Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis

Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 8; pp. 1731 - 1741
Main Authors Qian, Kun, Janott, Christoph, Pandit, Vedhas, Zhang, Zixing, Heiser, Clemens, Hohenhorst, Winfried, Herzog, Michael, Hemmert, Werner, Schuller, Bjorn
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2016.2619675

Cover

Abstract Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds. Methods: Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers. Results: A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation. Conclusion: Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects. Significance: This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.
AbstractList Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds. Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers. A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation. Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects. This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.
Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds. Methods: Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers. Results: A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation. Conclusion: Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects. Significance: This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.
Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.OBJECTIVEObstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.METHODSSnore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.RESULTSA fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.CONCLUSIONMultifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.SIGNIFICANCEThis paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.
Author Pandit, Vedhas
Zhang, Zixing
Herzog, Michael
Janott, Christoph
Qian, Kun
Schuller, Bjorn
Heiser, Clemens
Hohenhorst, Winfried
Hemmert, Werner
Author_xml – sequence: 1
  givenname: Kun
  surname: Qian
  fullname: Qian, Kun
  email: andykun.qian@tum.de
  organization: Machine Intelligence and Signal Processing Group, MMK, Technische Universität München, Munich, Germany
– sequence: 2
  givenname: Christoph
  surname: Janott
  fullname: Janott, Christoph
  organization: Institute for Medical EngineeringTechnische Universität München
– sequence: 3
  givenname: Vedhas
  surname: Pandit
  fullname: Pandit, Vedhas
  organization: Chair of Complex and Intelligent SystemsUniversity of Passau
– sequence: 4
  givenname: Zixing
  surname: Zhang
  fullname: Zhang, Zixing
  organization: Chair of Complex and Intelligent SystemsUniversity of Passau
– sequence: 5
  givenname: Clemens
  surname: Heiser
  fullname: Heiser, Clemens
  organization: Department of Otorhinolaryngology/Head and Neck SurgeryTechnische Universität München
– sequence: 6
  givenname: Winfried
  surname: Hohenhorst
  fullname: Hohenhorst, Winfried
  organization: Clinic for ENT Medicine, Head and Neck SurgeryAlfried Krupp Krankenhaus
– sequence: 7
  givenname: Michael
  surname: Herzog
  fullname: Herzog, Michael
  organization: Clinic for ENT Medicine, Head and Neck SurgeryCarl-Thiem-Klinikum Cottbus
– sequence: 8
  givenname: Werner
  surname: Hemmert
  fullname: Hemmert, Werner
  organization: Institute for Medical EngineeringTechnische Universität München
– sequence: 9
  givenname: Bjorn
  surname: Schuller
  fullname: Schuller, Bjorn
  organization: Department of ComputingImperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28113249$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaDbbfoBSKIJeevHGI8mSfNws2z-wIYckZyPbMlXwSq4kk_rbV1tvUthCTkLS782beXOJzqyzGqEPkK8A8vLq_vpmuyI58BXhUHJRvEELKAqZkYLCGVrkOcisJCW7QJchPKYrk4y_RRdEAlDCygVym16FYDrTqGicxa7D8afG29-NifPLzv37urPOa3znRtsGbOxf9GEYtMdr45_UhOsJrxs3hmgafDP20XRaxTFp1lb1UzDhHTrvVB_0--O5RA9ft_eb79nu9tuPzXqXNayQMROcNLoTTNZ1R1UHmsq2Jqyoa1kAE6Jsy7JVVEoNCgjjkjS5LFhL205yKlq6RGSuO9pBTU-q76vBm73yUwV5dUivivVeV4f0qmN6SfRlFg3e_Rp1iNXehEb3vbI6DVWB5MCB8mSxRJ9P0Ec3-jRkospUjQEImqhPR2pMZu1LC8_5JwBmoPEuBK-7_7o87Pi0S3Gied5V9Mr0ryo_zkqjtX5xEjwvmCD0D4resaw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JBHI_2019_2955281
crossref_primary_10_21053_ceo_2018_00388
crossref_primary_10_1016_j_sleep_2021_10_015
crossref_primary_10_1088_1361_6579_abaa33
crossref_primary_10_1088_1361_6579_abaa34
crossref_primary_10_1016_j_sleep_2021_06_012
crossref_primary_10_1016_j_compbiomed_2018_01_007
crossref_primary_10_1109_JIOT_2021_3067605
crossref_primary_10_5664_jcsm_9292
crossref_primary_10_1055_a_1155_8772
crossref_primary_10_2147_NSS_S373367
crossref_primary_10_1007_s13246_020_00876_1
crossref_primary_10_1016_j_apacoust_2021_108429
crossref_primary_10_1093_sleep_zsab176
crossref_primary_10_1007_s00106_019_0696_5
crossref_primary_10_1016_j_ipm_2020_102347
crossref_primary_10_1055_a_1949_3135
crossref_primary_10_1109_JBHI_2019_2907286
crossref_primary_10_1016_j_artmed_2021_102085
crossref_primary_10_1007_s13246_023_01345_1
crossref_primary_10_3389_fdgth_2020_00005
crossref_primary_10_3233_BME_201086
crossref_primary_10_1016_j_artmed_2020_101809
crossref_primary_10_4018_IJSI_312261
crossref_primary_10_1007_s10439_019_02217_0
crossref_primary_10_1007_s00521_021_06295_x
crossref_primary_10_1016_j_measen_2024_101397
crossref_primary_10_1038_s41467_024_55088_y
crossref_primary_10_1109_TASE_2020_2997094
crossref_primary_10_1016_j_sleep_2024_11_018
crossref_primary_10_1016_j_amjoto_2022_103584
crossref_primary_10_1088_1757_899X_920_1_012016
crossref_primary_10_1299_transjsme_18_00328
crossref_primary_10_1016_j_amjoto_2023_103964
crossref_primary_10_1088_1361_6579_accd43
crossref_primary_10_1109_JBHI_2020_3012666
crossref_primary_10_23919_cje_2022_00_210
crossref_primary_10_1109_JETCAS_2017_2789278
crossref_primary_10_1016_j_apacoust_2022_108799
crossref_primary_10_1007_s12539_017_0232_9
Cites_doi 10.1088/0967-3334/32/1/006
10.1007/978-1-4684-6393-4_5
10.1177/000348940311200109
10.1145/1873951.1874246
10.1088/0967-3334/28/10/008
10.1097/MLG.0b013e31816422ea
10.1049/iet-spr.2013.0266
10.1093/aje/kws342
10.1001/archoto.2010.26
10.1007/s12559-014-9255-2
10.1007/s10439-009-9744-8
10.1016/j.jsv.2005.11.002
10.1016/j.neucom.2005.12.126
10.1164/ajrccm/147.3.635
10.1016/S0167-7012(00)00201-3
10.1098/rspa.1998.0193
10.1016/j.smrv.2007.08.009
10.1088/0967-3334/20/2/306
10.1109/TBME.2008.925682
10.1109/IEMBS.2007.4353585
10.1007/s11818-014-0668-7
10.1097/00005537-200211000-00032
10.1016/j.smrv.2009.06.002
10.1046/j.1365-2273.2002.00554.x
10.1183/13993003.01618-2015
10.1109/ChinaSIP.2014.6889209
10.1016/j.sleep.2007.07.010
10.1109/ICASSP.2002.5743722
10.1080/00016489850182738
10.1023/A:1008280620621
10.1109/IEMBS.2007.4353770
10.1109/ICASSP.2016.7471669
10.1056/NEJM199304293281704
10.1093/oso/9780195129571.001.0001
10.1056/NEJM199601113340207
10.1088/0967-3334/35/1/R1
10.1088/0967-3334/28/8/007
10.1109/TBME.2010.2077291
10.1007/s00405-011-1633-8
10.1023/A:1010933404324
10.1067/mhn.2001.118076
10.1145/1961189.1961199
10.1016/j.smrv.2005.01.004
10.1109/TBME.2010.2061846
10.1109/IEMBS.2007.4352690
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2016.2619675
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1741
ExternalDocumentID oai:uni-augsburg.opus-bayern.de:72028
28113249
10_1109_TBME_2016_2619675
7605472
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: ARIA-VALUSPA
  grantid: 645378
– fundername: European Union's Seventh Framework
  funderid: 10.13039/501100004963
– fundername: Horizon 2020
  grantid: 338164
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c458t-762cef748bbf3af1e38db245bb8514779d99da388e1a124682c0854d3df8637d3
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Sun Oct 26 04:15:47 EDT 2025
Wed Oct 01 13:49:28 EDT 2025
Mon Jun 30 08:17:07 EDT 2025
Wed Feb 19 02:42:50 EST 2025
Wed Oct 01 04:08:44 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-762cef748bbf3af1e38db245bb8514779d99da388e1a124682c0854d3df8637d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://opus.bibliothek.uni-augsburg.de/opus4/files/72028/72028.pdf
PMID 28113249
PQID 1919641173
PQPubID 85474
PageCount 11
ParticipantIDs unpaywall_primary_10_1109_tbme_2016_2619675
crossref_primary_10_1109_TBME_2016_2619675
crossref_citationtrail_10_1109_TBME_2016_2619675
ieee_primary_7605472
proquest_miscellaneous_1861613686
pubmed_primary_28113249
proquest_journals_1919641173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
ref14
ref53
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
englehart (ref39) 1998
ref51
vapnik (ref44) 2013
kira (ref50) 0
ref45
ref48
ref47
ref41
ref43
ref49
ref8
ref7
ref9
ref4
rabiner (ref30) 2009
ref5
aldrich (ref6) 1999
ref40
ref35
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref38
bishop (ref42) 2006
deller (ref24) 1993
smith (ref3) 1994; 150
ref23
ref26
herzog (ref56) 2014
ref25
ref20
ref21
qian (ref22) 2013; 36
ref28
dietterich (ref46) 2002; 2
ref29
mallat (ref34) 1999
spiegel (ref52) 2009
whitelaw (ref27) 1993; 147
References_xml – ident: ref21
  doi: 10.1088/0967-3334/32/1/006
– ident: ref38
  doi: 10.1007/978-1-4684-6393-4_5
– ident: ref11
  doi: 10.1177/000348940311200109
– ident: ref41
  doi: 10.1145/1873951.1874246
– ident: ref18
  doi: 10.1088/0967-3334/28/10/008
– ident: ref10
  doi: 10.1097/MLG.0b013e31816422ea
– ident: ref31
  doi: 10.1049/iet-spr.2013.0266
– ident: ref1
  doi: 10.1093/aje/kws342
– ident: ref53
  doi: 10.1001/archoto.2010.26
– ident: ref48
  doi: 10.1007/s12559-014-9255-2
– ident: ref54
  doi: 10.1007/s10439-009-9744-8
– ident: ref33
  doi: 10.1016/j.jsv.2005.11.002
– year: 1999
  ident: ref34
  publication-title: A Wavelet Tour of Signal Processing
– ident: ref47
  doi: 10.1016/j.neucom.2005.12.126
– volume: 147
  start-page: 635
  year: 1993
  ident: ref27
  article-title: Characteristics of the snoring noise in patients with and without occlusive sleep apnea
  publication-title: Amer Rev Respiratory Disease
  doi: 10.1164/ajrccm/147.3.635
– volume: 36
  start-page: 455
  year: 2013
  ident: ref22
  article-title: Comparison of two acoustic features for classification of different snore signals
  publication-title: Chin J Electron Devices
– year: 1993
  ident: ref24
  publication-title: Discrete Time Processing of Speech Signals
– ident: ref43
  doi: 10.1016/S0167-7012(00)00201-3
– ident: ref32
  doi: 10.1098/rspa.1998.0193
– ident: ref14
  doi: 10.1016/j.smrv.2007.08.009
– ident: ref16
  doi: 10.1088/0967-3334/20/2/306
– ident: ref36
  doi: 10.1109/TBME.2008.925682
– ident: ref25
  doi: 10.1109/IEMBS.2007.4353585
– ident: ref19
  doi: 10.1007/s11818-014-0668-7
– year: 2006
  ident: ref42
  publication-title: Pattern Recognition and Machine Learning
– ident: ref12
  doi: 10.1097/00005537-200211000-00032
– ident: ref7
  doi: 10.1016/j.smrv.2009.06.002
– ident: ref17
  doi: 10.1046/j.1365-2273.2002.00554.x
– ident: ref5
  doi: 10.1183/13993003.01618-2015
– ident: ref26
  doi: 10.1109/ChinaSIP.2014.6889209
– ident: ref55
  doi: 10.1016/j.sleep.2007.07.010
– start-page: 129
  year: 0
  ident: ref50
  article-title: The feature selection problem: Traditional methods and a new algorithm
  publication-title: Proc Nat Conf Artif Intell
– ident: ref23
  doi: 10.1109/ICASSP.2002.5743722
– year: 2009
  ident: ref52
  publication-title: Probability and Statistics
– ident: ref15
  doi: 10.1080/00016489850182738
– volume: 2
  start-page: 110
  year: 2002
  ident: ref46
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: ref51
  doi: 10.1023/A:1008280620621
– ident: ref57
  doi: 10.1109/IEMBS.2007.4353770
– ident: ref40
  doi: 10.1109/ICASSP.2016.7471669
– ident: ref4
  doi: 10.1056/NEJM199304293281704
– year: 1999
  ident: ref6
  publication-title: Sleep Medicine
  doi: 10.1093/oso/9780195129571.001.0001
– ident: ref2
  doi: 10.1056/NEJM199601113340207
– year: 2009
  ident: ref30
  publication-title: Theory and Application of Digital Speech Processing
– ident: ref8
  doi: 10.1088/0967-3334/35/1/R1
– year: 1998
  ident: ref39
  article-title: Signal representation for classification of the transient myoelectric signal
– year: 2013
  ident: ref44
  publication-title: The Nature of Statistical Learning Theory
– ident: ref28
  doi: 10.1088/0967-3334/28/8/007
– ident: ref37
  doi: 10.1109/TBME.2010.2077291
– volume: 150
  start-page: 1738
  year: 1994
  ident: ref3
  article-title: Indications and standards for use of nasal continuous positive airway pressure (cpap) in sleep-apnea syndromes
  publication-title: Amer J Respiratory Critical Care Med
– ident: ref20
  doi: 10.1007/s00405-011-1633-8
– ident: ref45
  doi: 10.1023/A:1010933404324
– ident: ref13
  doi: 10.1067/mhn.2001.118076
– start-page: 1
  year: 2014
  ident: ref56
  article-title: Evaluation of acoustic characteristics of snoring sounds obtained during drug-induced sleep endoscopy
  publication-title: Sleep Breath
– ident: ref49
  doi: 10.1145/1961189.1961199
– ident: ref9
  doi: 10.1016/j.smrv.2005.01.004
– ident: ref29
  doi: 10.1109/TBME.2010.2061846
– ident: ref35
  doi: 10.1109/IEMBS.2007.4352690
SSID ssj0014846
Score 2.4812715
Snippet Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA...
Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients....
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1731
SubjectTerms Acoustics
Adult
Aged
Algorithms
Apnea
Auscultation - methods
Cardiovascular diseases
Classification
Classifiers
Diagnosis, Computer-Assisted - methods
Drug-induced sleep endoscopy (DISE)
Ear
Electronic mail
Empirical analysis
Endoscopy
Energy
Energy consumption
Excitation
Feature extraction
Heart diseases
Humans
Machine Learning
Male
Middle Aged
multifeature analysis
Nose
obstructive sleep apnea (OSA)
Patients
Pattern Recognition, Automated - methods
Pharynx
Reproducibility of Results
Resonant frequencies
Respiratory System - physiopathology
Respiratory tract
Risk factors
Sensitivity and Specificity
Sleep
Sleep apnea
Sleep Apnea, Obstructive - diagnostic imaging
Sleep Apnea, Obstructive - physiopathology
Sleep disorders
snore sound classification
Snoring - diagnosis
Snoring - physiopathology
Sound generation
Sound Spectrography - methods
Surgery
Vibrations
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHoAeeLQ8AgUZiROQbRI7fhwXtFWFWC7tSr1FdjKWKlbJaptVWX49tvNggQpxiSLZTsaZGftz5gXwViNniiOLWcXdRRsVK5QqzoWyMhGZReujkedf-dmCfb7ML_fgwxgLg4jB-Qwn_jbY8qum3PhfZSfCYW8m3IJ7R0jexWqNFgMmu6CcJHUKnCnWWzDTRJ1cfJzPvBMXn_jjgkPIPgOw9CXWfQbNne0o1Fe5DWoewL1NvdLbG71c7mw_pw9hPhDeeZ18m2xaMyl__JHT8X9n9gge9DiUTDvBeQx7WB_CwU52wkO4O-_t7kfQhNqZ3qsoMJI0ljjgSGbfyz7FN_nS_Go6r93rybkv2HRNrurQdbFa4ZpMr9Y3ekvMlkzLJtQRIyEC2GLIL0qGFClPYHE6u_h0FvelGuKS5bKN3ZJaohVMGmOptilSWZmM5cY4RMeEUJVSlaZSYqodouAyKx3WYxWtrORUVPQp7NdNjc-BoKaZyXVuMyxZZlInPoxShrR0UMIwG0EycKwYJunLaSyLcJ5JVOH5XXh-Fz2_I3g3Dll1STz-1fnI82fs2LMmguNBLIpeza8Ld9hVnKWpoBG8GZudgnqri67Rfckildyhasolj-BZJ07jswcpjOD9KF9_Udi6Ib9R-OJ2Cl_C_cxjjuCdeAz77XqDrxxias3roCo_AXyKDnM
  priority: 102
  providerName: IEEE
Title Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis
URI https://ieeexplore.ieee.org/document/7605472
https://www.ncbi.nlm.nih.gov/pubmed/28113249
https://www.proquest.com/docview/1919641173
https://www.proquest.com/docview/1861613686
https://opus.bibliothek.uni-augsburg.de/opus4/files/72028/72028.pdf
UnpaywallVersion submittedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgL2wMfGR2BMRuIJlLaJHcd-LFOnCdEJaas0niI7saGiSqJ-aJS_nrOTlPIhJMSLX3xJ7Phn3-905zuAV8pwJrlhISs4NkrLUBohwySVVgzT2BrrbiNPLvj5lL27Tq734LS7C1PV62Vfz7SLV_hsvvigC7X-tHQ-Bxd04frZwOUsWg5SNNxF0_brwt6CfZ4gIe_B_vTiw-hjcwbjdo59OURUnIgJhFzr24yGcrBClePCu3jfGRLcBRvuaCdfbuVPzPMA7qzLWm1u1Hy-o43O7kPRzaMJQsHxr3Q___ZLisf_nOgDuNeyVTJq4PUQ9kx5CAc7OQwP4fak9c4fQeUrbLrYI7_cpLIEP0rGX_M2ETh5X_3ouiyrhSGXrqzTksxKLzqta7Mgo9niRm2I3pBRXvlqY8TfE7bGZyElXSKVRzA9G1-dnodtQYcwZ4lYhXjw5samTGhtqbKRoaLQMUu0Rt7H0lQWUhaKCmEihbyDizhHRsgKWljBaVrQx9Arq9I8BWIUjXWiEhubnMU6QpAxSpmhORIOzWwAw24hs26SrujGPPNWz1BmV28n48ytfdaufQCvt4_UTaqPvwkfOXRsBVM0C1kaB3DcoSVrD4Nlhiax5CyKUhrAy203bmPnm1GlwT-ZRYIj96Zc8ACeNCjbvjsWUYS8VwbwZgu730booPzTCJ_9k_RzuBs7wuJDG4-ht1qszQukWyt94u9EnrSb6juu2CYh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ2LsgY-Nj8AAI_EEpEvii2M_FtSpQLuXtdLeIjuxpYkqqbpWo_z12M4HBSbESxTJdnLO3dk_574A3krNUDCNIZbMXqQSodBchGkmDI-yxGjjopGn52w8xy-X6eUefOhjYbTW3vlMD9ytt-WXdbFxv8pOM4u9MbML7p0UEdMmWqu3GSBvwnKi2KpwIrC1YcaROJ19nI6cGxcbuAODxcguBzB3RdZdDs2dDclXWLkNbB7CwaZayu2NXCx2NqCzBzDtSG_8Tr4NNms1KH78kdXxf-f2EO63SJQMG9F5BHu6OoLDnfyER3B32lrej6H21TOdX5FnJakNsdCRjL4XbZJvMql_NV1U9vXkwpVsuiZXle86Xy71igyvVjdyS9SWDIvaVxIjPgbYaJ9hlHRJUh7D_Gw0-zQO22INYYEpX4d2US20yZArZag0saa8VAmmSllMh1kmSiFKSTnXsbSYgvGksGgPS1oazmhW0iewX9WVfgZES5qoVKYm0QUmKrYChJSipoUFEwpNAFHHsbybpCuoscj9iSYSueN37vidt_wO4F0_ZNmk8fhX52PHn75jy5oATjqxyFtFv87tcVcwjOOMBvCmb7Yq6uwustL2S-YxZxZXU8ZZAE8bceqf3UlhAO97-fqLwrUd8huFz2-n8DUcjGfTST75fP71BdxLHALxvoonsL9ebfRLi5_W6pVXm5_FYBHA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgL2wMfGR2AgI_EEStvEjmM_lqnThOiEtFUaT5Gd2KOiSqJ-aJS_nrOTlPIhJMSLX3xJ7NzPvt_J5zuA18pwJrlhISs4NkrLUBohwySVVgzT2BrrbiNPzvnZlL2_Sq724KS7C1PV62Vfz7SLV_hsvvigC7W-XrozBxd04frZwOUsWg5SdNxF0_brwt6CfZ4gIe_B_vT84-hTswfjco59OUQ0nIgJhFx7thkN5WCFJseFd_G-cyS4CzbcsU6-3MqfmOcB3FmXtdrcqPl8xxqd3oeim0cThILjX-l-_u2XFI__OdEHcK9lq2TUwOsh7JnyEA52chgewu1Jezp_BJWvsOlij7y6SWUJfpSMv-ZtInDyofrRdVFWC0MuXFmnJZmVXnRa12ZBRrPFjdoQvSGjvPLVxoi_J2yNz0JKukQqj2B6Or48OQvbgg5hzhKxCnHjzY1NmdDaUmUjQ0WhY5ZojbyPpakspCwUFcJECnkHF3GOjJAVtLCC07Sgj6FXVqV5CsQoGutEJTY2OYt1hCBjlDJDcyQcmtkAhp0is26SrujGPPNez1Bml-8m48zpPmt1H8Cb7SN1k-rjb8JHDh1bwRTdQpbGARx3aMnazWCZoUssOYuilAbwatuNy9idzajS4J_MIsGRe1MueABPGpRt3x2LKELeKwN4u4XdbyN0UP5phM_-Sfo53I0dYfGhjcfQWy3W5gXSrZV-2S6n78-UJSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+the+Excitation+Location+of+Snore+Sounds+in+the+Upper+Airway+by+Acoustic+Multifeature+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Qian%2C+Kun&rft.au=Janott%2C+Christoph&rft.au=Pandit%2C+Vedhas&rft.au=Zhang%2C+Zixing&rft.date=2017-08-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=8&rft.spage=1731&rft.epage=1741&rft_id=info:doi/10.1109%2FTBME.2016.2619675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2016_2619675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon