Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers

Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD)...

Full description

Saved in:
Bibliographic Details
Published inJMIR formative research Vol. 6; no. 3; p. e31615
Main Authors Seedahmed, Mohamed I, Mogilnicka, Izabella, Zeng, Siyang, Luo, Gang, Whooley, Mary A, McCulloch, Charles E, Koth, Laura, Arjomandi, Mehrdad
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 02.03.2022
Subjects
Online AccessGet full text
ISSN2561-326X
2561-326X
DOI10.2196/31615

Cover

Abstract Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.
AbstractList Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.BACKGROUNDElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.OBJECTIVEThe aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.METHODSWe used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.RESULTSAmong the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.CONCLUSIONSICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.
BackgroundElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. ObjectiveThe aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. MethodsWe used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. ResultsAmong the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. ConclusionsICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.
Background:Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown.Objective:The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR.Methods:We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion.Results:Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion.Conclusions:ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.
Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.
Author Whooley, Mary A
Luo, Gang
Mogilnicka, Izabella
Seedahmed, Mohamed I
Zeng, Siyang
Koth, Laura
McCulloch, Charles E
Arjomandi, Mehrdad
AuthorAffiliation 3 Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research Medical University of Warsaw Warsaw Poland
5 Department of Medicine University of California San Francisco San Francisco, CA United States
7 Department of Epidemiology & Biostatistics University of California San Francisco San Francisco, CA United States
4 Department of Biomedical Informatics and Medical Education School of Medicine, University of Washington Seattle, WA United States
2 San Francisco Veterans Affairs Medical Center San Francisco, CA United States
6 Measurement Science Quality Enhancement Research Initiative San Francisco Veterans Affairs Healthcare System San Francisco, CA United States
1 Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Department of Medicine University of California San Francisco San Francisco, CA United States
AuthorAffiliation_xml – name: 1 Division of Pulmonary, Critical Care, Allergy and Immunology, and Sleep Department of Medicine University of California San Francisco San Francisco, CA United States
– name: 6 Measurement Science Quality Enhancement Research Initiative San Francisco Veterans Affairs Healthcare System San Francisco, CA United States
– name: 5 Department of Medicine University of California San Francisco San Francisco, CA United States
– name: 2 San Francisco Veterans Affairs Medical Center San Francisco, CA United States
– name: 4 Department of Biomedical Informatics and Medical Education School of Medicine, University of Washington Seattle, WA United States
– name: 3 Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research Medical University of Warsaw Warsaw Poland
– name: 7 Department of Epidemiology & Biostatistics University of California San Francisco San Francisco, CA United States
Author_xml – sequence: 1
  givenname: Mohamed I
  orcidid: 0000-0002-7446-7346
  surname: Seedahmed
  fullname: Seedahmed, Mohamed I
– sequence: 2
  givenname: Izabella
  orcidid: 0000-0002-5735-8375
  surname: Mogilnicka
  fullname: Mogilnicka, Izabella
– sequence: 3
  givenname: Siyang
  orcidid: 0000-0001-9346-301X
  surname: Zeng
  fullname: Zeng, Siyang
– sequence: 4
  givenname: Gang
  orcidid: 0000-0001-7217-4008
  surname: Luo
  fullname: Luo, Gang
– sequence: 5
  givenname: Mary A
  orcidid: 0000-0002-5943-0078
  surname: Whooley
  fullname: Whooley, Mary A
– sequence: 6
  givenname: Charles E
  orcidid: 0000-0002-1279-6179
  surname: McCulloch
  fullname: McCulloch, Charles E
– sequence: 7
  givenname: Laura
  orcidid: 0000-0001-9541-3622
  surname: Koth
  fullname: Koth, Laura
– sequence: 8
  givenname: Mehrdad
  orcidid: 0000-0002-0116-9217
  surname: Arjomandi
  fullname: Arjomandi, Mehrdad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35081036$$D View this record in MEDLINE/PubMed
BookMark eNptkm1rFDEQgBep2FrvL0hAFEFOd5N9yfaDcJytFioWa4vfwmwyuUvJJmeyq9w_8-eZ3tWjrX5KyDx5ZiaTp9me8w6zbFLkb2nR1u9YURfVo-yAVnUxZbT-vndnv59NYrzO85wWRd207Em2z6qcFzmrD7Lf5xi0Dz04icRrAmTu-9U4wGC8A0vOl-j8sF4ZtyAzu_DBDMuepBvkAoL0RvloIrmMN_EPBhbOx8HIJFEYiXHk2KIcgnfp7DMqI5PyK0ofVDwic4hIrsAatclGLoZRrclJ8D2h5AoHDOAimWkNJsTd9Tm6FInPsscabMTJ7XqYXZ4cf5t_mp59-Xg6n51NZVk1w5Q2WGhsypIil0xqpjteSw5M5l2jUEtZoerqpu6AQ81Bt7qRCuqSKV1WWrLD7HTrVR6uxSqYHsJaeDBic-DDQkBILVsUVQlcQSUxr7pSYttCwxrdUV7xvO1Knlyvtq7RrWD9C6zdCYtc3ExSbCaZwPdbcDV2PSqZWg5g72W_H3FmKRb-p-At5XlZJsHrW0HwP0aMg-hNlGgtOPRjFLSmjFHGWZHQFw_Qaz-GNPsoGM2rlpZt1STq-d2KdqX8_UkJeLMFZPAxBtRCmu0vSgUa-0-DLx_Q_3-IPxig6bY
CitedBy_id crossref_primary_10_1097_MCP_0000000000001102
crossref_primary_10_1513_AnnalsATS_202206_515OC
crossref_primary_10_1016_j_jid_2024_08_025
crossref_primary_10_1016_j_jid_2024_02_031
Cites_doi 10.3389/fmed.2020.568020
10.1378/chest.10-0413
10.1186/s12911-019-0786-z
10.1002/cphg.80
10.1007/s00408-017-0054-x
10.1513/annalsats.201503-172ot
10.1164/rccm.202002-0251st
10.1513/annalsats.201610-764oc
10.1093/jamia/ocaa347
10.1093/oxfordjournals.aje.a009096
10.1097/MCP.0000000000000715
10.1002/pds.1202
10.1197/jamia.M2846
10.1371/journal.pone.0136651
10.1513/AnnalsATS.201707-563OT
10.12703/P6-89
10.1378/chest.14-1120
10.1164/ajrccm.164.10.2104046
10.1056/nejm198802113180604
10.1136/bmj.2.5261.1165
10.1371/journal.pone.0044818
10.1164/arrd.1973.107.4.615
10.1513/annalsats.201707-566ot
10.1513/AnnalsATS.201511-760OC
10.1002/ijc.24261
10.1038/s41598-019-48263-5
10.1101/716779
10.1186/s12911-020-1023-5
10.1183/09031936.00039714
10.1093/jamia/ocx061
10.1016/j.conctc.2018.07.001
10.1097/MCP.0000000000000596
10.3389/fimmu.2020.01443
10.1155/2012/260374
ContentType Journal Article
Copyright Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022.
2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. 2022
Copyright_xml – notice: Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022.
– notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022. 2022
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2196/31615
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2561-326X
ExternalDocumentID oai_doaj_org_article_54a8da5ce05b4ce99a737fb285809b48
10.2196/31615
PMC8928044
35081036
10_2196_31615
Genre Journal Article
GeographicLocations Palo Alto California
United States--US
San Francisco California
GeographicLocations_xml – name: Palo Alto California
– name: San Francisco California
– name: United States--US
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL157533
– fundername: NCATS NIH HHS
  grantid: TL1 TR001871
– fundername: NLM NIH HHS
  grantid: T15 LM007442
GroupedDBID 53G
7RV
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PUEGO
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c457t-27e1fe7442e8c3cf3fb86c8a3c0b7defcc5edb676ba8a68af9f7cda643df45fc3
IEDL.DBID UNPAY
ISSN 2561-326X
IngestDate Tue Oct 14 19:07:05 EDT 2025
Sun Oct 26 04:02:15 EDT 2025
Tue Sep 30 16:54:58 EDT 2025
Thu Oct 02 05:11:47 EDT 2025
Tue Oct 07 07:02:57 EDT 2025
Mon Jul 21 06:06:13 EDT 2025
Wed Oct 01 03:51:05 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diagnostic codes
electronic medical records
computational phenotype
practice guidelines
Veterans Affairs
EMRs
sarcoidosis
VA
Language English
License Mohamed I Seedahmed, Izabella Mogilnicka, Siyang Zeng, Gang Luo, Mary A Whooley, Charles E McCulloch, Laura Koth, Mehrdad Arjomandi. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.03.2022.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-27e1fe7442e8c3cf3fb86c8a3c0b7defcc5edb676ba8a68af9f7cda643df45fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9541-3622
0000-0002-5735-8375
0000-0002-5943-0078
0000-0001-9346-301X
0000-0001-7217-4008
0000-0002-1279-6179
0000-0002-0116-9217
0000-0002-7446-7346
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.2196/31615
PMID 35081036
PQID 3205924957
PQPubID 4997113
ParticipantIDs doaj_primary_oai_doaj_org_article_54a8da5ce05b4ce99a737fb285809b48
unpaywall_primary_10_2196_31615
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8928044
proquest_miscellaneous_2623323831
proquest_journals_3205924957
pubmed_primary_35081036
crossref_citationtrail_10_2196_31615
crossref_primary_10_2196_31615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220302
PublicationDateYYYYMMDD 2022-03-02
PublicationDate_xml – month: 3
  year: 2022
  text: 20220302
  day: 2
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR formative research
PublicationTitleAlternate JMIR Form Res
PublicationYear 2022
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref12
ref34
ref15
ref37
Szeto, HC (ref5) 2002; 8
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
(ref38) 1993
ref2
Brito-Zerón, P (ref35) 2019; 37
ref1
ref17
ref39
ref16
ref19
Mani, S (ref18) 2012; 2012
ref24
ref23
(ref43) 2014
ref26
ref25
ref20
ref42
ref41
ref22
ref44
Horsky, J (ref8) 2017; 2017
ref21
Daniel, J (ref28) 2012
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref9
  doi: 10.3389/fmed.2020.568020
– ident: ref37
– ident: ref33
  doi: 10.1378/chest.10-0413
– ident: ref42
  doi: 10.1186/s12911-019-0786-z
– ident: ref7
  doi: 10.1002/cphg.80
– volume: 2017
  start-page: 912
  year: 2017
  ident: ref8
  publication-title: AMIA Annu Symp Proc
– volume: 8
  start-page: 37
  issue: 1
  year: 2002
  ident: ref5
  publication-title: Am J Manag Care
– year: 2014
  ident: ref43
  publication-title: Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials
– year: 2012
  ident: ref28
  publication-title: Sampling Essentials: Practical Guidelines for Making Sampling Choices
– year: 1993
  ident: ref38
  publication-title: The ICD-10 Classification of Mental and Behavioural Disorders
– ident: ref14
  doi: 10.1007/s00408-017-0054-x
– ident: ref29
  doi: 10.1513/annalsats.201503-172ot
– ident: ref3
  doi: 10.1164/rccm.202002-0251st
– ident: ref17
  doi: 10.1513/annalsats.201610-764oc
– ident: ref20
  doi: 10.1093/jamia/ocaa347
– ident: ref34
  doi: 10.1093/oxfordjournals.aje.a009096
– ident: ref36
  doi: 10.1097/MCP.0000000000000715
– ident: ref27
– ident: ref16
  doi: 10.1002/pds.1202
– volume: 2012
  start-page: 606
  year: 2012
  ident: ref18
  publication-title: AMIA Annu Symp Proc
– ident: ref19
  doi: 10.1197/jamia.M2846
– ident: ref21
  doi: 10.1371/journal.pone.0136651
– ident: ref25
  doi: 10.1513/AnnalsATS.201707-563OT
– ident: ref1
  doi: 10.12703/P6-89
– ident: ref32
  doi: 10.1378/chest.14-1120
– ident: ref30
  doi: 10.1164/ajrccm.164.10.2104046
– ident: ref6
  doi: 10.1056/nejm198802113180604
– ident: ref39
  doi: 10.1136/bmj.2.5261.1165
– ident: ref41
  doi: 10.1371/journal.pone.0044818
– ident: ref2
  doi: 10.1164/arrd.1973.107.4.615
– ident: ref10
  doi: 10.1513/annalsats.201707-566ot
– ident: ref13
  doi: 10.1513/AnnalsATS.201511-760OC
– ident: ref11
  doi: 10.1002/ijc.24261
– ident: ref22
  doi: 10.1038/s41598-019-48263-5
– ident: ref23
  doi: 10.1101/716779
– ident: ref24
  doi: 10.1186/s12911-020-1023-5
– ident: ref40
  doi: 10.1183/09031936.00039714
– ident: ref44
  doi: 10.1093/jamia/ocx061
– ident: ref26
  doi: 10.1016/j.conctc.2018.07.001
– ident: ref4
  doi: 10.1097/MCP.0000000000000596
– ident: ref12
  doi: 10.3389/fimmu.2020.01443
– ident: ref15
  doi: 10.1155/2012/260374
– volume: 37
  start-page: 1052
  issue: 6
  year: 2019
  ident: ref35
  publication-title: Clin Exp Rheumatol
– ident: ref31
SSID ssj0002116793
Score 2.2058308
Snippet Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the...
Background:Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these...
BackgroundElectronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e31615
SubjectTerms Accuracy
Algorithms
Biopsy
Chronic obstructive pulmonary disease
Electronic health records
Erythema
Granulomas
Histopathology
Magnetic resonance imaging
Medical records
Neurological disorders
Original Paper
R&D
Research & development
Sarcoidosis
Tomography
Veterans
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDwUJId4EShmkXqNm_YhtbqV0VSEVVYJWvUW2Y7MrbZNqkxXaf8bPY5ykYRcqceEa5-FkPsffeD7PEHJQOkaVCnmqHJqBa6ZTpTRPvfZWCJZPcht3I599yU8v-OcrcbVR6itqwvr0wP2HOxTcqNII5zNhufNaG8lksFQJlWnLu22-mdIbzlT8B9MuvMB2ycOodUaUHbJIbbYmny5H_13E8m995P1VdWPWP8xisTH5TB-TRwNrhKO-t0_IPV89JbtnQ1z8Gfl5_lv_D3UAA321hmGlD85nvqrbddwbBUeL7_Vy3s6uAa-Arwj0el7WzbyBTj4An3rxHT4Jb1L6BuYVnIzFcmCI7EDvtzYf4BjnQbhEOt9XZ4KoTFzDdFlfA4XLqLbB2RCGyNF4eVxVRub5nFxMT74dn6ZDTYbUcSHblEo_CV5yTr1yzAUWrMqdMsxlVpY-OCd8aXOZW6NMrkzQQbrSIO8pAxfBsRdkp6or_4qAR7-8NJk3Eu8nXMytF_8exlv0AUVgCTm4NVbhhoTlsW7GokDHJdq06GyakP3xtJs-Q8efJ3yMlh4bY0Lt7gDCrBhgVvwLZgnZu8VJMYzypmAUyWks3i0T8n5sxvEZgy6m8vWqKSjyS4a8iE0S8rKH1dgThux4ghQiIXILcFtd3W6p5rMuB7jSVGWcJ-TdCM273_71_3j7N-QBjds-ovaO7pGddrnyb5GMtXa_G3e_AJeRN68
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZdCt1gjN3nres06KtpooslD8Zou4QyaAjbWvpmZF2aQGpnscPIP9vP25GtuMtW9mrJssw5R_qkc_kQOjSaEildEksNYmApTWMpUxbb1Oac02SQ5D4b-XycnF2wL1f8ageNN7kwPqxysyY2C7Uptb8jP6IEgIAnShafFj9izxrlvasbCg0VqBXMx6bE2D20S3xlrB7aPRmOJ1-7WxfSuB3oHnroY6BB-46ohzxbm1JTu_8uwPlv3OT9VbFQ659qPv9jUxo9Ro8CmsTHrfifoB1bPEV758Ff_gz9mtzmBeDSYYVbFodwA4gnU1uU9drnTOHj-TX8bz29wfAG_gYGUM5MWc0q3IQV4M9tUB58CQYxtsKzAg87Eh0cPD64Pc9WH_Ap7I_4EmB-y9qEfcTiGo-W5Q0m-NJH4cAuiYNHqXvd3zYDIn2OLkbD76dnceBqiDXjoo6JsANnBWPESk21oy6XiZaK6n4ujHVac2vyRCS5kiqRyqVOaKMADxnHuNP0BeoVZWFfIWzhvG5U3yoB43Hta-75VUXZHM6G3NEIHW6ElelQyNzzacwzONB4mWaNTCN00HVbtJU7_u5w4iXdNfpC282DcnmdBbvNOFPSKK5tn-dM2zRVggqXE8llP82ZjND-Rk-yYP1VdqurEXrfNYPdemeMKmy5qjICuJMCXqKDCL1s1aqbCQXUPABoESGxpXBbU91uKWbTpja4TInsMxahd51q3v33r_8_8TfoAfGJHj7ajuyjXr1c2bcAv-r8INjUbwNGNYI
  priority: 102
  providerName: ProQuest
Title Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers
URI https://www.ncbi.nlm.nih.gov/pubmed/35081036
https://www.proquest.com/docview/3205924957
https://www.proquest.com/docview/2623323831
https://pubmed.ncbi.nlm.nih.gov/PMC8928044
https://doi.org/10.2196/31615
https://doaj.org/article/54a8da5ce05b4ce99a737fb285809b48
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2561-326X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002116793
  issn: 2561-326X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2561-326X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002116793
  issn: 2561-326X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2561-326X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002116793
  issn: 2561-326X
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2561-326X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002116793
  issn: 2561-326X
  databaseCode: 7X7
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2561-326X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002116793
  issn: 2561-326X
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9trTSQEN8fga0Yaa_d2tiOHd660WpCWlUBm8pT5Dg2reiSqUmFyl_Gn8c5ScM6hniNz46ju4t_vk-Aw0RTX0obdKVGNrCQhl0pQ9Y1oYk5p0E_iF028vk4OLtgH6d8ugMHm1yYG_571KXgmDpEsgvtgCPUbkH7YjwZfHUN47izm_jBdA8ebNFunS9lGf67sOPfIZD3Vum1Wv9Qi8WN82X0qDIF5mVZQhdW8v1oVcRH-uetoo3_3PpjeFgjSzKoROEJ7Jj0Keyd177zZ_Br8idHgGSWKFJ1dKitgWQyM2lWrF3-FBksvmXLeTG7IjiDfEZlyOZJls9zUoYYkA9VgB6-CRdJTE7mKRk2DXVI7f0h1d02f09O8awklwj5qw5OxEUvrslomV0Rn1y6iBw8MUntXWqmO8szotPncDEafjk969Z9G7qacVF0fWH61gjGfCM11ZbaWAZaKqp7sUiM1ZqbJA5EECupAqlsaIVOFGKjxDJuNX0BrTRLzSsgBu_uieoZJXA9rl39PfeHUSbGeyK31IPDDbcjXRc1d701FhFebhwXopILHnQasuuqisdtghMnKs2gK7pdPkCGRrUOR5wpmSiuTY_HTJswVIIKG_uSy14YM-nB_kbQovpPkEfURwDrGnwLD941w6jDzjGjUpOt8shHDEoRO9G-By8ruWx2QhFB9xFmeCC2JHZrq9sj6XxW1gmXoS97jHnwtpHtu7_-9X8p3sB93-V9uOA7fx9axXJlDhCNFXEHdsVUdKB9MhxPPnVKm0an1tPfoNI6Jw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYSDBpmva9bAw8iT1GtLYTO5PQxEerMmhVbYB4C45j00ol6ZpWqP_Znva37Zy4Yd3Q3niNE8fJne9-5_tCaCdVlAhhQl8oIAOLaOQLETFfRzoJAho2w8RmI3d7Yeecfb0MLlfQr0UujA2rXMjEUlCnubJn5LuUABCwjZL5l_EP33aNst7VRQsN6VorpHtliTGX2HGi57dgwhV7x0dA70-EtFtnhx3fdRnwFQv41CdcN43mjBEtFFWGmkSESkiqGglPtVEq0GkS8jCRQoZCmshwlUrQ5KlhgVEU5n2E1hhlERh_awetXv9bfcpDSjcHXUdPbMw1cPsutRBrSQmWvQLuA7j_xmluzLKxnN_K0egPJdh-hp469Ir3K3Z7jlZ09gKtd51__iX62b_LQ8C5wRJXXSPciSPuD3SWT-c2Rwvvj67h_04HNxiewN_hT-bDNC-GBS7DGPBRFQQIb4JJUl3gYYZbddMe7DxMuLKfi8_4EPQxvgCzouoShW2E5By3J_kNJvjCRv2AVsbOg1U_bk-3AQG_QucPQrXXaDXLM_0WYR01eCobWnKYL1C2xp-VYlInYIsGhnpoZ0GsWLnC6bZ_xygGA8rSNC5p6qGt-rZxVSnk7xsOLKXrQVvYu7yQT65jJyfigEmRykDpRpAwpaNIcspNQkQgGlHChIc2F3wSO2lTxHd7w0Mf62GQE9b5IzOdz4qYAM6lgM9o00NvKraqV0IBpTcByniILzHc0lKXR7LhoKxFLiIiGox5aLtmzfu__t3_F76NNjpn3dP49Lh38h49JjbJxEb6kU20Op3M9AeAftNky-0vjK4eekv_BvHDdjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAoSQnwTGJuRxmPU1B-xg4TQWFdtjE2VYFPfguPYa6UuKU2qqf8Z4q_jnKQZhYm3vcaJ4-TOd7_zfSG0m2pKpLShLzWQgUU08qWMmG8ik3BOw16YuGzkk9Pw8Ix9HvHRBvq1yoVxYZUrmVgJ6jTX7oy8SwkAAdcoWXRtExYx7A8-zn74roOU87Su2mnULHJslldgvhUfjvpA63eEDA6-7R_6TYcBXzMuSp8I07NGMEaM1FRbahMZaqmoDhKRGqs1N2kSijBRUoVS2cgKnSrQ4qll3GoK895BdwWlkQsnFCPRnu-QysFBO-iBi7YGPu9SB67W1F_VJeAmaPtvhOa9RTZTyys1nf6h_gaP0MMGt-K9mtEeow2TPUGdk8Yz_xT9HF5nIODcYoXrfhHNWSMejk2Wl0uXnYX3phfwN8vxJYYn8Ff4j_kkzYtJgasABtyvw__gTTBJago8yfBB264HN74lXFvOxXu8D5oYn4NBUfeHwi42cokH8_wSE3zu4n1AH-PGd9U-7s61Afs-Q2e3QrPnaDPLM_MSYRMFIlWBUQLm49pV93PyS5kErFBuqYd2V8SKdVMy3XXumMZgOjmaxhVNPbTd3jara4T8fcMnR-l20JX0ri7k84u4kRAxZ0qmimsT8IRpE0VKUGETIrkMooRJD22t-CRu5EwRX-8KD71th0FCOLePyky-KGICCJcCMqM9D72o2apdCQV83gMQ4yGxxnBrS10fySbjqgq5jIgMGPPQTsuaN3_9q_8vfAd1YCPHX45Oj1-j-8Rll7gQP7KFNsv5wrwBzFcm29Xmwuj7be_m3-Emc84
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJw0kxP0S2IaR9prR-h7eylg1IW2qBJ3GU2Q7Nq3okqlJhcov4-dxnKRhHUO8xseOo3NO_PlcETrILCVKeRErC2xgCU1ipRIWu8QZzqkYCBOykU_PxMmEfbrgF1tob50Lc81_D7ok3tGASO6gbcEBavfQ9uRsPPwaGsbxYDch4mIH3d-g3Thf6jL8t2HHv0Mg7y7zK736oefza-fL6GFjCizrsoQhrOT74bIyh_bnjaKN_9z6I_SgRZZ42IjCY7Tl8ido57T1nT9Fv8Z_cgRw4bHGTUeH1hqIx1OXF9Uq5E_h4fxbsZhV00sMM_BnUIZilhXlrMR1iAH-2ATowZtgkcyVeJbj466hDm69P7i525bv8RGclfgcIH_TwQmH6MUVHi2KS0zweYjIgRMTt96lbnqwPAM6fYYmo-MvRydx27chtozLKibSDbyTjBGnLLWeeqOEVZravpGZ89ZylxkhhdFKC6V94qXNNGCjzDPuLX2OenmRu5cIO7i7Z7rvtIT1uA3198IfRjsD90TuaYQO1txObVvUPPTWmKdwuQlcSGsuRGi_I7tqqnjcJPgQRKUbDEW36wfA0LTV4ZQzrTLNretzw6xLEi2p9IYorvqJYSpCu2tBS9s_QZlSAgA2NPiWEXrbDYMOB8eMzl2xLFMCGJQCdqKDCL1o5LLbCQUEPQCYESG5IbEbW90cyWfTuk64SojqMxahN51s3_71r_5L8RrdIyHvIwTfkV3UqxZLtwdorDL7rU7-BkCVNrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+Computational+Phenotyping+Algorithm+for+Sarcoidosis+Using+Diagnostic+Codes+in+Electronic+Medical+Records%3A+Case+Validation+Study+From+2+Veterans+Affairs+Medical+Centers&rft.jtitle=JMIR+formative+research&rft.au=Seedahmed%2C+Mohamed+I&rft.au=Mogilnicka%2C+Izabella&rft.au=Zeng%2C+Siyang&rft.au=Luo%2C+Gang&rft.date=2022-03-02&rft.issn=2561-326X&rft.eissn=2561-326X&rft.volume=6&rft.issue=3&rft.spage=e31615&rft_id=info:doi/10.2196%2F31615&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2561-326X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2561-326X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2561-326X&client=summon