Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions
► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific soluti...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 221; pp. 487 - 491 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2013.01.095 |
Cover
Abstract | ► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific solutions from the literature.
Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions. |
---|---|
AbstractList | Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions. ► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent auxiliary solutions. ► Explicit analytical expressions are developed for selected particular cases. ► Results are compared with other specific solutions from the literature. Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions. |
Author | van Genuchten, M.Th Pérez Guerrero, J.S. Pontedeiro, E.M. Skaggs, T.H. |
Author_xml | – sequence: 1 givenname: J.S. surname: Pérez Guerrero fullname: Pérez Guerrero, J.S. organization: Radioactive Waste Division, Brazilian Nuclear Energy Commission, DIREJ/DRS/CNEN, Rio de Janeiro, Brazil – sequence: 2 givenname: E.M. surname: Pontedeiro fullname: Pontedeiro, E.M. organization: Department of Nuclear Engineering, POLI&COPPE, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil – sequence: 3 givenname: M.Th surname: van Genuchten fullname: van Genuchten, M.Th organization: Department of Mechanical Engineering, COPPE/LTTC, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil – sequence: 4 givenname: T.H. surname: Skaggs fullname: Skaggs, T.H. email: Todd.Skaggs@ars.usda.gov organization: US Salinity Laboratory, USDA-ARS, Riverside, CA, USA |
BookMark | eNp9kb1u3iAUhq0qlZqkuYBMZexiF4wxtjpFUf-kSB2SzAjDcYvlDxzAkbJl7to77JX0-HOnDpk4Oud9z8_DWXHig4eiuGS0YpS1H6bKwFTVlPGKsor24lVxyjrJS16z-gRj3omy6xv5pjhLaaKUtj3rT4tfV17PT9kZPZMU5jW74BMJI8k_geCI0roD-IRZFGj7CGZT_Hn-bV1aIG6F3QckR-3TEmIm8LDqfKysw4QOkgPJ2Ke0sIC34DMZwuqtjk_EBG_dcerb4vWo5wQX_97z4v7zp7vrr-XN9y_frq9uStMImctOUlOD1UICCNpL6IBx0WJGMslb1nQ1HQbOmamNoYJ1GsRQN0PbIAo-Gn5evN_7LjE8rJCyOrhkYJ61h7AmxdqWtw0TLUWp3KUmhpQijMq4fDwNj3WzYlRt9NWkkL7a6CvKFNJHJ_vPuUR3wINf9LzbPaMOSv-ILqn7WxQI_K0eN9r2-bgrAPk8OogqGQfegHUROSsb3Av9_wJKzK1X |
CitedBy_id | crossref_primary_10_1016_j_colsurfb_2014_06_063 crossref_primary_10_1103_PhysRevFluids_6_044501 crossref_primary_10_1515_zna_2020_0106 crossref_primary_10_1080_00207179_2023_2297982 crossref_primary_10_1016_j_advwatres_2023_104419 crossref_primary_10_1080_27690911_2022_2138867 crossref_primary_10_1016_j_ijleo_2022_170483 crossref_primary_10_1061__ASCE_EE_1943_7870_0002031 crossref_primary_10_1088_1361_6560_aa9631 crossref_primary_10_1007_s10652_018_9588_6 crossref_primary_10_1061__ASCE_HE_1943_5584_0001806 crossref_primary_10_1007_s11581_020_03777_1 crossref_primary_10_1016_j_jhydrol_2018_08_041 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_133 crossref_primary_10_1016_j_jhydrol_2016_09_027 crossref_primary_10_11948_20200383 crossref_primary_10_1590_0104_6632_20170344s20160044 crossref_primary_10_1061__ASCE_EM_1943_7889_0000948 crossref_primary_10_1016_j_jhydrol_2023_129287 crossref_primary_10_1016_j_gsd_2021_100691 crossref_primary_10_3390_soilsystems2030040 crossref_primary_10_1016_j_jhydrol_2025_132977 crossref_primary_10_1142_S0217979223500893 crossref_primary_10_1038_s41598_023_46853_y crossref_primary_10_1016_j_jhydrol_2016_11_002 crossref_primary_10_3390_w15081530 crossref_primary_10_1016_j_cej_2014_07_051 crossref_primary_10_1061_JENMDT_EMENG_6703 crossref_primary_10_1155_2024_5541066 crossref_primary_10_1134_S0965542516010103 crossref_primary_10_1007_s10040_022_02572_8 crossref_primary_10_1002_mma_9937 crossref_primary_10_1016_j_apm_2024_01_049 crossref_primary_10_1177_09544089221116165 crossref_primary_10_1007_s10040_020_02135_9 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_128 crossref_primary_10_5194_hess_20_733_2016 crossref_primary_10_3390_app14114686 crossref_primary_10_1061__ASCE_HE_1943_5584_0001035 crossref_primary_10_1016_j_cej_2021_128745 crossref_primary_10_1115_1_4040603 crossref_primary_10_1016_j_cej_2017_08_031 crossref_primary_10_2166_ws_2021_010 crossref_primary_10_3390_su13147796 crossref_primary_10_3390_app13074536 crossref_primary_10_1002_mma_7225 crossref_primary_10_1680_jenge_22_00186 crossref_primary_10_3390_en12193740 crossref_primary_10_1016_j_compgeo_2023_105713 crossref_primary_10_1007_s00244_021_00851_1 crossref_primary_10_1016_j_cej_2021_132812 crossref_primary_10_1016_j_compfluid_2014_11_006 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125854 crossref_primary_10_1016_j_jwpe_2024_105670 crossref_primary_10_1016_j_scitotenv_2018_08_413 crossref_primary_10_1016_j_jhydrol_2022_128633 crossref_primary_10_17776_csj_1258286 crossref_primary_10_1007_s11581_021_04332_2 crossref_primary_10_1038_s41598_021_87397_3 crossref_primary_10_1016_j_compgeo_2015_05_002 crossref_primary_10_1515_johh_2017_0013 crossref_primary_10_1029_2020WR027967 crossref_primary_10_1007_s12665_019_8748_4 crossref_primary_10_1016_j_jhydrol_2016_05_069 crossref_primary_10_1080_09715010_2018_1453879 crossref_primary_10_1155_2019_1941426 crossref_primary_10_1016_j_jhydrol_2014_11_061 crossref_primary_10_1016_j_scitotenv_2023_165731 crossref_primary_10_1029_2019WR026822 crossref_primary_10_1016_j_cej_2019_121984 crossref_primary_10_2166_ws_2019_131 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_018 crossref_primary_10_1007_s11356_020_07841_1 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569 crossref_primary_10_1080_00986445_2023_2284720 |
Cites_doi | 10.1016/0009-2509(62)85002-7 10.1029/1998WR900003 10.1029/2000WR900239 10.1016/j.jhydrol.2011.12.001 10.1029/WR026i002p00339 10.1016/j.jhydrol.2012.06.017 10.1016/j.cej.2010.11.047 10.1029/93WR00496 10.1029/91WR01912 10.2113/4.1.206 10.5194/hess-15-2471-2011 10.1007/s11242-009-9368-3 10.1016/0022-1694(77)90100-7 10.1090/S0002-9904-1942-07655-5 10.1016/j.ijheatmasstransfer.2009.02.002 10.2136/sssaj1984.03615995004800040002x 10.1016/S0169-7722(00)00195-9 10.1016/j.jconhyd.2012.10.001 10.1021/es60007a001 10.1016/0009-2509(53)80001-1 |
ContentType | Journal Article |
Copyright | 2013 |
Copyright_xml | – notice: 2013 |
DBID | FBQ AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.cej.2013.01.095 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 491 |
ExternalDocumentID | 10_1016_j_cej_2013_01_095 US201500096410 S1385894713001411 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- ABPIF ABPTK ABTAH AFFNX ASPBG AVWKF AZFZN BKOMP EJD FBQ FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c457t-870c2eda57ee5097e8e1356eda7173614820bb331c2cc0518ae5b24b643213fc3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Sat Sep 27 19:33:58 EDT 2025 Wed Oct 01 01:53:22 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Wed Dec 27 19:18:38 EST 2023 Fri Feb 23 02:17:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Duhamel theorem Solute transport Analytical solution Advection–dispersion equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-870c2eda57ee5097e8e1356eda7173614820bb331c2cc0518ae5b24b643213fc3 |
Notes | http://dx.doi.org/10.1016/j.cej.2013.01.095 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663641560 |
PQPubID | 24069 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1663641560 crossref_citationtrail_10_1016_j_cej_2013_01_095 crossref_primary_10_1016_j_cej_2013_01_095 fao_agris_US201500096410 elsevier_sciencedirect_doi_10_1016_j_cej_2013_01_095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | C. Dlugy, Studies of Inactivation and Transport of Viruses in Porous Media with New Nanoscale Tool – Labeled Bacteriophages, M.Sc. Thesis, Unit of Environmental Engineering, Ben-Gurion University of the Negev, 2008. Bauer, Attinger, Kinzelbach (b0015) 2001; 49 Al-Niamiand, Rushton (b0130) 1977; 33 Clement (b0055) 2001; 37 T.H. Skaggs, F.J. Leij, Solute transport: theoretical background, in: J.H. Dane, C.G. Topp (Eds.), Methods of Soil Analysis, Part 4. Physical methods, SSSA Book Series 5:1353–1380, SSSA, Madison, WI, 2002 (Chapter 6.3). Boas (b0110) 1983 Bartels, Churchill (b0105) 1942; 48 Sudicky, Hwang, Illman, Wu (b0075) 2013; 144 van Genuchten, Parker (b0095) 1984; 48 Lindstrom, Haque, Freed, Boersma (b0035) 1967; 1 Vanderborght, Kasteel, Herbst, Javaux, Thiéry, Vanclooster, Mouvet, Vereecken (b0020) 2005; 4 Danckwerts (b0090) 1953; 2 Javandel, Doughty, Tsang (b0005) 1984 Batu, van Genuchten (b0040) 1990; 26 Brenner (b0030) 1962; 17 Wolfram Research, Inc. Mathematica, Version 7.0, Champaign, IL, 2009. . Ozisik (b0080) 1993 M.Th. van Genuchten, W.J. Alves, Analytical Solutions of the One-Dimensional Convective–Dispersive Solute Transport Equation, Technical Bulletin No. 1661, USDA, ARS, Washington, DC, 1982 Chen, Liu, Liang, Lai (b0065) 2012; 456–457 Ziskind, Shmueli, Gitis (b0125) 2011; 167 Leij, Skaggs, van Genuchten (b0010) 1991; 27 Pérez Guerrero, Skaggs, van Genuchten (b0060) 2010; 80 Sun, Petersen, Clement, Skeen (b0050) 1999; 35 Toride, Leij, van Genuchten (b0045) 1993; 29 Chen, Lai, Liu, Ni (b0070) 2012; 420–421 Chen, Liu (b0085) 2011; 15 Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0025) 2009; 52 10.1016/j.cej.2013.01.095_b0135 van Genuchten (10.1016/j.cej.2013.01.095_b0095) 1984; 48 10.1016/j.cej.2013.01.095_b0115 Chen (10.1016/j.cej.2013.01.095_b0085) 2011; 15 Clement (10.1016/j.cej.2013.01.095_b0055) 2001; 37 Vanderborght (10.1016/j.cej.2013.01.095_b0020) 2005; 4 Pérez Guerrero (10.1016/j.cej.2013.01.095_b0060) 2010; 80 Pérez Guerrero (10.1016/j.cej.2013.01.095_b0025) 2009; 52 Sudicky (10.1016/j.cej.2013.01.095_b0075) 2013; 144 Al-Niamiand (10.1016/j.cej.2013.01.095_b0130) 1977; 33 Brenner (10.1016/j.cej.2013.01.095_b0030) 1962; 17 Sun (10.1016/j.cej.2013.01.095_b0050) 1999; 35 Bartels (10.1016/j.cej.2013.01.095_b0105) 1942; 48 Ozisik (10.1016/j.cej.2013.01.095_b0080) 1993 10.1016/j.cej.2013.01.095_b0120 10.1016/j.cej.2013.01.095_b0100 Batu (10.1016/j.cej.2013.01.095_b0040) 1990; 26 Bauer (10.1016/j.cej.2013.01.095_b0015) 2001; 49 Boas (10.1016/j.cej.2013.01.095_b0110) 1983 Lindstrom (10.1016/j.cej.2013.01.095_b0035) 1967; 1 Ziskind (10.1016/j.cej.2013.01.095_b0125) 2011; 167 Leij (10.1016/j.cej.2013.01.095_b0010) 1991; 27 Chen (10.1016/j.cej.2013.01.095_b0065) 2012; 456–457 Chen (10.1016/j.cej.2013.01.095_b0070) 2012; 420–421 Javandel (10.1016/j.cej.2013.01.095_b0005) 1984 Toride (10.1016/j.cej.2013.01.095_b0045) 1993; 29 Danckwerts (10.1016/j.cej.2013.01.095_b0090) 1953; 2 |
References_xml | – volume: 37 start-page: 157 year: 2001 end-page: 163 ident: b0055 article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network publication-title: Water Resour. Res. – volume: 33 start-page: 87 year: 1977 end-page: 97 ident: b0130 article-title: Analysis of flow against dispersion in porous media publication-title: J. Hydrol. – volume: 35 start-page: 185 year: 1999 end-page: 190 ident: b0050 article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions publication-title: Water Resour. Res. – volume: 48 start-page: 276 year: 1942 end-page: 282 ident: b0105 article-title: Resolution of boundary problems by the use of a generalized convolution publication-title: Bull. Am. Math. Soc. – reference: Wolfram Research, Inc. Mathematica, Version 7.0, Champaign, IL, 2009. – volume: 420–421 start-page: 191 year: 2012 end-page: 204 ident: b0070 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. – year: 1993 ident: b0080 article-title: Heat Conduction – volume: 49 start-page: 217 year: 2001 end-page: 239 ident: b0015 article-title: Transport of a decay chain in homogenous porous media: analytical solutions publication-title: J. Contam. Hydrol. – volume: 80 start-page: 373 year: 2010 end-page: 387 ident: b0060 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Transp. Porous Media – volume: 167 start-page: 403 year: 2011 end-page: 408 ident: b0125 article-title: An analytical solution of the convection dispersion reaction equation for a finite region with a pulse boundary condition publication-title: Chem. Eng. J. – volume: 17 start-page: 229 year: 1962 end-page: 243 ident: b0030 article-title: The diffusion model of longitudinal mixing in beds of finite length. Numerical values publication-title: Chem. Eng. Sci. – volume: 2 start-page: 1 year: 1953 end-page: 13 ident: b0090 article-title: Continuous flow systems; distribution of residence times publication-title: Chem. Eng. Sci. – volume: 456–457 start-page: 101 year: 2012 end-page: 109 ident: b0065 article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition publication-title: J. Hydrol. – volume: 52 start-page: 3297 year: 2009 end-page: 3304 ident: b0025 article-title: Analytical solution of advection–diffusion transport equation using change-of-variable and integral transform publication-title: Int. J. Heat Mass Transfer – volume: 27 start-page: 2719 year: 1991 end-page: 2733 ident: b0010 article-title: Analytical solutions for solute transport in three-dimensional semi-infinite porous media publication-title: Water Resour. Res. – volume: 26 start-page: 339 year: 1990 end-page: 350 ident: b0040 article-title: First- and third-type boundary conditions in two-dimensional solute transport modeling publication-title: Water Resour. Res. – volume: 29 start-page: 2167 year: 1993 end-page: 2182 ident: b0045 article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production publication-title: Water Resour. Res. – volume: 15 start-page: 2471 year: 2011 end-page: 2479 ident: b0085 article-title: Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition publication-title: Hydrol. Earth Syst. Sci. – reference: >. – volume: 144 start-page: 20 year: 2013 end-page: 45 ident: b0075 article-title: A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions publication-title: J. Contam. Hydrol. – volume: 48 start-page: 703 year: 1984 end-page: 708 ident: b0095 article-title: Boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. – volume: 1 start-page: 561 year: 1967 end-page: 565 ident: b0035 article-title: The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils publication-title: Environ. Sci. Technol. – reference: T.H. Skaggs, F.J. Leij, Solute transport: theoretical background, in: J.H. Dane, C.G. Topp (Eds.), Methods of Soil Analysis, Part 4. Physical methods, SSSA Book Series 5:1353–1380, SSSA, Madison, WI, 2002 (Chapter 6.3). – year: 1984 ident: b0005 article-title: Groundwater Transport: Handbook of Mathematical Models, Water Resour. Monograph No. 10 – year: 1983 ident: b0110 article-title: Mathematical Methods in the Physical Sciences – reference: C. Dlugy, Studies of Inactivation and Transport of Viruses in Porous Media with New Nanoscale Tool – Labeled Bacteriophages, M.Sc. Thesis, Unit of Environmental Engineering, Ben-Gurion University of the Negev, 2008. – reference: M.Th. van Genuchten, W.J. Alves, Analytical Solutions of the One-Dimensional Convective–Dispersive Solute Transport Equation, Technical Bulletin No. 1661, USDA, ARS, Washington, DC, 1982 < – volume: 4 start-page: 206 year: 2005 end-page: 221 ident: b0020 article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils publication-title: Vadose Zone J. – year: 1983 ident: 10.1016/j.cej.2013.01.095_b0110 – volume: 17 start-page: 229 year: 1962 ident: 10.1016/j.cej.2013.01.095_b0030 article-title: The diffusion model of longitudinal mixing in beds of finite length. Numerical values publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(62)85002-7 – ident: 10.1016/j.cej.2013.01.095_b0120 – volume: 35 start-page: 185 year: 1999 ident: 10.1016/j.cej.2013.01.095_b0050 article-title: Development of analytical solutions for multispecies transport with serial and parallel reactions publication-title: Water Resour. Res. doi: 10.1029/1998WR900003 – volume: 37 start-page: 157 year: 2001 ident: 10.1016/j.cej.2013.01.095_b0055 article-title: Generalized solution to multispecies transport equations coupled with a first-order reaction network publication-title: Water Resour. Res. doi: 10.1029/2000WR900239 – volume: 420–421 start-page: 191 year: 2012 ident: 10.1016/j.cej.2013.01.095_b0070 article-title: A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.12.001 – volume: 26 start-page: 339 year: 1990 ident: 10.1016/j.cej.2013.01.095_b0040 article-title: First- and third-type boundary conditions in two-dimensional solute transport modeling publication-title: Water Resour. Res. doi: 10.1029/WR026i002p00339 – volume: 456–457 start-page: 101 year: 2012 ident: 10.1016/j.cej.2013.01.095_b0065 article-title: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.017 – volume: 167 start-page: 403 year: 2011 ident: 10.1016/j.cej.2013.01.095_b0125 article-title: An analytical solution of the convection dispersion reaction equation for a finite region with a pulse boundary condition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.047 – year: 1984 ident: 10.1016/j.cej.2013.01.095_b0005 – ident: 10.1016/j.cej.2013.01.095_b0115 – volume: 29 start-page: 2167 year: 1993 ident: 10.1016/j.cej.2013.01.095_b0045 article-title: A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production publication-title: Water Resour. Res. doi: 10.1029/93WR00496 – ident: 10.1016/j.cej.2013.01.095_b0100 – volume: 27 start-page: 2719 year: 1991 ident: 10.1016/j.cej.2013.01.095_b0010 article-title: Analytical solutions for solute transport in three-dimensional semi-infinite porous media publication-title: Water Resour. Res. doi: 10.1029/91WR01912 – volume: 4 start-page: 206 year: 2005 ident: 10.1016/j.cej.2013.01.095_b0020 article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils publication-title: Vadose Zone J. doi: 10.2113/4.1.206 – volume: 15 start-page: 2471 year: 2011 ident: 10.1016/j.cej.2013.01.095_b0085 article-title: Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-2471-2011 – volume: 80 start-page: 373 year: 2010 ident: 10.1016/j.cej.2013.01.095_b0060 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Transp. Porous Media doi: 10.1007/s11242-009-9368-3 – volume: 33 start-page: 87 year: 1977 ident: 10.1016/j.cej.2013.01.095_b0130 article-title: Analysis of flow against dispersion in porous media publication-title: J. Hydrol. doi: 10.1016/0022-1694(77)90100-7 – volume: 48 start-page: 276 year: 1942 ident: 10.1016/j.cej.2013.01.095_b0105 article-title: Resolution of boundary problems by the use of a generalized convolution publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1942-07655-5 – volume: 52 start-page: 3297 year: 2009 ident: 10.1016/j.cej.2013.01.095_b0025 article-title: Analytical solution of advection–diffusion transport equation using change-of-variable and integral transform publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.02.002 – volume: 48 start-page: 703 year: 1984 ident: 10.1016/j.cej.2013.01.095_b0095 article-title: Boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800040002x – volume: 49 start-page: 217 year: 2001 ident: 10.1016/j.cej.2013.01.095_b0015 article-title: Transport of a decay chain in homogenous porous media: analytical solutions publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00195-9 – volume: 144 start-page: 20 year: 2013 ident: 10.1016/j.cej.2013.01.095_b0075 article-title: A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2012.10.001 – volume: 1 start-page: 561 year: 1967 ident: 10.1016/j.cej.2013.01.095_b0035 article-title: The movement of some herbicides in soils. Linear diffusion and convection of chemicals in soils publication-title: Environ. Sci. Technol. doi: 10.1021/es60007a001 – year: 1993 ident: 10.1016/j.cej.2013.01.095_b0080 – ident: 10.1016/j.cej.2013.01.095_b0135 – volume: 2 start-page: 1 year: 1953 ident: 10.1016/j.cej.2013.01.095_b0090 article-title: Continuous flow systems; distribution of residence times publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(53)80001-1 |
SSID | ssj0006919 |
Score | 2.3685215 |
Snippet | ► We extend the Duhamel theorem to the case of advective–dispersive solute transport. ► Analytical formulas relate exact solutions to time-independent... Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this... Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 487 |
SubjectTerms | Advection–dispersion equation Analytical solution chemical engineering Duhamel theorem equations Solute transport solutes |
Title | Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions |
URI | https://dx.doi.org/10.1016/j.cej.2013.01.095 https://www.proquest.com/docview/1663641560 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: ACRLP dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIKHN dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: .~1 dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3212 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AKRWK dateStart: 19970115 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4EDggLqAq1cqScks0lsJ5tjVbVaumoPLSt6s2J7jLaqktJmkbhUPXPlH_JLmHGSQgXqgVMkx86Hxx7PeJ7fMLYDXpfgqiDQnUiE8laKMkgtnNe5y7SFHCiie3ScT-fq8EyfrbC94SwMwSp73d_p9Kit-5Jx35vjy8VifJpSTKtE5SojWjGeYFc5wfre3_yGeeRlTO5BlQXVHiKbEePl4JzQXTIyd1KKiX-vTY9C1fylq-MCdPCMPe0tR77bfdxztgL1OnvyB5_gC_Y9UozE3Wl-N6Z4EzhaebypQXji8u94OHjlv0YYVv3z9odfEGE43ejaAW8H0nMOXzo2cH69tLRpw9uGU0Z6MeTPbbmNuZmuvnF0rn2HAXvJ5gf7H_emok-2IJzSRYtaMXEZ-EoXAGhEFDCBVOocSyhOH-lCE2ulTF3mHM7kSQXaZsqiRZOlMjj5iq3W-CcbjBdygs8JlVS2UJOAT_A6ZKkLhUfjR5YjlgzdbFzPRE4JMS7MADk7NygZQ5IxSWpQMiP27q7JZUfD8VBlNcjO3BtLBpeJh5ptoJxN9Rm1q5mfZrQXRB6eSpMR2x6Eb3D6UUylqqFZXpsULbacnODk9f-99Q17nMUMGwQGestW26slbKKd09qtOJC32Nruh9n0mK6zk0-zX7wwAPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAcKj7VhQJG4oRkbRLbyeZYVa22tN1Lu1JvVmyP0VZVUtpspd44c-Uf8ks64yQrEKgHrk7GSTz284xn8oaxT-B1Ca4KAt2JRChvpSiD1MJ5nbtMW8iBIron83y2UF_O9fkG2xv-haG0yh77O0yPaN23TPrRnFwtl5PTlGJaJYKrjNmK6AJtKo2YPGKbu4dHs_kakPMy1veg-wUJDMHNmObl4IISvGQk76QqE__enh6FqvkLruMedPCMbfXGI9_t3u8524D6BXv6G6XgS_YjsozEA2q-nla8CRwNPd7UIDzR-XdUHLzytzETq_71_adfEmc4XejkgLcD7zmHbx0hOL9ZWTq34W3DqSi9GErottzG8kzXdxz9a9-lgb1ii4P9s72Z6OstCKd00SIwJi4DX-kCAO2IAqaQSp1jC4XqI2NoYq2Uqcucw8U8rUDbTFk0arJUBidfs1GNX7LNeCGn2E-opLKFmgbsweuQpS4UHu0fWY5ZMgyzcT0ZOdXEuDRD1tmFQc0Y0oxJUoOaGbPPa5GrjonjoZvVoDvzx3QyuFM8JLaNejbVVwRYszjN6DiInDyVJmP2cVC-wRVIYZWqhmZ1Y1I02nLyg5M3__fUD-zx7Ozk2Bwfzo_esidZLLhBuUE7bNRer-Admj2tfd9P63thqQH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+of+the+one-dimensional+advection%E2%80%93dispersion+solute+transport+equation+subject+to+time-dependent+boundary+conditions&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=P%C3%A9rez+Guerrero%2C+J.S.&rft.au=Pontedeiro%2C+E.M.&rft.au=van+Genuchten%2C+M.Th&rft.au=Skaggs%2C+T.H.&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=221&rft.spage=487&rft.epage=491&rft_id=info:doi/10.1016%2Fj.cej.2013.01.095&rft.externalDocID=S1385894713001411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |