Estimation of effective connectivity via data-driven neural modeling
This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measure...
Saved in:
| Published in | Frontiers in neuroscience Vol. 8; p. 383 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
28.11.2014
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-453X 1662-4548 1662-453X |
| DOI | 10.3389/fnins.2014.00383 |
Cover
| Abstract | This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. |
|---|---|
| AbstractList | This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination.This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used the track the mechanisms involved in seizure initiation and termination. |
| Author | Aram, Parham Cook, Mark J. Nešić, Dragan Karoly, Philippa J. Grayden, David B. Freestone, Dean R. |
| AuthorAffiliation | 1 Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne Fitzroy, VIC, Australia 4 Centre for Neural Engineering, The University of Melbourne Parkville, VIC, Australia 2 NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Parkville, VIC, Australia 3 Department of Automatic Control and Systems Engineering, University of Sheffield Sheffield, UK |
| AuthorAffiliation_xml | – name: 2 NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Parkville, VIC, Australia – name: 1 Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne Fitzroy, VIC, Australia – name: 3 Department of Automatic Control and Systems Engineering, University of Sheffield Sheffield, UK – name: 4 Centre for Neural Engineering, The University of Melbourne Parkville, VIC, Australia |
| Author_xml | – sequence: 1 givenname: Dean R. surname: Freestone fullname: Freestone, Dean R. – sequence: 2 givenname: Philippa J. surname: Karoly fullname: Karoly, Philippa J. – sequence: 3 givenname: Dragan surname: NeÅ¡ić fullname: NeÅ¡ić, Dragan – sequence: 4 givenname: Parham surname: Aram fullname: Aram, Parham – sequence: 5 givenname: Mark J. surname: Cook fullname: Cook, Mark J. – sequence: 6 givenname: David B. surname: Grayden fullname: Grayden, David B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25506315$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtPGzEUhS1ExSPtnlU1EptuJvV7xhskRIFWQuqmSOws545NjSZ2GHtS5d_XSWgELAorX8nnHJ373WO0H2KwCJ0QPGWsVV9d8CFNKSZ8ijFr2R46IlLSmgt2t_9sPkTHKT1gLGnL6QE6pEJgyYg4Qt8uU_Zzk30MVXSVdc5C9ktbQQxhM_q8qpbeVJ3Jpu6G8heqYMfB9NU8drb34f4j-uBMn-ynp3eCbq8uf118r29-Xv-4OL-pgYsm1xKAGSfMTDpQwFVLiRPQYeBNC4yZprVNB0YpaGdcGcc4B2gYmXWN65RwbILINncMC7P6Y_peL4bSflhpgvWaiN4Q0WsiekOkeM62nsU4m9sObMil-s4Xjdcvf4L_re_jUnPKpWzWAV-eAob4ONqU9dwnsH1vgo1j0kRyKokiLX6HlDVClrXXqaevpA9xHEKhpynDAitCKS-qz8_L71r_u18RyK0AhpjSYJ0GnzfXLLv4_n9Y8CvjmyT_AmOowcw |
| CitedBy_id | crossref_primary_10_1073_pnas_2409577121 crossref_primary_10_1007_s10439_018_2007_9 crossref_primary_10_1007_s00422_017_0741_y crossref_primary_10_1073_pnas_1922084117 crossref_primary_10_1142_S0129065723500247 crossref_primary_10_1111_ejn_13812 crossref_primary_10_1063_1_4967734 crossref_primary_10_1109_TNSRE_2021_3110275 crossref_primary_10_1016_j_neuroimage_2015_07_063 crossref_primary_10_1016_j_chaos_2025_116051 crossref_primary_10_1111_ejn_14142 crossref_primary_10_1371_journal_pcbi_1008689 crossref_primary_10_3390_brainsci10110853 crossref_primary_10_1088_1741_2552_acd871 crossref_primary_10_1016_j_arcontrol_2016_09_011 crossref_primary_10_1007_s11910_015_0596_3 crossref_primary_10_1016_j_neuroimage_2015_06_048 crossref_primary_10_1016_j_neuroimage_2022_119592 crossref_primary_10_1007_s10548_018_0666_3 crossref_primary_10_1371_journal_pone_0181513 crossref_primary_10_1371_journal_pone_0192842 crossref_primary_10_1142_S0129065716500453 crossref_primary_10_3389_fcteg_2022_1046764 crossref_primary_10_1016_j_neuroimage_2015_05_064 crossref_primary_10_1371_journal_pcbi_1006056 crossref_primary_10_1038_s41467_020_15908_3 crossref_primary_10_3389_fams_2018_00046 crossref_primary_10_1016_j_physa_2016_11_038 crossref_primary_10_1093_brain_aww019 |
| Cites_doi | 10.1016/j.jphysparis.2009.05.006 10.1162/neco.1989.1.4.480 10.1016/j.clinph.2013.10.051 10.1088/1741-2560/5/1/001 10.1371/journal.pone.0077876 10.1007/BF00317988 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2010.12.074 10.1002/0470045345 10.1063/1.3092907 10.1097/00001756-199511270-00005 10.1016/j.neuroimage.2005.12.055 10.1146/annurev.neuro.27.070203.144152 10.1093/brain/awl241 10.1016/j.neuroimage.2003.07.015 10.1016/j.neuroimage.2010.01.034 10.1007/BF00270757 10.1142/9789814525350_0005 10.1016/j.jneumeth.2009.06.044 10.1371/journal.pcbi.1000092 10.3389/fncom.2013.00057 10.1117/12.280797 10.1016/j.neuroimage.2013.03.023 10.1103/PhysRevE.88.042905 10.1016/j.neuroimage.2009.11.062 10.1371/journal.pbio.0060315 10.1002/mrm.1910340409 10.1093/acprof:oso/9780195050387.001.0001 10.1016/j.automatica.2004.06.004 10.1111/j.1460-9568.2012.08082.x 10.1016/S0896-6273(01)00288-4 10.1111/j.1460-9568.2012.08185.x 10.3389/fnana.2010.00016 10.1093/cercor/bhj072 10.1007/s11432-011-4216-9 10.1046/j.1460-9568.2002.01985.x 10.1016/j.physd.2009.08.002 10.1017/CBO9781139344203 10.1016/j.neuroimage.2012.10.039 10.1016/j.neuroimage.2008.01.025 10.1016/j.neuroimage.2009.12.084 10.1103/PhysRevE.64.061907 10.1016/S1053-8119(03)00202-7 10.1016/S0006-3495(72)86068-5 10.1007/s004220000160 10.1016/S1053-8119(03)00112-5 10.4067/S0716-97602007000500010 10.1016/j.neuroimage.2011.02.027 10.1007/BF00199471 10.1002/0471221546.ch7 10.1016/j.neuroimage.2011.08.111 10.1142/S0218127404010345 10.1109/MEMB.2003.1191451 10.1016/j.neuroimage.2003.10.006 10.1002/hbm.460020107 10.1098/rstb.2005.1661 10.1115/1.3662552 |
| ContentType | Journal Article |
| Copyright | 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2014 Freestone, Karoly, Nešić Aram, Cook and Grayden. 2014 |
| Copyright_xml | – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2014 Freestone, Karoly, Nešić Aram, Cook and Grayden. 2014 |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7TK 5PM ADTOC UNPAY |
| DOI | 10.3389/fnins.2014.00383 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central (ProQuest) Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Engineering |
| EISSN | 1662-453X |
| ExternalDocumentID | 10.3389/fnins.2014.00383 PMC4246673 25506315 10_3389_fnins_2014_00383 |
| Genre | Journal Article |
| GeographicLocations | Australia New York United States--US |
| GeographicLocations_xml | – name: New York – name: United States--US – name: Australia |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 7TK 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c457t-6cc3af5ab6fc9c49821f5cd0c478c33a78e7dca99c8b49af344cc731bd7fd95f3 |
| IEDL.DBID | M48 |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Wed Oct 29 11:52:45 EDT 2025 Tue Sep 30 16:25:12 EDT 2025 Fri Sep 05 06:51:59 EDT 2025 Fri Sep 05 14:43:39 EDT 2025 Fri Jul 25 11:42:42 EDT 2025 Mon Jul 21 06:03:43 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Wed Oct 01 01:42:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | epilepsy model inversion functional connectivity Kalman filter neural mass model effective connectivity parameter estimation seizures |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c457t-6cc3af5ab6fc9c49821f5cd0c478c33a78e7dca99c8b49af344cc731bd7fd95f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Klaus Lehnertz, University of Bonn, Germany; Bruce Gluckman, Penn State University, USA This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience. These authors have contributed equally to this work and share first authorship. Edited by: Patrick William Carney, The Florey Institute of Neuroscience and Mental Health, Australia |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2014.00383 |
| PMID | 25506315 |
| PQID | 2305091224 |
| PQPubID | 4424402 |
| ParticipantIDs | unpaywall_primary_10_3389_fnins_2014_00383 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246673 proquest_miscellaneous_1642619180 proquest_miscellaneous_1637568213 proquest_journals_2305091224 pubmed_primary_25506315 crossref_citationtrail_10_3389_fnins_2014_00383 crossref_primary_10_3389_fnins_2014_00383 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-28 |
| PublicationDateYYYYMMDD | 2014-11-28 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2014 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Adhikari (B2) 2009; 183 Simon (B51) 2006 da Costa (B14) 2010; 4 Sporns (B52) 2013; 80 Cui (B13) 2011; 54 Wendling (B61) 2002; 15 Coombes (B11) 2012; 36 David (B20) 2003; 20 Daunizeau (B16) 2011; 58 Daunizeau (B17) 2009; 238 Kandepu (B39) 2008 Wan (B57) 2000 Jansen (B36) 1995; 73 Nevado-Holgado (B46) 2012; 59 Aram (B4) 2013; 66 Schiff (B50) 2008; 5 Van Essen (B54) 2013; 80 Arcak (B5) 2004; 40 Breakspear (B10) 2006; 16 Kiebel (B40) 2006; 30 Wendling (B60) 2000; 83 Wan (B56) 1997; 9 Babajani-Feremi (B6) 2010; 52 Freeman (B26) 1975 Särkkà (B48) 2013 Friston (B30) 1994; 2 Aarabi (B1) 2013; 125 David (B19) 2004; 21 Crick (B12) 2005; 360 Wilson (B63) 1972; 12 Biswal (B7) 1995; 34 Bokde (B9) 2001; 30 Freestone (B29) 2013 Andrzejak (B3) 2001; 64 Mormann (B45) 2007; 130 Lehnertz (B41) 2003; 22 Deng (B23) 2009; 19 Douglas (B24) 2004; 27 Friston (B31) 2003; 19 Horwitz (B35) 1995; 6 Moran (B44) 2008; 42 David (B21) 2008; 6 Wang (B59) 2013; 8 Da Silva (B15) 1974; 15 Wendling (B62) 2005; 22 Goodfellow (B32) 2011; 55 Ursino (B53) 2010; 52 Nunez (B47) 2006 Voss (B55) 2004; 14 Haeusler (B33) 2009; 103 Julier (B37) 1997; Vol. 3068 Deco (B22) 2008; 4 Freestone (B28) 2011; 56 Douglas (B25) 1989; 1 Freeman (B27) 1987; 56 Moran (B43) 2013; 7 Wan (B58) 2001 Kalman (B38) 1960; 82 Horwitz (B34) 2003; 19 Blenkinsop (B8) 2012; 36 David (B18) 2007; 40 Liu (B42) 2013; 88 Schiff (B49) 2012 15217339 - Annu Rev Neurosci. 2004;27:419-51 4332108 - Biophys J. 1972 Jan;12(1):1-24 16490364 - Neuroimage. 2006 May 1;30(4):1273-84 12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70 7578475 - Biol Cybern. 1995 Sep;73(4):357-66 23116813 - Neuroimage. 2013 Feb 1;66:88-102 11039701 - Biol Cybern. 2000 Oct;83(4):367-78 14980568 - Neuroimage. 2004 Feb;21(2):659-73 16357638 - J Clin Neurophysiol. 2005 Oct;22(5):343-56 19961941 - Neuroimage. 2011 Sep 15;58(2):312-22 24205009 - PLoS One. 2013 Oct 30;8(10):e77876 19108604 - PLoS Biol. 2008 Dec 23;6(12):2683-97 11395018 - Neuron. 2001 May;30(2):609-17 21945471 - Neuroimage. 2012 Feb 1;59(3):2374-92 16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313 18515149 - Neuroimage. 2008 Aug 1;42(1):272-84 12028360 - Eur J Neurosci. 2002 May;15(9):1499-508 21329758 - Neuroimage. 2011 Jun 1;56(3):1043-58 23528922 - Neuroimage. 2013 Oct 15;80:53-61 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 4853232 - Kybernetik. 1974 May 31;15(1):27-37 11736210 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 1):061907 18575681 - Biol Res. 2007;40(4):487-502 14642484 - Neuroimage. 2003 Nov;20(3):1743-55 20045071 - Neuroimage. 2010 Sep;52(3):1080-94 18769680 - PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 23684880 - Neuroimage. 2013 Oct 15;80:62-79 22805057 - Eur J Neurosci. 2012 Jul;36(2):2118-20 20640245 - Front Neuroanat. 2010 May 31;4:16 22805064 - Eur J Neurosci. 2012 Jul;36(2):2188-200 18310806 - J Neural Eng. 2008 Mar;5(1):1-8 23755005 - Front Comput Neurosci. 2013 May 28;7:57 19616579 - J Neurosci Methods. 2009 Sep 30;183(1):77-85 19862351 - Physica D. 2009 Nov 1;238(21):2089-2118 12683064 - IEEE Eng Med Biol Mag. 2003 Jan-Feb;22(1):57-63 16147522 - Philos Trans R Soc Lond B Biol Sci. 2005 Jun 29;360(1458):1271-9 17008335 - Brain. 2007 Feb;130(Pt 2):314-33 21195779 - Neuroimage. 2011 Apr 1;55(3):920-32 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 24374087 - Clin Neurophysiol. 2014 May;125(5):930-40 19335009 - Chaos. 2009 Mar;19(1):015105 20080193 - Neuroimage. 2010 Sep;52(3):793-811 24229247 - Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042905 19500669 - J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87 3593783 - Biol Cybern. 1987;56(2-3):139-50 8747138 - Neuroreport. 1995 Nov 27;6(17 ):2287-92 |
| References_xml | – volume: 103 start-page: 73 year: 2009 ident: B33 article-title: Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates publication-title: J. Physiol. Paris doi: 10.1016/j.jphysparis.2009.05.006 – volume: 1 start-page: 480 year: 1989 ident: B25 article-title: A canonical microcircuit for neocortex publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.480 – volume: 125 start-page: 930 year: 2013 ident: B1 article-title: Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach publication-title: Clin. Neurophysiol doi: 10.1016/j.clinph.2013.10.051 – volume: 5 start-page: 1 year: 2008 ident: B50 article-title: Kalman filter control of a model of spatiotemporal cortical dynamics publication-title: J. Neural Eng doi: 10.1088/1741-2560/5/1/001 – volume: 8 start-page: e77876 year: 2013 ident: B59 article-title: A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity–evaluation with auditory habituation publication-title: PLoS ONE doi: 10.1371/journal.pone.0077876 – volume: 9 start-page: 793 year: 1997 ident: B56 article-title: Dual kalman filtering methods for nonlinear prediction, smoothing, and estimation publication-title: Adv. Neural Inform. Process. Syst – volume: 56 start-page: 139 year: 1987 ident: B27 article-title: Simulation of chaotic eeg patterns with a dynamic model of the olfactory system publication-title: Biol. Cybern doi: 10.1007/BF00317988 – volume: 80 start-page: 62 year: 2013 ident: B54 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 55 start-page: 920 year: 2011 ident: B32 article-title: Intermittent spike wave dynamics in a heterogeneous, spatially extended neural mass model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.12.074 – volume-title: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, 1st Edn year: 2006 ident: B51 doi: 10.1002/0470045345 – volume: 19 start-page: 015105 year: 2009 ident: B23 article-title: A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential publication-title: Chaos doi: 10.1063/1.3092907 – volume: 6 start-page: 2287 year: 1995 ident: B35 article-title: Network analysis of pet-mapped visual pathways in alzheimer type dementia publication-title: Neuroreport doi: 10.1097/00001756-199511270-00005 – start-page: 1453 year: 2008 ident: B39 article-title: Constrained state estimation using the unscented kalman filter publication-title: Proceedings of the 16th Mediterranean Conference on Control and Automation – volume: 30 start-page: 1273 year: 2006 ident: B40 article-title: Dynamic causal modelling of evoked responses in eeg/meg with lead field parameterization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.055 – start-page: 153 volume-title: Adaptive Systems for Signal Processing, Communications, and Control Symposium year: 2000 ident: B57 article-title: The unscented kalman filter for nonlinear estimation – volume: 27 start-page: 419 year: 2004 ident: B24 article-title: Neuronal circuits of the neocortex publication-title: Ann. Rev. Neurosci doi: 10.1146/annurev.neuro.27.070203.144152 – volume: 130 start-page: 314 year: 2007 ident: B45 article-title: Seizure prediction: the long and winding road publication-title: Brain doi: 10.1093/brain/awl241 – volume: 20 start-page: 1743 year: 2003 ident: B20 article-title: A neural mass model for meg/eeg:: coupling and neuronal dynamics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.07.015 – volume: 52 start-page: 793 year: 2010 ident: B6 article-title: Multi-area neural mass modeling of eeg and meg signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.034 – volume: 15 start-page: 27 year: 1974 ident: B15 article-title: Model of brain rhythmic activity publication-title: Kybernetik doi: 10.1007/BF00270757 – start-page: 63 volume-title: Recent Advances in Predicting and Preventing Epileptic Seizures year: 2013 ident: B29 article-title: Patient-specific neural mass modelling: stochastic and deterministic methods doi: 10.1142/9789814525350_0005 – volume: 183 start-page: 77 year: 2009 ident: B2 article-title: Characterisation of cortical activity in response to deep brain stimulation of ventral–lateral nucleus: modelling and experiment publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.06.044 – volume: 4 start-page: e1000092 year: 2008 ident: B22 article-title: The dynamic brain: from spiking neurons to neural masses and cortical fields publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1000092 – volume: 7 issue: 57 year: 2013 ident: B43 article-title: Neural masses and fields in dynamic causal modeling publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2013.00057 – volume: Vol. 3068 year: 1997 ident: B37 article-title: A new extension of the kalman filter to nonlinear systems publication-title: Proceedings of the SPIE: Signal Processing, Sensor Fusion, and Target Recognition VI doi: 10.1117/12.280797 – volume: 80 start-page: 53 year: 2013 ident: B52 article-title: The human connectome: origins and challenges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.023 – volume: 88 start-page: 042905 year: 2013 ident: B42 article-title: Parameter estimation and control for a neural mass model based on the unscented kalman filter publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.042905 – volume: 58 start-page: 312 year: 2011 ident: B16 article-title: Dynamic causal modelling: a critical review of the biophysical and statistical foundations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.062 – volume: 6 start-page: e315 year: 2008 ident: B21 article-title: Identifying neural drivers with functional mri: an electrophysiological validation publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060315 – volume: 34 start-page: 537 year: 1995 ident: B7 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn. Reson. Med doi: 10.1002/mrm.1910340409 – volume-title: Electric Fields of the Brain: The Neurophysics of EEG, 2nd Edn year: 2006 ident: B47 doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 40 start-page: 1931 year: 2004 ident: B5 article-title: A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation publication-title: Automatica doi: 10.1016/j.automatica.2004.06.004 – volume: 36 start-page: 2188 year: 2012 ident: B8 article-title: The dynamic evolution of focal-onset epilepsies–combining theoretical and clinical observations publication-title: Eur. J. Neurosci doi: 10.1111/j.1460-9568.2012.08082.x – volume: 30 start-page: 609 year: 2001 ident: B9 article-title: Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli publication-title: Neuron doi: 10.1016/S0896-6273(01)00288-4 – volume: 36 start-page: 2118 year: 2012 ident: B11 article-title: The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience publication-title: Eur. J. Neurosci doi: 10.1111/j.1460-9568.2012.08185.x – volume: 4 issue: 16 year: 2010 ident: B14 article-title: Whose cortical column would that be? publication-title: Front. Neuroanat doi: 10.3389/fnana.2010.00016 – volume: 16 start-page: 1296 year: 2006 ident: B10 article-title: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj072 – volume-title: Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience year: 2012 ident: B49 – volume: 54 start-page: 1283 year: 2011 ident: B13 article-title: Multi-channel neural mass modelling and analyzing publication-title: Sci. China Inform. Sci doi: 10.1007/s11432-011-4216-9 – volume: 15 start-page: 1499 year: 2002 ident: B61 article-title: Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition publication-title: Eur. J. Neurosci doi: 10.1046/j.1460-9568.2002.01985.x – volume: 238 start-page: 2089 year: 2009 ident: B17 article-title: Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models publication-title: Physica D doi: 10.1016/j.physd.2009.08.002 – volume-title: Bayesian Filtering and Smoothing, 3rd Edn year: 2013 ident: B48 doi: 10.1017/CBO9781139344203 – volume: 66 start-page: 88 year: 2013 ident: B4 article-title: Spatiotemporal multi-resolution approximation of the amari type neural field model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.039 – volume: 42 start-page: 272 year: 2008 ident: B44 article-title: Bayesian estimation of synaptic physiology from the spectral responses of neural masses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.025 – volume: 52 start-page: 1080 year: 2010 ident: B53 article-title: The generation of rhythms within a cortical region: analysis of a neural mass model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.084 – volume: 64 start-page: 1 year: 2001 ident: B3 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 19 start-page: 1273 year: 2003 ident: B31 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 12 start-page: 1 year: 1972 ident: B63 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J doi: 10.1016/S0006-3495(72)86068-5 – volume: 83 start-page: 367 year: 2000 ident: B60 article-title: Relevance of nonlinear lumped-parameter models in the analysis of depth-eeg epileptic signals publication-title: Biol. Cybern doi: 10.1007/s004220000160 – volume: 19 start-page: 466 year: 2003 ident: B34 article-title: The elusive concept of brain connectivity publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00112-5 – volume: 40 start-page: 487 year: 2007 ident: B18 article-title: Dynamic causal models and autopoietic systems publication-title: Biol. Res doi: 10.4067/S0716-97602007000500010 – volume: 56 start-page: 1043 year: 2011 ident: B28 article-title: A data-driven framework for neural field modelling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.027 – volume: 73 start-page: 357 year: 1995 ident: B36 article-title: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns publication-title: Biol. Cybern doi: 10.1007/BF00199471 – start-page: 221 volume-title: Kalman Filtering and Neural Networks year: 2001 ident: B58 article-title: The unscented kalman filter doi: 10.1002/0471221546.ch7 – volume: 59 start-page: 2374 year: 2012 ident: B46 article-title: Characterising the dynamics of eeg waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.111 – volume: 14 start-page: 1905 year: 2004 ident: B55 article-title: Nonlinear dynamical system identification from uncertain and indirect measurements publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127404010345 – volume: 22 start-page: 57 year: 2003 ident: B41 article-title: Seizure prediction by nonlinear eeg analysis publication-title: Eng. Med. Biol. Mag doi: 10.1109/MEMB.2003.1191451 – volume: 21 start-page: 659 year: 2004 ident: B19 article-title: Evaluation of different measures of functional connectivity using a neural mass model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.10.006 – volume: 2 start-page: 56 year: 1994 ident: B30 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp doi: 10.1002/hbm.460020107 – volume-title: Mass Action in the Nervous System year: 1975 ident: B26 – volume: 22 start-page: 343 year: 2005 ident: B62 article-title: Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral eeg publication-title: J. Clin. Neurophysiol – volume: 360 start-page: 1271 year: 2005 ident: B12 article-title: What is the function of the claustrum? publication-title: Philos. Trans. R. Soc. B Biol. Sci doi: 10.1098/rstb.2005.1661 – volume: 82 start-page: 35 year: 1960 ident: B38 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng doi: 10.1115/1.3662552 – reference: 11736210 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 1):061907 – reference: 11039701 - Biol Cybern. 2000 Oct;83(4):367-78 – reference: 19108604 - PLoS Biol. 2008 Dec 23;6(12):2683-97 – reference: 18515149 - Neuroimage. 2008 Aug 1;42(1):272-84 – reference: 16280462 - Cereb Cortex. 2006 Sep;16(9):1296-313 – reference: 24374087 - Clin Neurophysiol. 2014 May;125(5):930-40 – reference: 12683064 - IEEE Eng Med Biol Mag. 2003 Jan-Feb;22(1):57-63 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 21329758 - Neuroimage. 2011 Jun 1;56(3):1043-58 – reference: 20045071 - Neuroimage. 2010 Sep;52(3):1080-94 – reference: 12028360 - Eur J Neurosci. 2002 May;15(9):1499-508 – reference: 8747138 - Neuroreport. 1995 Nov 27;6(17 ):2287-92 – reference: 23755005 - Front Comput Neurosci. 2013 May 28;7:57 – reference: 19961941 - Neuroimage. 2011 Sep 15;58(2):312-22 – reference: 15217339 - Annu Rev Neurosci. 2004;27:419-51 – reference: 18310806 - J Neural Eng. 2008 Mar;5(1):1-8 – reference: 4853232 - Kybernetik. 1974 May 31;15(1):27-37 – reference: 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 – reference: 19335009 - Chaos. 2009 Mar;19(1):015105 – reference: 11395018 - Neuron. 2001 May;30(2):609-17 – reference: 24205009 - PLoS One. 2013 Oct 30;8(10):e77876 – reference: 19616579 - J Neurosci Methods. 2009 Sep 30;183(1):77-85 – reference: 16490364 - Neuroimage. 2006 May 1;30(4):1273-84 – reference: 16147522 - Philos Trans R Soc Lond B Biol Sci. 2005 Jun 29;360(1458):1271-9 – reference: 7578475 - Biol Cybern. 1995 Sep;73(4):357-66 – reference: 20640245 - Front Neuroanat. 2010 May 31;4:16 – reference: 21195779 - Neuroimage. 2011 Apr 1;55(3):920-32 – reference: 4332108 - Biophys J. 1972 Jan;12(1):1-24 – reference: 17008335 - Brain. 2007 Feb;130(Pt 2):314-33 – reference: 18769680 - PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 – reference: 16357638 - J Clin Neurophysiol. 2005 Oct;22(5):343-56 – reference: 14980568 - Neuroimage. 2004 Feb;21(2):659-73 – reference: 23116813 - Neuroimage. 2013 Feb 1;66:88-102 – reference: 20080193 - Neuroimage. 2010 Sep;52(3):793-811 – reference: 22805057 - Eur J Neurosci. 2012 Jul;36(2):2118-20 – reference: 24229247 - Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042905 – reference: 18575681 - Biol Res. 2007;40(4):487-502 – reference: 19500669 - J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87 – reference: 21945471 - Neuroimage. 2012 Feb 1;59(3):2374-92 – reference: 23528922 - Neuroimage. 2013 Oct 15;80:53-61 – reference: 14642484 - Neuroimage. 2003 Nov;20(3):1743-55 – reference: 22805064 - Eur J Neurosci. 2012 Jul;36(2):2188-200 – reference: 19862351 - Physica D. 2009 Nov 1;238(21):2089-2118 – reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79 – reference: 3593783 - Biol Cybern. 1987;56(2-3):139-50 – reference: 12814595 - Neuroimage. 2003 Jun;19(2 Pt 1):466-70 |
| SSID | ssj0062842 |
| Score | 2.275451 |
| Snippet | This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 383 |
| SubjectTerms | Biophysics Brain research Computational neuroscience Control theory Convulsions & seizures Cortex Engineering Epilepsy Kalman filters Medical imaging Membrane potential Neural networks Neuroimaging Neuroscience Neurosciences Population Seizures |
| SummonAdditionalLinks | – databaseName: ProQuest Central (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_q9UF9EG39WK0SQQSF5W43ySZ5EKl6pfhwiFjo25KdbOjBuXdt75T-92ayH_QonM_JfmSSzPwmmfkNwDtna829wLTGSZ2SxUgr6U1KploGBCuxDZCdFadn4vu5PN-DWZ8LQ2GVvU6Mitotkc7IxwEqk20LFufz6jKlqlF0u9qX0LBdaQX3KVKM3YP9nJixRrD_ZTr78bPXzUVQxvH-s6BcoQDW24vL4KaZsW_mDfF3Z0SnzTXfNlR30OfdIMr7m2Zlb_7axeKWhTp5DI86aMmO27XwBPbq5gAOj5vgVv--Ye9ZDPaMp-gH8PAWD-EhfJuGjd7mMLKlZ22MR1CDDCkMBtsCE-zP3DIKKE3dFalIRlSY4Xuxlk54zVM4O5n--nqaduUVUhRSrdMCkVsvLaX7GBRG55mX6CYolEbOrdK1cmiNQV0JYz0XAlHxrHLKOyM9fwajZtnUL4CpXHglLApunVBcW527wuQY8IWvamsSGPeyLLHjHqcSGIsy-CAk_TJKvyTpl1H6CXwYnli1vBs7-h7101N2OzA0D-slgbdDc9g7dCFim3q5uS4DFlWyCOPmu_pEJzPTkwSetzM-_FBwxwLCy2QCamstDB2Iu3u7pZlfRA5vkQsquJrAx2HV_HecL3eP8xU8oL6UKJnrIxitrzb164CY1tWbbhv8A4R0Fvo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvbDA-wgYyEkICKWsT27H9WMGmiYeJByqNp8i5xKKiuNXWMm1_Pb44zShDQ4i3RL58nGP77uLf_Q7gdW0bzZ3AtMFRk5LFSCvpTEqmWgYPVmIEyJ4UxxPx8VSu0YTnHazSUeo-FYKe-sgU3EHEaIaHiMoMnZ96otrOiPk6hFjDRe3uwlYhgzs-gK3JyafxFwq0CsoIkvz0-ljouFX5x9tsmqYb_uZN2OS9lV_Yyws7m_1ik462oVprE6Eo3w5Wy-oAr34jevwvdXfgQeexsnGUfwh3Gv8Idsc-ROvfL9kb1mJI25_zu_DhMKwYMRmSzR2LYJGwnjIkPA3GShXsx9QyQqam9RmttYw4NcMT2qI8wZI-hsnR4ef3x2lXpyFFIdUyLRC5ddJS3pBBYXSeOYn1CIXSyLlVulE1WmNQV8JYx4VAVDyrauVqIx1_AgM_980zYCoXTgmLgttaKK6tzuvC5BgcFVc11iQwXH-iEjsSc6qlMStDMEOdVbadVVJnlW1nJfC2v2IRCTxukd1ff_Wym8qhmRNFDm1AJvCqbw6TkHZWrG_mq_MyOLVKFkFvfptMG61mepTA0ziQ-hcKcV1wFTOZgNoYYr0AkYBvtvjp15YMXOSCKrcm8K4fjH_V8_m_CO_BfTqh_Mtc78NgebZqXgRHbFm97KbaT-H-MtM priority: 102 providerName: Unpaywall |
| Title | Estimation of effective connectivity via data-driven neural modeling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25506315 https://www.proquest.com/docview/2305091224 https://www.proquest.com/docview/1637568213 https://www.proquest.com/docview/1642619180 https://pubmed.ncbi.nlm.nih.gov/PMC4246673 https://www.frontiersin.org/articles/10.3389/fnins.2014.00383/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gAvCBiwbKMyEkICKayJ7Th-QKhAx4RENSEqlafIvcSiUklH1wL977lz2kC1aYiXSJGdD599vt_5vgCelq7KpVcYV9itYpYY8Vh7G7Oo1oRgNTYOsoPsdKg-jPToT3j0moAXV6p2XE9qOJ--_PV99ZoY_hVrnCRvj309qTnzdsKJsEnjugm7JKcsF3L4qFqbQkYbcbB9ZhwnpOWoMVpe-YZtIXUJeV52oLy1rM_d6qebTv-STid34c4aVopesw7uwY2qvg97vZpU6m8r8UwER89wgr4H7_rE1k3Eoph50Xh00KYnkJ1esCknIX5MnGD30bic84YoOPElfSFUziFx9wCGJ_3Pb0_jdTGFGJU2izhDlM5rx8E9FpXN08RrLLuoTI5SOpNXpkRnLeZjZZ2XSiEamYxL40urvXwIO_WsrvZBmFR5oxwq6UplZO7ytMxsioQm_LhyNoLjDfUKXGca54IX04I0DqZ3EehdML2LQO8InrdPnDdZNq7pe7SZkGKzXApSpBj5EB6J4EnbTJzC5g9XV7PlRUHI0-iMxi2v6xNUyiTvRvComeP2h0j5IjyX6AjM1uy3HThT93ZLPfkaMnarVHF51QhetOvkn-M8-A-aHMJtvuEYyTQ_gp3FfFk9JrC0GHdg901_cPapEw4b6Pp-lHQCX1DLcHDW-_IbPlcZDw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lA4IGh5LBQwEiCBtEp2ba_XhwoVmiqlJUKolXpbHHutRko3oU2o8uf4bczsS40qhVPPfux6bM_DM_MNwDtn8pR7YcPcdvOQJEY4lF6HJKolarDSVgGyg6R_Kr6dybM1-NvkwlBYZcMTS0btJpbeyDuoKpNsQ4nzefo7pKpR5F1tSmiYurSC2y0hxurEjqN8cY0m3NXu4T7u9_s4PuidfO2HdZWB0AqpZmFiLTdeGsp60VboNI68tK5rhUot50aluXLWaG3TodDGcyGsVTwaOuWdlp7jvPdgQ3Ch0fjb-NIb_PjZyIIEmX_pb00oNwmNg8pRimah7vhiVBBeeETw3Tzly4LxlrZ7O2hzc15MzeLajMc3JOLBI3hYq7Jsrzp7j2EtL7Zge69AM_5iwT6wMri0fLXfggc3cA-3Yb-HjKXKmWQTz6qYEmS7zFLYja0KWrA_I8MogDV0l8SSGUFv4vfK2j04zRM4vRNCP4X1YlLkz4GpWHgljBXcOKF4atLYJTq2qM_4YW50AJ2Glpmtsc6p5MY4Q5uHqJ-V1M-I-llJ_QA-tiOmFc7Hir47zfZk9Y3H5vZ8BvC2bca7Sg4YU-ST-VWGuq-SCa6br-pTGrVR2g3gWbXj7Q-h-YcaZSQDUEtnoe1AWOHLLcXovMQMF7GgAq8BfGpPzX_X-WL1Ot_AZv_k-3F2fDg4egn3aRwlacbpDqzPLuf5K9TWZsPX9ZVg8Ouub-E_Yi1WNg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVuJxQNACXShgJEACaZVk7V3bhwoVkqilKKoQlXpbvPZaREo3oU2o8hf5VczsS40qhVPP9j489rw8M98AvHUmV9wLG-a2m4ekMcIs9jokVR2jBRvbKkF2lByeiq9n8dkG_G1qYSitspGJpaB2U0t35B00lUm3ocbp-Dot4qQ__DT7HVIHKYq0Nu00TN1mwe2XcGN1kcdxvrxCd-5y_6iPe_8uioaDH18Ow7rjQGhFLOdhYi03PjZUAaOt0Crq-di6rhVSWc6NVLl01mhtVSa08VwIayXvZU56p2PP8b13YIuCXygktj4PRiffG72QoCIoY68J1Smho1AFTdFF1B1fjAvCDu8RlDdXfFVJ3rB8byZw3lsUM7O8MpPJNe04fAQPa7OWHVTn8DFs5MU27BwU6NKfL9l7Viaaljf42_DgGgbiDvQHKGSq-kk29azKL0ERzCyl4NiquQX7MzaMkllDd0HimREMJ36v7OODr3kCp7dC6KewWUyLfBeYjISXwljBjROSK6Mil-jIom3js9zoADoNLVNb455T-41Jiv4PUT8tqZ8S9dOS-gF8aJ-YVZgfa-buNduT1tyPw-1ZDeBNO4x8S8EYU-TTxWWKdrCME1w3XzendHB7qhvAs2rH2x9CVxCty14cgFw5C-0Ewg1fHSnGv0r8cBEJavYawMf21Px3nc_Xr_M13EVuTL8djY5fwH16jOo1I7UHm_OLRf4SDbd59qrmCAY_b5sJ_wEFwFpl |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvbDA-wgYyEkICKWsT27H9WMGmiYeJByqNp8i5xKKiuNXWMm1_Pb44zShDQ4i3RL58nGP77uLf_Q7gdW0bzZ3AtMFRk5LFSCvpTEqmWgYPVmIEyJ4UxxPx8VSu0YTnHazSUeo-FYKe-sgU3EHEaIaHiMoMnZ96otrOiPk6hFjDRe3uwlYhgzs-gK3JyafxFwq0CsoIkvz0-ljouFX5x9tsmqYb_uZN2OS9lV_Yyws7m_1ik462oVprE6Eo3w5Wy-oAr34jevwvdXfgQeexsnGUfwh3Gv8Idsc-ROvfL9kb1mJI25_zu_DhMKwYMRmSzR2LYJGwnjIkPA3GShXsx9QyQqam9RmttYw4NcMT2qI8wZI-hsnR4ef3x2lXpyFFIdUyLRC5ddJS3pBBYXSeOYn1CIXSyLlVulE1WmNQV8JYx4VAVDyrauVqIx1_AgM_980zYCoXTgmLgttaKK6tzuvC5BgcFVc11iQwXH-iEjsSc6qlMStDMEOdVbadVVJnlW1nJfC2v2IRCTxukd1ff_Wym8qhmRNFDm1AJvCqbw6TkHZWrG_mq_MyOLVKFkFvfptMG61mepTA0ziQ-hcKcV1wFTOZgNoYYr0AkYBvtvjp15YMXOSCKrcm8K4fjH_V8_m_CO_BfTqh_Mtc78NgebZqXgRHbFm97KbaT-H-MtM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+effective+connectivity+via+data-driven+neural+modeling&rft.jtitle=Frontiers+in+neuroscience&rft.au=Freestone%2C+Dean+R.&rft.au=Karoly%2C+Philippa+J.&rft.au=Ne%C3%85%C2%A1i%C3%84%E2%80%A1%2C+Dragan&rft.au=Aram%2C+Parham&rft.date=2014-11-28&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=8&rft_id=info:doi/10.3389%2Ffnins.2014.00383&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2014_00383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |