Kinetic analysis and mechanistic aspects of autoxidation of catechins

A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin,...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1569; no. 1; pp. 35 - 44
Main Authors Mochizuki, Manabu, Yamazaki, Shin-ichi, Kano, Kenji, Ikeda, Tokuji
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2002
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/S0304-4165(01)00230-6

Cover

Abstract A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, and (−)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O 2) is quantitatively reduced to H 2O 2. The initial rate of autoxidation is suppressed by superoxide dismutase and H +, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O 2 to generate a superoxide anion (O − 2) and a semiquinone radical, as supported in part by electron spin resonance measurements. O − 2 works as a stronger one-electron oxidant than O 2 against catechins and is reduced to H 2O 2. The semiquinone radical is more susceptible to oxidation with O 2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O − 2 and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.
AbstractList A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H2O2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O2) is quantitatively reduced to H2O2. The initial rate of autoxidation is suppressed by superoxide dismutase and H+, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O2 to generate a superoxide anion and a semiquinone radical, as supported in part by electron spin resonance measurements. Superoxide anion works as a stronger one-electron oxidant than O2 against catechins and is reduced to H2O2. The semiquinone radical is more susceptible to oxidation with O2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of superoxide anion and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, and (−)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O 2) is quantitatively reduced to H 2O 2. The initial rate of autoxidation is suppressed by superoxide dismutase and H +, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O 2 to generate a superoxide anion (O − 2) and a semiquinone radical, as supported in part by electron spin resonance measurements. O − 2 works as a stronger one-electron oxidant than O 2 against catechins and is reduced to H 2O 2. The semiquinone radical is more susceptible to oxidation with O 2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O − 2 and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.
Author Yamazaki, Shin-ichi
Kano, Kenji
Mochizuki, Manabu
Ikeda, Tokuji
Author_xml – sequence: 1
  givenname: Manabu
  surname: Mochizuki
  fullname: Mochizuki, Manabu
– sequence: 2
  givenname: Shin-ichi
  surname: Yamazaki
  fullname: Yamazaki, Shin-ichi
– sequence: 3
  givenname: Kenji
  surname: Kano
  fullname: Kano, Kenji
  email: kkano@kais.kyoto-u.ac.jp
– sequence: 4
  givenname: Tokuji
  surname: Ikeda
  fullname: Ikeda, Tokuji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11853955$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LAzEQxYMo2qofQelJ9LA6s9kkWzyIlPoHBQ_qOaTZWYxss3WTin5701Z78NJckiG_NzO812fbvvXE2BHCOQLKi2fgUGQFSnEKeAaQc8jkFuthqfKsBJDbrLdG9lg_hHdIRwzFLttDLAUfCtFj4wfnKTo7MN4038GF9KgGU7Jvxruw_AgzsjEM2npg5rH9cpWJrvWL2pqYQOfDAdupTRPo8PfeZ68345fRXfb4dHs_un7MbCHKmGGe51yQIksgiYaqAFQSsS4UFMLmpZS8mpgaOSfLDce0f15JxZXCmgD5PjtZ9Z117cecQtRTFyw1jfHUzoNWWEghhdgIFkPguZI8gce_4HwypUrPOjc13bf-cygBlyvAdm0IHdXaurh0IHbGNRpBL_LQyzz0wmwNqJd5aJnU4p96PWCD7mqlo-Tmp6NOB-vIW6pcl9LQVes2dPgBYCifyg
CitedBy_id crossref_primary_10_1007_s11694_021_00909_7
crossref_primary_10_1016_j_bbrc_2010_01_112
crossref_primary_10_1021_jp211073a
crossref_primary_10_1016_j_foodchem_2013_09_032
crossref_primary_10_1016_j_molliq_2018_08_056
crossref_primary_10_1016_j_saa_2006_07_036
crossref_primary_10_1016_j_ijbiomac_2024_133451
crossref_primary_10_1039_C7BM00884H
crossref_primary_10_1002_elps_201200186
crossref_primary_10_1016_j_foodchem_2017_05_023
crossref_primary_10_1016_j_foodchem_2024_142208
crossref_primary_10_2488_jwrs_55_59
crossref_primary_10_1007_s11581_015_1494_z
crossref_primary_10_3390_cancers16122171
crossref_primary_10_1039_B401633E
crossref_primary_10_1016_j_jnutbio_2016_01_002
crossref_primary_10_1021_jf071645m
crossref_primary_10_3390_molecules18010574
crossref_primary_10_3390_pr12010166
crossref_primary_10_1039_D2RA03692D
crossref_primary_10_1016_j_ejps_2010_06_010
crossref_primary_10_3390_pr13010277
crossref_primary_10_3389_fchem_2018_00587
crossref_primary_10_1016_j_ijbiomac_2025_141244
crossref_primary_10_1049_iet_nbt_2016_0147
crossref_primary_10_1021_nn100988t
crossref_primary_10_1016_j_mrgentox_2004_01_002
crossref_primary_10_1016_j_foodchem_2010_03_027
crossref_primary_10_1021_acsmacrolett_5b00544
crossref_primary_10_1016_j_foodres_2014_12_015
crossref_primary_10_1016_j_foodchem_2014_06_118
crossref_primary_10_1002_mnfr_200700086
crossref_primary_10_3390_ijms22020961
crossref_primary_10_3390_molecules24040787
crossref_primary_10_1016_j_foodchem_2016_08_098
crossref_primary_10_1016_j_foodchem_2020_127947
crossref_primary_10_1021_jf8012162
crossref_primary_10_1002_asia_201701364
crossref_primary_10_1021_jf102694k
crossref_primary_10_1007_s11356_015_5821_8
crossref_primary_10_1016_j_postharvbio_2024_112871
crossref_primary_10_1111_ics_12051
crossref_primary_10_3390_toxins8070211
crossref_primary_10_3390_ijms20246222
crossref_primary_10_3390_molecules16053885
crossref_primary_10_3390_molecules26144255
crossref_primary_10_1016_j_lfs_2014_12_025
crossref_primary_10_3390_foods10040699
crossref_primary_10_1016_j_lwt_2022_113893
crossref_primary_10_2174_2210315513666230301101049
crossref_primary_10_1016_j_molstruc_2010_11_001
crossref_primary_10_1016_j_foodchem_2021_131147
crossref_primary_10_1016_j_jcis_2025_137370
crossref_primary_10_1007_s10008_008_0601_8
crossref_primary_10_1016_j_foodchem_2011_02_038
crossref_primary_10_3390_biology13090729
crossref_primary_10_3390_molecules25184076
crossref_primary_10_1080_01694243_2020_1862450
crossref_primary_10_1016_j_foodchem_2004_09_038
crossref_primary_10_1039_D4RA00481G
crossref_primary_10_1111_j_1745_4549_2012_00681_x
crossref_primary_10_1021_acs_jafc_7b04137
crossref_primary_10_1016_j_foodchem_2025_143241
crossref_primary_10_1007_s10068_015_0198_5
crossref_primary_10_1038_s41598_018_31195_x
crossref_primary_10_1016_j_foodchem_2010_11_044
crossref_primary_10_1021_jf505514d
crossref_primary_10_3390_ph14121242
crossref_primary_10_1016_j_niox_2022_07_007
crossref_primary_10_1039_C6RA14015G
crossref_primary_10_1007_s13749_014_0034_1
crossref_primary_10_1016_j_foodres_2020_109046
crossref_primary_10_1016_j_foodchem_2005_09_052
crossref_primary_10_3389_fchem_2019_00631
crossref_primary_10_1016_j_bioelechem_2009_03_009
crossref_primary_10_1016_j_jbiotec_2006_08_006
crossref_primary_10_1016_j_actbio_2015_02_002
crossref_primary_10_1080_10408398_2022_2104805
crossref_primary_10_1111_jfpp_13365
crossref_primary_10_1021_acs_jafc_9b00522
crossref_primary_10_1007_s00394_011_0230_3
crossref_primary_10_1016_j_lwt_2020_110594
crossref_primary_10_1016_j_freeradbiomed_2010_09_031
crossref_primary_10_1111_ijfs_14429
crossref_primary_10_1002_ptr_3735
crossref_primary_10_1074_jbc_M609725200
crossref_primary_10_3390_app12178710
crossref_primary_10_1016_j_gca_2020_04_016
crossref_primary_10_1515_HF_2009_043
crossref_primary_10_1007_s11746_011_1913_x
crossref_primary_10_1080_01635581_2018_1495239
crossref_primary_10_1093_mutage_ger006
crossref_primary_10_1002_smll_202004975
crossref_primary_10_3389_fphys_2015_00363
crossref_primary_10_1016_j_bios_2011_07_021
crossref_primary_10_1016_j_carbpol_2010_06_007
crossref_primary_10_1016_j_aca_2004_05_038
crossref_primary_10_1039_D3FO05309A
crossref_primary_10_1016_j_jphotobiol_2016_10_020
crossref_primary_10_1021_jf303177p
crossref_primary_10_3390_molecules26165102
crossref_primary_10_1016_j_tiv_2018_09_001
crossref_primary_10_1002_jsfa_2660
crossref_primary_10_1271_bbb_90549
crossref_primary_10_1080_03630260600642666
crossref_primary_10_1016_j_ijbiomac_2013_03_070
crossref_primary_10_4188_jte_63_149
crossref_primary_10_1021_acs_biochem_6b01060
crossref_primary_10_3390_molecules28227514
crossref_primary_10_1016_j_freeradbiomed_2011_01_024
crossref_primary_10_1016_j_supflu_2012_12_024
crossref_primary_10_1002_star_201600195
crossref_primary_10_1016_j_ejphar_2008_08_019
crossref_primary_10_1021_acs_jafc_2c02527
crossref_primary_10_1021_ja311374b
crossref_primary_10_3390_molecules25245985
crossref_primary_10_1016_j_fct_2014_02_004
crossref_primary_10_1016_j_plantsci_2020_110563
crossref_primary_10_1016_j_mimet_2011_04_010
crossref_primary_10_1517_17460441_2011_570750
crossref_primary_10_3390_molecules23071631
crossref_primary_10_3390_12102327
crossref_primary_10_1002_chem_202401762
crossref_primary_10_1016_j_jcis_2018_03_077
crossref_primary_10_1021_acs_jafc_1c04827
crossref_primary_10_1016_j_lwt_2023_114602
crossref_primary_10_1039_C6RA02131J
crossref_primary_10_1016_j_cclet_2023_109060
crossref_primary_10_1097_FJC_0b013e3182550fd6
crossref_primary_10_1016_j_foodchem_2013_04_022
crossref_primary_10_4236_aces_2014_43032
crossref_primary_10_1016_j_actbio_2016_10_016
crossref_primary_10_1021_acs_jafc_2c01667
crossref_primary_10_1155_2018_2371734
crossref_primary_10_1016_j_nutres_2019_12_004
crossref_primary_10_1016_j_postharvbio_2016_10_002
crossref_primary_10_3390_antiox10101551
crossref_primary_10_1002_elan_200804271
crossref_primary_10_1016_j_electacta_2013_07_165
crossref_primary_10_1016_j_bbrep_2024_101719
crossref_primary_10_1002_mame_201100422
crossref_primary_10_1007_s00374_021_01584_y
crossref_primary_10_3109_09637486_2014_931362
crossref_primary_10_1002_adma_202103677
crossref_primary_10_1016_j_fbio_2024_103695
crossref_primary_10_1016_j_jbiotec_2008_10_014
crossref_primary_10_1016_j_abb_2010_12_033
crossref_primary_10_1016_j_dental_2015_04_006
crossref_primary_10_3390_antibiotics11050681
crossref_primary_10_1002_jrs_1849
crossref_primary_10_1016_j_aca_2005_01_067
crossref_primary_10_1016_j_foodchem_2023_136446
crossref_primary_10_1016_j_phrs_2011_02_007
crossref_primary_10_1016_j_porgcoat_2019_105429
crossref_primary_10_3389_fphar_2019_00509
crossref_primary_10_1016_j_xphs_2017_06_022
crossref_primary_10_1016_S1452_3981_23_08002_1
crossref_primary_10_4236_ajps_2023_141002
crossref_primary_10_1021_acs_chemmater_7b03349
crossref_primary_10_1366_11_06533
crossref_primary_10_1016_j_freeradbiomed_2015_02_006
crossref_primary_10_1111_j_1468_2494_2010_00635_x
crossref_primary_10_1002_jccs_202200164
crossref_primary_10_1016_j_abb_2006_09_003
crossref_primary_10_1002_pola_28368
crossref_primary_10_1016_j_bioelechem_2022_108199
crossref_primary_10_1016_j_foodchem_2004_12_023
crossref_primary_10_3390_antiox10111809
crossref_primary_10_1039_D1SE00984B
crossref_primary_10_1016_j_matchemphys_2012_01_050
crossref_primary_10_1016_j_jwpe_2021_102519
crossref_primary_10_1016_j_talanta_2012_09_010
crossref_primary_10_1371_journal_pone_0119516
crossref_primary_10_1021_tx8001498
crossref_primary_10_1002_jbt_21932
crossref_primary_10_1016_j_snb_2013_07_095
crossref_primary_10_1016_j_freeradbiomed_2009_01_004
crossref_primary_10_1016_j_foodchem_2011_05_075
crossref_primary_10_1039_C5FO00799B
crossref_primary_10_1021_acsnano_3c01940
crossref_primary_10_1016_j_fm_2021_103817
crossref_primary_10_1016_j_foodchem_2006_08_032
crossref_primary_10_1002_smll_201902123
crossref_primary_10_1016_j_actbio_2018_10_037
crossref_primary_10_1039_C6PY00228E
crossref_primary_10_1016_j_cej_2010_07_020
crossref_primary_10_1016_S0003_9861_03_00111_5
crossref_primary_10_1246_bcsj_77_1201
crossref_primary_10_1021_acsomega_0c04512
crossref_primary_10_1039_D4SC06417H
crossref_primary_10_1039_C4CC02961E
crossref_primary_10_1016_j_bcp_2006_09_002
crossref_primary_10_1291_hypres_26_823
crossref_primary_10_1016_j_foodchem_2018_06_076
crossref_primary_10_1146_annurev_food_022510_133725
crossref_primary_10_1158_0008_5472_CAN_05_0480
crossref_primary_10_1039_c6pp00073h
crossref_primary_10_3390_antiox12051126
crossref_primary_10_1039_D4TB01722F
crossref_primary_10_1080_01635581_2018_1497671
crossref_primary_10_5796_electrochemistry_71_86
crossref_primary_10_1016_j_foodres_2014_07_042
crossref_primary_10_1016_j_foodchem_2012_01_018
crossref_primary_10_1002_ptr_5643
crossref_primary_10_1021_acsami_1c06674
crossref_primary_10_1016_j_snb_2012_05_020
crossref_primary_10_1039_c2jm32271d
crossref_primary_10_1177_0885328217738403
crossref_primary_10_1021_jp3059189
crossref_primary_10_1039_c1pp05216k
crossref_primary_10_1002_mnfr_202300052
crossref_primary_10_1016_j_biopha_2023_114589
crossref_primary_10_1021_jf204724w
crossref_primary_10_1111_jfpe_12532
crossref_primary_10_1002_bip_23084
crossref_primary_10_1021_acs_biomac_7b00788
crossref_primary_10_1074_jbc_M111_268599
crossref_primary_10_1246_cl_220165
crossref_primary_10_3390_molecules23092394
crossref_primary_10_1007_s11356_023_25816_w
crossref_primary_10_1515_polyeng_2019_0140
crossref_primary_10_1016_j_jpba_2016_03_048
crossref_primary_10_1080_20421338_2015_1128042
crossref_primary_10_1007_s11051_016_3652_2
crossref_primary_10_3390_ijms17121986
crossref_primary_10_1016_j_freeradbiomed_2014_03_021
crossref_primary_10_1016_j_jfca_2009_04_006
crossref_primary_10_1039_D1TB02536H
crossref_primary_10_1007_s12161_015_0177_8
crossref_primary_10_1186_s13036_017_0092_1
crossref_primary_10_1271_bbb_67_2632
crossref_primary_10_1016_j_freeradbiomed_2017_09_027
crossref_primary_10_3136_fstr_22_847
crossref_primary_10_1111_ijfs_12632
crossref_primary_10_1016_j_jpba_2011_07_007
crossref_primary_10_1016_j_aca_2016_10_027
crossref_primary_10_1080_00032711003687112
crossref_primary_10_1016_j_bcp_2012_10_003
crossref_primary_10_1016_j_foodchem_2012_09_132
crossref_primary_10_4161_cib_18890
crossref_primary_10_1016_j_electacta_2013_10_122
crossref_primary_10_1039_C2FO30087G
crossref_primary_10_1016_j_ijpharm_2014_08_053
crossref_primary_10_1371_journal_pone_0134690
crossref_primary_10_1021_acs_est_5b03939
crossref_primary_10_1002_cphc_200700296
crossref_primary_10_1016_j_foodchem_2024_139186
crossref_primary_10_1039_C4FO00187G
crossref_primary_10_1366_10_06188
crossref_primary_10_1016_j_bbrc_2008_10_128
crossref_primary_10_1016_j_electacta_2012_02_010
crossref_primary_10_1016_j_fct_2010_03_041
crossref_primary_10_1016_j_freeradbiomed_2008_07_023
crossref_primary_10_1007_s10847_013_0297_y
crossref_primary_10_1016_j_bcp_2010_05_004
crossref_primary_10_1016_j_aca_2003_12_060
crossref_primary_10_3390_gels9050368
crossref_primary_10_1016_j_jmb_2022_167855
crossref_primary_10_1002_jps_20594
crossref_primary_10_1016_j_foodchem_2021_131585
crossref_primary_10_1371_journal_pone_0060053
crossref_primary_10_1007_s00775_017_1451_6
crossref_primary_10_3390_pr9020293
crossref_primary_10_1124_pr_110_004044
crossref_primary_10_1016_j_foodchem_2018_11_109
crossref_primary_10_1007_s10068_018_0386_1
crossref_primary_10_1016_j_fbio_2013_10_005
crossref_primary_10_1016_j_orgel_2015_10_032
Cites_doi 10.1111/j.1399-3054.1966.tb07082.x
10.1023/A:1004207824251
10.1126/science.172.3988.1142
10.1002/elan.1140091603
10.1271/bbb.63.1654
10.1111/j.1469-8137.1980.tb04423.x
10.1016/0891-5849(95)02089-6
10.5796/electrochemistry.69.519
10.1021/ja005906j
10.1248/bpb.21.93
10.1039/DT9760000534
10.2116/analsci.16.1013
10.1074/jbc.M008005200
10.1006/abbi.1994.1039
10.1016/0003-2697(87)90222-3
10.1039/b101442k
10.1016/0020-711X(93)90655-X
10.1006/bbrc.1997.6254
10.1177/000456329803500606
10.1023/A:1004259808322
10.1021/ac00104a005
10.1016/0891-5849(95)02227-9
10.1016/S0022-0728(97)00520-2
10.1016/0891-5849(90)90148-C
10.1016/0891-5849(95)02047-0
10.1006/abbi.1993.1047
10.1016/S0304-4165(01)00123-4
10.1016/S0031-9422(00)84683-X
10.1006/abbi.1995.1473
10.1021/jf00009a002
10.1002/9780470772119.ch12
10.1126/science.158.3802.798
10.1074/jbc.271.37.22923
10.1016/S0304-4165(97)00019-6
10.1016/S0003-2670(99)00650-9
10.1021/ja00533a029
10.1039/c39940000593
10.1016/S0378-4347(97)00412-X
10.1021/ar00072a005
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
Copyright_xml – notice: 2002 Elsevier Science B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/S0304-4165(01)00230-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 44
ExternalDocumentID 11853955
10_1016_S0304_4165_01_00230_6
S0304416501002306
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-~X
.55
.GJ
ABJNI
CGR
CUY
CVF
ECM
EIF
F5P
H~9
NPM
PKN
RIG
TWZ
UHS
X7M
Y6R
ZGI
~KM
7S9
L.6
7X8
ID FETCH-LOGICAL-c458t-122235e7ece06ee974017611f47045c28663dbaf133ec3a313042d673771fe013
IEDL.DBID AIKHN
ISSN 0304-4165
0006-3002
IngestDate Fri Sep 05 08:57:13 EDT 2025
Fri Sep 05 06:44:37 EDT 2025
Wed Feb 19 02:35:33 EST 2025
Thu Oct 09 00:20:40 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 23 02:29:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Autoxidation
H 2O 2 sensor
Catechin
Superoxide dismutase
Borate
SHE, standard hydrogen electrode
Cupric ion
SOD, superoxide dismutase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-122235e7ece06ee974017611f47045c28663dbaf133ec3a313042d673771fe013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 11853955
PQID 49032763
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_71465655
proquest_miscellaneous_49032763
pubmed_primary_11853955
crossref_citationtrail_10_1016_S0304_4165_01_00230_6
crossref_primary_10_1016_S0304_4165_01_00230_6
elsevier_sciencedirect_doi_10_1016_S0304_4165_01_00230_6
PublicationCentury 2000
PublicationDate 2002-01-15
PublicationDateYYYYMMDD 2002-01-15
PublicationDate_xml – month: 01
  year: 2002
  text: 2002-01-15
  day: 15
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2002
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shoji, Freund (BIB39) 2001; 123
Halliwell, Guttenridge (BIB1) 1987; 186
Halliwell, Gutteridge, Aruoma (BIB4) 1987; 165
Ricardo da Silva, Darmon, Fernandez, Mitjavila (BIB30) 1991; 39
W.M. Dugger, Boron in plant metabolism, in: Encyclopedia of Plant Physiology, New Series, Vol. 15, Springer-Verlag, Heidelberg 1983, pp. 626–650.
Uchida, Ono (BIB46) 1999; 57
Yang, Arai, Kusu (BIB9) 2001; 69
Miura, Tomita, Watanabe, Hirayama, Fukui (BIB11) 1998; 21
Cakmak, Römheld (BIB14) 1997; 193
Tsujimoto, Hashizume, Yamazaki (BIB3) 1993; 25
Hayakawa, Kimura, Maeda, Fujita, Sohmiya, Fujii, Ando (BIB12) 1997; 1336
Ikeda, Shiraichi, Senda (BIB20) 1988; 52
Salah, Miller, Paganga, Tijburg, Bolwell, Rice-Evans (BIB5) 1995; 322
J.Q. Chambers, Electrochemistry of quinones, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of the Quinonoid Compounds, Vol. 2, Part 1, John Wiley, New York, 1988, pp. 719–757.
Nakayama, Enoki, Hashimoto (BIB10) 1995; 1
Lewis (BIB45) 1980; 84
Sawyer, Valentine (BIB27) 1981; 14
Zhang, Bandy, Davison (BIB34) 1996; 20
Matoh (BIB42) 1997; 193
Kinoshita, Torimura, Kano, Ikeda (BIB18) 1997; 9
potassium nitrate, J. Chem. Soc. Dalton (1976) 534–541.
Hayakawa, Kimura, Hoshino, Ando (BIB13) 1999; 63
Kinoshita, Torimura, Kano, Ikeda (BIB19) 1998; 35
Böeseken (BIB37) 1949; 4
Li, Trush (BIB17) 1993; 300
R.F. Jameson, N.J. Blackburn, Role of copper dimers and the participation of copper(III) in the copper-catalysed autooxidation of ascorbic acid. Part II. Kinetics and mechanism in 0.100 mol dm
Mason, Wasserman (BIB15) 1987; 26
Nanni, Stallings, Sawyer (BIB29) 1980; 102
Parker (BIB22) 1973; 4
Tatsumi, Nakase, Kano, Ikeda (BIB26) 1998; 443
Rajaratnam, Lowry, Avadhani, Corley (BIB16) 1971; 172
Tsuchiya, Sato, Kato, Okubo, Juneja, Kim (BIB38) 1997; 703
van Acker, van den Berg, Tromp, Griffioen, van Bennekom, van der Vijgh, Bast (BIB8) 1996; 20
Rae, Torres, Pufahl, O’Halloran (BIB28) 2001; 276
K. Kano, T. Mabuchi, B. Uno, Y. Esaka, T. Tanaka, M. Iinuma, Superoxide anion radical-induced dioxygenolysis of quercetin as a mimic of quercetinase, J. Chem. Soc. Chem. Commun. (1994) 593–594.
Lee, Whittle, Dyer (BIB41) 1966; 19
Miller, Buettner, Aust (BIB35) 1990; 8
O’Neill, Warrenfeltz, Kates, Pellerin, Doco, Darvill, Albersheim (BIB43) 1996; 271
Hotta, Sakamoto, Nagano, Osakai, Tsujino (BIB25) 2001; 1526
Rice-Evans, Miller, Paganga (BIB2) 1996; 20
Yang, Janle, Huang, Gitzen, Kissinger, Vreeke, Heller (BIB21) 1995; 67
Lee (BIB44) 1967; 158
Terao, Piskula, Yao (BIB6) 1994; 308
Yamamoto, Ohgaru, Torimura, Kinoshita, Kano, Ikeda (BIB23) 2000; 406
Kano, Ikeda (BIB24) 2000; 16
Pannala, Rice-Evans, Halliwell, Singh (BIB7) 1997; 232
Shul’pin, Kozlov, Nizova, Süss-Fink, Stanislas, Kitaygorodskiy, Kulikova (BIB36) 2001; 2
Halliwell (10.1016/S0304-4165(01)00230-6_BIB4) 1987; 165
Miura (10.1016/S0304-4165(01)00230-6_BIB11) 1998; 21
10.1016/S0304-4165(01)00230-6_BIB31
Lewis (10.1016/S0304-4165(01)00230-6_BIB45) 1980; 84
Yang (10.1016/S0304-4165(01)00230-6_BIB21) 1995; 67
Hotta (10.1016/S0304-4165(01)00230-6_BIB25) 2001; 1526
Pannala (10.1016/S0304-4165(01)00230-6_BIB7) 1997; 232
Ikeda (10.1016/S0304-4165(01)00230-6_BIB20) 1988; 52
Rice-Evans (10.1016/S0304-4165(01)00230-6_BIB2) 1996; 20
Lee (10.1016/S0304-4165(01)00230-6_BIB44) 1967; 158
Nakayama (10.1016/S0304-4165(01)00230-6_BIB10) 1995; 1
Salah (10.1016/S0304-4165(01)00230-6_BIB5) 1995; 322
Li (10.1016/S0304-4165(01)00230-6_BIB17) 1993; 300
10.1016/S0304-4165(01)00230-6_BIB32
Terao (10.1016/S0304-4165(01)00230-6_BIB6) 1994; 308
Parker (10.1016/S0304-4165(01)00230-6_BIB22) 1973; 4
10.1016/S0304-4165(01)00230-6_BIB33
Rajaratnam (10.1016/S0304-4165(01)00230-6_BIB16) 1971; 172
Ricardo da Silva (10.1016/S0304-4165(01)00230-6_BIB30) 1991; 39
Tsuchiya (10.1016/S0304-4165(01)00230-6_BIB38) 1997; 703
Matoh (10.1016/S0304-4165(01)00230-6_BIB42) 1997; 193
Uchida (10.1016/S0304-4165(01)00230-6_BIB46) 1999; 57
Cakmak (10.1016/S0304-4165(01)00230-6_BIB14) 1997; 193
Kano (10.1016/S0304-4165(01)00230-6_BIB24) 2000; 16
O’Neill (10.1016/S0304-4165(01)00230-6_BIB43) 1996; 271
Yamamoto (10.1016/S0304-4165(01)00230-6_BIB23) 2000; 406
Böeseken (10.1016/S0304-4165(01)00230-6_BIB37) 1949; 4
Rae (10.1016/S0304-4165(01)00230-6_BIB28) 2001; 276
10.1016/S0304-4165(01)00230-6_BIB40
Yang (10.1016/S0304-4165(01)00230-6_BIB9) 2001; 69
Mason (10.1016/S0304-4165(01)00230-6_BIB15) 1987; 26
Hayakawa (10.1016/S0304-4165(01)00230-6_BIB13) 1999; 63
Shul’pin (10.1016/S0304-4165(01)00230-6_BIB36) 2001; 2
Shoji (10.1016/S0304-4165(01)00230-6_BIB39) 2001; 123
Zhang (10.1016/S0304-4165(01)00230-6_BIB34) 1996; 20
Kinoshita (10.1016/S0304-4165(01)00230-6_BIB18) 1997; 9
Kinoshita (10.1016/S0304-4165(01)00230-6_BIB19) 1998; 35
Nanni (10.1016/S0304-4165(01)00230-6_BIB29) 1980; 102
Hayakawa (10.1016/S0304-4165(01)00230-6_BIB12) 1997; 1336
Tsujimoto (10.1016/S0304-4165(01)00230-6_BIB3) 1993; 25
Halliwell (10.1016/S0304-4165(01)00230-6_BIB1) 1987; 186
Sawyer (10.1016/S0304-4165(01)00230-6_BIB27) 1981; 14
Miller (10.1016/S0304-4165(01)00230-6_BIB35) 1990; 8
van Acker (10.1016/S0304-4165(01)00230-6_BIB8) 1996; 20
Tatsumi (10.1016/S0304-4165(01)00230-6_BIB26) 1998; 443
Lee (10.1016/S0304-4165(01)00230-6_BIB41) 1966; 19
References_xml – volume: 172
  start-page: 1142
  year: 1971
  end-page: 1143
  ident: BIB16
  article-title: Boron: possible role in plant metabolism
  publication-title: Science
– volume: 69
  start-page: 519
  year: 2001
  end-page: 525
  ident: BIB9
  article-title: Oxidation potentials of flavonoids determined by flow-through column electrolysis
  publication-title: Electrochemistry
– volume: 25
  start-page: 491
  year: 1993
  end-page: 494
  ident: BIB3
  article-title: Superoxide radical scavenging activity of phenolic compounds
  publication-title: Int. J. Biochem.
– volume: 16
  start-page: 1013
  year: 2000
  end-page: 1021
  ident: BIB24
  article-title: Fundamentals and practices of mediated bioelectrocatalysis
  publication-title: Anal. Sci.
– volume: 8
  start-page: 95
  year: 1990
  end-page: 108
  ident: BIB35
  article-title: Transition metals as catalysts of ‘autoxidation’ reactions
  publication-title: Free Radic. Biol. Med.
– volume: 9
  start-page: 1234
  year: 1997
  end-page: 1238
  ident: BIB18
  article-title: Peroxidase-based amperometric sensor of hydrogen peroxide generated in oxidase reaction: application to creatinine and creatine assay
  publication-title: Electroanalysis
– volume: 703
  start-page: 253
  year: 1997
  end-page: 258
  ident: BIB38
  article-title: Simultaneous determination of catechins in human saliva by high-performance liquid chromatography
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
– volume: 35
  start-page: 739
  year: 1998
  end-page: 744
  ident: BIB19
  article-title: Amperometric determination of high-density lipoprotein cholesterol using polyethylene glycol-modified enzymes and a peroxidase-entrapped electrode
  publication-title: Ann. Clin. Biochem.
– volume: 4
  start-page: 426
  year: 1973
  end-page: 432
  ident: BIB22
  article-title: Hydrometallurgy of copper and silver in solvent mixtures
  publication-title: Search
– volume: 1
  start-page: 65
  year: 1995
  end-page: 69
  ident: BIB10
  article-title: Hydrogen peroxide formation during catechin oxidation is inhibited by superoxide dismutase
  publication-title: Food Sci. Technol. Int.
– volume: 406
  start-page: 201
  year: 2000
  end-page: 207
  ident: BIB23
  article-title: Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry
  publication-title: Anal. Chim. Acta
– volume: 1336
  start-page: 123
  year: 1997
  end-page: 131
  ident: BIB12
  article-title: DNA cleavage reaction and linoleic acid peroxidation induced by tea catechins in the presence of cupric ion
  publication-title: Biochim. Biophys. Acta
– volume: 300
  start-page: 346
  year: 1993
  end-page: 355
  ident: BIB17
  article-title: Oxidation of hydroquinone by copper: chemical mechanism and biological effects
  publication-title: Arch. Biochem. Biophys.
– reference: K. Kano, T. Mabuchi, B. Uno, Y. Esaka, T. Tanaka, M. Iinuma, Superoxide anion radical-induced dioxygenolysis of quercetin as a mimic of quercetinase, J. Chem. Soc. Chem. Commun. (1994) 593–594.
– volume: 2
  start-page: 1351
  year: 2001
  end-page: 1371
  ident: BIB36
  article-title: Oxidations by the reagent ‘O
  publication-title: J. Chem. Soc. Perkin Trans.
– volume: 123
  start-page: 3383
  year: 2001
  end-page: 3384
  ident: BIB39
  article-title: Potentiometric sensors based on the inductive effect on the p
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 93
  year: 1998
  end-page: 96
  ident: BIB11
  article-title: Active oxygen generation by flavonoids
  publication-title: Biol. Pharm. Bull.
– reference: R.F. Jameson, N.J. Blackburn, Role of copper dimers and the participation of copper(III) in the copper-catalysed autooxidation of ascorbic acid. Part II. Kinetics and mechanism in 0.100 mol dm
– volume: 19
  start-page: 919
  year: 1966
  end-page: 924
  ident: BIB41
  article-title: Boron deficiency and translocation profiles in sunflower
  publication-title: Physiol. Plant.
– volume: 158
  start-page: 798
  year: 1967
  end-page: 799
  ident: BIB44
  article-title: Boron in plants: a biochemical role
  publication-title: Science
– volume: 193
  start-page: 71
  year: 1997
  end-page: 83
  ident: BIB14
  article-title: Boron deficiency-induced impairments of cellular functions in plants
  publication-title: Plant Soil
– volume: 26
  start-page: 2197
  year: 1987
  end-page: 2202
  ident: BIB15
  article-title: Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds
  publication-title: Phytochemistry
– volume: 276
  start-page: 5166
  year: 2001
  end-page: 5176
  ident: BIB28
  article-title: Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS
  publication-title: J. Biol. Chem.
– volume: 193
  start-page: 59
  year: 1997
  end-page: 69
  ident: BIB42
  article-title: Boron in plant cell walls
  publication-title: Plant Soil
– volume: 443
  start-page: 236
  year: 1998
  end-page: 242
  ident: BIB26
  article-title: Mechanistic study of the autoxidation of reduced flavin and quinone compounds
  publication-title: J. Electroanal. Chem.
– volume: 52
  start-page: 3187
  year: 1988
  end-page: 3188
  ident: BIB20
  article-title: An efficient method for entrapping ionic mediators in the enzyme layer of mediated amperometric biosensors
  publication-title: Agric. Biol. Chem.
– volume: 271
  start-page: 22923
  year: 1996
  end-page: 22930
  ident: BIB43
  article-title: Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester
  publication-title: J. Biol. Chem.
– volume: 39
  start-page: 1549
  year: 1991
  end-page: 1552
  ident: BIB30
  article-title: Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds
  publication-title: J. Agric. Food Chem.
– reference: W.M. Dugger, Boron in plant metabolism, in: Encyclopedia of Plant Physiology, New Series, Vol. 15, Springer-Verlag, Heidelberg 1983, pp. 626–650.
– volume: 232
  start-page: 164
  year: 1997
  end-page: 168
  ident: BIB7
  article-title: Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols
  publication-title: Biochem. Biophys. Res. Commun.
– reference: potassium nitrate, J. Chem. Soc. Dalton (1976) 534–541.
– volume: 63
  start-page: 1654
  year: 1999
  end-page: 1656
  ident: BIB13
  article-title: DNA cleavage activities of (−)-epigallocatechin, (−)-epicatechin, (+)-catechin, and (−)-epigallocatechin gallate with various kind of metal ions
  publication-title: Biosci. Biotechnol. Biochem.
– reference: J.Q. Chambers, Electrochemistry of quinones, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of the Quinonoid Compounds, Vol. 2, Part 1, John Wiley, New York, 1988, pp. 719–757.
– volume: 4
  start-page: 189
  year: 1949
  end-page: 210
  ident: BIB37
  article-title: The use of boric acid for the determination of the configuration of carbohydrates
  publication-title: Adv. Carbohydr. Chem.
– volume: 67
  start-page: 1326
  year: 1995
  end-page: 1331
  ident: BIB21
  article-title: Applications of ‘wired’ peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors
  publication-title: Anal. Chem.
– volume: 186
  start-page: 1
  year: 1987
  end-page: 85
  ident: BIB1
  article-title: Role of free radicals and catalytic metal ions in human disease: an overview
  publication-title: Methods Enzymol.
– volume: 322
  start-page: 339
  year: 1995
  end-page: 346
  ident: BIB5
  article-title: Polyphenolic flavenols as scavengers of aqueous phase radicals and as chain-breaking antioxidants
  publication-title: Arch. Biochem. Biophys.
– volume: 308
  start-page: 278
  year: 1994
  end-page: 284
  ident: BIB6
  article-title: Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers
  publication-title: Arch. Biochem. Biophys.
– volume: 20
  start-page: 331
  year: 1996
  end-page: 342
  ident: BIB8
  article-title: Structural aspects of antioxidant activity of flavonoids
  publication-title: Free Radic. Biol. Med.
– volume: 14
  start-page: 393
  year: 1981
  end-page: 400
  ident: BIB27
  article-title: How super is superoxide?
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 933
  year: 1996
  end-page: 956
  ident: BIB2
  article-title: Structure-antioxidant activity relationships of flavonoids and phenolic acids
  publication-title: Free Radic. Biol. Med.
– volume: 20
  start-page: 495
  year: 1996
  end-page: 505
  ident: BIB34
  article-title: Effects of metals, ligands and antioxidants on the reaction of oxygen with 1,2,4-benzenetriol
  publication-title: Free Radic. Biol. Med.
– volume: 165
  start-page: 215
  year: 1987
  end-page: 219
  ident: BIB4
  article-title: The deoxyribose method: a simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals
  publication-title: Anal. Biochem.
– volume: 84
  start-page: 209
  year: 1980
  end-page: 229
  ident: BIB45
  article-title: Boron, lignification and the origin of vascular plants – a unified hypothesis
  publication-title: New Phytol.
– volume: 1526
  start-page: 159
  year: 2001
  end-page: 167
  ident: BIB25
  article-title: Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants
  publication-title: Biochim. Biophys. Acta
– volume: 102
  start-page: 4481
  year: 1980
  end-page: 4485
  ident: BIB29
  article-title: Does superoxide ion oxidize catechol, α-tocopherol, and ascorbic acid by direct electron transfer?
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 145
  year: 1999
  end-page: 150
  ident: BIB46
  article-title: Determination of hydrogen peroxide in beer and its role in beer oxidation
  publication-title: J. Am. Soc. Brew. Chem.
– volume: 19
  start-page: 919
  year: 1966
  ident: 10.1016/S0304-4165(01)00230-6_BIB41
  article-title: Boron deficiency and translocation profiles in sunflower
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1966.tb07082.x
– volume: 193
  start-page: 59
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB42
  article-title: Boron in plant cell walls
  publication-title: Plant Soil
  doi: 10.1023/A:1004207824251
– volume: 172
  start-page: 1142
  year: 1971
  ident: 10.1016/S0304-4165(01)00230-6_BIB16
  article-title: Boron: possible role in plant metabolism
  publication-title: Science
  doi: 10.1126/science.172.3988.1142
– volume: 9
  start-page: 1234
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB18
  article-title: Peroxidase-based amperometric sensor of hydrogen peroxide generated in oxidase reaction: application to creatinine and creatine assay
  publication-title: Electroanalysis
  doi: 10.1002/elan.1140091603
– volume: 4
  start-page: 189
  year: 1949
  ident: 10.1016/S0304-4165(01)00230-6_BIB37
  article-title: The use of boric acid for the determination of the configuration of carbohydrates
  publication-title: Adv. Carbohydr. Chem.
– volume: 63
  start-page: 1654
  year: 1999
  ident: 10.1016/S0304-4165(01)00230-6_BIB13
  article-title: DNA cleavage activities of (−)-epigallocatechin, (−)-epicatechin, (+)-catechin, and (−)-epigallocatechin gallate with various kind of metal ions
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.63.1654
– volume: 84
  start-page: 209
  year: 1980
  ident: 10.1016/S0304-4165(01)00230-6_BIB45
  article-title: Boron, lignification and the origin of vascular plants – a unified hypothesis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1980.tb04423.x
– volume: 20
  start-page: 495
  year: 1996
  ident: 10.1016/S0304-4165(01)00230-6_BIB34
  article-title: Effects of metals, ligands and antioxidants on the reaction of oxygen with 1,2,4-benzenetriol
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(95)02089-6
– volume: 69
  start-page: 519
  year: 2001
  ident: 10.1016/S0304-4165(01)00230-6_BIB9
  article-title: Oxidation potentials of flavonoids determined by flow-through column electrolysis
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.69.519
– volume: 123
  start-page: 3383
  year: 2001
  ident: 10.1016/S0304-4165(01)00230-6_BIB39
  article-title: Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): a nonenzymatic glucose sensor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja005906j
– volume: 21
  start-page: 93
  year: 1998
  ident: 10.1016/S0304-4165(01)00230-6_BIB11
  article-title: Active oxygen generation by flavonoids
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.21.93
– ident: 10.1016/S0304-4165(01)00230-6_BIB33
  doi: 10.1039/DT9760000534
– volume: 16
  start-page: 1013
  year: 2000
  ident: 10.1016/S0304-4165(01)00230-6_BIB24
  article-title: Fundamentals and practices of mediated bioelectrocatalysis
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.16.1013
– volume: 276
  start-page: 5166
  year: 2001
  ident: 10.1016/S0304-4165(01)00230-6_BIB28
  article-title: Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M008005200
– volume: 57
  start-page: 145
  year: 1999
  ident: 10.1016/S0304-4165(01)00230-6_BIB46
  article-title: Determination of hydrogen peroxide in beer and its role in beer oxidation
  publication-title: J. Am. Soc. Brew. Chem.
– volume: 308
  start-page: 278
  year: 1994
  ident: 10.1016/S0304-4165(01)00230-6_BIB6
  article-title: Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1994.1039
– volume: 165
  start-page: 215
  year: 1987
  ident: 10.1016/S0304-4165(01)00230-6_BIB4
  article-title: The deoxyribose method: a simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(87)90222-3
– volume: 2
  start-page: 1351
  year: 2001
  ident: 10.1016/S0304-4165(01)00230-6_BIB36
  article-title: Oxidations by the reagent ‘O2-H2O2-vanadium derivative-pyrazine-2-carboxylic acid’ Part 12. Main features, kinetics and mechanism of alkane hydroperoxidation
  publication-title: J. Chem. Soc. Perkin Trans.
  doi: 10.1039/b101442k
– volume: 25
  start-page: 491
  year: 1993
  ident: 10.1016/S0304-4165(01)00230-6_BIB3
  article-title: Superoxide radical scavenging activity of phenolic compounds
  publication-title: Int. J. Biochem.
  doi: 10.1016/0020-711X(93)90655-X
– volume: 232
  start-page: 164
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB7
  article-title: Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6254
– volume: 35
  start-page: 739
  year: 1998
  ident: 10.1016/S0304-4165(01)00230-6_BIB19
  article-title: Amperometric determination of high-density lipoprotein cholesterol using polyethylene glycol-modified enzymes and a peroxidase-entrapped electrode
  publication-title: Ann. Clin. Biochem.
  doi: 10.1177/000456329803500606
– volume: 193
  start-page: 71
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB14
  article-title: Boron deficiency-induced impairments of cellular functions in plants
  publication-title: Plant Soil
  doi: 10.1023/A:1004259808322
– volume: 52
  start-page: 3187
  year: 1988
  ident: 10.1016/S0304-4165(01)00230-6_BIB20
  article-title: An efficient method for entrapping ionic mediators in the enzyme layer of mediated amperometric biosensors
  publication-title: Agric. Biol. Chem.
– volume: 67
  start-page: 1326
  year: 1995
  ident: 10.1016/S0304-4165(01)00230-6_BIB21
  article-title: Applications of ‘wired’ peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors
  publication-title: Anal. Chem.
  doi: 10.1021/ac00104a005
– volume: 20
  start-page: 933
  year: 1996
  ident: 10.1016/S0304-4165(01)00230-6_BIB2
  article-title: Structure-antioxidant activity relationships of flavonoids and phenolic acids
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(95)02227-9
– volume: 186
  start-page: 1
  year: 1987
  ident: 10.1016/S0304-4165(01)00230-6_BIB1
  article-title: Role of free radicals and catalytic metal ions in human disease: an overview
  publication-title: Methods Enzymol.
– volume: 443
  start-page: 236
  year: 1998
  ident: 10.1016/S0304-4165(01)00230-6_BIB26
  article-title: Mechanistic study of the autoxidation of reduced flavin and quinone compounds
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(97)00520-2
– volume: 8
  start-page: 95
  year: 1990
  ident: 10.1016/S0304-4165(01)00230-6_BIB35
  article-title: Transition metals as catalysts of ‘autoxidation’ reactions
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(90)90148-C
– volume: 20
  start-page: 331
  year: 1996
  ident: 10.1016/S0304-4165(01)00230-6_BIB8
  article-title: Structural aspects of antioxidant activity of flavonoids
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(95)02047-0
– volume: 300
  start-page: 346
  year: 1993
  ident: 10.1016/S0304-4165(01)00230-6_BIB17
  article-title: Oxidation of hydroquinone by copper: chemical mechanism and biological effects
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1993.1047
– volume: 1526
  start-page: 159
  year: 2001
  ident: 10.1016/S0304-4165(01)00230-6_BIB25
  article-title: Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(01)00123-4
– volume: 26
  start-page: 2197
  year: 1987
  ident: 10.1016/S0304-4165(01)00230-6_BIB15
  article-title: Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)84683-X
– volume: 322
  start-page: 339
  year: 1995
  ident: 10.1016/S0304-4165(01)00230-6_BIB5
  article-title: Polyphenolic flavenols as scavengers of aqueous phase radicals and as chain-breaking antioxidants
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1995.1473
– volume: 4
  start-page: 426
  year: 1973
  ident: 10.1016/S0304-4165(01)00230-6_BIB22
  article-title: Hydrometallurgy of copper and silver in solvent mixtures
  publication-title: Search
– volume: 39
  start-page: 1549
  year: 1991
  ident: 10.1016/S0304-4165(01)00230-6_BIB30
  article-title: Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00009a002
– ident: 10.1016/S0304-4165(01)00230-6_BIB32
  doi: 10.1002/9780470772119.ch12
– volume: 158
  start-page: 798
  year: 1967
  ident: 10.1016/S0304-4165(01)00230-6_BIB44
  article-title: Boron in plants: a biochemical role
  publication-title: Science
  doi: 10.1126/science.158.3802.798
– ident: 10.1016/S0304-4165(01)00230-6_BIB40
– volume: 271
  start-page: 22923
  year: 1996
  ident: 10.1016/S0304-4165(01)00230-6_BIB43
  article-title: Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.37.22923
– volume: 1336
  start-page: 123
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB12
  article-title: DNA cleavage reaction and linoleic acid peroxidation induced by tea catechins in the presence of cupric ion
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(97)00019-6
– volume: 406
  start-page: 201
  year: 2000
  ident: 10.1016/S0304-4165(01)00230-6_BIB23
  article-title: Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(99)00650-9
– volume: 102
  start-page: 4481
  year: 1980
  ident: 10.1016/S0304-4165(01)00230-6_BIB29
  article-title: Does superoxide ion oxidize catechol, α-tocopherol, and ascorbic acid by direct electron transfer?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00533a029
– ident: 10.1016/S0304-4165(01)00230-6_BIB31
  doi: 10.1039/c39940000593
– volume: 1
  start-page: 65
  year: 1995
  ident: 10.1016/S0304-4165(01)00230-6_BIB10
  article-title: Hydrogen peroxide formation during catechin oxidation is inhibited by superoxide dismutase
  publication-title: Food Sci. Technol. Int.
– volume: 703
  start-page: 253
  year: 1997
  ident: 10.1016/S0304-4165(01)00230-6_BIB38
  article-title: Simultaneous determination of catechins in human saliva by high-performance liquid chromatography
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
  doi: 10.1016/S0378-4347(97)00412-X
– volume: 14
  start-page: 393
  year: 1981
  ident: 10.1016/S0304-4165(01)00230-6_BIB27
  article-title: How super is superoxide?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00072a005
SSID ssj0000595
ssj0025309
Score 2.2150965
Snippet A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic...
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and...
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H2O2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Antioxidants - chemistry
Autoxidation
Benzoquinones - chemistry
Borate
Borates - chemistry
Catechin
Catechin - analogs & derivatives
Catechin - chemistry
Cations, Divalent
Copper - chemistry
Cupric ion
diet-related diseases
Electron Spin Resonance Spectroscopy
food composition
food quality
H 2O 2 sensor
human nutrition
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Models, Chemical
Oxidation-Reduction
Oxygen - chemistry
Quality Control
Superoxide dismutase
Title Kinetic analysis and mechanistic aspects of autoxidation of catechins
URI https://dx.doi.org/10.1016/S0304-4165(01)00230-6
https://www.ncbi.nlm.nih.gov/pubmed/11853955
https://www.proquest.com/docview/49032763
https://www.proquest.com/docview/71465655
Volume 1569
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: ACRLP
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AIKHN
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025309
  issn: 0304-4165
  databaseCode: AKRWK
  dateStart: 19470101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AKRWK
  dateStart: 19640113
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2FRKhcEIW2BErYQw_04MTe2PtxjCKi0AgObRHcLNvxSpEgQU0iwaW_vTPeXaIeIiROu2vZljVjzTyvZ-YBfCtymzm0iHg28YZJ4xzLM2MYR2gaCtQlgbTv-iYZ38of9-q-AcM6F4bCKivbX9r0YK2rll4lzd7TbNb7RZd6CCcUFyWQ3oEW-p8sa0JrcDUZ32wMsgrkK9Sf0YBNIk85SWi84OJ7mIcl21zUNggaXNHoAPYrDBkNymV-hIafH8JuySr5cggfhjWJ2xFcThBFYrfIVMVH8GUaPXrK9w0lmiMTci2X0aKIzHq1eJ6VJEv0TcFSFGq5_AS3o8vfwzGrmBOYkypbMUFeX_nUO88T73Oi3UsTIQqZIoRzcYYqmFpT4AHVu77pC_qpMSXKmlQUHlHhZ2jOF3N_DFHupeGOJ7GxqZS2sHHRt8LaOOMWsVPeBlkLS7uqrDixWzzoTfwYzq5JxpoLHWSskzZ0X4c9lXU13hqQ1ZrQ_20Qjbb_raHnteY0ip9uRMzcL9ZLLXPej9HCbu-RCioop1QbvpQq36yWkE6u1Mn7F3YKe4Fchgsm1Fdorv6s_RlinJXtwE73r-hUO5mek593k39V__MM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSyMxFH-oi-hF_Fi1uuoc9rB7iE2myXwcpSj186KCt5CkGShoW2wLevFv971kZsseiuBtEpIQ3gsvv8z7-AH8rkpbOLSI-DbxhknjHCsLYxhHaBoK1GWBtO_2Lus9yqsn9bQE3SYXhsIqa9sfbXqw1nVPu5ZmezwYtO_JqYdwQnERgfQy_JAqzekFdvoxj_NA_KCiK0EyGj5P44lLhM4_XPwNq7Bs0QW1CICGi-hiEzZqBJmcxU1uwZIfbsNq5JR834a1bkPhtgPn14ghcVhi6tIj-NFPXjxl-4YCzYkJmZaTZFQlZjYdvQ0ixRK1KVSKAi0nP-Hx4vyh22M1bwJzUhVTJujOVz73zvPM-5JI9_JMiErmCOBcWqAC-tZU-Dz1rmM6gn5p9ImwJheVR0y4CyvD0dDvQ1J6abjjWWpsLqWtbFp1rLA2LbhF5FS2QDbC0q4uKk7cFs96Hj2Gq2uSseZCBxnrrAWn_6aNY1WNryYUjSb0f8dDo-X_aupJozmN4id_iBn60WyiZck7KdrXxSNyQeXklGrBXlT5fLeEc0qlDr6_sRNY6z3c3uiby7vrQ1gPNDNcMKF-wcr0deaPEO1M7XE4zZ-26fIx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+analysis+and+mechanistic+aspects+of+autoxidation+of+catechins&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Mochizuki%2C+Manabu&rft.au=Yamazaki%2C+Shin-ichi&rft.au=Kano%2C+Kenji&rft.au=Ikeda%2C+Tokuji&rft.date=2002-01-15&rft.issn=0006-3002&rft.volume=1569&rft.issue=1-3&rft.spage=35&rft_id=info:doi/10.1016%2FS0304-4165%2801%2900230-6&rft_id=info%3Apmid%2F11853955&rft.externalDocID=11853955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon