Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers
Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD)...
Saved in:
| Published in | JMIR formative research Vol. 6; no. 3; p. e31615 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Canada
JMIR Publications
02.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2561-326X 2561-326X |
| DOI | 10.2196/31615 |
Cover
| Abstract | Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.
The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.
We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.
Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.
ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy. |
|---|---|
| AbstractList | Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.BACKGROUNDElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.OBJECTIVEThe aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.METHODSWe used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.RESULTSAmong the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.CONCLUSIONSICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy. BackgroundElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. ObjectiveThe aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. MethodsWe used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. ResultsAmong the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. ConclusionsICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy. Background:Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.Objective:The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.Methods:We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.Results:Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.Conclusions:ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy. Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy. |
| Author | Whooley, Mary A Luo, Gang Mogilnicka, Izabella Seedahmed, Mohamed I Zeng, Siyang Koth, Laura McCulloch, Charles E Arjomandi, Mehrdad |
| AuthorAffiliation | 3 Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research Medical University of Warsaw Warsaw Poland 5 Department of Medicine University of California San Francisco San Francisco, CA United States 7 Department of Epidemiology & Biostatistics University of California San Francisco San Francisco, CA United States 4 Department of Biomedical Informatics and Medical Education School of Medicine, University of Washington Seattle, WA United States 2 San Francisco Veterans Affairs Medical Center San Francisco, CA United States 6 Measurement Science Quality Enhancement Research Initiative San Francisco Veterans Affairs Healthcare System San Francisco, CA United States 1 Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Department of Medicine University of California San Francisco San Francisco, CA United States |
| AuthorAffiliation_xml | – name: 1 Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Department of Medicine University of California San Francisco San Francisco, CA United States – name: 6 Measurement Science Quality Enhancement Research Initiative San Francisco Veterans Affairs Healthcare System San Francisco, CA United States – name: 5 Department of Medicine University of California San Francisco San Francisco, CA United States – name: 2 San Francisco Veterans Affairs Medical Center San Francisco, CA United States – name: 4 Department of Biomedical Informatics and Medical Education School of Medicine, University of Washington Seattle, WA United States – name: 3 Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research Medical University of Warsaw Warsaw Poland – name: 7 Department of Epidemiology & Biostatistics University of California San Francisco San Francisco, CA United States |
| Author_xml | – sequence: 1 givenname: Mohamed I orcidid: 0000-0002-7446-7346 surname: Seedahmed fullname: Seedahmed, Mohamed I – sequence: 2 givenname: Izabella orcidid: 0000-0002-5735-8375 surname: Mogilnicka fullname: Mogilnicka, Izabella – sequence: 3 givenname: Siyang orcidid: 0000-0001-9346-301X surname: Zeng fullname: Zeng, Siyang – sequence: 4 givenname: Gang orcidid: 0000-0001-7217-4008 surname: Luo fullname: Luo, Gang – sequence: 5 givenname: Mary A orcidid: 0000-0002-5943-0078 surname: Whooley fullname: Whooley, Mary A – sequence: 6 givenname: Charles E orcidid: 0000-0002-1279-6179 surname: McCulloch fullname: McCulloch, Charles E – sequence: 7 givenname: Laura orcidid: 0000-0001-9541-3622 surname: Koth fullname: Koth, Laura – sequence: 8 givenname: Mehrdad orcidid: 0000-0002-0116-9217 surname: Arjomandi fullname: Arjomandi, Mehrdad |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35081036$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkm1rFDEQgBep2FrvL0hAFEFOd5N9yfaDcJytFioWa4vfwmwyuUvJJmeyq9w_8-eZ3tWjrX5KyDx5ZiaTp9me8w6zbFLkb2nR1u9YURfVo-yAVnUxZbT-vndnv59NYrzO85wWRd207Em2z6qcFzmrD7Lf5xi0Dz04icRrAmTu-9U4wGC8A0vOl-j8sF4ZtyAzu_DBDMuepBvkAoL0RvloIrmMN_EPBhbOx8HIJFEYiXHk2KIcgnfp7DMqI5PyK0ofVDwic4hIrsAatclGLoZRrclJ8D2h5AoHDOAimWkNJsTd9Tm6FInPsscabMTJ7XqYXZ4cf5t_mp59-Xg6n51NZVk1w5Q2WGhsypIil0xqpjteSw5M5l2jUEtZoerqpu6AQ81Bt7qRCuqSKV1WWrLD7HTrVR6uxSqYHsJaeDBic-DDQkBILVsUVQlcQSUxr7pSYttCwxrdUV7xvO1Knlyvtq7RrWD9C6zdCYtc3ExSbCaZwPdbcDV2PSqZWg5g72W_H3FmKRb-p-At5XlZJsHrW0HwP0aMg-hNlGgtOPRjFLSmjFHGWZHQFw_Qaz-GNPsoGM2rlpZt1STq-d2KdqX8_UkJeLMFZPAxBtRCmu0vSgUa-0-DLx_Q_3-IPxig6bY |
| CitedBy_id | crossref_primary_10_1097_MCP_0000000000001102 crossref_primary_10_1513_AnnalsATS_202206_515OC crossref_primary_10_1016_j_jid_2024_08_025 crossref_primary_10_1016_j_jid_2024_02_031 |
| Cites_doi | 10.3389/fmed.2020.568020 10.1378/chest.10-0413 10.1186/s12911-019-0786-z 10.1002/cphg.80 10.1007/s00408-017-0054-x 10.1513/annalsats.201503-172ot 10.1164/rccm.202002-0251st 10.1513/annalsats.201610-764oc 10.1093/jamia/ocaa347 10.1093/oxfordjournals.aje.a009096 10.1097/MCP.0000000000000715 10.1002/pds.1202 10.1197/jamia.M2846 10.1371/journal.pone.0136651 10.1513/AnnalsATS.201707-563OT 10.12703/P6-89 10.1378/chest.14-1120 10.1164/ajrccm.164.10.2104046 10.1056/nejm198802113180604 10.1136/bmj.2.5261.1165 10.1371/journal.pone.0044818 10.1164/arrd.1973.107.4.615 10.1513/annalsats.201707-566ot 10.1513/AnnalsATS.201511-760OC 10.1002/ijc.24261 10.1038/s41598-019-48263-5 10.1101/716779 10.1186/s12911-020-1023-5 10.1183/09031936.00039714 10.1093/jamia/ocx061 10.1016/j.conctc.2018.07.001 10.1097/MCP.0000000000000596 10.3389/fimmu.2020.01443 10.1155/2012/260374 |
| ContentType | Journal Article |
| Copyright | Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. 2022 |
| Copyright_xml | – notice: Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2196/31615 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2561-326X |
| ExternalDocumentID | oai_doaj_org_article_54a8da5ce05b4ce99a737fb285809b48 10.2196/31615 PMC8928044 35081036 10_2196_31615 |
| Genre | Journal Article |
| GeographicLocations | Palo Alto California United States--US San Francisco California |
| GeographicLocations_xml | – name: Palo Alto California – name: San Francisco California – name: United States--US |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL157533 – fundername: NCATS NIH HHS grantid: TL1 TR001871 – fundername: NLM NIH HHS grantid: T15 LM007442 |
| GroupedDBID | 53G 7RV 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BCNDV BENPR CCPQU CITATION FYUFA GROUPED_DOAJ HMCUK HYE M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PPXIY PUEGO RPM UKHRP ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c457t-27e1fe7442e8c3cf3fb86c8a3c0b7defcc5edb676ba8a68af9f7cda643df45fc3 |
| IEDL.DBID | UNPAY |
| ISSN | 2561-326X |
| IngestDate | Tue Oct 14 19:07:05 EDT 2025 Sun Oct 26 04:02:15 EDT 2025 Tue Sep 30 16:54:58 EDT 2025 Thu Oct 02 05:11:47 EDT 2025 Tue Oct 07 07:02:57 EDT 2025 Mon Jul 21 06:06:13 EDT 2025 Wed Oct 01 03:51:05 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | diagnostic codes electronic medical records computational phenotype practice guidelines Veterans Affairs EMRs sarcoidosis VA |
| Language | English |
| License | Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c457t-27e1fe7442e8c3cf3fb86c8a3c0b7defcc5edb676ba8a68af9f7cda643df45fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9541-3622 0000-0002-5735-8375 0000-0002-5943-0078 0000-0001-9346-301X 0000-0001-7217-4008 0000-0002-1279-6179 0000-0002-0116-9217 0000-0002-7446-7346 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.2196/31615 |
| PMID | 35081036 |
| PQID | 3205924957 |
| PQPubID | 4997113 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_54a8da5ce05b4ce99a737fb285809b48 unpaywall_primary_10_2196_31615 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8928044 proquest_miscellaneous_2623323831 proquest_journals_3205924957 pubmed_primary_35081036 crossref_citationtrail_10_2196_31615 crossref_primary_10_2196_31615 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220302 |
| PublicationDateYYYYMMDD | 2022-03-02 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220302 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | Canada |
| PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
| PublicationTitle | JMIR formative research |
| PublicationTitleAlternate | JMIR Form Res |
| PublicationYear | 2022 |
| Publisher | JMIR Publications |
| Publisher_xml | – name: JMIR Publications |
| References | ref13 ref12 ref34 ref15 ref37 Szeto, HC (ref5) 2002; 8 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 (ref38) 1993 ref2 Brito-Zerón, P (ref35) 2019; 37 ref1 ref17 ref39 ref16 ref19 Mani, S (ref18) 2012; 2012 ref24 ref23 (ref43) 2014 ref26 ref25 ref20 ref42 ref41 ref22 ref44 Horsky, J (ref8) 2017; 2017 ref21 Daniel, J (ref28) 2012 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref40 |
| References_xml | – ident: ref9 doi: 10.3389/fmed.2020.568020 – ident: ref37 – ident: ref33 doi: 10.1378/chest.10-0413 – ident: ref42 doi: 10.1186/s12911-019-0786-z – ident: ref7 doi: 10.1002/cphg.80 – volume: 2017 start-page: 912 year: 2017 ident: ref8 publication-title: AMIA Annu Symp Proc – volume: 8 start-page: 37 issue: 1 year: 2002 ident: ref5 publication-title: Am J Manag Care – year: 2014 ident: ref43 publication-title: Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials – year: 2012 ident: ref28 publication-title: Sampling Essentials: Practical Guidelines for Making Sampling Choices – year: 1993 ident: ref38 publication-title: The ICD-10 Classification of Mental and Behavioural Disorders – ident: ref14 doi: 10.1007/s00408-017-0054-x – ident: ref29 doi: 10.1513/annalsats.201503-172ot – ident: ref3 doi: 10.1164/rccm.202002-0251st – ident: ref17 doi: 10.1513/annalsats.201610-764oc – ident: ref20 doi: 10.1093/jamia/ocaa347 – ident: ref34 doi: 10.1093/oxfordjournals.aje.a009096 – ident: ref36 doi: 10.1097/MCP.0000000000000715 – ident: ref27 – ident: ref16 doi: 10.1002/pds.1202 – volume: 2012 start-page: 606 year: 2012 ident: ref18 publication-title: AMIA Annu Symp Proc – ident: ref19 doi: 10.1197/jamia.M2846 – ident: ref21 doi: 10.1371/journal.pone.0136651 – ident: ref25 doi: 10.1513/AnnalsATS.201707-563OT – ident: ref1 doi: 10.12703/P6-89 – ident: ref32 doi: 10.1378/chest.14-1120 – ident: ref30 doi: 10.1164/ajrccm.164.10.2104046 – ident: ref6 doi: 10.1056/nejm198802113180604 – ident: ref39 doi: 10.1136/bmj.2.5261.1165 – ident: ref41 doi: 10.1371/journal.pone.0044818 – ident: ref2 doi: 10.1164/arrd.1973.107.4.615 – ident: ref10 doi: 10.1513/annalsats.201707-566ot – ident: ref13 doi: 10.1513/AnnalsATS.201511-760OC – ident: ref11 doi: 10.1002/ijc.24261 – ident: ref22 doi: 10.1038/s41598-019-48263-5 – ident: ref23 doi: 10.1101/716779 – ident: ref24 doi: 10.1186/s12911-020-1023-5 – ident: ref40 doi: 10.1183/09031936.00039714 – ident: ref44 doi: 10.1093/jamia/ocx061 – ident: ref26 doi: 10.1016/j.conctc.2018.07.001 – ident: ref4 doi: 10.1097/MCP.0000000000000596 – ident: ref12 doi: 10.3389/fimmu.2020.01443 – ident: ref15 doi: 10.1155/2012/260374 – volume: 37 start-page: 1052 issue: 6 year: 2019 ident: ref35 publication-title: Clin Exp Rheumatol – ident: ref31 |
| SSID | ssj0002116793 |
| Score | 2.2058308 |
| Snippet | Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the... Background:Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these... BackgroundElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e31615 |
| SubjectTerms | Accuracy Algorithms Biopsy Chronic obstructive pulmonary disease Electronic health records Erythema Granulomas Histopathology Magnetic resonance imaging Medical records Neurological disorders Original Paper R&D Research & development Sarcoidosis Tomography Veterans |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDwUJId4EShmkXqNm_YhtbqV0VSEVVYJWvUW2Y7MrbZNqkxXaf8bPY5ykYRcqceEa5-FkPsffeD7PEHJQOkaVCnmqHJqBa6ZTpTRPvfZWCJZPcht3I599yU8v-OcrcbVR6itqwvr0wP2HOxTcqNII5zNhufNaG8lksFQJlWnLu22-mdIbzlT8B9MuvMB2ycOodUaUHbJIbbYmny5H_13E8m995P1VdWPWP8xisTH5TB-TRwNrhKO-t0_IPV89JbtnQ1z8Gfl5_lv_D3UAA321hmGlD85nvqrbddwbBUeL7_Vy3s6uAa-Arwj0el7WzbyBTj4An3rxHT4Jb1L6BuYVnIzFcmCI7EDvtzYf4BjnQbhEOt9XZ4KoTFzDdFlfA4XLqLbB2RCGyNF4eVxVRub5nFxMT74dn6ZDTYbUcSHblEo_CV5yTr1yzAUWrMqdMsxlVpY-OCd8aXOZW6NMrkzQQbrSIO8pAxfBsRdkp6or_4qAR7-8NJk3Eu8nXMytF_8exlv0AUVgCTm4NVbhhoTlsW7GokDHJdq06GyakP3xtJs-Q8efJ3yMlh4bY0Lt7gDCrBhgVvwLZgnZu8VJMYzypmAUyWks3i0T8n5sxvEZgy6m8vWqKSjyS4a8iE0S8rKH1dgThux4ghQiIXILcFtd3W6p5rMuB7jSVGWcJ-TdCM273_71_3j7N-QBjds-ovaO7pGddrnyb5GMtXa_G3e_AJeRN68 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZdCt1gjN3nres06KtpooslD8Zou4QyaAjbWvpmZF2aQGpnscPIP9vP25GtuMtW9mrJssw5R_qkc_kQOjSaEildEksNYmApTWMpUxbb1Oac02SQ5D4b-XycnF2wL1f8ageNN7kwPqxysyY2C7Uptb8jP6IEgIAnShafFj9izxrlvasbCg0VqBXMx6bE2D20S3xlrB7aPRmOJ1-7WxfSuB3oHnroY6BB-46ohzxbm1JTu_8uwPlv3OT9VbFQ659qPv9jUxo9Ro8CmsTHrfifoB1bPEV758Ff_gz9mtzmBeDSYYVbFodwA4gnU1uU9drnTOHj-TX8bz29wfAG_gYGUM5MWc0q3IQV4M9tUB58CQYxtsKzAg87Eh0cPD64Pc9WH_Ap7I_4EmB-y9qEfcTiGo-W5Q0m-NJH4cAuiYNHqXvd3zYDIn2OLkbD76dnceBqiDXjoo6JsANnBWPESk21oy6XiZaK6n4ujHVac2vyRCS5kiqRyqVOaKMADxnHuNP0BeoVZWFfIWzhvG5U3yoB43Hta-75VUXZHM6G3NEIHW6ElelQyNzzacwzONB4mWaNTCN00HVbtJU7_u5w4iXdNfpC282DcnmdBbvNOFPSKK5tn-dM2zRVggqXE8llP82ZjND-Rk-yYP1VdqurEXrfNYPdemeMKmy5qjICuJMCXqKDCL1s1aqbCQXUPABoESGxpXBbU91uKWbTpja4TInsMxahd51q3v33r_8_8TfoAfGJHj7ajuyjXr1c2bcAv-r8INjUbwNGNYI priority: 102 providerName: ProQuest |
| Title | Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35081036 https://www.proquest.com/docview/3205924957 https://www.proquest.com/docview/2623323831 https://pubmed.ncbi.nlm.nih.gov/PMC8928044 https://doi.org/10.2196/31615 https://doaj.org/article/54a8da5ce05b4ce99a737fb285809b48 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2561-326X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002116793 issn: 2561-326X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2561-326X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002116793 issn: 2561-326X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2561-326X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002116793 issn: 2561-326X databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2561-326X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002116793 issn: 2561-326X databaseCode: 7X7 dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2561-326X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002116793 issn: 2561-326X databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9trTSQEN8fga0Yaa_d2tiOHd660WpCWlUBm8pT5Dg2reiSqUmFyl_Gn8c5ScM6hniNz46ju4t_vk-Aw0RTX0obdKVGNrCQhl0pQ9Y1oYk5p0E_iF028vk4OLtgH6d8ugMHm1yYG_571KXgmDpEsgvtgCPUbkH7YjwZfHUN47izm_jBdA8ebNFunS9lGf67sOPfIZD3Vum1Wv9Qi8WN82X0qDIF5mVZQhdW8v1oVcRH-uetoo3_3PpjeFgjSzKoROEJ7Jj0Keyd177zZ_Br8idHgGSWKFJ1dKitgWQyM2lWrF3-FBksvmXLeTG7IjiDfEZlyOZJls9zUoYYkA9VgB6-CRdJTE7mKRk2DXVI7f0h1d02f09O8awklwj5qw5OxEUvrslomV0Rn1y6iBw8MUntXWqmO8szotPncDEafjk969Z9G7qacVF0fWH61gjGfCM11ZbaWAZaKqp7sUiM1ZqbJA5EECupAqlsaIVOFGKjxDJuNX0BrTRLzSsgBu_uieoZJXA9rl39PfeHUSbGeyK31IPDDbcjXRc1d701FhFebhwXopILHnQasuuqisdtghMnKs2gK7pdPkCGRrUOR5wpmSiuTY_HTJswVIIKG_uSy14YM-nB_kbQovpPkEfURwDrGnwLD941w6jDzjGjUpOt8shHDEoRO9G-By8ruWx2QhFB9xFmeCC2JHZrq9sj6XxW1gmXoS97jHnwtpHtu7_-9X8p3sB93-V9uOA7fx9axXJlDhCNFXEHdsVUdKB9MhxPPnVKm0an1tPfoNI6Jw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYSDBpmva9bAw8iT1GtLYTO5PQxEerMmhVbYB4C45j00ol6ZpWqP_Znva37Zy4Yd3Q3niNE8fJne9-5_tCaCdVlAhhQl8oIAOLaOQLETFfRzoJAho2w8RmI3d7Yeecfb0MLlfQr0UujA2rXMjEUlCnubJn5LuUABCwjZL5l_EP33aNst7VRQsN6VorpHtliTGX2HGi57dgwhV7x0dA70-EtFtnhx3fdRnwFQv41CdcN43mjBEtFFWGmkSESkiqGglPtVEq0GkS8jCRQoZCmshwlUrQ5KlhgVEU5n2E1hhlERh_awetXv9bfcpDSjcHXUdPbMw1cPsutRBrSQmWvQLuA7j_xmluzLKxnN_K0egPJdh-hp469Ir3K3Z7jlZ09gKtd51__iX62b_LQ8C5wRJXXSPciSPuD3SWT-c2Rwvvj67h_04HNxiewN_hT-bDNC-GBS7DGPBRFQQIb4JJUl3gYYZbddMe7DxMuLKfi8_4EPQxvgCzouoShW2E5By3J_kNJvjCRv2AVsbOg1U_bk-3AQG_QucPQrXXaDXLM_0WYR01eCobWnKYL1C2xp-VYlInYIsGhnpoZ0GsWLnC6bZ_xygGA8rSNC5p6qGt-rZxVSnk7xsOLKXrQVvYu7yQT65jJyfigEmRykDpRpAwpaNIcspNQkQgGlHChIc2F3wSO2lTxHd7w0Mf62GQE9b5IzOdz4qYAM6lgM9o00NvKraqV0IBpTcByniILzHc0lKXR7LhoKxFLiIiGox5aLtmzfu__t3_F76NNjpn3dP49Lh38h49JjbJxEb6kU20Op3M9AeAftNky-0vjK4eekv_BvHDdjQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAoSQnwTGJuRxmPU1B-xg4TQWFdtjE2VYFPfguPYa6UuKU2qqf8Z4q_jnKQZhYm3vcaJ4-TOd7_zfSG0m2pKpLShLzWQgUU08qWMmG8ik3BOw16YuGzkk9Pw8Ix9HvHRBvq1yoVxYZUrmVgJ6jTX7oy8SwkAAdcoWXRtExYx7A8-zn74roOU87Su2mnULHJslldgvhUfjvpA63eEDA6-7R_6TYcBXzMuSp8I07NGMEaM1FRbahMZaqmoDhKRGqs1N2kSijBRUoVS2cgKnSrQ4qll3GoK895BdwWlkQsnFCPRnu-QysFBO-iBi7YGPu9SB67W1F_VJeAmaPtvhOa9RTZTyys1nf6h_gaP0MMGt-K9mtEeow2TPUGdk8Yz_xT9HF5nIODcYoXrfhHNWSMejk2Wl0uXnYX3phfwN8vxJYYn8Ff4j_kkzYtJgasABtyvw__gTTBJago8yfBB264HN74lXFvOxXu8D5oYn4NBUfeHwi42cokH8_wSE3zu4n1AH-PGd9U-7s61Afs-Q2e3QrPnaDPLM_MSYRMFIlWBUQLm49pV93PyS5kErFBuqYd2V8SKdVMy3XXumMZgOjmaxhVNPbTd3jara4T8fcMnR-l20JX0ri7k84u4kRAxZ0qmimsT8IRpE0VKUGETIrkMooRJD22t-CRu5EwRX-8KD71th0FCOLePyky-KGICCJcCMqM9D72o2apdCQV83gMQ4yGxxnBrS10fySbjqgq5jIgMGPPQTsuaN3_9q_8vfAd1YCPHX45Oj1-j-8Rll7gQP7KFNsv5wrwBzFcm29Xmwuj7be_m3-Emc84 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJw0kxP0S2IaR9prR-h7eylg1IW2qBJ3GU2Q7Nq3okqlJhcov4-dxnKRhHUO8xseOo3NO_PlcETrILCVKeRErC2xgCU1ipRIWu8QZzqkYCBOykU_PxMmEfbrgF1tob50Lc81_D7ok3tGASO6gbcEBavfQ9uRsPPwaGsbxYDch4mIH3d-g3Thf6jL8t2HHv0Mg7y7zK736oefza-fL6GFjCizrsoQhrOT74bIyh_bnjaKN_9z6I_SgRZZ42IjCY7Tl8ido57T1nT9Fv8Z_cgRw4bHGTUeH1hqIx1OXF9Uq5E_h4fxbsZhV00sMM_BnUIZilhXlrMR1iAH-2ATowZtgkcyVeJbj466hDm69P7i525bv8RGclfgcIH_TwQmH6MUVHi2KS0zweYjIgRMTt96lbnqwPAM6fYYmo-MvRydx27chtozLKibSDbyTjBGnLLWeeqOEVZravpGZ89ZylxkhhdFKC6V94qXNNGCjzDPuLX2OenmRu5cIO7i7Z7rvtIT1uA3198IfRjsD90TuaYQO1txObVvUPPTWmKdwuQlcSGsuRGi_I7tqqnjcJPgQRKUbDEW36wfA0LTV4ZQzrTLNretzw6xLEi2p9IYorvqJYSpCu2tBS9s_QZlSAgA2NPiWEXrbDYMOB8eMzl2xLFMCGJQCdqKDCL1o5LLbCQUEPQCYESG5IbEbW90cyWfTuk64SojqMxahN51s3_71r_5L8RrdIyHvIwTfkV3UqxZLtwdorDL7rU7-BkCVNrE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+Computational+Phenotyping+Algorithm+for+Sarcoidosis+Using+Diagnostic+Codes+in+Electronic+Medical+Records%3A+Case+Validation+Study+From+2+Veterans+Affairs+Medical+Centers&rft.jtitle=JMIR+formative+research&rft.au=Seedahmed%2C+Mohamed+I&rft.au=Mogilnicka%2C+Izabella&rft.au=Zeng%2C+Siyang&rft.au=Luo%2C+Gang&rft.date=2022-03-02&rft.issn=2561-326X&rft.eissn=2561-326X&rft.volume=6&rft.issue=3&rft.spage=e31615&rft_id=info:doi/10.2196%2F31615&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2561-326X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2561-326X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2561-326X&client=summon |