Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis
Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 64; no. 8; pp. 1731 - 1741 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2016.2619675 |
Cover
| Abstract | Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds. Methods: Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers. Results: A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation. Conclusion: Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects. Significance: This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway. |
|---|---|
| AbstractList | Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.
Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.
A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.
Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.
This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway. Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds. Methods: Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers. Results: A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation. Conclusion: Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects. Significance: This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway. Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.OBJECTIVEObstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.METHODSSnore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.RESULTSA fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.CONCLUSIONMultifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.SIGNIFICANCEThis paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway. |
| Author | Pandit, Vedhas Zhang, Zixing Herzog, Michael Janott, Christoph Qian, Kun Schuller, Bjorn Heiser, Clemens Hohenhorst, Winfried Hemmert, Werner |
| Author_xml | – sequence: 1 givenname: Kun surname: Qian fullname: Qian, Kun email: andykun.qian@tum.de organization: Machine Intelligence and Signal Processing Group, MMK, Technische Universität München, Munich, Germany – sequence: 2 givenname: Christoph surname: Janott fullname: Janott, Christoph organization: Institute for Medical EngineeringTechnische Universität München – sequence: 3 givenname: Vedhas surname: Pandit fullname: Pandit, Vedhas organization: Chair of Complex and Intelligent SystemsUniversity of Passau – sequence: 4 givenname: Zixing surname: Zhang fullname: Zhang, Zixing organization: Chair of Complex and Intelligent SystemsUniversity of Passau – sequence: 5 givenname: Clemens surname: Heiser fullname: Heiser, Clemens organization: Department of Otorhinolaryngology/Head and Neck SurgeryTechnische Universität München – sequence: 6 givenname: Winfried surname: Hohenhorst fullname: Hohenhorst, Winfried organization: Clinic for ENT Medicine, Head and Neck SurgeryAlfried Krupp Krankenhaus – sequence: 7 givenname: Michael surname: Herzog fullname: Herzog, Michael organization: Clinic for ENT Medicine, Head and Neck SurgeryCarl-Thiem-Klinikum Cottbus – sequence: 8 givenname: Werner surname: Hemmert fullname: Hemmert, Werner organization: Institute for Medical EngineeringTechnische Universität München – sequence: 9 givenname: Bjorn surname: Schuller fullname: Schuller, Bjorn organization: Department of ComputingImperial College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28113249$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9r3DAQxUVJaDbbfoBSKIJeevHGI8mSfNws2z-wIYckZyPbMlXwSq4kk_rbV1tvUthCTkLS782beXOJzqyzGqEPkK8A8vLq_vpmuyI58BXhUHJRvEELKAqZkYLCGVrkOcisJCW7QJchPKYrk4y_RRdEAlDCygVym16FYDrTqGicxa7D8afG29-NifPLzv37urPOa3znRtsGbOxf9GEYtMdr45_UhOsJrxs3hmgafDP20XRaxTFp1lb1UzDhHTrvVB_0--O5RA9ft_eb79nu9tuPzXqXNayQMROcNLoTTNZ1R1UHmsq2Jqyoa1kAE6Jsy7JVVEoNCgjjkjS5LFhL205yKlq6RGSuO9pBTU-q76vBm73yUwV5dUivivVeV4f0qmN6SfRlFg3e_Rp1iNXehEb3vbI6DVWB5MCB8mSxRJ9P0Ec3-jRkospUjQEImqhPR2pMZu1LC8_5JwBmoPEuBK-7_7o87Pi0S3Gied5V9Mr0ryo_zkqjtX5xEjwvmCD0D4resaw |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_JBHI_2019_2955281 crossref_primary_10_21053_ceo_2018_00388 crossref_primary_10_1016_j_sleep_2021_10_015 crossref_primary_10_1088_1361_6579_abaa33 crossref_primary_10_1088_1361_6579_abaa34 crossref_primary_10_1016_j_sleep_2021_06_012 crossref_primary_10_1016_j_compbiomed_2018_01_007 crossref_primary_10_1109_JIOT_2021_3067605 crossref_primary_10_5664_jcsm_9292 crossref_primary_10_1055_a_1155_8772 crossref_primary_10_2147_NSS_S373367 crossref_primary_10_1007_s13246_020_00876_1 crossref_primary_10_1016_j_apacoust_2021_108429 crossref_primary_10_1093_sleep_zsab176 crossref_primary_10_1007_s00106_019_0696_5 crossref_primary_10_1016_j_ipm_2020_102347 crossref_primary_10_1055_a_1949_3135 crossref_primary_10_1109_JBHI_2019_2907286 crossref_primary_10_1016_j_artmed_2021_102085 crossref_primary_10_1007_s13246_023_01345_1 crossref_primary_10_3389_fdgth_2020_00005 crossref_primary_10_3233_BME_201086 crossref_primary_10_1016_j_artmed_2020_101809 crossref_primary_10_4018_IJSI_312261 crossref_primary_10_1007_s10439_019_02217_0 crossref_primary_10_1007_s00521_021_06295_x crossref_primary_10_1016_j_measen_2024_101397 crossref_primary_10_1038_s41467_024_55088_y crossref_primary_10_1109_TASE_2020_2997094 crossref_primary_10_1016_j_sleep_2024_11_018 crossref_primary_10_1016_j_amjoto_2022_103584 crossref_primary_10_1088_1757_899X_920_1_012016 crossref_primary_10_1299_transjsme_18_00328 crossref_primary_10_1016_j_amjoto_2023_103964 crossref_primary_10_1088_1361_6579_accd43 crossref_primary_10_1109_JBHI_2020_3012666 crossref_primary_10_23919_cje_2022_00_210 crossref_primary_10_1109_JETCAS_2017_2789278 crossref_primary_10_1016_j_apacoust_2022_108799 crossref_primary_10_1007_s12539_017_0232_9 |
| Cites_doi | 10.1088/0967-3334/32/1/006 10.1007/978-1-4684-6393-4_5 10.1177/000348940311200109 10.1145/1873951.1874246 10.1088/0967-3334/28/10/008 10.1097/MLG.0b013e31816422ea 10.1049/iet-spr.2013.0266 10.1093/aje/kws342 10.1001/archoto.2010.26 10.1007/s12559-014-9255-2 10.1007/s10439-009-9744-8 10.1016/j.jsv.2005.11.002 10.1016/j.neucom.2005.12.126 10.1164/ajrccm/147.3.635 10.1016/S0167-7012(00)00201-3 10.1098/rspa.1998.0193 10.1016/j.smrv.2007.08.009 10.1088/0967-3334/20/2/306 10.1109/TBME.2008.925682 10.1109/IEMBS.2007.4353585 10.1007/s11818-014-0668-7 10.1097/00005537-200211000-00032 10.1016/j.smrv.2009.06.002 10.1046/j.1365-2273.2002.00554.x 10.1183/13993003.01618-2015 10.1109/ChinaSIP.2014.6889209 10.1016/j.sleep.2007.07.010 10.1109/ICASSP.2002.5743722 10.1080/00016489850182738 10.1023/A:1008280620621 10.1109/IEMBS.2007.4353770 10.1109/ICASSP.2016.7471669 10.1056/NEJM199304293281704 10.1093/oso/9780195129571.001.0001 10.1056/NEJM199601113340207 10.1088/0967-3334/35/1/R1 10.1088/0967-3334/28/8/007 10.1109/TBME.2010.2077291 10.1007/s00405-011-1633-8 10.1023/A:1010933404324 10.1067/mhn.2001.118076 10.1145/1961189.1961199 10.1016/j.smrv.2005.01.004 10.1109/TBME.2010.2061846 10.1109/IEMBS.2007.4352690 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TBME.2016.2619675 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1741 |
| ExternalDocumentID | oai:uni-augsburg.opus-bayern.de:72028 28113249 10_1109_TBME_2016_2619675 7605472 |
| Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: ARIA-VALUSPA grantid: 645378 – fundername: European Union's Seventh Framework funderid: 10.13039/501100004963 – fundername: Horizon 2020 grantid: 338164 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c458t-762cef748bbf3af1e38db245bb8514779d99da388e1a124682c0854d3df8637d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Oct 26 04:15:47 EDT 2025 Wed Oct 01 13:49:28 EDT 2025 Mon Jun 30 08:17:07 EDT 2025 Wed Feb 19 02:42:50 EST 2025 Wed Oct 01 04:08:44 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c458t-762cef748bbf3af1e38db245bb8514779d99da388e1a124682c0854d3df8637d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://opus.bibliothek.uni-augsburg.de/opus4/files/72028/72028.pdf |
| PMID | 28113249 |
| PQID | 1919641173 |
| PQPubID | 85474 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1109_tbme_2016_2619675 crossref_primary_10_1109_TBME_2016_2619675 crossref_citationtrail_10_1109_TBME_2016_2619675 ieee_primary_7605472 proquest_miscellaneous_1861613686 pubmed_primary_28113249 proquest_journals_1919641173 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref15 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 englehart (ref39) 1998 ref51 vapnik (ref44) 2013 kira (ref50) 0 ref45 ref48 ref47 ref41 ref43 ref49 ref8 ref7 ref9 ref4 rabiner (ref30) 2009 ref5 aldrich (ref6) 1999 ref40 ref35 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref38 bishop (ref42) 2006 deller (ref24) 1993 smith (ref3) 1994; 150 ref23 ref26 herzog (ref56) 2014 ref25 ref20 ref21 qian (ref22) 2013; 36 ref28 dietterich (ref46) 2002; 2 ref29 mallat (ref34) 1999 spiegel (ref52) 2009 whitelaw (ref27) 1993; 147 |
| References_xml | – ident: ref21 doi: 10.1088/0967-3334/32/1/006 – ident: ref38 doi: 10.1007/978-1-4684-6393-4_5 – ident: ref11 doi: 10.1177/000348940311200109 – ident: ref41 doi: 10.1145/1873951.1874246 – ident: ref18 doi: 10.1088/0967-3334/28/10/008 – ident: ref10 doi: 10.1097/MLG.0b013e31816422ea – ident: ref31 doi: 10.1049/iet-spr.2013.0266 – ident: ref1 doi: 10.1093/aje/kws342 – ident: ref53 doi: 10.1001/archoto.2010.26 – ident: ref48 doi: 10.1007/s12559-014-9255-2 – ident: ref54 doi: 10.1007/s10439-009-9744-8 – ident: ref33 doi: 10.1016/j.jsv.2005.11.002 – year: 1999 ident: ref34 publication-title: A Wavelet Tour of Signal Processing – ident: ref47 doi: 10.1016/j.neucom.2005.12.126 – volume: 147 start-page: 635 year: 1993 ident: ref27 article-title: Characteristics of the snoring noise in patients with and without occlusive sleep apnea publication-title: Amer Rev Respiratory Disease doi: 10.1164/ajrccm/147.3.635 – volume: 36 start-page: 455 year: 2013 ident: ref22 article-title: Comparison of two acoustic features for classification of different snore signals publication-title: Chin J Electron Devices – year: 1993 ident: ref24 publication-title: Discrete Time Processing of Speech Signals – ident: ref43 doi: 10.1016/S0167-7012(00)00201-3 – ident: ref32 doi: 10.1098/rspa.1998.0193 – ident: ref14 doi: 10.1016/j.smrv.2007.08.009 – ident: ref16 doi: 10.1088/0967-3334/20/2/306 – ident: ref36 doi: 10.1109/TBME.2008.925682 – ident: ref25 doi: 10.1109/IEMBS.2007.4353585 – ident: ref19 doi: 10.1007/s11818-014-0668-7 – year: 2006 ident: ref42 publication-title: Pattern Recognition and Machine Learning – ident: ref12 doi: 10.1097/00005537-200211000-00032 – ident: ref7 doi: 10.1016/j.smrv.2009.06.002 – ident: ref17 doi: 10.1046/j.1365-2273.2002.00554.x – ident: ref5 doi: 10.1183/13993003.01618-2015 – ident: ref26 doi: 10.1109/ChinaSIP.2014.6889209 – ident: ref55 doi: 10.1016/j.sleep.2007.07.010 – start-page: 129 year: 0 ident: ref50 article-title: The feature selection problem: Traditional methods and a new algorithm publication-title: Proc Nat Conf Artif Intell – ident: ref23 doi: 10.1109/ICASSP.2002.5743722 – year: 2009 ident: ref52 publication-title: Probability and Statistics – ident: ref15 doi: 10.1080/00016489850182738 – volume: 2 start-page: 110 year: 2002 ident: ref46 article-title: Ensemble learning publication-title: The Handbook of Brain Theory and Neural Networks – ident: ref51 doi: 10.1023/A:1008280620621 – ident: ref57 doi: 10.1109/IEMBS.2007.4353770 – ident: ref40 doi: 10.1109/ICASSP.2016.7471669 – ident: ref4 doi: 10.1056/NEJM199304293281704 – year: 1999 ident: ref6 publication-title: Sleep Medicine doi: 10.1093/oso/9780195129571.001.0001 – ident: ref2 doi: 10.1056/NEJM199601113340207 – year: 2009 ident: ref30 publication-title: Theory and Application of Digital Speech Processing – ident: ref8 doi: 10.1088/0967-3334/35/1/R1 – year: 1998 ident: ref39 article-title: Signal representation for classification of the transient myoelectric signal – year: 2013 ident: ref44 publication-title: The Nature of Statistical Learning Theory – ident: ref28 doi: 10.1088/0967-3334/28/8/007 – ident: ref37 doi: 10.1109/TBME.2010.2077291 – volume: 150 start-page: 1738 year: 1994 ident: ref3 article-title: Indications and standards for use of nasal continuous positive airway pressure (cpap) in sleep-apnea syndromes publication-title: Amer J Respiratory Critical Care Med – ident: ref20 doi: 10.1007/s00405-011-1633-8 – ident: ref45 doi: 10.1023/A:1010933404324 – ident: ref13 doi: 10.1067/mhn.2001.118076 – start-page: 1 year: 2014 ident: ref56 article-title: Evaluation of acoustic characteristics of snoring sounds obtained during drug-induced sleep endoscopy publication-title: Sleep Breath – ident: ref49 doi: 10.1145/1961189.1961199 – ident: ref9 doi: 10.1016/j.smrv.2005.01.004 – ident: ref29 doi: 10.1109/TBME.2010.2061846 – ident: ref35 doi: 10.1109/IEMBS.2007.4352690 |
| SSID | ssj0014846 |
| Score | 2.4812715 |
| Snippet | Objective: Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA... Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients.... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1731 |
| SubjectTerms | Acoustics Adult Aged Algorithms Apnea Auscultation - methods Cardiovascular diseases Classification Classifiers Diagnosis, Computer-Assisted - methods Drug-induced sleep endoscopy (DISE) Ear Electronic mail Empirical analysis Endoscopy Energy Energy consumption Excitation Feature extraction Heart diseases Humans Machine Learning Male Middle Aged multifeature analysis Nose obstructive sleep apnea (OSA) Patients Pattern Recognition, Automated - methods Pharynx Reproducibility of Results Resonant frequencies Respiratory System - physiopathology Respiratory tract Risk factors Sensitivity and Specificity Sleep Sleep apnea Sleep Apnea, Obstructive - diagnostic imaging Sleep Apnea, Obstructive - physiopathology Sleep disorders snore sound classification Snoring - diagnosis Snoring - physiopathology Sound generation Sound Spectrography - methods Surgery Vibrations Wavelet transforms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHoAeeLQ8AgUZiROQbRI7fhwXtFWFWC7tSr1FdjKWKlbJaptVWX49tvNggQpxiSLZTsaZGftz5gXwViNniiOLWcXdRRsVK5QqzoWyMhGZReujkedf-dmCfb7ML_fgwxgLg4jB-Qwn_jbY8qum3PhfZSfCYW8m3IJ7R0jexWqNFgMmu6CcJHUKnCnWWzDTRJ1cfJzPvBMXn_jjgkPIPgOw9CXWfQbNne0o1Fe5DWoewL1NvdLbG71c7mw_pw9hPhDeeZ18m2xaMyl__JHT8X9n9gge9DiUTDvBeQx7WB_CwU52wkO4O-_t7kfQhNqZ3qsoMJI0ljjgSGbfyz7FN_nS_Go6r93rybkv2HRNrurQdbFa4ZpMr9Y3ekvMlkzLJtQRIyEC2GLIL0qGFClPYHE6u_h0FvelGuKS5bKN3ZJaohVMGmOptilSWZmM5cY4RMeEUJVSlaZSYqodouAyKx3WYxWtrORUVPQp7NdNjc-BoKaZyXVuMyxZZlInPoxShrR0UMIwG0EycKwYJunLaSyLcJ5JVOH5XXh-Fz2_I3g3Dll1STz-1fnI82fs2LMmguNBLIpeza8Ld9hVnKWpoBG8GZudgnqri67Rfckildyhasolj-BZJ07jswcpjOD9KF9_Udi6Ib9R-OJ2Cl_C_cxjjuCdeAz77XqDrxxias3roCo_AXyKDnM priority: 102 providerName: IEEE |
| Title | Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis |
| URI | https://ieeexplore.ieee.org/document/7605472 https://www.ncbi.nlm.nih.gov/pubmed/28113249 https://www.proquest.com/docview/1919641173 https://www.proquest.com/docview/1861613686 https://opus.bibliothek.uni-augsburg.de/opus4/files/72028/72028.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgL2wMfGR2BMRuIJlLaJHcd-LFOnCdEJaas0niI7saGiSqJ-aJS_nrOTlPIhJMSLX3xJ7Phn3-905zuAV8pwJrlhISs4NkrLUBohwySVVgzT2BrrbiNPLvj5lL27Tq734LS7C1PV62Vfz7SLV_hsvvigC7X-tHQ-Bxd04frZwOUsWg5SNNxF0_brwt6CfZ4gIe_B_vTiw-hjcwbjdo59OURUnIgJhFzr24yGcrBClePCu3jfGRLcBRvuaCdfbuVPzPMA7qzLWm1u1Hy-o43O7kPRzaMJQsHxr3Q___ZLisf_nOgDuNeyVTJq4PUQ9kx5CAc7OQwP4fak9c4fQeUrbLrYI7_cpLIEP0rGX_M2ETh5X_3ouiyrhSGXrqzTksxKLzqta7Mgo9niRm2I3pBRXvlqY8TfE7bGZyElXSKVRzA9G1-dnodtQYcwZ4lYhXjw5samTGhtqbKRoaLQMUu0Rt7H0lQWUhaKCmEihbyDizhHRsgKWljBaVrQx9Arq9I8BWIUjXWiEhubnMU6QpAxSpmhORIOzWwAw24hs26SrujGPPNWz1BmV28n48ytfdaufQCvt4_UTaqPvwkfOXRsBVM0C1kaB3DcoSVrD4Nlhiax5CyKUhrAy203bmPnm1GlwT-ZRYIj96Zc8ACeNCjbvjsWUYS8VwbwZgu730booPzTCJ_9k_RzuBs7wuJDG4-ht1qszQukWyt94u9EnrSb6juu2CYh |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ2LsgY-Nj8AAI_EEpEvii2M_FtSpQLuXtdLeIjuxpYkqqbpWo_z12M4HBSbESxTJdnLO3dk_574A3krNUDCNIZbMXqQSodBchGkmDI-yxGjjopGn52w8xy-X6eUefOhjYbTW3vlMD9ytt-WXdbFxv8pOM4u9MbML7p0UEdMmWqu3GSBvwnKi2KpwIrC1YcaROJ19nI6cGxcbuAODxcguBzB3RdZdDs2dDclXWLkNbB7CwaZayu2NXCx2NqCzBzDtSG_8Tr4NNms1KH78kdXxf-f2EO63SJQMG9F5BHu6OoLDnfyER3B32lrej6H21TOdX5FnJakNsdCRjL4XbZJvMql_NV1U9vXkwpVsuiZXle86Xy71igyvVjdyS9SWDIvaVxIjPgbYaJ9hlHRJUh7D_Gw0-zQO22INYYEpX4d2US20yZArZag0saa8VAmmSllMh1kmSiFKSTnXsbSYgvGksGgPS1oazmhW0iewX9WVfgZES5qoVKYm0QUmKrYChJSipoUFEwpNAFHHsbybpCuoscj9iSYSueN37vidt_wO4F0_ZNmk8fhX52PHn75jy5oATjqxyFtFv87tcVcwjOOMBvCmb7Yq6uwustL2S-YxZxZXU8ZZAE8bceqf3UlhAO97-fqLwrUd8huFz2-n8DUcjGfTST75fP71BdxLHALxvoonsL9ebfRLi5_W6pVXm5_FYBHA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgL2wMfGR2AgI_EEStvEjmM_lqnThOiEtFUaT5Gd2KOiSqJ-aJS_nrOTlPIhJMSLX3xJ7NzPvt_J5zuA18pwJrlhISs4NkrLUBohwySVVgzT2BrrbiNPzvnZlL2_Sq724KS7C1PV62Vfz7SLV_hsvvigC7W-XrozBxd04frZwOUsWg5SdNxF0_brwt6CfZ4gIe_B_vT84-hTswfjco59OUQ0nIgJhFx7thkN5WCFJseFd_G-cyS4CzbcsU6-3MqfmOcB3FmXtdrcqPl8xxqd3oeim0cThILjX-l-_u2XFI__OdEHcK9lq2TUwOsh7JnyEA52chgewu1Jezp_BJWvsOlij7y6SWUJfpSMv-ZtInDyofrRdVFWC0MuXFmnJZmVXnRa12ZBRrPFjdoQvSGjvPLVxoi_J2yNz0JKukQqj2B6Or48OQvbgg5hzhKxCnHjzY1NmdDaUmUjQ0WhY5ZojbyPpakspCwUFcJECnkHF3GOjJAVtLCC07Sgj6FXVqV5CsQoGutEJTY2OYt1hCBjlDJDcyQcmtkAhp0is26SrujGPPNez1Bml-8m48zpPmt1H8Cb7SN1k-rjb8JHDh1bwRTdQpbGARx3aMnazWCZoUssOYuilAbwatuNy9idzajS4J_MIsGRe1MueABPGpRt3x2LKELeKwN4u4XdbyN0UP5phM_-Sfo53I0dYfGhjcfQWy3W5gXSrZV-2S6n78-UJSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+the+Excitation+Location+of+Snore+Sounds+in+the+Upper+Airway+by+Acoustic+Multifeature+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Qian%2C+Kun&rft.au=Janott%2C+Christoph&rft.au=Pandit%2C+Vedhas&rft.au=Zhang%2C+Zixing&rft.date=2017-08-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=8&rft.spage=1731&rft.epage=1741&rft_id=info:doi/10.1109%2FTBME.2016.2619675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2016_2619675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |