A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm

In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evol...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 9; pp. 9290 - 9301
Main Authors Zeng, Nianyin, Wang, Zidong, Liu, Weibo, Zhang, Hong, Hone, Kate, Liu, Xiaohui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2020.3029748

Cover

Abstract In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evolution information among the entire swarm. In addition, a novel switching learning strategy is introduced to adaptively select the acceleration coefficients and update the velocity model according to the searching state at each iteration, thereby contributing to a thorough search of the problem space. Furthermore, the differential evolution algorithm is successfully hybridized with the particle swarm optimization (PSO) algorithm to alleviate premature convergence. A series of commonly used benchmark functions (including unimodal, multimodal, and rotated multimodal cases) is utilized to comprehensively evaluate the performance of the DNSPSO algorithm. The experimental results demonstrate that the developed DNSPSO algorithm outperforms a number of existing PSO algorithms in terms of the solution accuracy and convergence performance, especially for complicated multimodal optimization problems.
AbstractList In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evolution information among the entire swarm. In addition, a novel switching learning strategy is introduced to adaptively select the acceleration coefficients and update the velocity model according to the searching state at each iteration, thereby contributing to a thorough search of the problem space. Furthermore, the differential evolution algorithm is successfully hybridized with the particle swarm optimization (PSO) algorithm to alleviate premature convergence. A series of commonly used benchmark functions (including unimodal, multimodal, and rotated multimodal cases) is utilized to comprehensively evaluate the performance of the DNSPSO algorithm. The experimental results demonstrate that the developed DNSPSO algorithm outperforms a number of existing PSO algorithms in terms of the solution accuracy and convergence performance, especially for complicated multimodal optimization problems.In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evolution information among the entire swarm. In addition, a novel switching learning strategy is introduced to adaptively select the acceleration coefficients and update the velocity model according to the searching state at each iteration, thereby contributing to a thorough search of the problem space. Furthermore, the differential evolution algorithm is successfully hybridized with the particle swarm optimization (PSO) algorithm to alleviate premature convergence. A series of commonly used benchmark functions (including unimodal, multimodal, and rotated multimodal cases) is utilized to comprehensively evaluate the performance of the DNSPSO algorithm. The experimental results demonstrate that the developed DNSPSO algorithm outperforms a number of existing PSO algorithms in terms of the solution accuracy and convergence performance, especially for complicated multimodal optimization problems.
In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evolution information among the entire swarm. In addition, a novel switching learning strategy is introduced to adaptively select the acceleration coefficients and update the velocity model according to the searching state at each iteration, thereby contributing to a thorough search of the problem space. Furthermore, the differential evolution algorithm is successfully hybridized with the particle swarm optimization (PSO) algorithm to alleviate premature convergence. A series of commonly used benchmark functions (including unimodal, multimodal, and rotated multimodal cases) is utilized to comprehensively evaluate the performance of the DNSPSO algorithm. The experimental results demonstrate that the developed DNSPSO algorithm outperforms a number of existing PSO algorithms in terms of the solution accuracy and convergence performance, especially for complicated multimodal optimization problems.
Author Zeng, Nianyin
Zhang, Hong
Liu, Weibo
Wang, Zidong
Liu, Xiaohui
Hone, Kate
Author_xml – sequence: 1
  givenname: Nianyin
  orcidid: 0000-0002-6957-2942
  surname: Zeng
  fullname: Zeng, Nianyin
  email: zny@xmu.edu.cn
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Weibo
  orcidid: 0000-0002-8169-3261
  surname: Liu
  fullname: Liu, Weibo
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 4
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Kate
  surname: Hone
  fullname: Hone, Kate
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 6
  givenname: Xiaohui
  surname: Liu
  fullname: Liu, Xiaohui
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33170793$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUhS0EApryAAipGqmbbib1X-zxMqQUkKJSqXTRleXx3CRGM-Nge4TC03eGhCxSqd7Yvjrn-tzPH9Bx61tA6JLgMSFYfX2c_bkeU0zxmGGqJC-O0DklosgplZPj_VnIM3QR4xPuV9GXVHGKzhgjEkvFztF8mn3btKZxNvsBbrkqfVh5X-XXJkKV_Xpxya5cu8x-mpCcraEvmdBkD-vkGvdqkvNtNq2XPri0aj6ik4WpI1zs9hH6_f3mcXaXzx9u72fTeW75pEi5lNzwqqBGUFUBWGVlhQVQLCxfsP6uKC5tCUQIomRZAbGcSSOYUoYXlWIjRLd9u3ZtNi-mrvU6uMaEjSZYD3R0sptSD3T0jk5v-rI1rYN_7iAm3bhooa5NC76LmvKJEpRJNvT_fCB98l1o-5E0lZhjpQZ4I_Rpp-rKBqp9hHe4vYBsBTb4GAMs_kk5_OFhSnngsS69YU7BuPq_zqut0wHA_iVFJ5z0Q_0FyKSl3A
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106404
crossref_primary_10_1109_TSMC_2024_3443143
crossref_primary_10_3389_fpubh_2021_685596
crossref_primary_10_1016_j_neucom_2023_02_065
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1109_JAS_2023_123180
crossref_primary_10_1007_s00500_023_09517_7
crossref_primary_10_1080_10168664_2022_2129121
crossref_primary_10_1016_j_neucom_2020_12_065
crossref_primary_10_48084_etasr_8430
crossref_primary_10_1016_j_neucom_2023_126761
crossref_primary_10_1016_j_neucom_2025_129634
crossref_primary_10_1007_s11831_025_10269_w
crossref_primary_10_1109_JAS_2021_1003919
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1109_ACCESS_2022_3220792
crossref_primary_10_1109_LCOMM_2022_3161382
crossref_primary_10_1109_TEVC_2023_3277501
crossref_primary_10_1038_s41598_024_83495_0
crossref_primary_10_1016_j_ins_2023_03_011
crossref_primary_10_1145_3700886
crossref_primary_10_1016_j_phycom_2024_102490
crossref_primary_10_1109_TNNLS_2023_3295461
crossref_primary_10_3389_fpubh_2021_712827
crossref_primary_10_1016_j_neucom_2023_126906
crossref_primary_10_1007_s13042_021_01440_3
crossref_primary_10_1007_s11269_022_03238_6
crossref_primary_10_1016_j_cose_2024_104160
crossref_primary_10_1016_j_ins_2022_11_019
crossref_primary_10_1016_j_swevo_2024_101627
crossref_primary_10_3389_fpubh_2021_726140
crossref_primary_10_1016_j_comnet_2024_110478
crossref_primary_10_1109_TSMC_2022_3212045
crossref_primary_10_1016_j_neucom_2025_129460
crossref_primary_10_1109_TSMC_2024_3407960
crossref_primary_10_1109_JAS_2024_124575
crossref_primary_10_1038_s41598_024_78758_9
crossref_primary_10_1155_2022_3692081
crossref_primary_10_3390_batteries9080414
crossref_primary_10_1007_s10614_024_10599_0
crossref_primary_10_1108_MMMS_02_2024_0051
crossref_primary_10_7717_peerj_cs_2107
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1007_s10462_022_10182_9
crossref_primary_10_61186_marineeng_19_41_85
crossref_primary_10_1007_s10586_024_04488_2
crossref_primary_10_3389_fnins_2022_916818
crossref_primary_10_1016_j_neucom_2021_08_150
crossref_primary_10_1016_j_asoc_2024_111332
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_1109_TVT_2024_3455571
crossref_primary_10_1007_s11831_024_10185_5
crossref_primary_10_1080_00207721_2022_2146989
crossref_primary_10_1155_2021_5529312
crossref_primary_10_1007_s11227_022_04959_6
crossref_primary_10_1109_TCYB_2022_3228578
crossref_primary_10_1016_j_ins_2022_12_076
crossref_primary_10_1109_JAS_2023_123687
crossref_primary_10_1016_j_compbiomed_2024_108064
crossref_primary_10_1016_j_eswa_2024_123896
crossref_primary_10_1038_s41467_025_57176_z
crossref_primary_10_1016_j_neucom_2023_03_065
crossref_primary_10_1109_TIM_2023_3300471
crossref_primary_10_1007_s10489_023_05105_2
crossref_primary_10_1016_j_neucom_2021_01_056
crossref_primary_10_1038_s42256_023_00642_4
crossref_primary_10_3389_fpubh_2021_643191
crossref_primary_10_3390_biomimetics9040204
crossref_primary_10_1016_j_neucom_2022_05_119
crossref_primary_10_1007_s42235_024_00578_4
crossref_primary_10_1016_j_ins_2022_07_067
crossref_primary_10_1016_j_asoc_2023_110513
crossref_primary_10_1109_TSMC_2024_3353534
crossref_primary_10_3389_fpls_2022_998962
crossref_primary_10_1080_00207721_2023_2209873
crossref_primary_10_1109_TCSVT_2021_3074032
crossref_primary_10_1007_s40430_024_05023_5
crossref_primary_10_1016_j_asoc_2022_109917
crossref_primary_10_1109_TCYB_2022_3224169
crossref_primary_10_3390_su151511517
crossref_primary_10_1007_s13369_024_09702_2
crossref_primary_10_53941_ijndi0201002
crossref_primary_10_1016_j_ocemod_2023_102213
crossref_primary_10_1515_cppm_2024_0075
crossref_primary_10_1080_21642583_2021_1901158
crossref_primary_10_1109_JSAC_2023_3280970
crossref_primary_10_1016_j_neucom_2021_12_016
crossref_primary_10_1109_TITS_2023_3286973
crossref_primary_10_1109_TASE_2024_3393897
crossref_primary_10_3390_modelling6010009
crossref_primary_10_1007_s13042_021_01285_w
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_1016_j_neucom_2023_03_073
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_1016_j_neucom_2022_11_078
crossref_primary_10_1016_j_knosys_2022_108874
crossref_primary_10_3233_JIFS_213380
crossref_primary_10_3390_electronics12091961
crossref_primary_10_1016_j_neucom_2021_06_010
crossref_primary_10_5194_jsss_10_193_2021
crossref_primary_10_1016_j_compbiomed_2022_106457
crossref_primary_10_1109_TCYB_2023_3336870
crossref_primary_10_1007_s12065_022_00755_6
crossref_primary_10_3389_fnins_2022_921642
crossref_primary_10_1007_s42235_024_00553_z
crossref_primary_10_3390_s23187710
crossref_primary_10_1016_j_asoc_2021_108381
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1587_transinf_2022DLP0039
crossref_primary_10_3233_KES_230137
crossref_primary_10_1016_j_swevo_2024_101776
crossref_primary_10_3390_s23094289
crossref_primary_10_1007_s12652_022_03783_3
crossref_primary_10_1080_00207721_2022_2032465
crossref_primary_10_3390_en16114489
crossref_primary_10_1016_j_ins_2023_02_071
crossref_primary_10_3390_electronics12153289
crossref_primary_10_3390_drones8120749
crossref_primary_10_3390_ijgi13030091
crossref_primary_10_1016_j_neucom_2024_127601
crossref_primary_10_1049_trit_2019_0040
crossref_primary_10_1016_j_asoc_2025_112922
crossref_primary_10_1080_01605682_2024_2426189
crossref_primary_10_1109_OJSP_2023_3298251
crossref_primary_10_1016_j_neucom_2024_127284
crossref_primary_10_1109_ACCESS_2024_3387308
crossref_primary_10_1080_21642583_2021_1891153
crossref_primary_10_1016_j_aeue_2025_155708
crossref_primary_10_1007_s12065_021_00607_9
crossref_primary_10_1007_s12065_022_00813_z
Cites_doi 10.1016/j.amc.2006.09.098
10.1109/TEVC.2005.857610
10.1109/TCYB.2016.2577587
10.1109/TCYB.2016.2548239
10.1007/s12559-016-9396-6
10.1109/TEVC.2012.2203138
10.1109/TCYB.2017.2710133
10.1109/TSMCB.2010.2068046
10.1016/j.neucom.2018.12.021
10.1016/0303-2647(96)01621-8
10.1109/CEC.2001.934377
10.1109/4235.985692
10.1109/TAC.2020.2968975
10.1109/TCYB.2019.2925015
10.1109/ICNN.1995.488968
10.1109/HIS.2011.6122090
10.1109/4235.771163
10.1108/AA-10-2015-079
10.1109/TEVC.2018.2878536
10.1109/TEVC.2004.826071
10.1109/TEVC.2004.826069
10.1007/BFb0040810
10.1109/TEVC.2012.2196047
10.1016/j.chaos.2004.11.095
10.1109/TEVC.2019.2910721
10.1016/j.amc.2006.12.066
10.1109/CEC.2002.1004493
10.1109/TCYB.2017.2764744
10.1109/TEVC.2010.2052054
10.1016/j.eswa.2010.08.041
10.1109/TEVC.2004.826074
10.1109/TSMCB.2003.818557
10.1109/TEVC.2018.2880894
10.1109/TEVC.2018.2875430
10.1007/s12559-016-9442-4
10.1109/TCYB.2016.2549639
10.1109/TAC.2019.2910167
10.1109/TCYB.2018.2836388
10.1109/SIS.2005.1501611
10.1109/TSMC.2019.2918002
10.1016/j.neucom.2018.12.022
10.1109/CEC.1999.785511
10.1109/TCYB.2017.2710978
10.1109/TCYB.2017.2756874
10.1109/TNANO.2019.2932271
10.1109/TCYB.2019.2917543
10.1109/TSMCB.2009.2015956
10.1109/TEVC.2019.2906894
10.1109/TEVC.2011.2173577
10.1016/j.eswa.2013.08.069
10.1109/TSMCB.2011.2144582
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/TCYB.2020.3029748
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 9301
ExternalDocumentID oai:bura.brunel.ac.uk:2438/21856
33170793
10_1109_TCYB_2020_3029748
9254137
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Korea Foundation for Advanced Studies
  funderid: 10.13039/501100007633
– fundername: Open Fund of Engineering Research Center of Big Data Application in Private Health Medicine of China
  grantid: KF2020002
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 20720190009
  funderid: 10.13039/501100012226
– fundername: International Science and Technology Cooperation Project of Fujian Province of China
  grantid: 2019I0003
– fundername: Natural Science Foundation of China
  grantid: 61873148; 61933007; 62073271
  funderid: 10.13039/501100001809
– fundername: Open Fund of Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University of China
  funderid: 10.13039/501100007310
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c458t-774a4d82a629deec9c7d06e206c4f3ec9920bcbe166197bde1c437a6399a48d93
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Oct 26 05:04:39 EDT 2025
Sun Sep 28 00:03:22 EDT 2025
Sun Jun 29 16:17:04 EDT 2025
Thu Jan 02 22:56:22 EST 2025
Wed Oct 01 01:36:40 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-774a4d82a629deec9c7d06e206c4f3ec9920bcbe166197bde1c437a6399a48d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9576-7401
0000-0002-8169-3261
0000-0002-6957-2942
OpenAccessLink https://proxy.k.utb.cz/login?url=http://bura.brunel.ac.uk/bitstream/2438/21856/1/FullText.pdf
PMID 33170793
PQID 2704099079
PQPubID 85422
PageCount 12
ParticipantIDs ieee_primary_9254137
unpaywall_primary_10_1109_tcyb_2020_3029748
pubmed_primary_33170793
crossref_primary_10_1109_TCYB_2020_3029748
proquest_miscellaneous_2459623739
crossref_citationtrail_10_1109_TCYB_2020_3029748
proquest_journals_2704099079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Suganthan (ref37)
ref28
ref27
ref29
References_xml – ident: ref32
  doi: 10.1016/j.amc.2006.09.098
– ident: ref18
  doi: 10.1109/TEVC.2005.857610
– ident: ref48
  doi: 10.1109/TCYB.2016.2577587
– ident: ref13
  doi: 10.1109/TCYB.2016.2548239
– ident: ref43
  doi: 10.1007/s12559-016-9396-6
– ident: ref29
  doi: 10.1109/TEVC.2012.2203138
– ident: ref49
  doi: 10.1109/TCYB.2017.2710133
– ident: ref8
  doi: 10.1109/TSMCB.2010.2068046
– ident: ref25
  doi: 10.1016/j.neucom.2018.12.021
– ident: ref31
  doi: 10.1016/0303-2647(96)01621-8
– ident: ref35
  doi: 10.1109/CEC.2001.934377
– ident: ref6
  doi: 10.1109/4235.985692
– ident: ref50
  doi: 10.1109/TAC.2020.2968975
– ident: ref22
  doi: 10.1109/TCYB.2019.2925015
– ident: ref15
  doi: 10.1109/ICNN.1995.488968
– ident: ref1
  doi: 10.1109/HIS.2011.6122090
– start-page: 1
  volume-title: Proc. IEEE Congr. Evol. Comput.
  ident: ref37
  article-title: Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization
– ident: ref41
  doi: 10.1109/4235.771163
– ident: ref45
  doi: 10.1108/AA-10-2015-079
– ident: ref21
  doi: 10.1109/TEVC.2018.2878536
– ident: ref30
  doi: 10.1109/TEVC.2004.826071
– ident: ref2
  doi: 10.1109/TEVC.2004.826069
– ident: ref33
  doi: 10.1007/BFb0040810
– ident: ref28
  doi: 10.1109/TEVC.2012.2196047
– ident: ref20
  doi: 10.1016/j.chaos.2004.11.095
– ident: ref40
  doi: 10.1109/TEVC.2019.2910721
– ident: ref5
  doi: 10.1016/j.amc.2006.12.066
– ident: ref16
  doi: 10.1109/CEC.2002.1004493
– ident: ref12
  doi: 10.1109/TCYB.2017.2764744
– ident: ref47
  doi: 10.1109/TEVC.2010.2052054
– ident: ref38
  doi: 10.1016/j.eswa.2010.08.041
– ident: ref26
  doi: 10.1109/TEVC.2004.826074
– ident: ref14
  doi: 10.1109/TSMCB.2003.818557
– ident: ref3
  doi: 10.1109/TEVC.2018.2880894
– ident: ref23
  doi: 10.1109/TEVC.2018.2875430
– ident: ref36
  doi: 10.1007/s12559-016-9442-4
– ident: ref27
  doi: 10.1109/TCYB.2016.2549639
– ident: ref51
  doi: 10.1109/TAC.2019.2910167
– ident: ref19
  doi: 10.1109/TCYB.2018.2836388
– ident: ref17
  doi: 10.1109/SIS.2005.1501611
– ident: ref52
  doi: 10.1109/TSMC.2019.2918002
– ident: ref24
  doi: 10.1016/j.neucom.2018.12.022
– ident: ref34
  doi: 10.1109/CEC.1999.785511
– ident: ref39
  doi: 10.1109/TCYB.2017.2710978
– ident: ref11
  doi: 10.1109/TCYB.2017.2756874
– ident: ref44
  doi: 10.1109/TNANO.2019.2932271
– ident: ref9
  doi: 10.1109/TCYB.2019.2917543
– ident: ref46
  doi: 10.1109/TSMCB.2009.2015956
– ident: ref4
  doi: 10.1109/TEVC.2019.2906894
– ident: ref7
  doi: 10.1109/TEVC.2011.2173577
– ident: ref42
  doi: 10.1016/j.eswa.2013.08.069
– ident: ref10
  doi: 10.1109/TSMCB.2011.2144582
SSID ssj0000816898
Score 2.6564622
Snippet In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9290
SubjectTerms Acceleration
Algorithms
Convergence
Differential evolution (DE)
dynamic neighborhood
Evolutionary algorithms
Evolutionary computation
Heuristic algorithms
Iterative methods
Neighborhoods
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Performance evaluation
Search problems
Switches
Switching
switching strategy
Topology
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4AMb4CAwUJB74UNokduz4sRtME4IyiVbaHlDk2A6rlqZVl2gafz3nxI2GhpDgKV8Xy9GdfXe5jx_Aa4ZWZ1FwGhgb_6chKQJRCBakLDJJoRTXbVOfLxN2NKOfTpKTLdjAKuJAcpivm8qUrpYqn9e2akIuRjEl6Qg1UsJGUdu6dmqz3Ve6uAXbLEFLfADbs8nx-NTiyUUMBSBuAWTdOU9cUDMKxahWVzk6hzH6rBa9yaL_XFNLLc7Kn0zOu3C7qVby6lKW5TU1dHgfvm-Kebrsk_NhU-dD9fNmb8f_-sIHcM_Zp_64E6gd2DLVQ9hxO8CF_8a1qX67C5_H_ocOzt6f2P-rKEy2RXKwj3pR-98u53WbpukfO-HEW3K98L_iHrVwxZ_-uPyxXM_rs8UjmB1-nB4cBQ6bIVA0SWs0yqmkOo0li4U2RgnkashMHDJFC4LXIg5zlZsI9b_guTaRooRLaw9JmmpBHsOgWlbmKficaEYLLZMUj3lkA3VcqqTgoaaS6NiDcMOaTLnG5RY_o8xaByYU2fTgdD-z3MwcNz1417-y6rp2_I141_K7JxToM0eEe7C34X_m1vVFFnPc9HCGXHjwqn-MK9KGWWRllg3SUItoRDhBmied3PRjEzTXbEtCD973gnRjhlY4f5vhs3-ifg53Yluj0SbC7cGgXjfmBVpOdf7SLZBfI68Qow
  priority: 102
  providerName: Unpaywall
Title A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9254137
https://www.ncbi.nlm.nih.gov/pubmed/33170793
https://www.proquest.com/docview/2704099079
https://www.proquest.com/docview/2459623739
http://bura.brunel.ac.uk/bitstream/2438/21856/1/FullText.pdf
UnpaywallVersion submittedVersion
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAPWw8wBj7KDCUSXvYV4-2SZvm8WBDaBo3pHESPFVpkg60ux46WiH2189Jc9XY0LSnpq1bubFdO3HiH8DrDKPOquIsNDb_zyJahaISWZhnsUkrpbh2RX2OR9nRmH0-S8-W4EO_F8YY4xafmYFtuly-nqnWTpXtCRzNxJQvwzLPs26vVj-f4gAkHPRtgo0Qowruk5hxJPZOD873cTCY4BjVojUxC9NH0XXa8nB3PJKDWLkv2lyFh219JW9v5GTymwc6XIfjBe_dwpMfg7YpB-rnH2Ud__fjHsOaD0XJsNOdDVgy9RPY8MZ-Td74itRvN-HLkHzskOvJyE6lot7YasjhPrpATb7dXDZuRSY58XqIl-R8Sr7i72jq93mS4eT7bH7ZXEyfwvjw0-nBUehhGELF0rzB-JtJpvNEZonQxiiBAowyk0SZYhXFc5FEpSpNjK5e8FKbWDHKpQ19JMu1oM9gpZ7V5gUQTnXGKi3THI9lbHNyXKq04pFmkuokgGghikL5GuUWKmNSuLFKJAoryMIKsvCCDOBd_8hVV6DjX8SbtuN7Qt_nAews5F14E74uEo7_N-SQiwBe9bfR-GxGRdZm1iINs-BFlFOked7pSf_uhXoF8L5XnL84bNRteYfDrfs53IZHid134Ra37cBKM2_NS4yGmnLXmcEuPBiPTobnvwB8gQJQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8TD2MBjjI7BBkHgARrokduL4sRtMBdqCRCeNp8ixnTGtTacu0TT--p0dN2IwIZ7iJJfo4rvLnX32_QBepxh1liWjgTb5fxqSMuAlT4MsjXRSSsmULeozGqeDI_r5ODlegffdXhittV18pnumaXP5ai4bM1W2x3E0ExF2B-4mlNKk3a3VzahYCAkLfhtjI8C4grk0ZhTyvcnBj30cDsY4SjV4TdQA9RF0nqZA3A2fZEFWbos312Gtqc7F1aWYTn_zQYf3YbTkvl16ctZr6qInf_1R2PF_P-8BbLhg1O-32rMJK7p6CJvO3C_8N64m9dstGPb9Dy12vT82k6moOaYecrCPTlD53y9Pa7sm0__mNBEvicXM_4o_pJnb6en3pyfzxWn9c_YIjg4_Tg4GgQNiCCRNshojcCqoymKRxlxpLTmKMEx1HKaSlgTPeRwWstAROnvOCqUjSQkTJvgRNFOcPIbVal7pp-AzolJaKpFkeCwik5VjQiYlCxUVRMUehEtR5NJVKTdgGdPcjlZCnhtB5kaQuROkB--6R87bEh3_It4yHd8Ruj73YHsp79wZ8UUeM_zDIYeMe_Cqu43mZ3IqotLzBmmogS8ijCDNk1ZPuncv1cuD3U5x_uKwllfFDQ6f3c7hS1gbTEbDfPhp_OU53IvNLgy71G0bVutFo3cwNqqLF9YkrgEGEQPt
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4AMb4CAwUJB74UNokduz4sRtME4IyiVbaHlDk2A6rlqZVl2gafz3nxI2GhpDgKV8Xy9GdfXe5jx_Aa4ZWZ1FwGhgb_6chKQJRCBakLDJJoRTXbVOfLxN2NKOfTpKTLdjAKuJAcpivm8qUrpYqn9e2akIuRjEl6Qg1UsJGUdu6dmqz3Ve6uAXbLEFLfADbs8nx-NTiyUUMBSBuAWTdOU9cUDMKxahWVzk6hzH6rBa9yaL_XFNLLc7Kn0zOu3C7qVby6lKW5TU1dHgfvm-Kebrsk_NhU-dD9fNmb8f_-sIHcM_Zp_64E6gd2DLVQ9hxO8CF_8a1qX67C5_H_ocOzt6f2P-rKEy2RXKwj3pR-98u53WbpukfO-HEW3K98L_iHrVwxZ_-uPyxXM_rs8UjmB1-nB4cBQ6bIVA0SWs0yqmkOo0li4U2RgnkashMHDJFC4LXIg5zlZsI9b_guTaRooRLaw9JmmpBHsOgWlbmKficaEYLLZMUj3lkA3VcqqTgoaaS6NiDcMOaTLnG5RY_o8xaByYU2fTgdD-z3MwcNz1417-y6rp2_I141_K7JxToM0eEe7C34X_m1vVFFnPc9HCGXHjwqn-MK9KGWWRllg3SUItoRDhBmied3PRjEzTXbEtCD973gnRjhlY4f5vhs3-ifg53Yluj0SbC7cGgXjfmBVpOdf7SLZBfI68Qow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Neighborhood-Based+Switching+Particle+Swarm+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zeng%2C+Nianyin&rft.au=Wang%2C+Zidong&rft.au=Liu%2C+Weibo&rft.au=Zhang%2C+Hong&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=9&rft.spage=9290&rft.epage=9301&rft_id=info:doi/10.1109%2FTCYB.2020.3029748&rft_id=info%3Apmid%2F33170793&rft.externalDocID=9254137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon