-page: 12
  year: 2016
  ident: bib25
  article-title: Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2308
  year: 2018
  end-page: 2316
  ident: bib53
  article-title: Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in
  publication-title: ACS Synth. Biol.
– volume: 9
  start-page: 160
  year: 2007
  end-page: 168
  ident: bib40
  article-title: Engineering of the pyruvate dehydrogenase bypass in
  publication-title: Metab. Eng.
– volume: 14
  start-page: 3480
  year: 1995
  end-page: 3486
  ident: bib36
  article-title: The membrane of peroxisomes in
  publication-title: EMBO J.
– volume: 33
  start-page: 430
  year: 2009
  end-page: 449
  ident: bib27
  article-title: Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems
  publication-title: FEMS Microbiol. Rev.
– volume: 249
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib43
  article-title: Terpenes and isoprenoids: a wealth of compounds for global use
  publication-title: Planta
– volume: 8
  start-page: 173
  year: 2018
  end-page: 183
  ident: bib51
  article-title: Rapid and efficient CRISPR/Cas9-Based mating-type switching of
  publication-title: G3-Genes Genom Genet.
– volume: 2
  year: 2014
  ident: bib61
  article-title: Fatty acid-derived biofuels and chemicals production in
  publication-title: Front. Bioeng. Biotechnol.
– volume: 277
  start-page: 3279
  year: 2010
  end-page: 3288
  ident: bib39
  article-title: Peroxisomes as dynamic organelles: peroxisome abundance in yeast
  publication-title: FEBS J.
– volume: 7
  year: 2012
  ident: 10.1016/j.ymben.2019.11.001_bib7
  article-title: Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae
  publication-title: PLoS One
– volume: 9
  start-page: 160
  year: 2007
  ident: 10.1016/j.ymben.2019.11.001_bib40
  article-title: Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2006.10.005
– volume: 15
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib35
  article-title: ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-016-0447-1
– year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib22
  article-title: Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories
  publication-title: Nat. Prod. Rep.
– volume: 1822
  start-page: 1374
  year: 2012
  ident: 10.1016/j.ymben.2019.11.001_bib1
  article-title: Transfer of metabolites across the peroxisomal membrane
  publication-title: Bba-Mol Basis Dis.
  doi: 10.1016/j.bbadis.2011.12.011
– volume: 148
  start-page: 194
  year: 2010
  ident: 10.1016/j.ymben.2019.11.001_bib21
  article-title: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2010.06.013
– volume: 279
  start-page: 4231
  year: 2012
  ident: 10.1016/j.ymben.2019.11.001_bib42
  article-title: Accumulation of squalene is associated with the clustering of lipid droplets
  publication-title: FEBS J.
  doi: 10.1111/febs.12015
– volume: 56
  start-page: 50
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib16
  article-title: Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.08.013
– volume: 33
  start-page: 430
  year: 2009
  ident: 10.1016/j.ymben.2019.11.001_bib27
  article-title: Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2008.00157.x
– volume: 118
  start-page: 8307
  year: 2003
  ident: 10.1016/j.ymben.2019.11.001_bib11
  article-title: Temperature-dependent rotational relaxation in a viscous alkane: interplay of shape factor and boundary condition on molecular rotation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1565992
– volume: 277
  start-page: 3279
  year: 2010
  ident: 10.1016/j.ymben.2019.11.001_bib39
  article-title: Peroxisomes as dynamic organelles: peroxisome abundance in yeast
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07740.x
– volume: 59
  start-page: 9980
  year: 2011
  ident: 10.1016/j.ymben.2019.11.001_bib30
  article-title: Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf201328a
– volume: 49
  start-page: 66
  year: 1998
  ident: 10.1016/j.ymben.2019.11.001_bib34
  article-title: Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051138
– volume: 48
  start-page: 234
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib4
  article-title: Strategies for terpenoid overproduction and new terpenoid discovery
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.07.002
– volume: 24
  start-page: 139
  year: 2014
  ident: 10.1016/j.ymben.2019.11.001_bib24
  article-title: Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.05.010
– volume: 29
  year: 2001
  ident: 10.1016/j.ymben.2019.11.001_bib45
  article-title: Yeast vectors for integration at the HO locus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.12.e59
– volume: 15
  start-page: 48
  year: 2013
  ident: 10.1016/j.ymben.2019.11.001_bib6
  article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.11.002
– volume: 406
  start-page: 775
  year: 2000
  ident: 10.1016/j.ymben.2019.11.001_bib46
  article-title: Molecular mechanisms that confer antibacterial drug resistance
  publication-title: Nature
  doi: 10.1038/35021219
– volume: 109
  start-page: 2513
  year: 2012
  ident: 10.1016/j.ymben.2019.11.001_bib5
  article-title: Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24536
– volume: 21
  start-page: 4321
  year: 2001
  ident: 10.1016/j.ymben.2019.11.001_bib44
  article-title: Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.13.4321-4329.2001
– volume: 112
  start-page: 1012
  year: 2015
  ident: 10.1016/j.ymben.2019.11.001_bib19
  article-title: Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25499
– volume: 1808
  start-page: 892
  year: 2011
  ident: 10.1016/j.ymben.2019.11.001_bib38
  article-title: Protein import machineries of peroxisomes
  publication-title: Bba-Biomembranes
  doi: 10.1016/j.bbamem.2010.07.020
– volume: 52
  start-page: 134
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib26
  article-title: Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.11.009
– volume: 14
  start-page: 3480
  year: 1995
  ident: 10.1016/j.ymben.2019.11.001_bib36
  article-title: The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb07354.x
– volume: 249
  start-page: 1
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib43
  article-title: Terpenes and isoprenoids: a wealth of compounds for global use
  publication-title: Planta
  doi: 10.1007/s00425-018-3056-x
– volume: 39
  start-page: 209
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib33
  article-title: A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.12.003
– volume: 7
  start-page: 774
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib59
  article-title: Co-compartmentation of terpene biosynthesis and storage via synthetic droplet
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00368
– volume: 38
  start-page: 303
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib56
  article-title: Mitochondrial acetyl-CoA utilization pathway for terpenoid productions
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.07.008
– volume: 49
  start-page: 28
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib58
  article-title: Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.07.010
– volume: 2
  year: 2014
  ident: 10.1016/j.ymben.2019.11.001_bib61
  article-title: Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2014.00032
– volume: 455
  year: 2008
  ident: 10.1016/j.ymben.2019.11.001_bib9
  article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
  doi: 10.1038/nature07341
– volume: 41
  start-page: 57
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib14
  article-title: Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2017.03.005
– volume: 7
  start-page: 11
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib10
  article-title: Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11152
– volume: 109
  start-page: 111
  year: 2012
  ident: 10.1016/j.ymben.2019.11.001_bib48
  article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1110740109
– volume: 103
  start-page: 5501
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib29
  article-title: Identifying and engineering the ideal microbial terpenoid production host
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09892-y
– volume: 3
  start-page: 298
  year: 2014
  ident: 10.1016/j.ymben.2019.11.001_bib13
  article-title: Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400115e
– volume: 193
  start-page: 1
  year: 2013
  ident: 10.1016/j.ymben.2019.11.001_bib18
  article-title: Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or A matter of fat-store 'em up or burn 'em down
  publication-title: Genetics
  doi: 10.1534/genetics.112.143362
– volume: 7
  start-page: 12
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib25
  article-title: Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12851
– volume: 41
  start-page: 312
  year: 2007
  ident: 10.1016/j.ymben.2019.11.001_bib23
  article-title: High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2007.02.008
– volume: 40
  start-page: 165
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib2
  article-title: An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2017.02.007
– volume: 8
  start-page: 173
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib51
  article-title: Rapid and efficient CRISPR/Cas9-Based mating-type switching of Saccharomyces cerevisiae
  publication-title: G3-Genes Genom Genet.
  doi: 10.1534/g3.117.300347
– volume: 6
  start-page: 22
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib12
  article-title: Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.meteno.2018.01.002
– volume: 30
  start-page: 69
  year: 2015
  ident: 10.1016/j.ymben.2019.11.001_bib49
  article-title: Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.04.009
– volume: 7
  start-page: 2308
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib53
  article-title: Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00289
– volume: 5
  start-page: 502
  year: 1997
  ident: 10.1016/j.ymben.2019.11.001_bib17
  article-title: Yeast peroxisomes: function and biogenesis of a versatile cell organelle
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(97)01156-6
– volume: 285
  start-page: 6127
  year: 2010
  ident: 10.1016/j.ymben.2019.11.001_bib41
  article-title: Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.074229
– volume: 115
  start-page: 1793
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib47
  article-title: Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26595
– volume: 38
  start-page: 125
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib54
  article-title: Engineering microbes for isoprene production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.07.005
– volume: 115
  start-page: 464
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib20
  article-title: A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26473
– volume: 17
  start-page: 677
  year: 2014
  ident: 10.1016/j.ymben.2019.11.001_bib37
  article-title: Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.3.677
– volume: 7
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib15
  article-title: Lipid droplet and peroxisome biogenesis: do they go hand-in-hand?
  publication-title: Front Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00092
– volume: 15
  start-page: 1564
  year: 1995
  ident: 10.1016/j.ymben.2019.11.001_bib31
  article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.3.1564
– volume: 31
  start-page: 1043
  year: 2014
  ident: 10.1016/j.ymben.2019.11.001_bib3
  article-title: Methylerythritol 4-phosphate (MEP) pathway metabolic regulation
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C3NP70124G
– volume: 537
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib28
  article-title: Rewriting yeast central carbon metabolism for industrial isoprenoid production
  publication-title: Nature
  doi: 10.1038/nature19769
– volume: 66
  start-page: 523
  year: 2018
  ident: 10.1016/j.ymben.2019.11.001_bib8
  article-title: Identification of small droplets of photosynthetic squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.12874
– volume: 58
  start-page: 843
  year: 2004
  ident: 10.1016/j.ymben.2019.11.001_bib52
  article-title: Solvatochromism of nile red in nonpolar solvents
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702041389328
– volume: 1863
  start-page: 902
  year: 2016
  ident: 10.1016/j.ymben.2019.11.001_bib57
  article-title: The birth of yeast peroxisomes
  publication-title: Bba-Mol Cell Res.
– volume: 28
  start-page: 8
  year: 2015
  ident: 10.1016/j.ymben.2019.11.001_bib50
  article-title: Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.11.007
– volume: 55
  start-page: 76
  year: 2019
  ident: 10.1016/j.ymben.2019.11.001_bib55
  article-title: Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.06.004
– volume: 37
  start-page: 974
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib32
  article-title: Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2017.1299679
– volume: 16
  year: 2017
  ident: 10.1016/j.ymben.2019.11.001_bib60
  article-title: Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-017-0641-9
SSID ssj0011591
Score 2.626985
Snippet Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms batch fermentation
droplets
engineering
feedstocks
Metabolic Engineering
oils
Peroxisome
peroxisomes
Peroxisomes - genetics
Peroxisomes - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
squalene
Squalene - metabolism
Storage depot
Subcellular factory
Synthetic biology
Terpene
terpenoids
yeasts
Title The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction
URI https://dx.doi.org/10.1016/j.ymben.2019.11.001
https://www.ncbi.nlm.nih.gov/pubmed/31711816
https://www.proquest.com/docview/2314022459
https://www.proquest.com/docview/2352445885
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2RIKRyqIDSkhaQK3Fkk6zX9tq9RREogODSIuW28u7aUlCziUgikQu_nZn9iFqpzYGrZUvWzHjmjT1-A3DRT1XsfGbxiDsViDCOAouBJ-BZ7DDCKiFzShTvH9ToUdyO5XgHhs1fGCqrrH1_5dNLb12P9Gpp9uaTSe9niOgbkxHMANANx5FuwS7HaK_bsDu4uRs9bB4TMGKXeRfOD2hBQz5Ulnmtp6kjHtTQdInNs24O848A9T8AWgai6wP4WCNINqg2eQg7rjiCvaqn5PoI9v9gGPwEFs2Arak_DyNG8JfJYjZ1P9iA5VUnekbFkehSWI5AfMlskbPFKqXbfCpPZVU3njVDZMsW9P8SPSOjos95RRSLSj2Gx-urX8NRUHdVCDIh9TJAwGGEsi4WKg8zHwlvUt_3udd9Y3XORWRjIW2fO86dsTzNHSYdKrKZF5nVafQZ2sWscCfAIpPJ0NJLpZfCpkZ77YVxygphUCG8A7wRZZLVlOPU-eJ30tSWPSWl_BOSPyYjVGHXgcvNonnFuLF9ump0lPxlOAnGhO0LvzcaTfBIkWRt4WarRYKQVxC0kWbbHInASGotO_ClMofNbhGS0Xde9fW9W_sGHzil9eVNzym0l88rd4bYZ5meQ6v7Gp7XFv4GD5ADIQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BFaIcEOXVUKBG6rFLsl7ba_eGUFFKgQsgcbO8u7YUBJuoSaTmwm9nZh9RkSCHXldjyZoZz3zjHc8H8K2XqdSH3OER9yoScZpEDhNPxPPUY4ZVQhZUKF5dq_6duLiX90tw1r6FobbKJvbXMb2K1s2XbqPN7mgw6N7EiL6xGMEKAMNwmuhl-CCI5gCd-uR53ueBiKeizSPpiMTb0UNVk9fsKfM0BTU2JzTLs6GGeSM9vQc_qzR0vgkbDX5kp_UWP8GSL7dgtWaUnG3B-j_zBbfBoROwGbHzMJoH_ncwHj75H-yUFTUPPaPWSAworEAYPmGuLNh4mtFdPjWnspqLZ8YQ17Ixvb7EuMio5XNUj4lFk-7A3fnP27N-1HAqRLmQehIh3DBCOZ8KVcR5SEQwWeiFIuiecbrgInGpkK7HPefeOJ4VHksOlbg8iNzpLNmFlXJY-s_AEpPL2NF_yiCFy4wOOgjjlRPCoDl4B3irSps3A8eJ9-LRtp1lD7bSvyX9YylC_XUd-D5fNKrnbSwWV62N7Cu3sZgRFi88bi1q8UCRZl3ph9OxRcArCNhIs0hGIiySWssO7NXuMN8tAjJ6zKv2_3drX2Gtf3t1aS9_Xf_-Ah85FfjVnc8BrEz-TP0hoqBJdlR5-Qso3wPj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+peroxisome%3A+A+dynamic+storage+depot+and+subcellular+factory+for+squalene+overproduction&rft.jtitle=Metabolic+engineering&rft.au=Liu%2C+Guo-Song&rft.au=Li%2C+Tian&rft.au=Zhou%2C+Wei&rft.au=Jiang%2C+Min&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=1096-7176&rft.eissn=1096-7184&rft.volume=57&rft.spage=151&rft.epage=161&rft_id=info:doi/10.1016%2Fj.ymben.2019.11.001&rft.externalDocID=S1096717619303738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon