Cascaded MultiTask 3-D Fully Convolutional Networks for Pancreas Segmentation

Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To allevia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 4; pp. 2153 - 2165
Main Authors Xue, Jie, He, Kelei, Nie, Dong, Adeli, Ehsan, Shi, Zhenshan, Lee, Seong-Whan, Zheng, Yuanjie, Liu, Xiyu, Li, Dengwang, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2019.2955178

Cover

Abstract Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning.
AbstractList Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning.
Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning.Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning.
Author Nie, Dong
Shi, Zhenshan
Adeli, Ehsan
He, Kelei
Zheng, Yuanjie
Shen, Dinggang
Li, Dengwang
Liu, Xiyu
Xue, Jie
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-4952-5583
  surname: Xue
  fullname: Xue, Jie
  organization: Business School, Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Normal University, Jinan, China
– sequence: 2
  givenname: Kelei
  orcidid: 0000-0002-7264-9437
  surname: He
  fullname: He, Kelei
  organization: Medical School, National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Dong
  orcidid: 0000-0003-0385-8988
  surname: Nie
  fullname: Nie, Dong
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 4
  givenname: Ehsan
  orcidid: 0000-0002-0579-7763
  surname: Adeli
  fullname: Adeli, Ehsan
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: Zhenshan
  surname: Shi
  fullname: Shi, Zhenshan
  organization: Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
– sequence: 6
  givenname: Seong-Whan
  orcidid: 0000-0002-6249-4996
  surname: Lee
  fullname: Lee, Seong-Whan
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 7
  givenname: Yuanjie
  orcidid: 0000-0002-5786-2491
  surname: Zheng
  fullname: Zheng, Yuanjie
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 8
  givenname: Xiyu
  orcidid: 0000-0002-4535-916X
  surname: Liu
  fullname: Liu, Xiyu
  organization: Business School, Shandong Normal University, Jinan, China
– sequence: 9
  givenname: Dengwang
  surname: Li
  fullname: Li, Dengwang
  organization: School of Physics and Electronics, Shandong Normal University, Jinan, China
– sequence: 10
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31869812$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r20AQhpeSUOfrB5RCEfSSi5z9_ji2apIGkjYQ59CTWO-OipK11tmVGvzvI2PXBx8ylxmG551h5j1GB13sAKFPBE8JweZiVv35PqWYmCk1QhClP6AjSqQuKVXiYFdLNUFnOT_hMfTYMvojmjCipdGEHqG7ymZnPfjibgh9O7P5uWDlj-JqCGFVVLH7F8PQt7GzofgF_WtMz7loYirubecS2Fw8wN8FdL1dQ6fosLEhw9k2n6DHq8tZ9bO8_X19U327LR0Xui-l8co7zawVvOEWc9loh4Fz6pkHwubKkAZjwxvPnZ0LbwCwksooL6XGlp2g883cZYovA-S-XrTZQQi2gzjkmjKGGVOE0RH9uoc-xSGN54yUwIwbw4QYqS9bapgvwNfL1C5sWtX_HzUCZAO4FHNO0OwQguu1H_Xaj3rtR731Y9SoPY1rN3_qk23Du8rPG2ULALtN2jApOGZvNoOV1Q
CODEN ITCEB8
CitedBy_id crossref_primary_10_3389_fonc_2022_894970
crossref_primary_10_1109_JBHI_2020_3023462
crossref_primary_10_1109_TAI_2022_3212981
crossref_primary_10_3390_en17225742
crossref_primary_10_1002_mp_17385
crossref_primary_10_1007_s00371_022_02656_2
crossref_primary_10_1109_TCYB_2022_3195447
crossref_primary_10_1109_JBHI_2022_3190293
crossref_primary_10_1109_ACCESS_2023_3320570
crossref_primary_10_1016_j_bspc_2025_107744
crossref_primary_10_1016_j_bspc_2023_105562
crossref_primary_10_1002_mp_15646
crossref_primary_10_37126_aige_v2_i2_12
crossref_primary_10_1016_j_bspc_2021_103458
crossref_primary_10_1016_j_bspc_2023_105818
crossref_primary_10_1088_1361_6560_ace099
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_phro_2025_100735
crossref_primary_10_1109_JBHI_2022_3222390
crossref_primary_10_1016_j_compbiomed_2022_106410
crossref_primary_10_1016_j_yacr_2023_05_001
crossref_primary_10_1007_s10462_024_10966_1
crossref_primary_10_36401_IDDB_24_1
crossref_primary_10_1007_s00530_023_01115_9
crossref_primary_10_1109_TCYB_2022_3162873
crossref_primary_10_1007_s11042_024_19650_6
crossref_primary_10_1016_j_asoc_2022_109818
crossref_primary_10_1109_TCYB_2023_3291369
crossref_primary_10_1109_JBHI_2024_3502694
crossref_primary_10_1002_mp_16321
crossref_primary_10_1109_TPAMI_2021_3100536
crossref_primary_10_3389_fneur_2022_1021477
crossref_primary_10_1016_j_patrec_2023_05_004
crossref_primary_10_3389_fonc_2024_1328146
crossref_primary_10_3390_healthcare10081511
crossref_primary_10_1109_TCYB_2022_3211499
crossref_primary_10_1016_j_neunet_2022_10_026
crossref_primary_10_1109_TSMC_2024_3389672
crossref_primary_10_1109_TSMC_2023_3290205
crossref_primary_10_1142_S0129065725500066
crossref_primary_10_1007_s00261_024_04512_4
Cites_doi 10.1109/TCYB.2018.2797905
10.1007/978-3-319-66182-7_79
10.1109/TBME.2016.2535311
10.1162/neco.1997.9.8.1735
10.1109/TCYB.2016.2519448
10.1109/TCYB.2016.2526058
10.1109/ISBI.2016.7493362
10.1109/TIP.2016.2624198
10.1118/1.3464799
10.1109/TPAMI.2017.2781233
10.1109/TIP.2017.2735182
10.1155/2017/5094592
10.1016/j.ijrobp.2011.09.008
10.1007/978-3-319-13692-9_10
10.1109/ICCV.2015.164
10.1016/j.compmedimag.2018.03.001
10.1016/j.neuroimage.2005.09.054
10.1016/j.media.2016.10.004
10.1109/TMI.2015.2508280
10.1002/mp.12602
10.3390/s18051501
10.1109/CVPR.2016.31
10.1109/TPAMI.2007.70769
10.1016/j.media.2018.01.006
10.1146/annurev-bioeng-071516-044442
10.1145/2647868.2654889
10.1007/s11263-010-0412-0
10.1109/TIP.2016.2579306
10.1016/j.acra.2009.09.013
10.1007/978-3-319-46493-0_22
10.5244/C.23.6
10.1109/TCYB.2019.2897162
10.1109/CVPR.2018.00864
10.1016/j.patrec.2015.04.006
10.1109/TCYB.2019.2904186
10.1109/TAC.2016.2610945
10.1109/CVPRW.2014.78
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2955178
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2165
ExternalDocumentID 31869812
10_1109_TCYB_2019_2955178
8936540
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Post-Doctoral Project
  grantid: 2017M612339
– fundername: China Scholarship Council
  grantid: 201708370073
  funderid: 10.13039/501100004543
– fundername: NSFC
  grantid: 61773246
  funderid: 10.13039/501100001809
– fundername: NSFC
  grantid: 81871508
  funderid: 10.13039/501100001809
– fundername: NSFC
  grantid: 61876101
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61802234; 61640201
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c458t-69d7dc83aa54f4a046f8c0e442d3de13b791f0094fd4cab5d9ee076797d6680a3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 17:10:47 EDT 2025
Sun Jun 29 12:30:18 EDT 2025
Thu Apr 03 07:04:47 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Tue Jul 01 00:53:54 EDT 2025
Wed Aug 27 02:47:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-69d7dc83aa54f4a046f8c0e442d3de13b791f0094fd4cab5d9ee076797d6680a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0385-8988
0000-0002-0579-7763
0000-0002-7264-9437
0000-0002-4952-5583
0000-0002-6249-4996
0000-0002-5786-2491
0000-0002-4535-916X
0000-0002-7934-5698
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8936540
PMID 31869812
PQID 2503499355
PQPubID 85422
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2019_2955178
proquest_journals_2503499355
ieee_primary_8936540
proquest_miscellaneous_2330337132
pubmed_primary_31869812
crossref_citationtrail_10_1109_TCYB_2019_2955178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref11
roth (ref22) 2018; 10574
zeiler (ref46) 2014
ref17
ref16
ref19
ref18
çiçek (ref28) 2016
zhou (ref15) 2017
(ref1) 2013
dmitriev (ref10) 2016; 9784
ref51
ref50
ref45
ref48
ref41
ref44
ref43
zhan (ref13) 2003
ref8
ref7
ref4
ref3
ref6
ref40
lecun (ref21) 1990
ref35
ref34
ref37
ref36
ref31
ref30
ref33
cai (ref9) 2017
ref32
ref2
xavier (ref52) 2010
ref39
ref38
zhu (ref5) 2017; 2
ref23
ref26
ref25
ref20
nair (ref47) 2010
ref27
bai (ref29) 2008; 30
srivastava (ref24) 2014; 15
krähenbühl (ref42) 2011
li (ref49) 2017
References_xml – ident: ref17
  doi: 10.1109/TCYB.2018.2797905
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref24
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1007/978-3-319-66182-7_79
– ident: ref44
  doi: 10.1109/TBME.2016.2535311
– ident: ref26
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref40
  doi: 10.1109/TCYB.2016.2519448
– ident: ref39
  doi: 10.1109/TCYB.2016.2526058
– ident: ref45
  doi: 10.1109/ISBI.2016.7493362
– ident: ref2
  doi: 10.1109/TIP.2016.2624198
– ident: ref14
  doi: 10.1118/1.3464799
– ident: ref35
  doi: 10.1109/TPAMI.2017.2781233
– start-page: 396
  year: 1990
  ident: ref21
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref32
  doi: 10.1109/TIP.2017.2735182
– start-page: 249
  year: 2010
  ident: ref52
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Stat
– ident: ref7
  doi: 10.1155/2017/5094592
– ident: ref3
  doi: 10.1016/j.ijrobp.2011.09.008
– ident: ref25
  doi: 10.1007/978-3-319-13692-9_10
– ident: ref27
  doi: 10.1109/ICCV.2015.164
– ident: ref23
  doi: 10.1016/j.compmedimag.2018.03.001
– ident: ref11
  doi: 10.1016/j.neuroimage.2005.09.054
– start-page: 818
  year: 2014
  ident: ref46
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc Eur Conf Comput Vis
– start-page: 807
  year: 2010
  ident: ref47
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
– ident: ref43
  doi: 10.1016/j.media.2016.10.004
– ident: ref12
  doi: 10.1109/TMI.2015.2508280
– ident: ref18
  doi: 10.1002/mp.12602
– year: 2013
  ident: ref1
  publication-title: The Cancer Imaging Archive (TCIA) Public Access
– ident: ref48
  doi: 10.3390/s18051501
– ident: ref34
  doi: 10.1109/CVPR.2016.31
– volume: 30
  start-page: 1282
  year: 2008
  ident: ref29
  article-title: Path similarity skeleton graph matching
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70769
– start-page: 424
  year: 2016
  ident: ref28
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc MICCAI
– ident: ref6
  doi: 10.1016/j.media.2018.01.006
– start-page: 1
  year: 2017
  ident: ref49
  article-title: H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes
  publication-title: arXiv preprint 1709 07330
– ident: ref16
  doi: 10.1146/annurev-bioeng-071516-044442
– start-page: 1
  year: 2017
  ident: ref9
  article-title: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function
  publication-title: arXiv preprint 1707 04912
– volume: 10574
  year: 2018
  ident: ref22
  article-title: Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
  publication-title: Proc Med Imag Image Process
– ident: ref51
  doi: 10.1145/2647868.2654889
– volume: 2
  start-page: 1
  year: 2017
  ident: ref5
  article-title: A 3D coarse-to-fine framework for automatic pancreas segmentation
  publication-title: arXiv preprint 1712 00201
– ident: ref31
  doi: 10.1007/s11263-010-0412-0
– volume: 9784
  year: 2016
  ident: ref10
  article-title: Pancreas and cyst segmentation
  publication-title: Proc Med Imag Image Process
– ident: ref36
  doi: 10.1109/TIP.2016.2579306
– ident: ref50
  doi: 10.1016/j.acra.2009.09.013
– year: 2017
  ident: ref15
  publication-title: Deep learning for medical image analysis
– ident: ref38
  doi: 10.1007/978-3-319-46493-0_22
– ident: ref30
  doi: 10.5244/C.23.6
– ident: ref20
  doi: 10.1109/TCYB.2019.2897162
– start-page: 688
  year: 2003
  ident: ref13
  article-title: Automated segmentation of 3D U.S. prostate images using statistical texture-based matching method
  publication-title: Proc MICCAI
– ident: ref8
  doi: 10.1109/CVPR.2018.00864
– start-page: 109
  year: 2011
  ident: ref42
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Proc Adv Neural Inf Process Syst 24 (NIPS)
– ident: ref33
  doi: 10.1016/j.patrec.2015.04.006
– ident: ref19
  doi: 10.1109/TCYB.2019.2904186
– ident: ref41
  doi: 10.1109/TAC.2016.2610945
– ident: ref37
  doi: 10.1109/CVPRW.2014.78
SSID ssj0000816898
Score 2.4943523
Snippet Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2153
SubjectTerms Ablation
Biomedical imaging
Computed tomography
Convolution
Feature maps
Image segmentation
Modules
Multitask FCN
Pancreas
pancreas segmentation
Segmentation
Shape
Skeleton
skeleton extraction
Task analysis
Title Cascaded MultiTask 3-D Fully Convolutional Networks for Pancreas Segmentation
URI https://ieeexplore.ieee.org/document/8936540
https://www.ncbi.nlm.nih.gov/pubmed/31869812
https://www.proquest.com/docview/2503499355
https://www.proquest.com/docview/2330337132
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vIIbZGROAAi2yR24vhYtlQV0lZIbKVyivwKh9Js1ewi0V_fGccbCVQqLpGlOE7iGWu-sb-ZAXiLGMTpUsrUaq1SUeQm1RleuPA-48K4gTw-O6tOz8WXi_JiAz6OsTDe-0A-8xNqhrN8t7Ar2io7RNtaIcLYhE1UsyFWa9xPCQUkQunbAhspogoZDzHzTB3Op98_EY9LTQqFGEFSmT5O1ZjqvPjDIoUSK_9Gm8HqnDyB2fp7B7LJ5WS1NBN7-1cqx__9oafwOMJPdjToyzZs-G4HtuMC79m7mIX6_S7Mpron7rxjIUZ3rvtLxtNjRj7rbzZddL-i0uJwZwOXvGeIgNlX1CNiurNv_sdVjGzqnsH5yef59DSNtRdSK8p6mVbKSWdrrnUpWqHRi25rm3khCsedz7mRKm-Jltg6YbUpnULZykoq6aqqzjR_DlvdovMvgbVWohnkiCxqLXAIQ7G1eVu0NLYxeQLZev4bGxOTU32Mn01wUDLVkPQakl4TpZfAh_GR6yErx0Odd2nmx45x0hPYXwu5ieu2bxAQcvQBEYQl8Ga8jSuOjlF05xcr7MPR7HN07osEXgzKMY691qlX979zDx4VxIkJzJ992FrerPwBgpqleR20-Q7qAu5D
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUMojUMBIHACRbRI7cXyEhWqB7gqJrVROkV_h0DaLyC4S_HpmHG8kECAukaU4TuIZa76xv5kBeIIYxOlSytRqrVJR5CbVGV648D7jwriBPD5fVLMT8e60PN2BF2MsjPc-kM_8hJrhLN-t7Ia2yg7RtlaIMC7B5RK9inqI1hp3VEIJiVD8tsBGirhCxmPMPFOHy-mnV8TkUpNCIUqQVKiPUz2mOi9-sUmhyMrf8WawO0fXYb794oFucjbZrM3E_vgtmeP__tINuBYBKHs5aMwe7PjuJuzFJd6zpzEP9bN9mE91T-x5x0KU7lL3Z4ynrxl5rd_ZdNV9i2qLwy0GNnnPEAOzD6hJxHVnH_3nixjb1N2Ck6M3y-ksjdUXUivKep1Wyklna651KVqh0Y9ua5t5IQrHnc-5kSpviZjYOmG1KZ1C6cpKKumqqs40vw273arzd4G1VqIh5Igtai1wCEPRtXlbtDS2MXkC2Xb-GxtTk1OFjPMmuCiZakh6DUmvidJL4Pn4yJchL8e_Ou_TzI8d46QncLAVchNXbt8gJOToBSIMS-DxeBvXHB2k6M6vNtiHo-Hn6N4XCdwZlGMce6tT9_78zkdwZbacHzfHbxfv78PVghgygQd0ALvrrxv_ACHO2jwMmv0Tnnrxlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+MultiTask+3-D+Fully+Convolutional+Networks+for+Pancreas+Segmentation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xue%2C+Jie&rft.au=He%2C+Kelei&rft.au=Nie%2C+Dong&rft.au=Adeli%2C+Ehsan&rft.date=2021-04-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=4&rft.spage=2153&rft_id=info:doi/10.1109%2FTCYB.2019.2955178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon