Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development

Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 140; no. 1; pp. 279 - 291
Main Authors Bogs, Jochen, Ebadi, Ali, McDavid, Debra, Robinson, Simon P
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 2006
American Society of Plant Physiologists
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
DOI10.1104/pp.105.073262

Cover

Abstract Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b₅. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b₅ from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
AbstractList Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), and may also require cytochrome b 5 . We report the identification of genes encoding F3′H, F3′5′H, and a putative cytochrome b 5 from grapevine ( Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3 ′ H and VvF3 ′ 5 ′ H1 was demonstrated by ectopic expression in petunia ( Petunia hybrida ), which altered flower color and flavonoid composition as expected. VvF3 ′ H was expressed in grapes before flowering, when 3′-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3′- and 3′,5′-hydroxylated anthocyanins. VvF3 ′ H and VvCytoB5 were expressed in seeds but not VvF3 ′ 5 ′ H1 , consistent with the accumulation of 3′-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3 ′ H and VvF3 ′ 5 ′ H1 in the different grape tissues. In contrast to red grapes, where VvF3 ′ H , VvF3 ′ 5 ′ H1 , and VvCytoB5 were highly expressed during ripening, the expression of VvF3 ′ 5 ′ H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3 ′ H , VvF3 ′ 5 ′ H1 , and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), and may also require cytochrome b5. We report the identification of genes encoding F3′H, F3′5′H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3′H and VvF3′5′H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3′H was expressed in grapes before flowering, when 3′-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3′- and 3′,5′-hydroxylated anthocyanins. VvF3′H and VvCytoB5 were expressed in seeds but not VvF3′5′H1, consistent with the accumulation of 3′-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3′H and VvF3′5′H1 in the different grape tissues. In contrast to red grapes, where VvF3′H, VvF3′5′H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3′5′H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3′H, VvF3′5′H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), and may also require cytochrome b5. We report the identification of genes encoding F3′H, F3′5′H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3′H and VvF3′5′H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3′H was expressed in grapes before flowering, when 3′-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3′- and 3′,5′-hydroxylated anthocyanins. VvF3′H and VvCytoB5 were expressed in seeds but not VvF3′5′H1, consistent with the accumulation of 3′-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3′H and VvF3′5′H1 in the different grape tissues. In contrast to red grapes, where VvF3′H, VvF3′5′H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3′5′H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3′H, VvF3′5′H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b₅. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b₅ from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b5. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b5. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b₅. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b₅ from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (véraison) but increased after véraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.
Author McDavid, Debra
Robinson, Simon P
Bogs, Jochen
Ebadi, Ali
AuthorAffiliation Commonwealth Scientific and Industrial Research Organization, Plant Industry, Horticulture Unit, Glen Osmond, South Australia 5064, Australia (J.B., A.E., D.M., S.P.R.); and Cooperative Research Centre for Viticulture, Glen Osmond, South Australia 5064, Australia (J.B., D.M., S.P.R.)
AuthorAffiliation_xml – name: Commonwealth Scientific and Industrial Research Organization, Plant Industry, Horticulture Unit, Glen Osmond, South Australia 5064, Australia (J.B., A.E., D.M., S.P.R.); and Cooperative Research Centre for Viticulture, Glen Osmond, South Australia 5064, Australia (J.B., D.M., S.P.R.)
Author_xml – sequence: 1
  fullname: Bogs, Jochen
– sequence: 2
  fullname: Ebadi, Ali
– sequence: 3
  fullname: McDavid, Debra
– sequence: 4
  fullname: Robinson, Simon P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17433909$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16377741$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFIzcEvsAtiz_iOLlUQoVtK1VCgvZsTRx711XWDnayYv89LllaQEKcPNI8877jmTlBRz54g9BLSpaUkvL9MCwpEUsiOavYE7SggrOCibI-QgtCckzqujlGJyndEUIop-UzdEwrLqUs6QK5q8740VmnYXTB42DxuDF41cMu-OA6fLnvYvi-7yGZhG0MW3wRYTA75w0G3-GbjXERfzHrqZ8Vuik6v8arOLkRfzQ704dhmz2eo6cW-mReHN5TdLv6dHN-WVx_vrg6_3Bd6FLIsSgBGGlq3tq2AlJWHKRmNW1bLqgQhGpoZSWZhboG21pDKkYNZ0wwSjVvS36KzmbdYWq3ptPZOkKvhui2EPcqgFN_ZrzbqHXYKZonSATJAu8OAjF8m0wa1dYlbfoevAlTUpJUklei-S9YVjVjjeQZfP17Sw-9_FpDBt4eAEgaehvBa5ceOVly3pB7x2LmdAwpRWMfEaLuz0ENQw6Fms8h8_wvXrvx55ryz13_z6pXc9VdGkN8sChZzeb5vJnTFoKCdcyN3n5l-bRIlmqYqPgPpdnMKQ
CODEN PPHYA5
CitedBy_id crossref_primary_10_1021_acs_jafc_9b05732
crossref_primary_10_1111_pbi_13543
crossref_primary_10_1021_acs_jafc_5b00473
crossref_primary_10_1073_pnas_0901594106
crossref_primary_10_1104_pp_111_180950
crossref_primary_10_3390_ijms22189787
crossref_primary_10_1007_s11676_013_0380_7
crossref_primary_10_1371_journal_pone_0150431
crossref_primary_10_1016_j_plaphy_2016_10_018
crossref_primary_10_1021_acs_jafc_6b03272
crossref_primary_10_21273_JASHS_133_6_743
crossref_primary_10_1016_j_postharvbio_2018_09_008
crossref_primary_10_1007_s11627_018_9937_7
crossref_primary_10_1016_j_gene_2011_11_029
crossref_primary_10_1007_s00217_012_1850_4
crossref_primary_10_3390_horticulturae7080246
crossref_primary_10_3390_ijms25031539
crossref_primary_10_1007_s00122_013_2063_3
crossref_primary_10_1093_mp_ssn012
crossref_primary_10_1111_tpj_15449
crossref_primary_10_3389_fpls_2017_00652
crossref_primary_10_1007_s00344_023_10953_w
crossref_primary_10_1007_s00425_015_2391_4
crossref_primary_10_3389_fpls_2016_01979
crossref_primary_10_1186_1471_2229_10_187
crossref_primary_10_3389_fpls_2024_1441893
crossref_primary_10_1007_s11295_015_0855_0
crossref_primary_10_3389_fpls_2017_01826
crossref_primary_10_1093_hr_uhad181
crossref_primary_10_1105_tpc_113_113324
crossref_primary_10_1021_jf200073k
crossref_primary_10_3390_nu11112602
crossref_primary_10_1007_s00425_009_0991_6
crossref_primary_10_1002_jsfa_4739
crossref_primary_10_1016_j_scienta_2011_10_025
crossref_primary_10_1111_nph_12557
crossref_primary_10_3390_ijms20184335
crossref_primary_10_3390_plants13223158
crossref_primary_10_1007_s11295_008_0193_6
crossref_primary_10_3389_fpls_2022_862746
crossref_primary_10_1016_j_plaphy_2013_04_001
crossref_primary_10_3390_plants14010026
crossref_primary_10_1007_s00425_012_1650_x
crossref_primary_10_1111_j_1439_0434_2007_01216_x
crossref_primary_10_1016_j_phytochem_2012_02_026
crossref_primary_10_1093_jxb_erae482
crossref_primary_10_1007_s10529_009_0103_5
crossref_primary_10_1007_s11738_017_2473_y
crossref_primary_10_1016_j_plantsci_2009_04_002
crossref_primary_10_1071_FP18014
crossref_primary_10_3390_plants11060809
crossref_primary_10_1111_ppl_14031
crossref_primary_10_3389_fpls_2021_754325
crossref_primary_10_1093_pcp_pcu121
crossref_primary_10_1111_j_1365_2621_2010_02340_x
crossref_primary_10_1186_s12864_024_10738_9
crossref_primary_10_1007_s00709_012_0380_z
crossref_primary_10_1093_jxb_erl303
crossref_primary_10_2503_jjshs1_CH_062
crossref_primary_10_3390_plants8040100
crossref_primary_10_3390_genes13071256
crossref_primary_10_1186_1471_2164_11_562
crossref_primary_10_1111_j_1755_0238_2008_00009_x
crossref_primary_10_1007_s11738_011_0858_x
crossref_primary_10_1007_s00122_008_0737_z
crossref_primary_10_1371_journal_pone_0060422
crossref_primary_10_1016_j_plaphy_2018_11_013
crossref_primary_10_1016_j_scienta_2022_111561
crossref_primary_10_1111_ajgw_12393
crossref_primary_10_1007_s11105_023_01370_0
crossref_primary_10_1111_j_1365_3040_2007_01716_x
crossref_primary_10_3389_fpls_2022_970023
crossref_primary_10_1371_journal_pone_0062291
crossref_primary_10_1007_s11676_017_0560_y
crossref_primary_10_3390_ijms24043247
crossref_primary_10_1016_j_scienta_2016_09_039
crossref_primary_10_1016_j_phytochem_2020_112347
crossref_primary_10_1111_ppl_12034
crossref_primary_10_3389_fpls_2024_1360381
crossref_primary_10_1186_s41065_016_0021_1
crossref_primary_10_1016_j_jprot_2012_01_015
crossref_primary_10_3389_fpls_2022_959698
crossref_primary_10_7717_peerj_10005
crossref_primary_10_1155_2018_6218430
crossref_primary_10_1186_s12864_017_3677_7
crossref_primary_10_1007_s11738_013_1257_2
crossref_primary_10_1371_journal_pone_0058820
crossref_primary_10_1021_acs_jafc_8b02950
crossref_primary_10_1093_jxb_ery392
crossref_primary_10_34133_2020_8086309
crossref_primary_10_5010_JPB_2015_42_2_104
crossref_primary_10_52589_AJAFS_2C06IKDN
crossref_primary_10_3389_fpls_2017_00547
crossref_primary_10_3390_foods11223668
crossref_primary_10_3390_agronomy10050680
crossref_primary_10_1093_jxb_erp225
crossref_primary_10_1007_s11103_015_0394_y
crossref_primary_10_1371_journal_pone_0170571
crossref_primary_10_1007_s00709_021_01698_y
crossref_primary_10_1016_j_plantsci_2022_111341
crossref_primary_10_4161_psb_3_9_6686
crossref_primary_10_3389_fpls_2017_01084
crossref_primary_10_29235_1029_8940_2021_66_4_402_411
crossref_primary_10_3390_foods11010048
crossref_primary_10_1111_tpj_16247
crossref_primary_10_1016_j_plantsci_2019_01_015
crossref_primary_10_3390_horticulturae8090796
crossref_primary_10_1155_2013_572896
crossref_primary_10_1111_j_1755_0238_2011_00164_x
crossref_primary_10_1093_aob_mcs227
crossref_primary_10_3389_fpls_2020_01095
crossref_primary_10_3390_molecules15031141
crossref_primary_10_1186_s12864_018_5354_x
crossref_primary_10_1093_pcp_pcl003
crossref_primary_10_1016_j_plaphy_2015_09_016
crossref_primary_10_1016_j_gene_2014_03_026
crossref_primary_10_1016_j_phytochem_2014_03_014
crossref_primary_10_1021_jf2045608
crossref_primary_10_1093_hr_uhab068
crossref_primary_10_3390_molecules190914843
crossref_primary_10_3390_ijms20020365
crossref_primary_10_1186_1471_2164_8_187
crossref_primary_10_1007_s00438_006_0149_1
crossref_primary_10_1093_jxb_erab116
crossref_primary_10_3390_ijms140714950
crossref_primary_10_1016_j_plantsci_2020_110633
crossref_primary_10_1093_mplant_ssn012
crossref_primary_10_1111_mpp_12735
crossref_primary_10_1007_s00438_015_1116_5
crossref_primary_10_1371_journal_pone_0210322
crossref_primary_10_1371_journal_pone_0230154
crossref_primary_10_3390_molecules28073205
crossref_primary_10_1111_j_1755_0238_2009_00086_x
crossref_primary_10_1016_j_scienta_2011_12_026
crossref_primary_10_1186_1471_2229_12_30
crossref_primary_10_1016_j_gene_2018_07_039
crossref_primary_10_1186_s12870_014_0188_4
crossref_primary_10_1007_s00709_023_01901_2
crossref_primary_10_1007_s11101_024_09958_4
crossref_primary_10_1104_pp_109_152801
crossref_primary_10_1007_s11295_020_1421_y
crossref_primary_10_1007_s10725_023_01098_7
crossref_primary_10_1007_s00217_009_1180_3
crossref_primary_10_1016_j_jplph_2020_153253
crossref_primary_10_3390_ijms25105241
crossref_primary_10_1007_s12011_019_01955_5
crossref_primary_10_1007_s13580_022_00455_1
crossref_primary_10_1371_journal_pone_0156117
crossref_primary_10_1021_jf0616560
crossref_primary_10_1016_j_scienta_2017_12_035
crossref_primary_10_1016_j_scienta_2022_111605
crossref_primary_10_1007_s11033_011_0738_x
crossref_primary_10_1007_s11105_009_0133_0
crossref_primary_10_1016_j_plaphy_2016_04_042
crossref_primary_10_1007_s00217_007_0744_3
crossref_primary_10_1021_jf0727645
crossref_primary_10_1016_j_postharvbio_2023_112746
crossref_primary_10_1007_s11676_015_0121_1
crossref_primary_10_2503_hortj_UTD_371
crossref_primary_10_2503_hortj_UTD_139
crossref_primary_10_4236_ajps_2016_79127
crossref_primary_10_1016_j_plaphy_2015_01_006
crossref_primary_10_1016_j_foodchem_2018_12_131
crossref_primary_10_1007_s00425_021_03613_4
crossref_primary_10_5352_JLS_2010_20_2_292
crossref_primary_10_1007_s10535_014_0424_7
crossref_primary_10_1093_jxb_erad223
crossref_primary_10_1186_s12864_020_6663_4
crossref_primary_10_1186_s12864_015_1842_4
crossref_primary_10_1007_s11103_008_9446_x
crossref_primary_10_1007_s11101_007_9076_y
crossref_primary_10_1093_jxb_ern217
crossref_primary_10_1371_journal_pone_0283324
crossref_primary_10_3390_molecules24061064
crossref_primary_10_2503_hortj_MI_041
crossref_primary_10_1104_pp_109_142059
crossref_primary_10_1002_jsfa_10077
crossref_primary_10_1007_s00425_008_0730_4
crossref_primary_10_1021_jf501575m
crossref_primary_10_1016_j_scienta_2011_07_021
crossref_primary_10_1021_jf061538c
crossref_primary_10_1007_s11101_006_9007_3
crossref_primary_10_3389_fpls_2018_00363
crossref_primary_10_3389_fpls_2016_01150
crossref_primary_10_1007_s11101_018_9551_7
crossref_primary_10_1021_acs_jafc_4c02303
crossref_primary_10_3390_plants13192704
crossref_primary_10_1371_journal_pone_0137925
crossref_primary_10_1007_s00425_007_0598_8
crossref_primary_10_1016_j_jfca_2022_104731
crossref_primary_10_3390_molecules15129057
crossref_primary_10_1007_s11540_022_09586_5
crossref_primary_10_1016_j_plaphy_2016_04_012
crossref_primary_10_1007_s00427_015_0489_0
crossref_primary_10_3390_horticulturae10060535
crossref_primary_10_3389_fpls_2024_1351008
crossref_primary_10_1016_j_scienta_2015_06_042
crossref_primary_10_1080_17429145_2020_1760367
crossref_primary_10_1093_plphys_kiaa068
crossref_primary_10_3389_fpls_2017_01912
crossref_primary_10_1016_j_plantsci_2008_12_015
crossref_primary_10_3390_genes11101156
crossref_primary_10_1038_s41598_020_71661_z
crossref_primary_10_1080_01904167_2020_1806300
crossref_primary_10_3389_fpls_2017_01486
crossref_primary_10_1093_femsyr_foy046
crossref_primary_10_3389_fpls_2022_843996
crossref_primary_10_1556_AAlim_40_2011_Suppl_15
crossref_primary_10_3389_fpls_2019_01575
crossref_primary_10_1371_journal_pone_0001326
crossref_primary_10_1016_j_plantsci_2010_04_002
crossref_primary_10_1021_jf200040z
Cites_doi 10.1271/bbb.67.161
10.1080/10408399509527704
10.1104/pp.126.3.1105
10.1093/oxfordjournals.pcp.a029004
10.1111/j.1755-0238.2004.tb00008.x
10.1104/pp.006957
10.1104/pp.111.4.1059
10.1016/0167-7799(94)90097-3
10.1111/j.1439-0523.1991.tb00474.x
10.1104/pp.104.058032
10.1016/S0958-1669(99)80035-4
10.1007/978-1-4615-3430-3_6
10.1016/S0377-8401(03)00041-5
10.1016/j.plantsci.2005.01.009
10.1515/BC.2000.095
10.1007/BF00019111
10.1105/tpc.7.7.1071
10.1111/j.1755-0238.2000.tb00177.x
10.1016/S1360-1385(98)01242-4
10.1016/S0168-9452(97)00175-1
10.1038/366276a0
10.1007/s00425-002-0830-5
10.1007/978-1-4899-2911-2_14
10.1073/pnas.96.2.778
10.1093/bib/5.2.150
10.1002/jsfa.1534
10.1046/j.1365-313X.1999.00539.x
10.1104/pp.105.064238
10.1016/S0014-5793(99)01425-8
10.1111/j.1755-0238.2000.tb00171.x
10.1104/pp.126.2.485
10.1016/0167-4781(93)90058-L
10.1105/tpc.12.12.2383
10.1111/j.1755-0238.2003.tb00261.x
10.1105/TPC.010098
10.1021/jf010758h
10.1021/jf0111561
10.1016/j.tplants.2005.03.002
10.1093/nar/28.1.141
10.1111/j.1749-6632.1998.tb09922.x
10.1007/s00299-003-0709-3
10.1111/j.1755-0238.2003.tb00228.x
10.1016/0300-9084(96)88176-4
10.1046/j.1365-313X.1999.00524.x
ContentType Journal Article
Copyright Copyright 2006 American Society of Plant Biologists
2006 INIST-CNRS
Copyright © 2006, American Society of Plant Biologists 2006
Copyright_xml – notice: Copyright 2006 American Society of Plant Biologists
– notice: 2006 INIST-CNRS
– notice: Copyright © 2006, American Society of Plant Biologists 2006
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.105.073262
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1532-2548
EndPage 291
ExternalDocumentID PMC1326050
16377741
17433909
10_1104_pp_105_073262
4282050
US201301049256
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
PJZUB
PPXIY
PQGLB
ADYWZ
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c457t-4aa20983bfb6a0463a7c281bb3515501cab7672fa88afbfe0621e3225211c3b43
ISSN 0032-0889
IngestDate Thu Aug 21 14:21:22 EDT 2025
Thu Sep 04 14:40:18 EDT 2025
Fri Sep 05 03:36:59 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Mon Jul 21 09:14:44 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Tue Jul 01 02:53:47 EDT 2025
Fri Jun 20 02:19:40 EDT 2025
Wed Dec 27 19:07:44 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Anthocyanin
Cytochrome
Flower
Seeds
Petunia hybrida
Fruit
Enzyme
Hydroxylase
Antioxidant
Vitis vinifera
Ripening
Gene
Vitidaceae
Dicotyledones
Angiospermae
Development
Flowering
Spermatophyta
Oxidoreductases
Solanaceae
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-4aa20983bfb6a0463a7c281bb3515501cab7672fa88afbfe0621e3225211c3b43
Notes http://www.plantphysiol.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Horticulture, Faculty of Agriculture, University of Tehran, Karaj, Iran.
Corresponding author; e-mail simon.robinson@csiro.au; fax 61–8–8303–8601.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Simon P. Robinson (simon.robinson@csiro.au).
This work was supported by the Australian Government's Cooperative Research Centres Program and the Grape and Wine Research and Development Corporation.
Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.105.073262.
OpenAccessLink http://www.plantphysiol.org/content/plantphysiol/140/1/279.full.pdf
PMID 16377741
PQID 46822973
PQPubID 24069
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1326050
proquest_miscellaneous_70673659
proquest_miscellaneous_46822973
pubmed_primary_16377741
pascalfrancis_primary_17433909
crossref_primary_10_1104_pp_105_073262
crossref_citationtrail_10_1104_pp_105_073262
jstor_primary_4282050
fao_agris_US201301049256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006
20060101
2006-01-01
2006-Jan
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 2006
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2006
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References 2021050611381494500_R40
2021050611381494500_R20
2021050611381494500_R42
2021050611381494500_R41
2021050611381494500_R22
2021050611381494500_R44
2021050611381494500_R21
2021050611381494500_R43
2021050611381494500_R46
2021050611381494500_R24
2021050611381494500_R45
2021050611381494500_R23
2021050611381494500_R5
2021050611381494500_R6
2021050611381494500_R7
2021050611381494500_R8
2021050611381494500_R9
2021050611381494500_R15
2021050611381494500_R37
2021050611381494500_R14
2021050611381494500_R36
2021050611381494500_R17
2021050611381494500_R39
2021050611381494500_R16
2021050611381494500_R38
2021050611381494500_R1
2021050611381494500_R2
2021050611381494500_R18
2021050611381494500_R3
2021050611381494500_R4
2021050611381494500_R31
2021050611381494500_R30
2021050611381494500_R11
2021050611381494500_R33
2021050611381494500_R10
2021050611381494500_R32
2021050611381494500_R13
2021050611381494500_R35
2021050611381494500_R12
2021050611381494500_R34
2021050611381494500_R26
2021050611381494500_R25
2021050611381494500_R47
2021050611381494500_R28
2021050611381494500_R27
2021050611381494500_R29
References_xml – ident: 2021050611381494500_R37
  doi: 10.1271/bbb.67.161
– ident: 2021050611381494500_R27
  doi: 10.1080/10408399509527704
– ident: 2021050611381494500_R2
  doi: 10.1104/pp.126.3.1105
– ident: 2021050611381494500_R41
  doi: 10.1093/oxfordjournals.pcp.a029004
– ident: 2021050611381494500_R46
  doi: 10.1111/j.1755-0238.2004.tb00008.x
– ident: 2021050611381494500_R20
  doi: 10.1104/pp.006957
– ident: 2021050611381494500_R6
  doi: 10.1104/pp.111.4.1059
– ident: 2021050611381494500_R18
  doi: 10.1016/0167-7799(94)90097-3
– ident: 2021050611381494500_R12
  doi: 10.1111/j.1439-0523.1991.tb00474.x
– ident: 2021050611381494500_R28
  doi: 10.1104/pp.104.058032
– ident: 2021050611381494500_R30
  doi: 10.1016/S0958-1669(99)80035-4
– ident: 2021050611381494500_R13
  doi: 10.1007/978-1-4615-3430-3_6
– ident: 2021050611381494500_R29
  doi: 10.1016/S0377-8401(03)00041-5
– ident: 2021050611381494500_R34
  doi: 10.1016/j.plantsci.2005.01.009
– ident: 2021050611381494500_R39
  doi: 10.1515/BC.2000.095
– ident: 2021050611381494500_R5
  doi: 10.1007/BF00019111
– ident: 2021050611381494500_R17
  doi: 10.1105/tpc.7.7.1071
– ident: 2021050611381494500_R47
  doi: 10.1111/j.1755-0238.2000.tb00177.x
– ident: 2021050611381494500_R31
  doi: 10.1016/S1360-1385(98)01242-4
– ident: 2021050611381494500_R36
  doi: 10.1016/S0168-9452(97)00175-1
– ident: 2021050611381494500_R16
  doi: 10.1038/366276a0
– ident: 2021050611381494500_R23
  doi: 10.1007/s00425-002-0830-5
– ident: 2021050611381494500_R15
  doi: 10.1007/978-1-4899-2911-2_14
– ident: 2021050611381494500_R9
  doi: 10.1073/pnas.96.2.778
– ident: 2021050611381494500_R25
  doi: 10.1093/bib/5.2.150
– ident: 2021050611381494500_R1
  doi: 10.1002/jsfa.1534
– ident: 2021050611381494500_R7
  doi: 10.1046/j.1365-313X.1999.00539.x
– ident: 2021050611381494500_R33
– ident: 2021050611381494500_R3
  doi: 10.1104/pp.105.064238
– ident: 2021050611381494500_R14
– ident: 2021050611381494500_R40
  doi: 10.1016/S0014-5793(99)01425-8
– ident: 2021050611381494500_R45
  doi: 10.1111/j.1755-0238.2000.tb00171.x
– ident: 2021050611381494500_R44
  doi: 10.1104/pp.126.2.485
– ident: 2021050611381494500_R42
  doi: 10.1016/0167-4781(93)90058-L
– ident: 2021050611381494500_R4
  doi: 10.1105/tpc.12.12.2383
– ident: 2021050611381494500_R11
  doi: 10.1111/j.1755-0238.2003.tb00261.x
– ident: 2021050611381494500_R35
  doi: 10.1105/TPC.010098
– ident: 2021050611381494500_R22
  doi: 10.1021/jf010758h
– ident: 2021050611381494500_R26
  doi: 10.1021/jf0111561
– ident: 2021050611381494500_R24
  doi: 10.1016/j.tplants.2005.03.002
– ident: 2021050611381494500_R38
  doi: 10.1093/nar/28.1.141
– ident: 2021050611381494500_R8
  doi: 10.1111/j.1749-6632.1998.tb09922.x
– ident: 2021050611381494500_R32
  doi: 10.1007/s00299-003-0709-3
– ident: 2021050611381494500_R10
  doi: 10.1111/j.1755-0238.2003.tb00228.x
– ident: 2021050611381494500_R43
  doi: 10.1016/0300-9084(96)88176-4
– ident: 2021050611381494500_R21
  doi: 10.1046/j.1365-313X.1999.00524.x
SSID ssj0001314
Score 2.3319185
Snippet Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms Agronomy. Soil science and plant productions
Amino Acid Sequence
amino acid sequences
anatomy & histology
Anthocyanins
Anthocyanins - metabolism
Berries
biochemical pathways
Biological and medical sciences
biosynthesis
chemistry
Cloning, Molecular
Complementary DNA
cytochrome b
cytochrome P-450
Cytochrome P-450 Enzyme System
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochromes
Cytochromes b5
Cytochromes b5 - genetics
Cytochromes b5 - metabolism
Economic plant physiology
enzymology
flavonoid 3',5'-hydroxylase
flavonoid 3'-hydroxylase
Flavonoids
Flavonols
Flowers
Fructification, ripening. Postharvest physiology
Fruit
Fruit - genetics
Fruit - metabolism
fruiting
fruits (plant anatomy)
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Expression Regulation, Plant
Genes
genetics
grapes
growth & development
Growth and development
hydroxylation
metabolism
Mixed Function Oxygenases
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Molecular Sequence Data
nucleotide sequences
oxygenases
Petunia
Petunia - anatomy & histology
Petunia - genetics
Petunia hybrida
Phylogeny
Pigments, Biological
Pigments, Biological - metabolism
plant biochemistry
plant genetics
plant physiology
plant proteins
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified
Plants, Genetically Modified - anatomy & histology
Plants, Genetically Modified - enzymology
Plants, Genetically Modified - growth & development
Polymerase chain reaction
Proanthocyanidins
Proanthocyanidins - metabolism
ripening
RNA, Messenger
RNA, Messenger - metabolism
Seeds
sequence analysis
Sequence Analysis, Protein
Systems Biology, Molecular Biology, and Gene Regulation
transcription (genetics)
transgenic plants
Vitis
Vitis - enzymology
Vitis - genetics
Vitis - growth & development
Vitis vinifera
Title Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development
URI https://www.jstor.org/stable/4282050
https://www.ncbi.nlm.nih.gov/pubmed/16377741
https://www.proquest.com/docview/46822973
https://www.proquest.com/docview/70673659
https://pubmed.ncbi.nlm.nih.gov/PMC1326050
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lLQcuiEeh4RH2gLgUF3vX9ibHuCk0IJKqaVBu1q4fNFJlR4mDVH4Ov5QZr72JSyseF8tKVuuV5_PMzuzMfIS8EQxsAE9iS3nMt1wWxVZPgjJkQshuN47StGzi-mXkn07dTzNv1mr93MpaWhfqKPpxa13J_0gVfgO5YpXsP0jWTAo_wD3IF64gYbj-lYx1lW1ahd3q4_70Sn7Ps3weH15ex5ilAhvkZKULSbA_NZjCLKkzJ-fLw6Wmo8cZqqLFdLmeF3U9lUmNqbawSHNU6IiI7t8Ee9QAy4ZXsdyKKwTjjxMdngdYbFJEgv5gqAtr5kbWx4P-1-Gg0n5LYyfOx8FwNBmXeQgTgFRW1aKZGMUGT_WxU52Diol95TLP6mUCmrfDkjZnFqZeNTS07ujUgGKlbzUTTWW6mSb--t0q2C5SGS-Q1PgIdBqrDECj-_YNq2hyFdFl4z2sEd1jwveRJWMw_GysvcN1__h63aaPq_u-8cDGvmcnlXmdAIvZuHIFH2SqmVRuc3VuZuxubYEuHpIHle9C-xqIj0gryR6Te0EO_sX1EzJvopHmKQVQUINGuo1GimikBo0U0EhLNNINGqlGIy3RSLfQuE-mH04ujk-tisjDilxPFJYrJbN7Xa5S5UtsUSdFxMBfUhwJhmwnkkr4gqWgHWSq0sT2mZOgpWGOE3Hl8qdkN8uz5IDQLvgPQgnleV3pOiyB_X2UuEp5UnHO_V6bvKtfcxhVXe6RbOUqLL1d2w0XC7j1Qi2VNnlrhi90e5e7Bh6AzEL5DUxvOJ0wPPCHQT3wGNpkvxSkmQA8emZ7dpt0GoLdPKBCVJu8riUdglLHkzqZJfl6Fbo-8jAIfvcIgQRTvgdzPNPI2MwOLwh8OqdNRAMzZgA2lG_-k80vy8byDsfohv38Twt_Qe5vIpEvyW6xXCevYG9eqA7ZETPRIXvByejsvFN-Kr8AGkzqHQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+flavonoid+hydroxylases+from+grapevine+and+their+regulation+during+fruit+development&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=BOGS%2C+Jochen&rft.au=EBADI%2C+Ali&rft.au=MCDAVID%2C+Debra&rft.au=ROBINSON%2C+Simon+P&rft.date=2006&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=0032-0889&rft.volume=140&rft.issue=1&rft.spage=279&rft.epage=291&rft_id=info:doi/10.1104%2Fpp.105.073262&rft.externalDBID=n%2Fa&rft.externalDocID=17433909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon