Kinetic analysis and mechanistic aspects of autoxidation of catechins
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin,...
        Saved in:
      
    
          | Published in | Biochimica et biophysica acta Vol. 1569; no. 1; pp. 35 - 44 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        15.01.2002
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0304-4165 0006-3002 1872-8006  | 
| DOI | 10.1016/S0304-4165(01)00230-6 | 
Cover
| Abstract | A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H
2O
2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, and (−)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O
2) is quantitatively reduced to H
2O
2. The initial rate of autoxidation is suppressed by superoxide dismutase and H
+, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O
2 to generate a superoxide anion (O
−
2) and a semiquinone radical, as supported in part by electron spin resonance measurements. O
−
2 works as a stronger one-electron oxidant than O
2 against catechins and is reduced to H
2O
2. The semiquinone radical is more susceptible to oxidation with O
2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O
−
2 and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed. | 
    
|---|---|
| AbstractList | A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H2O2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O2) is quantitatively reduced to H2O2. The initial rate of autoxidation is suppressed by superoxide dismutase and H+, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O2 to generate a superoxide anion and a semiquinone radical, as supported in part by electron spin resonance measurements. Superoxide anion works as a stronger one-electron oxidant than O2 against catechins and is reduced to H2O2. The semiquinone radical is more susceptible to oxidation with O2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of superoxide anion and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed. A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed. A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed. A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H 2O 2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, and (−)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O 2) is quantitatively reduced to H 2O 2. The initial rate of autoxidation is suppressed by superoxide dismutase and H +, but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O 2 to generate a superoxide anion (O − 2) and a semiquinone radical, as supported in part by electron spin resonance measurements. O − 2 works as a stronger one-electron oxidant than O 2 against catechins and is reduced to H 2O 2. The semiquinone radical is more susceptible to oxidation with O 2 than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O − 2 and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  | 
    
| Author | Yamazaki, Shin-ichi Kano, Kenji Mochizuki, Manabu Ikeda, Tokuji  | 
    
| Author_xml | – sequence: 1 givenname: Manabu surname: Mochizuki fullname: Mochizuki, Manabu – sequence: 2 givenname: Shin-ichi surname: Yamazaki fullname: Yamazaki, Shin-ichi – sequence: 3 givenname: Kenji surname: Kano fullname: Kano, Kenji email: kkano@kais.kyoto-u.ac.jp – sequence: 4 givenname: Tokuji surname: Ikeda fullname: Ikeda, Tokuji  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11853955$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9LAzEQxYMo2qofQelJ9LA6s9kkWzyIlPoHBQ_qOaTZWYxss3WTin5701Z78NJckiG_NzO812fbvvXE2BHCOQLKi2fgUGQFSnEKeAaQc8jkFuthqfKsBJDbrLdG9lg_hHdIRwzFLttDLAUfCtFj4wfnKTo7MN4038GF9KgGU7Jvxruw_AgzsjEM2npg5rH9cpWJrvWL2pqYQOfDAdupTRPo8PfeZ68345fRXfb4dHs_un7MbCHKmGGe51yQIksgiYaqAFQSsS4UFMLmpZS8mpgaOSfLDce0f15JxZXCmgD5PjtZ9Z117cecQtRTFyw1jfHUzoNWWEghhdgIFkPguZI8gce_4HwypUrPOjc13bf-cygBlyvAdm0IHdXaurh0IHbGNRpBL_LQyzz0wmwNqJd5aJnU4p96PWCD7mqlo-Tmp6NOB-vIW6pcl9LQVes2dPgBYCifyg | 
    
| CitedBy_id | crossref_primary_10_1007_s11694_021_00909_7 crossref_primary_10_1016_j_bbrc_2010_01_112 crossref_primary_10_1021_jp211073a crossref_primary_10_1016_j_foodchem_2013_09_032 crossref_primary_10_1016_j_molliq_2018_08_056 crossref_primary_10_1016_j_saa_2006_07_036 crossref_primary_10_1016_j_ijbiomac_2024_133451 crossref_primary_10_1039_C7BM00884H crossref_primary_10_1002_elps_201200186 crossref_primary_10_1016_j_foodchem_2017_05_023 crossref_primary_10_1016_j_foodchem_2024_142208 crossref_primary_10_2488_jwrs_55_59 crossref_primary_10_1007_s11581_015_1494_z crossref_primary_10_3390_cancers16122171 crossref_primary_10_1039_B401633E crossref_primary_10_1016_j_jnutbio_2016_01_002 crossref_primary_10_1021_jf071645m crossref_primary_10_3390_molecules18010574 crossref_primary_10_3390_pr12010166 crossref_primary_10_1039_D2RA03692D crossref_primary_10_1016_j_ejps_2010_06_010 crossref_primary_10_3390_pr13010277 crossref_primary_10_3389_fchem_2018_00587 crossref_primary_10_1016_j_ijbiomac_2025_141244 crossref_primary_10_1049_iet_nbt_2016_0147 crossref_primary_10_1021_nn100988t crossref_primary_10_1016_j_mrgentox_2004_01_002 crossref_primary_10_1016_j_foodchem_2010_03_027 crossref_primary_10_1021_acsmacrolett_5b00544 crossref_primary_10_1016_j_foodres_2014_12_015 crossref_primary_10_1016_j_foodchem_2014_06_118 crossref_primary_10_1002_mnfr_200700086 crossref_primary_10_3390_ijms22020961 crossref_primary_10_3390_molecules24040787 crossref_primary_10_1016_j_foodchem_2016_08_098 crossref_primary_10_1016_j_foodchem_2020_127947 crossref_primary_10_1021_jf8012162 crossref_primary_10_1002_asia_201701364 crossref_primary_10_1021_jf102694k crossref_primary_10_1007_s11356_015_5821_8 crossref_primary_10_1016_j_postharvbio_2024_112871 crossref_primary_10_1111_ics_12051 crossref_primary_10_3390_toxins8070211 crossref_primary_10_3390_ijms20246222 crossref_primary_10_3390_molecules16053885 crossref_primary_10_3390_molecules26144255 crossref_primary_10_1016_j_lfs_2014_12_025 crossref_primary_10_3390_foods10040699 crossref_primary_10_1016_j_lwt_2022_113893 crossref_primary_10_2174_2210315513666230301101049 crossref_primary_10_1016_j_molstruc_2010_11_001 crossref_primary_10_1016_j_foodchem_2021_131147 crossref_primary_10_1016_j_jcis_2025_137370 crossref_primary_10_1007_s10008_008_0601_8 crossref_primary_10_1016_j_foodchem_2011_02_038 crossref_primary_10_3390_biology13090729 crossref_primary_10_3390_molecules25184076 crossref_primary_10_1080_01694243_2020_1862450 crossref_primary_10_1016_j_foodchem_2004_09_038 crossref_primary_10_1039_D4RA00481G crossref_primary_10_1111_j_1745_4549_2012_00681_x crossref_primary_10_1021_acs_jafc_7b04137 crossref_primary_10_1016_j_foodchem_2025_143241 crossref_primary_10_1007_s10068_015_0198_5 crossref_primary_10_1038_s41598_018_31195_x crossref_primary_10_1016_j_foodchem_2010_11_044 crossref_primary_10_1021_jf505514d crossref_primary_10_3390_ph14121242 crossref_primary_10_1016_j_niox_2022_07_007 crossref_primary_10_1039_C6RA14015G crossref_primary_10_1007_s13749_014_0034_1 crossref_primary_10_1016_j_foodres_2020_109046 crossref_primary_10_1016_j_foodchem_2005_09_052 crossref_primary_10_3389_fchem_2019_00631 crossref_primary_10_1016_j_bioelechem_2009_03_009 crossref_primary_10_1016_j_jbiotec_2006_08_006 crossref_primary_10_1016_j_actbio_2015_02_002 crossref_primary_10_1080_10408398_2022_2104805 crossref_primary_10_1111_jfpp_13365 crossref_primary_10_1021_acs_jafc_9b00522 crossref_primary_10_1007_s00394_011_0230_3 crossref_primary_10_1016_j_lwt_2020_110594 crossref_primary_10_1016_j_freeradbiomed_2010_09_031 crossref_primary_10_1111_ijfs_14429 crossref_primary_10_1002_ptr_3735 crossref_primary_10_1074_jbc_M609725200 crossref_primary_10_3390_app12178710 crossref_primary_10_1016_j_gca_2020_04_016 crossref_primary_10_1515_HF_2009_043 crossref_primary_10_1007_s11746_011_1913_x crossref_primary_10_1080_01635581_2018_1495239 crossref_primary_10_1093_mutage_ger006 crossref_primary_10_1002_smll_202004975 crossref_primary_10_3389_fphys_2015_00363 crossref_primary_10_1016_j_bios_2011_07_021 crossref_primary_10_1016_j_carbpol_2010_06_007 crossref_primary_10_1016_j_aca_2004_05_038 crossref_primary_10_1039_D3FO05309A crossref_primary_10_1016_j_jphotobiol_2016_10_020 crossref_primary_10_1021_jf303177p crossref_primary_10_3390_molecules26165102 crossref_primary_10_1016_j_tiv_2018_09_001 crossref_primary_10_1002_jsfa_2660 crossref_primary_10_1271_bbb_90549 crossref_primary_10_1080_03630260600642666 crossref_primary_10_1016_j_ijbiomac_2013_03_070 crossref_primary_10_4188_jte_63_149 crossref_primary_10_1021_acs_biochem_6b01060 crossref_primary_10_3390_molecules28227514 crossref_primary_10_1016_j_freeradbiomed_2011_01_024 crossref_primary_10_1016_j_supflu_2012_12_024 crossref_primary_10_1002_star_201600195 crossref_primary_10_1016_j_ejphar_2008_08_019 crossref_primary_10_1021_acs_jafc_2c02527 crossref_primary_10_1021_ja311374b crossref_primary_10_3390_molecules25245985 crossref_primary_10_1016_j_fct_2014_02_004 crossref_primary_10_1016_j_plantsci_2020_110563 crossref_primary_10_1016_j_mimet_2011_04_010 crossref_primary_10_1517_17460441_2011_570750 crossref_primary_10_3390_molecules23071631 crossref_primary_10_3390_12102327 crossref_primary_10_1002_chem_202401762 crossref_primary_10_1016_j_jcis_2018_03_077 crossref_primary_10_1021_acs_jafc_1c04827 crossref_primary_10_1016_j_lwt_2023_114602 crossref_primary_10_1039_C6RA02131J crossref_primary_10_1016_j_cclet_2023_109060 crossref_primary_10_1097_FJC_0b013e3182550fd6 crossref_primary_10_1016_j_foodchem_2013_04_022 crossref_primary_10_4236_aces_2014_43032 crossref_primary_10_1016_j_actbio_2016_10_016 crossref_primary_10_1021_acs_jafc_2c01667 crossref_primary_10_1155_2018_2371734 crossref_primary_10_1016_j_nutres_2019_12_004 crossref_primary_10_1016_j_postharvbio_2016_10_002 crossref_primary_10_3390_antiox10101551 crossref_primary_10_1002_elan_200804271 crossref_primary_10_1016_j_electacta_2013_07_165 crossref_primary_10_1016_j_bbrep_2024_101719 crossref_primary_10_1002_mame_201100422 crossref_primary_10_1007_s00374_021_01584_y crossref_primary_10_3109_09637486_2014_931362 crossref_primary_10_1002_adma_202103677 crossref_primary_10_1016_j_fbio_2024_103695 crossref_primary_10_1016_j_jbiotec_2008_10_014 crossref_primary_10_1016_j_abb_2010_12_033 crossref_primary_10_1016_j_dental_2015_04_006 crossref_primary_10_3390_antibiotics11050681 crossref_primary_10_1002_jrs_1849 crossref_primary_10_1016_j_aca_2005_01_067 crossref_primary_10_1016_j_foodchem_2023_136446 crossref_primary_10_1016_j_phrs_2011_02_007 crossref_primary_10_1016_j_porgcoat_2019_105429 crossref_primary_10_3389_fphar_2019_00509 crossref_primary_10_1016_j_xphs_2017_06_022 crossref_primary_10_1016_S1452_3981_23_08002_1 crossref_primary_10_4236_ajps_2023_141002 crossref_primary_10_1021_acs_chemmater_7b03349 crossref_primary_10_1366_11_06533 crossref_primary_10_1016_j_freeradbiomed_2015_02_006 crossref_primary_10_1111_j_1468_2494_2010_00635_x crossref_primary_10_1002_jccs_202200164 crossref_primary_10_1016_j_abb_2006_09_003 crossref_primary_10_1002_pola_28368 crossref_primary_10_1016_j_bioelechem_2022_108199 crossref_primary_10_1016_j_foodchem_2004_12_023 crossref_primary_10_3390_antiox10111809 crossref_primary_10_1039_D1SE00984B crossref_primary_10_1016_j_matchemphys_2012_01_050 crossref_primary_10_1016_j_jwpe_2021_102519 crossref_primary_10_1016_j_talanta_2012_09_010 crossref_primary_10_1371_journal_pone_0119516 crossref_primary_10_1021_tx8001498 crossref_primary_10_1002_jbt_21932 crossref_primary_10_1016_j_snb_2013_07_095 crossref_primary_10_1016_j_freeradbiomed_2009_01_004 crossref_primary_10_1016_j_foodchem_2011_05_075 crossref_primary_10_1039_C5FO00799B crossref_primary_10_1021_acsnano_3c01940 crossref_primary_10_1016_j_fm_2021_103817 crossref_primary_10_1016_j_foodchem_2006_08_032 crossref_primary_10_1002_smll_201902123 crossref_primary_10_1016_j_actbio_2018_10_037 crossref_primary_10_1039_C6PY00228E crossref_primary_10_1016_j_cej_2010_07_020 crossref_primary_10_1016_S0003_9861_03_00111_5 crossref_primary_10_1246_bcsj_77_1201 crossref_primary_10_1021_acsomega_0c04512 crossref_primary_10_1039_D4SC06417H crossref_primary_10_1039_C4CC02961E crossref_primary_10_1016_j_bcp_2006_09_002 crossref_primary_10_1291_hypres_26_823 crossref_primary_10_1016_j_foodchem_2018_06_076 crossref_primary_10_1146_annurev_food_022510_133725 crossref_primary_10_1158_0008_5472_CAN_05_0480 crossref_primary_10_1039_c6pp00073h crossref_primary_10_3390_antiox12051126 crossref_primary_10_1039_D4TB01722F crossref_primary_10_1080_01635581_2018_1497671 crossref_primary_10_5796_electrochemistry_71_86 crossref_primary_10_1016_j_foodres_2014_07_042 crossref_primary_10_1016_j_foodchem_2012_01_018 crossref_primary_10_1002_ptr_5643 crossref_primary_10_1021_acsami_1c06674 crossref_primary_10_1016_j_snb_2012_05_020 crossref_primary_10_1039_c2jm32271d crossref_primary_10_1177_0885328217738403 crossref_primary_10_1021_jp3059189 crossref_primary_10_1039_c1pp05216k crossref_primary_10_1002_mnfr_202300052 crossref_primary_10_1016_j_biopha_2023_114589 crossref_primary_10_1021_jf204724w crossref_primary_10_1111_jfpe_12532 crossref_primary_10_1002_bip_23084 crossref_primary_10_1021_acs_biomac_7b00788 crossref_primary_10_1074_jbc_M111_268599 crossref_primary_10_1246_cl_220165 crossref_primary_10_3390_molecules23092394 crossref_primary_10_1007_s11356_023_25816_w crossref_primary_10_1515_polyeng_2019_0140 crossref_primary_10_1016_j_jpba_2016_03_048 crossref_primary_10_1080_20421338_2015_1128042 crossref_primary_10_1007_s11051_016_3652_2 crossref_primary_10_3390_ijms17121986 crossref_primary_10_1016_j_freeradbiomed_2014_03_021 crossref_primary_10_1016_j_jfca_2009_04_006 crossref_primary_10_1039_D1TB02536H crossref_primary_10_1007_s12161_015_0177_8 crossref_primary_10_1186_s13036_017_0092_1 crossref_primary_10_1271_bbb_67_2632 crossref_primary_10_1016_j_freeradbiomed_2017_09_027 crossref_primary_10_3136_fstr_22_847 crossref_primary_10_1111_ijfs_12632 crossref_primary_10_1016_j_jpba_2011_07_007 crossref_primary_10_1016_j_aca_2016_10_027 crossref_primary_10_1080_00032711003687112 crossref_primary_10_1016_j_bcp_2012_10_003 crossref_primary_10_1016_j_foodchem_2012_09_132 crossref_primary_10_4161_cib_18890 crossref_primary_10_1016_j_electacta_2013_10_122 crossref_primary_10_1039_C2FO30087G crossref_primary_10_1016_j_ijpharm_2014_08_053 crossref_primary_10_1371_journal_pone_0134690 crossref_primary_10_1021_acs_est_5b03939 crossref_primary_10_1002_cphc_200700296 crossref_primary_10_1016_j_foodchem_2024_139186 crossref_primary_10_1039_C4FO00187G crossref_primary_10_1366_10_06188 crossref_primary_10_1016_j_bbrc_2008_10_128 crossref_primary_10_1016_j_electacta_2012_02_010 crossref_primary_10_1016_j_fct_2010_03_041 crossref_primary_10_1016_j_freeradbiomed_2008_07_023 crossref_primary_10_1007_s10847_013_0297_y crossref_primary_10_1016_j_bcp_2010_05_004 crossref_primary_10_1016_j_aca_2003_12_060 crossref_primary_10_3390_gels9050368 crossref_primary_10_1016_j_jmb_2022_167855 crossref_primary_10_1002_jps_20594 crossref_primary_10_1016_j_foodchem_2021_131585 crossref_primary_10_1371_journal_pone_0060053 crossref_primary_10_1007_s00775_017_1451_6 crossref_primary_10_3390_pr9020293 crossref_primary_10_1124_pr_110_004044 crossref_primary_10_1016_j_foodchem_2018_11_109 crossref_primary_10_1007_s10068_018_0386_1 crossref_primary_10_1016_j_fbio_2013_10_005 crossref_primary_10_1016_j_orgel_2015_10_032  | 
    
| Cites_doi | 10.1111/j.1399-3054.1966.tb07082.x 10.1023/A:1004207824251 10.1126/science.172.3988.1142 10.1002/elan.1140091603 10.1271/bbb.63.1654 10.1111/j.1469-8137.1980.tb04423.x 10.1016/0891-5849(95)02089-6 10.5796/electrochemistry.69.519 10.1021/ja005906j 10.1248/bpb.21.93 10.1039/DT9760000534 10.2116/analsci.16.1013 10.1074/jbc.M008005200 10.1006/abbi.1994.1039 10.1016/0003-2697(87)90222-3 10.1039/b101442k 10.1016/0020-711X(93)90655-X 10.1006/bbrc.1997.6254 10.1177/000456329803500606 10.1023/A:1004259808322 10.1021/ac00104a005 10.1016/0891-5849(95)02227-9 10.1016/S0022-0728(97)00520-2 10.1016/0891-5849(90)90148-C 10.1016/0891-5849(95)02047-0 10.1006/abbi.1993.1047 10.1016/S0304-4165(01)00123-4 10.1016/S0031-9422(00)84683-X 10.1006/abbi.1995.1473 10.1021/jf00009a002 10.1002/9780470772119.ch12 10.1126/science.158.3802.798 10.1074/jbc.271.37.22923 10.1016/S0304-4165(97)00019-6 10.1016/S0003-2670(99)00650-9 10.1021/ja00533a029 10.1039/c39940000593 10.1016/S0378-4347(97)00412-X 10.1021/ar00072a005  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2002 Elsevier Science B.V. | 
    
| Copyright_xml | – notice: 2002 Elsevier Science B.V. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8  | 
    
| DOI | 10.1016/S0304-4165(01)00230-6 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Biology  | 
    
| EISSN | 1872-8006 | 
    
| EndPage | 44 | 
    
| ExternalDocumentID | 11853955 10_1016_S0304_4165_01_00230_6 S0304416501002306  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -~X .55 .GJ ABJNI CGR CUY CVF ECM EIF F5P H~9 NPM PKN RIG TWZ UHS X7M Y6R ZGI ~KM 7S9 L.6 7X8  | 
    
| ID | FETCH-LOGICAL-c458t-122235e7ece06ee974017611f47045c28663dbaf133ec3a313042d673771fe013 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0304-4165 0006-3002  | 
    
| IngestDate | Fri Sep 05 08:57:13 EDT 2025 Fri Sep 05 06:44:37 EDT 2025 Wed Feb 19 02:35:33 EST 2025 Thu Oct 09 00:20:40 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 23 02:29:08 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Autoxidation H 2O 2 sensor Catechin Superoxide dismutase Borate SHE, standard hydrogen electrode Cupric ion SOD, superoxide dismutase  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c458t-122235e7ece06ee974017611f47045c28663dbaf133ec3a313042d673771fe013 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 11853955 | 
    
| PQID | 49032763 | 
    
| PQPubID | 24069 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_71465655 proquest_miscellaneous_49032763 pubmed_primary_11853955 crossref_citationtrail_10_1016_S0304_4165_01_00230_6 crossref_primary_10_1016_S0304_4165_01_00230_6 elsevier_sciencedirect_doi_10_1016_S0304_4165_01_00230_6  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2002-01-15 | 
    
| PublicationDateYYYYMMDD | 2002-01-15 | 
    
| PublicationDate_xml | – month: 01 year: 2002 text: 2002-01-15 day: 15  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Biochimica et biophysica acta | 
    
| PublicationTitleAlternate | Biochim Biophys Acta | 
    
| PublicationYear | 2002 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Shoji, Freund (BIB39) 2001; 123 Halliwell, Guttenridge (BIB1) 1987; 186 Halliwell, Gutteridge, Aruoma (BIB4) 1987; 165 Ricardo da Silva, Darmon, Fernandez, Mitjavila (BIB30) 1991; 39 W.M. Dugger, Boron in plant metabolism, in: Encyclopedia of Plant Physiology, New Series, Vol. 15, Springer-Verlag, Heidelberg 1983, pp. 626–650. Uchida, Ono (BIB46) 1999; 57 Yang, Arai, Kusu (BIB9) 2001; 69 Miura, Tomita, Watanabe, Hirayama, Fukui (BIB11) 1998; 21 Cakmak, Römheld (BIB14) 1997; 193 Tsujimoto, Hashizume, Yamazaki (BIB3) 1993; 25 Hayakawa, Kimura, Maeda, Fujita, Sohmiya, Fujii, Ando (BIB12) 1997; 1336 Ikeda, Shiraichi, Senda (BIB20) 1988; 52 Salah, Miller, Paganga, Tijburg, Bolwell, Rice-Evans (BIB5) 1995; 322 J.Q. Chambers, Electrochemistry of quinones, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of the Quinonoid Compounds, Vol. 2, Part 1, John Wiley, New York, 1988, pp. 719–757. Nakayama, Enoki, Hashimoto (BIB10) 1995; 1 Lewis (BIB45) 1980; 84 Sawyer, Valentine (BIB27) 1981; 14 Zhang, Bandy, Davison (BIB34) 1996; 20 Matoh (BIB42) 1997; 193 Kinoshita, Torimura, Kano, Ikeda (BIB18) 1997; 9 potassium nitrate, J. Chem. Soc. Dalton (1976) 534–541. Hayakawa, Kimura, Hoshino, Ando (BIB13) 1999; 63 Kinoshita, Torimura, Kano, Ikeda (BIB19) 1998; 35 Böeseken (BIB37) 1949; 4 Li, Trush (BIB17) 1993; 300 R.F. Jameson, N.J. Blackburn, Role of copper dimers and the participation of copper(III) in the copper-catalysed autooxidation of ascorbic acid. Part II. Kinetics and mechanism in 0.100 mol dm Mason, Wasserman (BIB15) 1987; 26 Nanni, Stallings, Sawyer (BIB29) 1980; 102 Parker (BIB22) 1973; 4 Tatsumi, Nakase, Kano, Ikeda (BIB26) 1998; 443 Rajaratnam, Lowry, Avadhani, Corley (BIB16) 1971; 172 Tsuchiya, Sato, Kato, Okubo, Juneja, Kim (BIB38) 1997; 703 van Acker, van den Berg, Tromp, Griffioen, van Bennekom, van der Vijgh, Bast (BIB8) 1996; 20 Rae, Torres, Pufahl, O’Halloran (BIB28) 2001; 276 K. Kano, T. Mabuchi, B. Uno, Y. Esaka, T. Tanaka, M. Iinuma, Superoxide anion radical-induced dioxygenolysis of quercetin as a mimic of quercetinase, J. Chem. Soc. Chem. Commun. (1994) 593–594. Lee, Whittle, Dyer (BIB41) 1966; 19 Miller, Buettner, Aust (BIB35) 1990; 8 O’Neill, Warrenfeltz, Kates, Pellerin, Doco, Darvill, Albersheim (BIB43) 1996; 271 Hotta, Sakamoto, Nagano, Osakai, Tsujino (BIB25) 2001; 1526 Rice-Evans, Miller, Paganga (BIB2) 1996; 20 Yang, Janle, Huang, Gitzen, Kissinger, Vreeke, Heller (BIB21) 1995; 67 Lee (BIB44) 1967; 158 Terao, Piskula, Yao (BIB6) 1994; 308 Yamamoto, Ohgaru, Torimura, Kinoshita, Kano, Ikeda (BIB23) 2000; 406 Kano, Ikeda (BIB24) 2000; 16 Pannala, Rice-Evans, Halliwell, Singh (BIB7) 1997; 232 Shul’pin, Kozlov, Nizova, Süss-Fink, Stanislas, Kitaygorodskiy, Kulikova (BIB36) 2001; 2 Halliwell (10.1016/S0304-4165(01)00230-6_BIB4) 1987; 165 Miura (10.1016/S0304-4165(01)00230-6_BIB11) 1998; 21 10.1016/S0304-4165(01)00230-6_BIB31 Lewis (10.1016/S0304-4165(01)00230-6_BIB45) 1980; 84 Yang (10.1016/S0304-4165(01)00230-6_BIB21) 1995; 67 Hotta (10.1016/S0304-4165(01)00230-6_BIB25) 2001; 1526 Pannala (10.1016/S0304-4165(01)00230-6_BIB7) 1997; 232 Ikeda (10.1016/S0304-4165(01)00230-6_BIB20) 1988; 52 Rice-Evans (10.1016/S0304-4165(01)00230-6_BIB2) 1996; 20 Lee (10.1016/S0304-4165(01)00230-6_BIB44) 1967; 158 Nakayama (10.1016/S0304-4165(01)00230-6_BIB10) 1995; 1 Salah (10.1016/S0304-4165(01)00230-6_BIB5) 1995; 322 Li (10.1016/S0304-4165(01)00230-6_BIB17) 1993; 300 10.1016/S0304-4165(01)00230-6_BIB32 Terao (10.1016/S0304-4165(01)00230-6_BIB6) 1994; 308 Parker (10.1016/S0304-4165(01)00230-6_BIB22) 1973; 4 10.1016/S0304-4165(01)00230-6_BIB33 Rajaratnam (10.1016/S0304-4165(01)00230-6_BIB16) 1971; 172 Ricardo da Silva (10.1016/S0304-4165(01)00230-6_BIB30) 1991; 39 Tsuchiya (10.1016/S0304-4165(01)00230-6_BIB38) 1997; 703 Matoh (10.1016/S0304-4165(01)00230-6_BIB42) 1997; 193 Uchida (10.1016/S0304-4165(01)00230-6_BIB46) 1999; 57 Cakmak (10.1016/S0304-4165(01)00230-6_BIB14) 1997; 193 Kano (10.1016/S0304-4165(01)00230-6_BIB24) 2000; 16 O’Neill (10.1016/S0304-4165(01)00230-6_BIB43) 1996; 271 Yamamoto (10.1016/S0304-4165(01)00230-6_BIB23) 2000; 406 Böeseken (10.1016/S0304-4165(01)00230-6_BIB37) 1949; 4 Rae (10.1016/S0304-4165(01)00230-6_BIB28) 2001; 276 10.1016/S0304-4165(01)00230-6_BIB40 Yang (10.1016/S0304-4165(01)00230-6_BIB9) 2001; 69 Mason (10.1016/S0304-4165(01)00230-6_BIB15) 1987; 26 Hayakawa (10.1016/S0304-4165(01)00230-6_BIB13) 1999; 63 Shul’pin (10.1016/S0304-4165(01)00230-6_BIB36) 2001; 2 Shoji (10.1016/S0304-4165(01)00230-6_BIB39) 2001; 123 Zhang (10.1016/S0304-4165(01)00230-6_BIB34) 1996; 20 Kinoshita (10.1016/S0304-4165(01)00230-6_BIB18) 1997; 9 Kinoshita (10.1016/S0304-4165(01)00230-6_BIB19) 1998; 35 Nanni (10.1016/S0304-4165(01)00230-6_BIB29) 1980; 102 Hayakawa (10.1016/S0304-4165(01)00230-6_BIB12) 1997; 1336 Tsujimoto (10.1016/S0304-4165(01)00230-6_BIB3) 1993; 25 Halliwell (10.1016/S0304-4165(01)00230-6_BIB1) 1987; 186 Sawyer (10.1016/S0304-4165(01)00230-6_BIB27) 1981; 14 Miller (10.1016/S0304-4165(01)00230-6_BIB35) 1990; 8 van Acker (10.1016/S0304-4165(01)00230-6_BIB8) 1996; 20 Tatsumi (10.1016/S0304-4165(01)00230-6_BIB26) 1998; 443 Lee (10.1016/S0304-4165(01)00230-6_BIB41) 1966; 19  | 
    
| References_xml | – volume: 172 start-page: 1142 year: 1971 end-page: 1143 ident: BIB16 article-title: Boron: possible role in plant metabolism publication-title: Science – volume: 69 start-page: 519 year: 2001 end-page: 525 ident: BIB9 article-title: Oxidation potentials of flavonoids determined by flow-through column electrolysis publication-title: Electrochemistry – volume: 25 start-page: 491 year: 1993 end-page: 494 ident: BIB3 article-title: Superoxide radical scavenging activity of phenolic compounds publication-title: Int. J. Biochem. – volume: 16 start-page: 1013 year: 2000 end-page: 1021 ident: BIB24 article-title: Fundamentals and practices of mediated bioelectrocatalysis publication-title: Anal. Sci. – volume: 8 start-page: 95 year: 1990 end-page: 108 ident: BIB35 article-title: Transition metals as catalysts of ‘autoxidation’ reactions publication-title: Free Radic. Biol. Med. – volume: 9 start-page: 1234 year: 1997 end-page: 1238 ident: BIB18 article-title: Peroxidase-based amperometric sensor of hydrogen peroxide generated in oxidase reaction: application to creatinine and creatine assay publication-title: Electroanalysis – volume: 703 start-page: 253 year: 1997 end-page: 258 ident: BIB38 article-title: Simultaneous determination of catechins in human saliva by high-performance liquid chromatography publication-title: J. Chromatogr. B Biomed. Sci. Appl. – volume: 35 start-page: 739 year: 1998 end-page: 744 ident: BIB19 article-title: Amperometric determination of high-density lipoprotein cholesterol using polyethylene glycol-modified enzymes and a peroxidase-entrapped electrode publication-title: Ann. Clin. Biochem. – volume: 4 start-page: 426 year: 1973 end-page: 432 ident: BIB22 article-title: Hydrometallurgy of copper and silver in solvent mixtures publication-title: Search – volume: 1 start-page: 65 year: 1995 end-page: 69 ident: BIB10 article-title: Hydrogen peroxide formation during catechin oxidation is inhibited by superoxide dismutase publication-title: Food Sci. Technol. Int. – volume: 406 start-page: 201 year: 2000 end-page: 207 ident: BIB23 article-title: Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry publication-title: Anal. Chim. Acta – volume: 1336 start-page: 123 year: 1997 end-page: 131 ident: BIB12 article-title: DNA cleavage reaction and linoleic acid peroxidation induced by tea catechins in the presence of cupric ion publication-title: Biochim. Biophys. Acta – volume: 300 start-page: 346 year: 1993 end-page: 355 ident: BIB17 article-title: Oxidation of hydroquinone by copper: chemical mechanism and biological effects publication-title: Arch. Biochem. Biophys. – reference: K. Kano, T. Mabuchi, B. Uno, Y. Esaka, T. Tanaka, M. Iinuma, Superoxide anion radical-induced dioxygenolysis of quercetin as a mimic of quercetinase, J. Chem. Soc. Chem. Commun. (1994) 593–594. – volume: 2 start-page: 1351 year: 2001 end-page: 1371 ident: BIB36 article-title: Oxidations by the reagent ‘O publication-title: J. Chem. Soc. Perkin Trans. – volume: 123 start-page: 3383 year: 2001 end-page: 3384 ident: BIB39 article-title: Potentiometric sensors based on the inductive effect on the p publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 93 year: 1998 end-page: 96 ident: BIB11 article-title: Active oxygen generation by flavonoids publication-title: Biol. Pharm. Bull. – reference: R.F. Jameson, N.J. Blackburn, Role of copper dimers and the participation of copper(III) in the copper-catalysed autooxidation of ascorbic acid. Part II. Kinetics and mechanism in 0.100 mol dm – volume: 19 start-page: 919 year: 1966 end-page: 924 ident: BIB41 article-title: Boron deficiency and translocation profiles in sunflower publication-title: Physiol. Plant. – volume: 158 start-page: 798 year: 1967 end-page: 799 ident: BIB44 article-title: Boron in plants: a biochemical role publication-title: Science – volume: 193 start-page: 71 year: 1997 end-page: 83 ident: BIB14 article-title: Boron deficiency-induced impairments of cellular functions in plants publication-title: Plant Soil – volume: 26 start-page: 2197 year: 1987 end-page: 2202 ident: BIB15 article-title: Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds publication-title: Phytochemistry – volume: 276 start-page: 5166 year: 2001 end-page: 5176 ident: BIB28 article-title: Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS publication-title: J. Biol. Chem. – volume: 193 start-page: 59 year: 1997 end-page: 69 ident: BIB42 article-title: Boron in plant cell walls publication-title: Plant Soil – volume: 443 start-page: 236 year: 1998 end-page: 242 ident: BIB26 article-title: Mechanistic study of the autoxidation of reduced flavin and quinone compounds publication-title: J. Electroanal. Chem. – volume: 52 start-page: 3187 year: 1988 end-page: 3188 ident: BIB20 article-title: An efficient method for entrapping ionic mediators in the enzyme layer of mediated amperometric biosensors publication-title: Agric. Biol. Chem. – volume: 271 start-page: 22923 year: 1996 end-page: 22930 ident: BIB43 article-title: Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester publication-title: J. Biol. Chem. – volume: 39 start-page: 1549 year: 1991 end-page: 1552 ident: BIB30 article-title: Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds publication-title: J. Agric. Food Chem. – reference: W.M. Dugger, Boron in plant metabolism, in: Encyclopedia of Plant Physiology, New Series, Vol. 15, Springer-Verlag, Heidelberg 1983, pp. 626–650. – volume: 232 start-page: 164 year: 1997 end-page: 168 ident: BIB7 article-title: Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols publication-title: Biochem. Biophys. Res. Commun. – reference: potassium nitrate, J. Chem. Soc. Dalton (1976) 534–541. – volume: 63 start-page: 1654 year: 1999 end-page: 1656 ident: BIB13 article-title: DNA cleavage activities of (−)-epigallocatechin, (−)-epicatechin, (+)-catechin, and (−)-epigallocatechin gallate with various kind of metal ions publication-title: Biosci. Biotechnol. Biochem. – reference: J.Q. Chambers, Electrochemistry of quinones, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of the Quinonoid Compounds, Vol. 2, Part 1, John Wiley, New York, 1988, pp. 719–757. – volume: 4 start-page: 189 year: 1949 end-page: 210 ident: BIB37 article-title: The use of boric acid for the determination of the configuration of carbohydrates publication-title: Adv. Carbohydr. Chem. – volume: 67 start-page: 1326 year: 1995 end-page: 1331 ident: BIB21 article-title: Applications of ‘wired’ peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors publication-title: Anal. Chem. – volume: 186 start-page: 1 year: 1987 end-page: 85 ident: BIB1 article-title: Role of free radicals and catalytic metal ions in human disease: an overview publication-title: Methods Enzymol. – volume: 322 start-page: 339 year: 1995 end-page: 346 ident: BIB5 article-title: Polyphenolic flavenols as scavengers of aqueous phase radicals and as chain-breaking antioxidants publication-title: Arch. Biochem. Biophys. – volume: 308 start-page: 278 year: 1994 end-page: 284 ident: BIB6 article-title: Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers publication-title: Arch. Biochem. Biophys. – volume: 20 start-page: 331 year: 1996 end-page: 342 ident: BIB8 article-title: Structural aspects of antioxidant activity of flavonoids publication-title: Free Radic. Biol. Med. – volume: 14 start-page: 393 year: 1981 end-page: 400 ident: BIB27 article-title: How super is superoxide? publication-title: Acc. Chem. Res. – volume: 20 start-page: 933 year: 1996 end-page: 956 ident: BIB2 article-title: Structure-antioxidant activity relationships of flavonoids and phenolic acids publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 495 year: 1996 end-page: 505 ident: BIB34 article-title: Effects of metals, ligands and antioxidants on the reaction of oxygen with 1,2,4-benzenetriol publication-title: Free Radic. Biol. Med. – volume: 165 start-page: 215 year: 1987 end-page: 219 ident: BIB4 article-title: The deoxyribose method: a simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals publication-title: Anal. Biochem. – volume: 84 start-page: 209 year: 1980 end-page: 229 ident: BIB45 article-title: Boron, lignification and the origin of vascular plants – a unified hypothesis publication-title: New Phytol. – volume: 1526 start-page: 159 year: 2001 end-page: 167 ident: BIB25 article-title: Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants publication-title: Biochim. Biophys. Acta – volume: 102 start-page: 4481 year: 1980 end-page: 4485 ident: BIB29 article-title: Does superoxide ion oxidize catechol, α-tocopherol, and ascorbic acid by direct electron transfer? publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 145 year: 1999 end-page: 150 ident: BIB46 article-title: Determination of hydrogen peroxide in beer and its role in beer oxidation publication-title: J. Am. Soc. Brew. Chem. – volume: 19 start-page: 919 year: 1966 ident: 10.1016/S0304-4165(01)00230-6_BIB41 article-title: Boron deficiency and translocation profiles in sunflower publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1966.tb07082.x – volume: 193 start-page: 59 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB42 article-title: Boron in plant cell walls publication-title: Plant Soil doi: 10.1023/A:1004207824251 – volume: 172 start-page: 1142 year: 1971 ident: 10.1016/S0304-4165(01)00230-6_BIB16 article-title: Boron: possible role in plant metabolism publication-title: Science doi: 10.1126/science.172.3988.1142 – volume: 9 start-page: 1234 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB18 article-title: Peroxidase-based amperometric sensor of hydrogen peroxide generated in oxidase reaction: application to creatinine and creatine assay publication-title: Electroanalysis doi: 10.1002/elan.1140091603 – volume: 4 start-page: 189 year: 1949 ident: 10.1016/S0304-4165(01)00230-6_BIB37 article-title: The use of boric acid for the determination of the configuration of carbohydrates publication-title: Adv. Carbohydr. Chem. – volume: 63 start-page: 1654 year: 1999 ident: 10.1016/S0304-4165(01)00230-6_BIB13 article-title: DNA cleavage activities of (−)-epigallocatechin, (−)-epicatechin, (+)-catechin, and (−)-epigallocatechin gallate with various kind of metal ions publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.63.1654 – volume: 84 start-page: 209 year: 1980 ident: 10.1016/S0304-4165(01)00230-6_BIB45 article-title: Boron, lignification and the origin of vascular plants – a unified hypothesis publication-title: New Phytol. doi: 10.1111/j.1469-8137.1980.tb04423.x – volume: 20 start-page: 495 year: 1996 ident: 10.1016/S0304-4165(01)00230-6_BIB34 article-title: Effects of metals, ligands and antioxidants on the reaction of oxygen with 1,2,4-benzenetriol publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(95)02089-6 – volume: 69 start-page: 519 year: 2001 ident: 10.1016/S0304-4165(01)00230-6_BIB9 article-title: Oxidation potentials of flavonoids determined by flow-through column electrolysis publication-title: Electrochemistry doi: 10.5796/electrochemistry.69.519 – volume: 123 start-page: 3383 year: 2001 ident: 10.1016/S0304-4165(01)00230-6_BIB39 article-title: Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): a nonenzymatic glucose sensor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja005906j – volume: 21 start-page: 93 year: 1998 ident: 10.1016/S0304-4165(01)00230-6_BIB11 article-title: Active oxygen generation by flavonoids publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.21.93 – ident: 10.1016/S0304-4165(01)00230-6_BIB33 doi: 10.1039/DT9760000534 – volume: 16 start-page: 1013 year: 2000 ident: 10.1016/S0304-4165(01)00230-6_BIB24 article-title: Fundamentals and practices of mediated bioelectrocatalysis publication-title: Anal. Sci. doi: 10.2116/analsci.16.1013 – volume: 276 start-page: 5166 year: 2001 ident: 10.1016/S0304-4165(01)00230-6_BIB28 article-title: Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS publication-title: J. Biol. Chem. doi: 10.1074/jbc.M008005200 – volume: 57 start-page: 145 year: 1999 ident: 10.1016/S0304-4165(01)00230-6_BIB46 article-title: Determination of hydrogen peroxide in beer and its role in beer oxidation publication-title: J. Am. Soc. Brew. Chem. – volume: 308 start-page: 278 year: 1994 ident: 10.1016/S0304-4165(01)00230-6_BIB6 article-title: Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1994.1039 – volume: 165 start-page: 215 year: 1987 ident: 10.1016/S0304-4165(01)00230-6_BIB4 article-title: The deoxyribose method: a simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals publication-title: Anal. Biochem. doi: 10.1016/0003-2697(87)90222-3 – volume: 2 start-page: 1351 year: 2001 ident: 10.1016/S0304-4165(01)00230-6_BIB36 article-title: Oxidations by the reagent ‘O2-H2O2-vanadium derivative-pyrazine-2-carboxylic acid’ Part 12. Main features, kinetics and mechanism of alkane hydroperoxidation publication-title: J. Chem. Soc. Perkin Trans. doi: 10.1039/b101442k – volume: 25 start-page: 491 year: 1993 ident: 10.1016/S0304-4165(01)00230-6_BIB3 article-title: Superoxide radical scavenging activity of phenolic compounds publication-title: Int. J. Biochem. doi: 10.1016/0020-711X(93)90655-X – volume: 232 start-page: 164 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB7 article-title: Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6254 – volume: 35 start-page: 739 year: 1998 ident: 10.1016/S0304-4165(01)00230-6_BIB19 article-title: Amperometric determination of high-density lipoprotein cholesterol using polyethylene glycol-modified enzymes and a peroxidase-entrapped electrode publication-title: Ann. Clin. Biochem. doi: 10.1177/000456329803500606 – volume: 193 start-page: 71 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB14 article-title: Boron deficiency-induced impairments of cellular functions in plants publication-title: Plant Soil doi: 10.1023/A:1004259808322 – volume: 52 start-page: 3187 year: 1988 ident: 10.1016/S0304-4165(01)00230-6_BIB20 article-title: An efficient method for entrapping ionic mediators in the enzyme layer of mediated amperometric biosensors publication-title: Agric. Biol. Chem. – volume: 67 start-page: 1326 year: 1995 ident: 10.1016/S0304-4165(01)00230-6_BIB21 article-title: Applications of ‘wired’ peroxidase electrodes for peroxide determination in liquid chromatography coupled to oxidase immobilized enzyme reactors publication-title: Anal. Chem. doi: 10.1021/ac00104a005 – volume: 20 start-page: 933 year: 1996 ident: 10.1016/S0304-4165(01)00230-6_BIB2 article-title: Structure-antioxidant activity relationships of flavonoids and phenolic acids publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(95)02227-9 – volume: 186 start-page: 1 year: 1987 ident: 10.1016/S0304-4165(01)00230-6_BIB1 article-title: Role of free radicals and catalytic metal ions in human disease: an overview publication-title: Methods Enzymol. – volume: 443 start-page: 236 year: 1998 ident: 10.1016/S0304-4165(01)00230-6_BIB26 article-title: Mechanistic study of the autoxidation of reduced flavin and quinone compounds publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(97)00520-2 – volume: 8 start-page: 95 year: 1990 ident: 10.1016/S0304-4165(01)00230-6_BIB35 article-title: Transition metals as catalysts of ‘autoxidation’ reactions publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(90)90148-C – volume: 20 start-page: 331 year: 1996 ident: 10.1016/S0304-4165(01)00230-6_BIB8 article-title: Structural aspects of antioxidant activity of flavonoids publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(95)02047-0 – volume: 300 start-page: 346 year: 1993 ident: 10.1016/S0304-4165(01)00230-6_BIB17 article-title: Oxidation of hydroquinone by copper: chemical mechanism and biological effects publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1993.1047 – volume: 1526 start-page: 159 year: 2001 ident: 10.1016/S0304-4165(01)00230-6_BIB25 article-title: Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(01)00123-4 – volume: 26 start-page: 2197 year: 1987 ident: 10.1016/S0304-4165(01)00230-6_BIB15 article-title: Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)84683-X – volume: 322 start-page: 339 year: 1995 ident: 10.1016/S0304-4165(01)00230-6_BIB5 article-title: Polyphenolic flavenols as scavengers of aqueous phase radicals and as chain-breaking antioxidants publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1995.1473 – volume: 4 start-page: 426 year: 1973 ident: 10.1016/S0304-4165(01)00230-6_BIB22 article-title: Hydrometallurgy of copper and silver in solvent mixtures publication-title: Search – volume: 39 start-page: 1549 year: 1991 ident: 10.1016/S0304-4165(01)00230-6_BIB30 article-title: Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds publication-title: J. Agric. Food Chem. doi: 10.1021/jf00009a002 – ident: 10.1016/S0304-4165(01)00230-6_BIB32 doi: 10.1002/9780470772119.ch12 – volume: 158 start-page: 798 year: 1967 ident: 10.1016/S0304-4165(01)00230-6_BIB44 article-title: Boron in plants: a biochemical role publication-title: Science doi: 10.1126/science.158.3802.798 – ident: 10.1016/S0304-4165(01)00230-6_BIB40 – volume: 271 start-page: 22923 year: 1996 ident: 10.1016/S0304-4165(01)00230-6_BIB43 article-title: Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22923 – volume: 1336 start-page: 123 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB12 article-title: DNA cleavage reaction and linoleic acid peroxidation induced by tea catechins in the presence of cupric ion publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(97)00019-6 – volume: 406 start-page: 201 year: 2000 ident: 10.1016/S0304-4165(01)00230-6_BIB23 article-title: Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(99)00650-9 – volume: 102 start-page: 4481 year: 1980 ident: 10.1016/S0304-4165(01)00230-6_BIB29 article-title: Does superoxide ion oxidize catechol, α-tocopherol, and ascorbic acid by direct electron transfer? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00533a029 – ident: 10.1016/S0304-4165(01)00230-6_BIB31 doi: 10.1039/c39940000593 – volume: 1 start-page: 65 year: 1995 ident: 10.1016/S0304-4165(01)00230-6_BIB10 article-title: Hydrogen peroxide formation during catechin oxidation is inhibited by superoxide dismutase publication-title: Food Sci. Technol. Int. – volume: 703 start-page: 253 year: 1997 ident: 10.1016/S0304-4165(01)00230-6_BIB38 article-title: Simultaneous determination of catechins in human saliva by high-performance liquid chromatography publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(97)00412-X – volume: 14 start-page: 393 year: 1981 ident: 10.1016/S0304-4165(01)00230-6_BIB27 article-title: How super is superoxide? publication-title: Acc. Chem. Res. doi: 10.1021/ar00072a005  | 
    
| SSID | ssj0000595 ssj0025309  | 
    
| Score | 2.2150965 | 
    
| Snippet | A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H
2O
2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic... A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and... A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H2O2) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 35 | 
    
| SubjectTerms | Antioxidants - chemistry Autoxidation Benzoquinones - chemistry Borate Borates - chemistry Catechin Catechin - analogs & derivatives Catechin - chemistry Cations, Divalent Copper - chemistry Cupric ion diet-related diseases Electron Spin Resonance Spectroscopy food composition food quality H 2O 2 sensor human nutrition Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Models, Chemical Oxidation-Reduction Oxygen - chemistry Quality Control Superoxide dismutase  | 
    
| Title | Kinetic analysis and mechanistic aspects of autoxidation of catechins | 
    
| URI | https://dx.doi.org/10.1016/S0304-4165(01)00230-6 https://www.ncbi.nlm.nih.gov/pubmed/11853955 https://www.proquest.com/docview/49032763 https://www.proquest.com/docview/71465655  | 
    
| Volume | 1569 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: ACRLP dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIKHN dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025309 issn: 0304-4165 databaseCode: AKRWK dateStart: 19470101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AKRWK dateStart: 19640113 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2FRKhcEIW2BErYQw_04MTe2PtxjCKi0AgObRHcLNvxSpEgQU0iwaW_vTPeXaIeIiROu2vZljVjzTyvZ-YBfCtymzm0iHg28YZJ4xzLM2MYR2gaCtQlgbTv-iYZ38of9-q-AcM6F4bCKivbX9r0YK2rll4lzd7TbNb7RZd6CCcUFyWQ3oEW-p8sa0JrcDUZ32wMsgrkK9Sf0YBNIk85SWi84OJ7mIcl21zUNggaXNHoAPYrDBkNymV-hIafH8JuySr5cggfhjWJ2xFcThBFYrfIVMVH8GUaPXrK9w0lmiMTci2X0aKIzHq1eJ6VJEv0TcFSFGq5_AS3o8vfwzGrmBOYkypbMUFeX_nUO88T73Oi3UsTIQqZIoRzcYYqmFpT4AHVu77pC_qpMSXKmlQUHlHhZ2jOF3N_DFHupeGOJ7GxqZS2sHHRt8LaOOMWsVPeBlkLS7uqrDixWzzoTfwYzq5JxpoLHWSskzZ0X4c9lXU13hqQ1ZrQ_20Qjbb_raHnteY0ip9uRMzcL9ZLLXPej9HCbu-RCioop1QbvpQq36yWkE6u1Mn7F3YKe4Fchgsm1Fdorv6s_RlinJXtwE73r-hUO5mek593k39V__MM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSyMxFH-oi-hF_Fi1uuoc9rB7iE2myXwcpSj186KCt5CkGShoW2wLevFv971kZsseiuBtEpIQ3gsvv8z7-AH8rkpbOLSI-DbxhknjHCsLYxhHaBoK1GWBtO_2Lus9yqsn9bQE3SYXhsIqa9sfbXqw1nVPu5ZmezwYtO_JqYdwQnERgfQy_JAqzekFdvoxj_NA_KCiK0EyGj5P44lLhM4_XPwNq7Bs0QW1CICGi-hiEzZqBJmcxU1uwZIfbsNq5JR834a1bkPhtgPn14ghcVhi6tIj-NFPXjxl-4YCzYkJmZaTZFQlZjYdvQ0ixRK1KVSKAi0nP-Hx4vyh22M1bwJzUhVTJujOVz73zvPM-5JI9_JMiErmCOBcWqAC-tZU-Dz1rmM6gn5p9ImwJheVR0y4CyvD0dDvQ1J6abjjWWpsLqWtbFp1rLA2LbhF5FS2QDbC0q4uKk7cFs96Hj2Gq2uSseZCBxnrrAWn_6aNY1WNryYUjSb0f8dDo-X_aupJozmN4id_iBn60WyiZck7KdrXxSNyQeXklGrBXlT5fLeEc0qlDr6_sRNY6z3c3uiby7vrQ1gPNDNcMKF-wcr0deaPEO1M7XE4zZ-26fIx | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+analysis+and+mechanistic+aspects+of+autoxidation+of+catechins&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Mochizuki%2C+Manabu&rft.au=Yamazaki%2C+Shin-ichi&rft.au=Kano%2C+Kenji&rft.au=Ikeda%2C+Tokuji&rft.date=2002-01-15&rft.issn=0006-3002&rft.volume=1569&rft.issue=1-3&rft.spage=35&rft_id=info:doi/10.1016%2FS0304-4165%2801%2900230-6&rft_id=info%3Apmid%2F11853955&rft.externalDocID=11853955 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |