Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions

► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific soluti...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 221; pp. 487 - 491
Main Authors Pérez Guerrero, J.S., Pontedeiro, E.M., van Genuchten, M.Th, Skaggs, T.H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2013.01.095

Cover

Abstract ► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific solutions from the literature. Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions.
AbstractList Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions.
► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific solutions from the literature. Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions.
Author van Genuchten, M.Th
Pérez Guerrero, J.S.
Pontedeiro, E.M.
Skaggs, T.H.
Author_xml – sequence: 1
  givenname: J.S.
  surname: Pérez Guerrero
  fullname: Pérez Guerrero, J.S.
  organization: Radioactive Waste Division, Brazilian Nuclear Energy Commission, DIREJ/DRS/CNEN, Rio de Janeiro, Brazil
– sequence: 2
  givenname: E.M.
  surname: Pontedeiro
  fullname: Pontedeiro, E.M.
  organization: Department of Nuclear Engineering, POLI&COPPE, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
– sequence: 3
  givenname: M.Th
  surname: van Genuchten
  fullname: van Genuchten, M.Th
  organization: Department of Mechanical Engineering, COPPE/LTTC, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
– sequence: 4
  givenname: T.H.
  surname: Skaggs
  fullname: Skaggs, T.H.
  email: Todd.Skaggs@ars.usda.gov
  organization: US Salinity Laboratory, USDA-ARS, Riverside, CA, USA
BookMark eNp9kb1u3iAUhq0qlZqkuYBMZexiF4wxtjpFUf-kSB2SzAjDcYvlDxzAkbJl7to77JX0-HOnDpk4Oud9z8_DWXHig4eiuGS0YpS1H6bKwFTVlPGKsor24lVxyjrJS16z-gRj3omy6xv5pjhLaaKUtj3rT4tfV17PT9kZPZMU5jW74BMJI8k_geCI0roD-IRZFGj7CGZT_Hn-bV1aIG6F3QckR-3TEmIm8LDqfKysw4QOkgPJ2Ke0sIC34DMZwuqtjk_EBG_dcerb4vWo5wQX_97z4v7zp7vrr-XN9y_frq9uStMImctOUlOD1UICCNpL6IBx0WJGMslb1nQ1HQbOmamNoYJ1GsRQN0PbIAo-Gn5evN_7LjE8rJCyOrhkYJ61h7AmxdqWtw0TLUWp3KUmhpQijMq4fDwNj3WzYlRt9NWkkL7a6CvKFNJHJ_vPuUR3wINf9LzbPaMOSv-ILqn7WxQI_K0eN9r2-bgrAPk8OogqGQfegHUROSsb3Av9_wJKzK1X
CitedBy_id crossref_primary_10_1016_j_colsurfb_2014_06_063
crossref_primary_10_1103_PhysRevFluids_6_044501
crossref_primary_10_1515_zna_2020_0106
crossref_primary_10_1080_00207179_2023_2297982
crossref_primary_10_1016_j_advwatres_2023_104419
crossref_primary_10_1080_27690911_2022_2138867
crossref_primary_10_1016_j_ijleo_2022_170483
crossref_primary_10_1061__ASCE_EE_1943_7870_0002031
crossref_primary_10_1088_1361_6560_aa9631
crossref_primary_10_1007_s10652_018_9588_6
crossref_primary_10_1061__ASCE_HE_1943_5584_0001806
crossref_primary_10_1007_s11581_020_03777_1
crossref_primary_10_1016_j_jhydrol_2018_08_041
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_133
crossref_primary_10_1016_j_jhydrol_2016_09_027
crossref_primary_10_11948_20200383
crossref_primary_10_1590_0104_6632_20170344s20160044
crossref_primary_10_1061__ASCE_EM_1943_7889_0000948
crossref_primary_10_1016_j_jhydrol_2023_129287
crossref_primary_10_1016_j_gsd_2021_100691
crossref_primary_10_3390_soilsystems2030040
crossref_primary_10_1016_j_jhydrol_2025_132977
crossref_primary_10_1142_S0217979223500893
crossref_primary_10_1038_s41598_023_46853_y
crossref_primary_10_1016_j_jhydrol_2016_11_002
crossref_primary_10_3390_w15081530
crossref_primary_10_1016_j_cej_2014_07_051
crossref_primary_10_1061_JENMDT_EMENG_6703
crossref_primary_10_1155_2024_5541066
crossref_primary_10_1134_S0965542516010103
crossref_primary_10_1007_s10040_022_02572_8
crossref_primary_10_1002_mma_9937
crossref_primary_10_1016_j_apm_2024_01_049
crossref_primary_10_1177_09544089221116165
crossref_primary_10_1007_s10040_020_02135_9
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_128
crossref_primary_10_5194_hess_20_733_2016
crossref_primary_10_3390_app14114686
crossref_primary_10_1061__ASCE_HE_1943_5584_0001035
crossref_primary_10_1016_j_cej_2021_128745
crossref_primary_10_1115_1_4040603
crossref_primary_10_1016_j_cej_2017_08_031
crossref_primary_10_2166_ws_2021_010
crossref_primary_10_3390_su13147796
crossref_primary_10_3390_app13074536
crossref_primary_10_1002_mma_7225
crossref_primary_10_1680_jenge_22_00186
crossref_primary_10_3390_en12193740
crossref_primary_10_1016_j_compgeo_2023_105713
crossref_primary_10_1007_s00244_021_00851_1
crossref_primary_10_1016_j_cej_2021_132812
crossref_primary_10_1016_j_compfluid_2014_11_006
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125854
crossref_primary_10_1016_j_jwpe_2024_105670
crossref_primary_10_1016_j_scitotenv_2018_08_413
crossref_primary_10_1016_j_jhydrol_2022_128633
crossref_primary_10_17776_csj_1258286
crossref_primary_10_1007_s11581_021_04332_2
crossref_primary_10_1038_s41598_021_87397_3
crossref_primary_10_1016_j_compgeo_2015_05_002
crossref_primary_10_1515_johh_2017_0013
crossref_primary_10_1029_2020WR027967
crossref_primary_10_1007_s12665_019_8748_4
crossref_primary_10_1016_j_jhydrol_2016_05_069
crossref_primary_10_1080_09715010_2018_1453879
crossref_primary_10_1155_2019_1941426
crossref_primary_10_1016_j_jhydrol_2014_11_061
crossref_primary_10_1016_j_scitotenv_2023_165731
crossref_primary_10_1029_2019WR026822
crossref_primary_10_1016_j_cej_2019_121984
crossref_primary_10_2166_ws_2019_131
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_018
crossref_primary_10_1007_s11356_020_07841_1
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569
crossref_primary_10_1080_00986445_2023_2284720
Cites_doi 10.1016/0009-2509(62)85002-7
10.1029/1998WR900003
10.1029/2000WR900239
10.1016/j.jhydrol.2011.12.001
10.1029/WR026i002p00339
10.1016/j.jhydrol.2012.06.017
10.1016/j.cej.2010.11.047
10.1029/93WR00496
10.1029/91WR01912
10.2113/4.1.206
10.5194/hess-15-2471-2011
10.1007/s11242-009-9368-3
10.1016/0022-1694(77)90100-7
10.1090/S0002-9904-1942-07655-5
10.1016/j.ijheatmasstransfer.2009.02.002
10.2136/sssaj1984.03615995004800040002x
10.1016/S0169-7722(00)00195-9
10.1016/j.jconhyd.2012.10.001
10.1021/es60007a001
10.1016/0009-2509(53)80001-1
ContentType Journal Article
Copyright 2013
Copyright_xml – notice: 2013
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cej.2013.01.095
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
EndPage 491
ExternalDocumentID 10_1016_j_cej_2013_01_095
US201500096410
S1385894713001411
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
ABPIF
ABPTK
ABTAH
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
EJD
FBQ
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c457t-870c2eda57ee5097e8e1356eda7173614820bb331c2cc0518ae5b24b643213fc3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Sat Sep 27 19:33:58 EDT 2025
Wed Oct 01 01:53:22 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Wed Dec 27 19:18:38 EST 2023
Fri Feb 23 02:17:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Duhamel theorem
Solute transport
Analytical solution
Advection–dispersion equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-870c2eda57ee5097e8e1356eda7173614820bb331c2cc0518ae5b24b643213fc3
Notes http://dx.doi.org/10.1016/j.cej.2013.01.095
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663641560
PQPubID 24069
PageCount 5
ParticipantIDs proquest_miscellaneous_1663641560
crossref_citationtrail_10_1016_j_cej_2013_01_095
crossref_primary_10_1016_j_cej_2013_01_095
fao_agris_US201500096410
elsevier_sciencedirect_doi_10_1016_j_cej_2013_01_095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C. Dlugy, Studies of Inactivation and Transport of Viruses in Porous Media with New Nanoscale Tool – Labeled Bacteriophages, M.Sc. Thesis, Unit of Environmental Engineering, Ben-Gurion University of the Negev, 2008.
Bauer, Attinger, Kinzelbach (b0015) 2001; 49
Al-Niamiand, Rushton (b0130) 1977; 33
Clement (b0055) 2001; 37
T.H. Skaggs, F.J. Leij, Solute transport: theoretical background, in: J.H. Dane, C.G. Topp (Eds.), Methods of Soil Analysis, Part 4. Physical methods, SSSA Book Series 5:1353–1380, SSSA, Madison, WI, 2002 (Chapter 6.3).
Boas (b0110) 1983
Bartels, Churchill (b0105) 1942; 48
Sudicky, Hwang, Illman, Wu (b0075) 2013; 144
van Genuchten, Parker (b0095) 1984; 48
Lindstrom, Haque, Freed, Boersma (b0035) 1967; 1
Vanderborght, Kasteel, Herbst, Javaux, Thiéry, Vanclooster, Mouvet, Vereecken (b0020) 2005; 4
Danckwerts (b0090) 1953; 2
Javandel, Doughty, Tsang (b0005) 1984
Batu, van Genuchten (b0040) 1990; 26
Brenner (b0030) 1962; 17
Wolfram Research, Inc. Mathematica, Version 7.0, Champaign, IL, 2009.
.
Ozisik (b0080) 1993
M.Th. van Genuchten, W.J. Alves, Analytical Solutions of the One-Dimensional Convective–Dispersive Solute Transport Equation, Technical Bulletin No. 1661, USDA, ARS, Washington, DC, 1982
Chen, Liu, Liang, Lai (b0065) 2012; 456–457
Ziskind, Shmueli, Gitis (b0125) 2011; 167
Leij, Skaggs, van Genuchten (b0010) 1991; 27
Pérez Guerrero, Skaggs, van Genuchten (b0060) 2010; 80
Sun, Petersen, Clement, Skeen (b0050) 1999; 35
Toride, Leij, van Genuchten (b0045) 1993; 29
Chen, Lai, Liu, Ni (b0070) 2012; 420–421
Chen, Liu (b0085) 2011; 15
Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0025) 2009; 52
10.1016/j.cej.2013.01.095_b0135
van Genuchten (10.1016/j.cej.2013.01.095_b0095) 1984; 48
10.1016/j.cej.2013.01.095_b0115
Chen (10.1016/j.cej.2013.01.095_b0085) 2011; 15
Clement (10.1016/j.cej.2013.01.095_b0055) 2001; 37
Vanderborght (10.1016/j.cej.2013.01.095_b0020) 2005; 4
Pérez Guerrero (10.1016/j.cej.2013.01.095_b0060) 2010; 80
Pérez Guerrero (10.1016/j.cej.2013.01.095_b0025) 2009; 52
Sudicky (10.1016/j.cej.2013.01.095_b0075) 2013; 144
Al-Niamiand (10.1016/j.cej.2013.01.095_b0130) 1977; 33
Brenner (10.1016/j.cej.2013.01.095_b0030) 1962; 17
Sun (10.1016/j.cej.2013.01.095_b0050) 1999; 35
Bartels (10.1016/j.cej.2013.01.095_b0105) 1942; 48
Ozisik (10.1016/j.cej.2013.01.095_b0080) 1993
10.1016/j.cej.2013.01.095_b0120
10.1016/j.cej.2013.01.095_b0100
Batu (10.1016/j.cej.2013.01.095_b0040) 1990; 26
Bauer (10.1016/j.cej.2013.01.095_b0015) 2001; 49
Boas (10.1016/j.cej.2013.01.095_b0110) 1983
Lindstrom (10.1016/j.cej.2013.01.095_b0035) 1967; 1
Ziskind (10.1016/j.cej.2013.01.095_b0125) 2011; 167
Leij (10.1016/j.cej.2013.01.095_b0010) 1991; 27
Chen (10.1016/j.cej.2013.01.095_b0065) 2012; 456–457
Chen (10.1016/j.cej.2013.01.095_b0070) 2012; 420–421
Javandel (10.1016/j.cej.2013.01.095_b0005) 1984
Toride (10.1016/j.cej.2013.01.095_b0045) 1993; 29
Danckwerts (10.1016/j.cej.2013.01.095_b0090) 1953; 2
References_xml – volume: 37
  start-page: 157
  year: 2001
  end-page: 163
  ident: b0055
  article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 87
  year: 1977
  end-page: 97
  ident: b0130
  article-title: Analysis of flow against dispersion in porous media
  publication-title: J. Hydrol.
– volume: 35
  start-page: 185
  year: 1999
  end-page: 190
  ident: b0050
  article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions
  publication-title: Water Resour. Res.
– volume: 48
  start-page: 276
  year: 1942
  end-page: 282
  ident: b0105
  article-title: Resolution of boundary problems by the use of a generalized convolution
  publication-title: Bull. Am. Math. Soc.
– reference: Wolfram Research, Inc. Mathematica, Version 7.0, Champaign, IL, 2009.
– volume: 420–421
  start-page: 191
  year: 2012
  end-page: 204
  ident: b0070
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
– year: 1993
  ident: b0080
  article-title: Heat Conduction
– volume: 49
  start-page: 217
  year: 2001
  end-page: 239
  ident: b0015
  article-title: Transport of a decay chain in homogenous porous media: analytical solutions
  publication-title: J. Contam. Hydrol.
– volume: 80
  start-page: 373
  year: 2010
  end-page: 387
  ident: b0060
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Transp. Porous Media
– volume: 167
  start-page: 403
  year: 2011
  end-page: 408
  ident: b0125
  article-title: An analytical solution of the convection dispersion reaction equation for a finite region with a pulse boundary condition
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 229
  year: 1962
  end-page: 243
  ident: b0030
  article-title: The diffusion model of longitudinal mixing in beds of finite length. Numerical values
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 1
  year: 1953
  end-page: 13
  ident: b0090
  article-title: Continuous flow systems; distribution of residence times
  publication-title: Chem. Eng. Sci.
– volume: 456–457
  start-page: 101
  year: 2012
  end-page: 109
  ident: b0065
  article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition
  publication-title: J. Hydrol.
– volume: 52
  start-page: 3297
  year: 2009
  end-page: 3304
  ident: b0025
  article-title: Analytical solution of advection–diffusion transport equation using change-of-variable and integral transform
  publication-title: Int. J. Heat Mass Transfer
– volume: 27
  start-page: 2719
  year: 1991
  end-page: 2733
  ident: b0010
  article-title: Analytical solutions for solute transport in three-dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 339
  year: 1990
  end-page: 350
  ident: b0040
  article-title: First- and third-type boundary conditions in two-dimensional solute transport modeling
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 2167
  year: 1993
  end-page: 2182
  ident: b0045
  article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production
  publication-title: Water Resour. Res.
– volume: 15
  start-page: 2471
  year: 2011
  end-page: 2479
  ident: b0085
  article-title: Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition
  publication-title: Hydrol. Earth Syst. Sci.
– reference: >.
– volume: 144
  start-page: 20
  year: 2013
  end-page: 45
  ident: b0075
  article-title: A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions
  publication-title: J. Contam. Hydrol.
– volume: 48
  start-page: 703
  year: 1984
  end-page: 708
  ident: b0095
  article-title: Boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 1
  start-page: 561
  year: 1967
  end-page: 565
  ident: b0035
  article-title: The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils
  publication-title: Environ. Sci. Technol.
– reference: T.H. Skaggs, F.J. Leij, Solute transport: theoretical background, in: J.H. Dane, C.G. Topp (Eds.), Methods of Soil Analysis, Part 4. Physical methods, SSSA Book Series 5:1353–1380, SSSA, Madison, WI, 2002 (Chapter 6.3).
– year: 1984
  ident: b0005
  article-title: Groundwater Transport: Handbook of Mathematical Models, Water Resour. Monograph No. 10
– year: 1983
  ident: b0110
  article-title: Mathematical Methods in the Physical Sciences
– reference: C. Dlugy, Studies of Inactivation and Transport of Viruses in Porous Media with New Nanoscale Tool – Labeled Bacteriophages, M.Sc. Thesis, Unit of Environmental Engineering, Ben-Gurion University of the Negev, 2008.
– reference: M.Th. van Genuchten, W.J. Alves, Analytical Solutions of the One-Dimensional Convective–Dispersive Solute Transport Equation, Technical Bulletin No. 1661, USDA, ARS, Washington, DC, 1982 <
– volume: 4
  start-page: 206
  year: 2005
  end-page: 221
  ident: b0020
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
– year: 1983
  ident: 10.1016/j.cej.2013.01.095_b0110
– volume: 17
  start-page: 229
  year: 1962
  ident: 10.1016/j.cej.2013.01.095_b0030
  article-title: The diffusion model of longitudinal mixing in beds of finite length. Numerical values
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(62)85002-7
– ident: 10.1016/j.cej.2013.01.095_b0120
– volume: 35
  start-page: 185
  year: 1999
  ident: 10.1016/j.cej.2013.01.095_b0050
  article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900003
– volume: 37
  start-page: 157
  year: 2001
  ident: 10.1016/j.cej.2013.01.095_b0055
  article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900239
– volume: 420–421
  start-page: 191
  year: 2012
  ident: 10.1016/j.cej.2013.01.095_b0070
  article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.12.001
– volume: 26
  start-page: 339
  year: 1990
  ident: 10.1016/j.cej.2013.01.095_b0040
  article-title: First- and third-type boundary conditions in two-dimensional solute transport modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i002p00339
– volume: 456–457
  start-page: 101
  year: 2012
  ident: 10.1016/j.cej.2013.01.095_b0065
  article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.017
– volume: 167
  start-page: 403
  year: 2011
  ident: 10.1016/j.cej.2013.01.095_b0125
  article-title: An analytical solution of the convection dispersion reaction equation for a finite region with a pulse boundary condition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.11.047
– year: 1984
  ident: 10.1016/j.cej.2013.01.095_b0005
– ident: 10.1016/j.cej.2013.01.095_b0115
– volume: 29
  start-page: 2167
  year: 1993
  ident: 10.1016/j.cej.2013.01.095_b0045
  article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR00496
– ident: 10.1016/j.cej.2013.01.095_b0100
– volume: 27
  start-page: 2719
  year: 1991
  ident: 10.1016/j.cej.2013.01.095_b0010
  article-title: Analytical solutions for solute transport in three-dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01912
– volume: 4
  start-page: 206
  year: 2005
  ident: 10.1016/j.cej.2013.01.095_b0020
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
  doi: 10.2113/4.1.206
– volume: 15
  start-page: 2471
  year: 2011
  ident: 10.1016/j.cej.2013.01.095_b0085
  article-title: Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-2471-2011
– volume: 80
  start-page: 373
  year: 2010
  ident: 10.1016/j.cej.2013.01.095_b0060
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-009-9368-3
– volume: 33
  start-page: 87
  year: 1977
  ident: 10.1016/j.cej.2013.01.095_b0130
  article-title: Analysis of flow against dispersion in porous media
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(77)90100-7
– volume: 48
  start-page: 276
  year: 1942
  ident: 10.1016/j.cej.2013.01.095_b0105
  article-title: Resolution of boundary problems by the use of a generalized convolution
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1942-07655-5
– volume: 52
  start-page: 3297
  year: 2009
  ident: 10.1016/j.cej.2013.01.095_b0025
  article-title: Analytical solution of advection–diffusion transport equation using change-of-variable and integral transform
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.02.002
– volume: 48
  start-page: 703
  year: 1984
  ident: 10.1016/j.cej.2013.01.095_b0095
  article-title: Boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800040002x
– volume: 49
  start-page: 217
  year: 2001
  ident: 10.1016/j.cej.2013.01.095_b0015
  article-title: Transport of a decay chain in homogenous porous media: analytical solutions
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00195-9
– volume: 144
  start-page: 20
  year: 2013
  ident: 10.1016/j.cej.2013.01.095_b0075
  article-title: A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2012.10.001
– volume: 1
  start-page: 561
  year: 1967
  ident: 10.1016/j.cej.2013.01.095_b0035
  article-title: The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60007a001
– year: 1993
  ident: 10.1016/j.cej.2013.01.095_b0080
– ident: 10.1016/j.cej.2013.01.095_b0135
– volume: 2
  start-page: 1
  year: 1953
  ident: 10.1016/j.cej.2013.01.095_b0090
  article-title: Continuous flow systems; distribution of residence times
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(53)80001-1
SSID ssj0006919
Score 2.3685215
Snippet ► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent...
Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this...
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 487
SubjectTerms Advection–dispersion equation
Analytical solution
chemical engineering
Duhamel theorem
equations
Solute transport
solutes
Title Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions
URI https://dx.doi.org/10.1016/j.cej.2013.01.095
https://www.proquest.com/docview/1663641560
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: ACRLP
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIKHN
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: .~1
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AKRWK
  dateStart: 19970115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4EDggLqAq1cqScks0lsJ5tjVbVaumoPLSt6s2J7jLaqktJmkbhUPXPlH_JLmHGSQgXqgVMkx86Hxx7PeJ7fMLYDXpfgqiDQnUiE8laKMkgtnNe5y7SFHCiie3ScT-fq8EyfrbC94SwMwSp73d_p9Kit-5Jx35vjy8VifJpSTKtE5SojWjGeYFc5wfre3_yGeeRlTO5BlQXVHiKbEePl4JzQXTIyd1KKiX-vTY9C1fylq-MCdPCMPe0tR77bfdxztgL1OnvyB5_gC_Y9UozE3Wl-N6Z4EzhaebypQXji8u94OHjlv0YYVv3z9odfEGE43ejaAW8H0nMOXzo2cH69tLRpw9uGU0Z6MeTPbbmNuZmuvnF0rn2HAXvJ5gf7H_emok-2IJzSRYtaMXEZ-EoXAGhEFDCBVOocSyhOH-lCE2ulTF3mHM7kSQXaZsqiRZOlMjj5iq3W-CcbjBdygs8JlVS2UJOAT_A6ZKkLhUfjR5YjlgzdbFzPRE4JMS7MADk7NygZQ5IxSWpQMiP27q7JZUfD8VBlNcjO3BtLBpeJh5ptoJxN9Rm1q5mfZrQXRB6eSpMR2x6Eb3D6UUylqqFZXpsULbacnODk9f-99Q17nMUMGwQGestW26slbKKd09qtOJC32Nruh9n0mK6zk0-zX7wwAPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAcKj7VhQJG4oRkbRLbyeZYVa22tN1Lu1JvVmyP0VZVUtpspd44c-Uf8ks64yQrEKgHrk7GSTz284xn8oaxT-B1Ca4KAt2JRChvpSiD1MJ5nbtMW8iBIron83y2UF_O9fkG2xv-haG0yh77O0yPaN23TPrRnFwtl5PTlGJaJYKrjNmK6AJtKo2YPGKbu4dHs_kakPMy1veg-wUJDMHNmObl4IISvGQk76QqE__enh6FqvkLruMedPCMbfXGI9_t3u8524D6BXv6G6XgS_YjsozEA2q-nla8CRwNPd7UIDzR-XdUHLzytzETq_71_adfEmc4XejkgLcD7zmHbx0hOL9ZWTq34W3DqSi9GErottzG8kzXdxz9a9-lgb1ii4P9s72Z6OstCKd00SIwJi4DX-kCAO2IAqaQSp1jC4XqI2NoYq2Uqcucw8U8rUDbTFk0arJUBidfs1GNX7LNeCGn2E-opLKFmgbsweuQpS4UHu0fWY5ZMgyzcT0ZOdXEuDRD1tmFQc0Y0oxJUoOaGbPPa5GrjonjoZvVoDvzx3QyuFM8JLaNejbVVwRYszjN6DiInDyVJmP2cVC-wRVIYZWqhmZ1Y1I02nLyg5M3__fUD-zx7Ozk2Bwfzo_esidZLLhBuUE7bNRer-Admj2tfd9P63thqQH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+of+the+one-dimensional+advection%E2%80%93dispersion+solute+transport+equation+subject+to+time-dependent+boundary+conditions&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=P%C3%A9rez+Guerrero%2C+J.S.&rft.au=Pontedeiro%2C+E.M.&rft.au=van+Genuchten%2C+M.Th&rft.au=Skaggs%2C+T.H.&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=221&rft.spage=487&rft.epage=491&rft_id=info:doi/10.1016%2Fj.cej.2013.01.095&rft.externalDocID=S1385894713001411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon