Cascaded MultiTask 3-D Fully Convolutional Networks for Pancreas Segmentation
Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To allevia...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 4; pp. 2153 - 2165 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2019.2955178 |
Cover
Abstract | Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning. |
---|---|
AbstractList | Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning. Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning.Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in the upper body, as well as large variations of its location and shape in retroperitoneum, make the segmentation task challenging. To alleviate these challenges, in this article, we propose a cascaded multitask 3-D fully convolution network (FCN) to automatically segment the pancreas. Our cascaded network is composed of two parts. The first part focuses on fast locating the region of the pancreas, and the second part uses a multitask FCN with dense connections to refine the segmentation map for fine voxel-wise segmentation. In particular, our multitask FCN with dense connections is implemented to simultaneously complete tasks of the voxel-wise segmentation and skeleton extraction from the pancreas. These two tasks are complementary, that is, the extracted skeleton provides rich information about the shape and size of the pancreas in retroperitoneum, which can boost the segmentation of pancreas. The multitask FCN is also designed to share the low- and mid-level features across the tasks. A feature consistency module is further introduced to enhance the connection and fusion of different levels of feature maps. Evaluations on two pancreas datasets demonstrate the robustness of our proposed method in correctly segmenting the pancreas in various settings. Our experimental results outperform both baseline and state-of-the-art methods. Moreover, the ablation study shows that our proposed parts/modules are critical for effective multitask learning. |
Author | Nie, Dong Shi, Zhenshan Adeli, Ehsan He, Kelei Zheng, Yuanjie Shen, Dinggang Li, Dengwang Liu, Xiyu Xue, Jie Lee, Seong-Whan |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-4952-5583 surname: Xue fullname: Xue, Jie organization: Business School, Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Normal University, Jinan, China – sequence: 2 givenname: Kelei orcidid: 0000-0002-7264-9437 surname: He fullname: He, Kelei organization: Medical School, National Institute of Healthcare Data Science, Nanjing University, Nanjing, China – sequence: 3 givenname: Dong orcidid: 0000-0003-0385-8988 surname: Nie fullname: Nie, Dong organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Ehsan orcidid: 0000-0002-0579-7763 surname: Adeli fullname: Adeli, Ehsan organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: Zhenshan surname: Shi fullname: Shi, Zhenshan organization: Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China – sequence: 6 givenname: Seong-Whan orcidid: 0000-0002-6249-4996 surname: Lee fullname: Lee, Seong-Whan organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 7 givenname: Yuanjie orcidid: 0000-0002-5786-2491 surname: Zheng fullname: Zheng, Yuanjie organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 8 givenname: Xiyu orcidid: 0000-0002-4535-916X surname: Liu fullname: Liu, Xiyu organization: Business School, Shandong Normal University, Jinan, China – sequence: 9 givenname: Dengwang surname: Li fullname: Li, Dengwang organization: School of Physics and Electronics, Shandong Normal University, Jinan, China – sequence: 10 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31869812$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r20AQhpeSUOfrB5RCEfSSi5z9_ji2apIGkjYQ59CTWO-OipK11tmVGvzvI2PXBx8ylxmG551h5j1GB13sAKFPBE8JweZiVv35PqWYmCk1QhClP6AjSqQuKVXiYFdLNUFnOT_hMfTYMvojmjCipdGEHqG7ymZnPfjibgh9O7P5uWDlj-JqCGFVVLH7F8PQt7GzofgF_WtMz7loYirubecS2Fw8wN8FdL1dQ6fosLEhw9k2n6DHq8tZ9bO8_X19U327LR0Xui-l8co7zawVvOEWc9loh4Fz6pkHwubKkAZjwxvPnZ0LbwCwksooL6XGlp2g883cZYovA-S-XrTZQQi2gzjkmjKGGVOE0RH9uoc-xSGN54yUwIwbw4QYqS9bapgvwNfL1C5sWtX_HzUCZAO4FHNO0OwQguu1H_Xaj3rtR731Y9SoPY1rN3_qk23Du8rPG2ULALtN2jApOGZvNoOV1Q |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_3389_fonc_2022_894970 crossref_primary_10_1109_JBHI_2020_3023462 crossref_primary_10_1109_TAI_2022_3212981 crossref_primary_10_3390_en17225742 crossref_primary_10_1002_mp_17385 crossref_primary_10_1007_s00371_022_02656_2 crossref_primary_10_1109_TCYB_2022_3195447 crossref_primary_10_1109_JBHI_2022_3190293 crossref_primary_10_1109_ACCESS_2023_3320570 crossref_primary_10_1016_j_bspc_2025_107744 crossref_primary_10_1016_j_bspc_2023_105562 crossref_primary_10_1002_mp_15646 crossref_primary_10_37126_aige_v2_i2_12 crossref_primary_10_1016_j_bspc_2021_103458 crossref_primary_10_1016_j_bspc_2023_105818 crossref_primary_10_1088_1361_6560_ace099 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1016_j_phro_2025_100735 crossref_primary_10_1109_JBHI_2022_3222390 crossref_primary_10_1016_j_compbiomed_2022_106410 crossref_primary_10_1016_j_yacr_2023_05_001 crossref_primary_10_1007_s10462_024_10966_1 crossref_primary_10_36401_IDDB_24_1 crossref_primary_10_1007_s00530_023_01115_9 crossref_primary_10_1109_TCYB_2022_3162873 crossref_primary_10_1007_s11042_024_19650_6 crossref_primary_10_1016_j_asoc_2022_109818 crossref_primary_10_1109_TCYB_2023_3291369 crossref_primary_10_1109_JBHI_2024_3502694 crossref_primary_10_1002_mp_16321 crossref_primary_10_1109_TPAMI_2021_3100536 crossref_primary_10_3389_fneur_2022_1021477 crossref_primary_10_1016_j_patrec_2023_05_004 crossref_primary_10_3389_fonc_2024_1328146 crossref_primary_10_3390_healthcare10081511 crossref_primary_10_1109_TCYB_2022_3211499 crossref_primary_10_1016_j_neunet_2022_10_026 crossref_primary_10_1109_TSMC_2024_3389672 crossref_primary_10_1109_TSMC_2023_3290205 crossref_primary_10_1142_S0129065725500066 crossref_primary_10_1007_s00261_024_04512_4 |
Cites_doi | 10.1109/TCYB.2018.2797905 10.1007/978-3-319-66182-7_79 10.1109/TBME.2016.2535311 10.1162/neco.1997.9.8.1735 10.1109/TCYB.2016.2519448 10.1109/TCYB.2016.2526058 10.1109/ISBI.2016.7493362 10.1109/TIP.2016.2624198 10.1118/1.3464799 10.1109/TPAMI.2017.2781233 10.1109/TIP.2017.2735182 10.1155/2017/5094592 10.1016/j.ijrobp.2011.09.008 10.1007/978-3-319-13692-9_10 10.1109/ICCV.2015.164 10.1016/j.compmedimag.2018.03.001 10.1016/j.neuroimage.2005.09.054 10.1016/j.media.2016.10.004 10.1109/TMI.2015.2508280 10.1002/mp.12602 10.3390/s18051501 10.1109/CVPR.2016.31 10.1109/TPAMI.2007.70769 10.1016/j.media.2018.01.006 10.1146/annurev-bioeng-071516-044442 10.1145/2647868.2654889 10.1007/s11263-010-0412-0 10.1109/TIP.2016.2579306 10.1016/j.acra.2009.09.013 10.1007/978-3-319-46493-0_22 10.5244/C.23.6 10.1109/TCYB.2019.2897162 10.1109/CVPR.2018.00864 10.1016/j.patrec.2015.04.006 10.1109/TCYB.2019.2904186 10.1109/TAC.2016.2610945 10.1109/CVPRW.2014.78 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2955178 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2165 |
ExternalDocumentID | 31869812 10_1109_TCYB_2019_2955178 8936540 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: China Post-Doctoral Project grantid: 2017M612339 – fundername: China Scholarship Council grantid: 201708370073 funderid: 10.13039/501100004543 – fundername: NSFC grantid: 61773246 funderid: 10.13039/501100001809 – fundername: NSFC grantid: 81871508 funderid: 10.13039/501100001809 – fundername: NSFC grantid: 61876101 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China (NSFC) grantid: 61802234; 61640201 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c458t-69d7dc83aa54f4a046f8c0e442d3de13b791f0094fd4cab5d9ee076797d6680a3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Sat Sep 27 17:10:47 EDT 2025 Sun Jun 29 12:30:18 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Tue Jul 01 00:53:54 EDT 2025 Wed Aug 27 02:47:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-69d7dc83aa54f4a046f8c0e442d3de13b791f0094fd4cab5d9ee076797d6680a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0385-8988 0000-0002-0579-7763 0000-0002-7264-9437 0000-0002-4952-5583 0000-0002-6249-4996 0000-0002-5786-2491 0000-0002-4535-916X 0000-0002-7934-5698 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8936540 |
PMID | 31869812 |
PQID | 2503499355 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2019_2955178 proquest_journals_2503499355 ieee_primary_8936540 proquest_miscellaneous_2330337132 pubmed_primary_31869812 crossref_citationtrail_10_1109_TCYB_2019_2955178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref11 roth (ref22) 2018; 10574 zeiler (ref46) 2014 ref17 ref16 ref19 ref18 çiçek (ref28) 2016 zhou (ref15) 2017 (ref1) 2013 dmitriev (ref10) 2016; 9784 ref51 ref50 ref45 ref48 ref41 ref44 ref43 zhan (ref13) 2003 ref8 ref7 ref4 ref3 ref6 ref40 lecun (ref21) 1990 ref35 ref34 ref37 ref36 ref31 ref30 ref33 cai (ref9) 2017 ref32 ref2 xavier (ref52) 2010 ref39 ref38 zhu (ref5) 2017; 2 ref23 ref26 ref25 ref20 nair (ref47) 2010 ref27 bai (ref29) 2008; 30 srivastava (ref24) 2014; 15 krähenbühl (ref42) 2011 li (ref49) 2017 |
References_xml | – ident: ref17 doi: 10.1109/TCYB.2018.2797905 – volume: 15 start-page: 1929 year: 2014 ident: ref24 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref4 doi: 10.1007/978-3-319-66182-7_79 – ident: ref44 doi: 10.1109/TBME.2016.2535311 – ident: ref26 doi: 10.1162/neco.1997.9.8.1735 – ident: ref40 doi: 10.1109/TCYB.2016.2519448 – ident: ref39 doi: 10.1109/TCYB.2016.2526058 – ident: ref45 doi: 10.1109/ISBI.2016.7493362 – ident: ref2 doi: 10.1109/TIP.2016.2624198 – ident: ref14 doi: 10.1118/1.3464799 – ident: ref35 doi: 10.1109/TPAMI.2017.2781233 – start-page: 396 year: 1990 ident: ref21 article-title: Handwritten digit recognition with a back-propagation network publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref32 doi: 10.1109/TIP.2017.2735182 – start-page: 249 year: 2010 ident: ref52 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Stat – ident: ref7 doi: 10.1155/2017/5094592 – ident: ref3 doi: 10.1016/j.ijrobp.2011.09.008 – ident: ref25 doi: 10.1007/978-3-319-13692-9_10 – ident: ref27 doi: 10.1109/ICCV.2015.164 – ident: ref23 doi: 10.1016/j.compmedimag.2018.03.001 – ident: ref11 doi: 10.1016/j.neuroimage.2005.09.054 – start-page: 818 year: 2014 ident: ref46 article-title: Visualizing and understanding convolutional networks publication-title: Proc Eur Conf Comput Vis – start-page: 807 year: 2010 ident: ref47 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref43 doi: 10.1016/j.media.2016.10.004 – ident: ref12 doi: 10.1109/TMI.2015.2508280 – ident: ref18 doi: 10.1002/mp.12602 – year: 2013 ident: ref1 publication-title: The Cancer Imaging Archive (TCIA) Public Access – ident: ref48 doi: 10.3390/s18051501 – ident: ref34 doi: 10.1109/CVPR.2016.31 – volume: 30 start-page: 1282 year: 2008 ident: ref29 article-title: Path similarity skeleton graph matching publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70769 – start-page: 424 year: 2016 ident: ref28 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc MICCAI – ident: ref6 doi: 10.1016/j.media.2018.01.006 – start-page: 1 year: 2017 ident: ref49 article-title: H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes publication-title: arXiv preprint 1709 07330 – ident: ref16 doi: 10.1146/annurev-bioeng-071516-044442 – start-page: 1 year: 2017 ident: ref9 article-title: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function publication-title: arXiv preprint 1707 04912 – volume: 10574 year: 2018 ident: ref22 article-title: Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks publication-title: Proc Med Imag Image Process – ident: ref51 doi: 10.1145/2647868.2654889 – volume: 2 start-page: 1 year: 2017 ident: ref5 article-title: A 3D coarse-to-fine framework for automatic pancreas segmentation publication-title: arXiv preprint 1712 00201 – ident: ref31 doi: 10.1007/s11263-010-0412-0 – volume: 9784 year: 2016 ident: ref10 article-title: Pancreas and cyst segmentation publication-title: Proc Med Imag Image Process – ident: ref36 doi: 10.1109/TIP.2016.2579306 – ident: ref50 doi: 10.1016/j.acra.2009.09.013 – year: 2017 ident: ref15 publication-title: Deep learning for medical image analysis – ident: ref38 doi: 10.1007/978-3-319-46493-0_22 – ident: ref30 doi: 10.5244/C.23.6 – ident: ref20 doi: 10.1109/TCYB.2019.2897162 – start-page: 688 year: 2003 ident: ref13 article-title: Automated segmentation of 3D U.S. prostate images using statistical texture-based matching method publication-title: Proc MICCAI – ident: ref8 doi: 10.1109/CVPR.2018.00864 – start-page: 109 year: 2011 ident: ref42 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials publication-title: Proc Adv Neural Inf Process Syst 24 (NIPS) – ident: ref33 doi: 10.1016/j.patrec.2015.04.006 – ident: ref19 doi: 10.1109/TCYB.2019.2904186 – ident: ref41 doi: 10.1109/TAC.2016.2610945 – ident: ref37 doi: 10.1109/CVPRW.2014.78 |
SSID | ssj0000816898 |
Score | 2.4943523 |
Snippet | Automatic pancreas segmentation is crucial to the diagnostic assessment of diabetes or pancreatic cancer. However, the relatively small size of the pancreas in... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2153 |
SubjectTerms | Ablation Biomedical imaging Computed tomography Convolution Feature maps Image segmentation Modules Multitask FCN Pancreas pancreas segmentation Segmentation Shape Skeleton skeleton extraction Task analysis |
Title | Cascaded MultiTask 3-D Fully Convolutional Networks for Pancreas Segmentation |
URI | https://ieeexplore.ieee.org/document/8936540 https://www.ncbi.nlm.nih.gov/pubmed/31869812 https://www.proquest.com/docview/2503499355 https://www.proquest.com/docview/2330337132 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vIIbZGROAAi2yR24vhYtlQV0lZIbKVyivwKh9Js1ewi0V_fGccbCVQqLpGlOE7iGWu-sb-ZAXiLGMTpUsrUaq1SUeQm1RleuPA-48K4gTw-O6tOz8WXi_JiAz6OsTDe-0A-8xNqhrN8t7Ar2io7RNtaIcLYhE1UsyFWa9xPCQUkQunbAhspogoZDzHzTB3Op98_EY9LTQqFGEFSmT5O1ZjqvPjDIoUSK_9Gm8HqnDyB2fp7B7LJ5WS1NBN7-1cqx__9oafwOMJPdjToyzZs-G4HtuMC79m7mIX6_S7Mpron7rxjIUZ3rvtLxtNjRj7rbzZddL-i0uJwZwOXvGeIgNlX1CNiurNv_sdVjGzqnsH5yef59DSNtRdSK8p6mVbKSWdrrnUpWqHRi25rm3khCsedz7mRKm-Jltg6YbUpnULZykoq6aqqzjR_DlvdovMvgbVWohnkiCxqLXAIQ7G1eVu0NLYxeQLZev4bGxOTU32Mn01wUDLVkPQakl4TpZfAh_GR6yErx0Odd2nmx45x0hPYXwu5ieu2bxAQcvQBEYQl8Ga8jSuOjlF05xcr7MPR7HN07osEXgzKMY691qlX979zDx4VxIkJzJ992FrerPwBgpqleR20-Q7qAu5D |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALUMojUMBIHACRbRI7cXyEhWqB7gqJrVROkV_h0DaLyC4S_HpmHG8kECAukaU4TuIZa76xv5kBeIIYxOlSytRqrVJR5CbVGV648D7jwriBPD5fVLMT8e60PN2BF2MsjPc-kM_8hJrhLN-t7Ia2yg7RtlaIMC7B5RK9inqI1hp3VEIJiVD8tsBGirhCxmPMPFOHy-mnV8TkUpNCIUqQVKiPUz2mOi9-sUmhyMrf8WawO0fXYb794oFucjbZrM3E_vgtmeP__tINuBYBKHs5aMwe7PjuJuzFJd6zpzEP9bN9mE91T-x5x0KU7lL3Z4ynrxl5rd_ZdNV9i2qLwy0GNnnPEAOzD6hJxHVnH_3nixjb1N2Ck6M3y-ksjdUXUivKep1Wyklna651KVqh0Y9ua5t5IQrHnc-5kSpviZjYOmG1KZ1C6cpKKumqqs40vw273arzd4G1VqIh5Igtai1wCEPRtXlbtDS2MXkC2Xb-GxtTk1OFjPMmuCiZakh6DUmvidJL4Pn4yJchL8e_Ou_TzI8d46QncLAVchNXbt8gJOToBSIMS-DxeBvXHB2k6M6vNtiHo-Hn6N4XCdwZlGMce6tT9_78zkdwZbacHzfHbxfv78PVghgygQd0ALvrrxv_ACHO2jwMmv0Tnnrxlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+MultiTask+3-D+Fully+Convolutional+Networks+for+Pancreas+Segmentation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xue%2C+Jie&rft.au=He%2C+Kelei&rft.au=Nie%2C+Dong&rft.au=Adeli%2C+Ehsan&rft.date=2021-04-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=4&rft.spage=2153&rft_id=info:doi/10.1109%2FTCYB.2019.2955178&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |