Neurophysiology of gait: From the spinal cord to the frontal lobe

ABSTRACT Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by aut...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 28; no. 11; pp. 1483 - 1491
Main Author Takakusaki, Kaoru
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 15.09.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0885-3185
1531-8257
1531-8257
DOI10.1002/mds.25669

Cover

Abstract ABSTRACT Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society
AbstractList ABSTRACT Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society
Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.
Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.
Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society
Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society [PUBLICATION ABSTRACT]
Author Takakusaki, Kaoru
Author_xml – sequence: 1
  givenname: Kaoru
  surname: Takakusaki
  fullname: Takakusaki, Kaoru
  email: kusaki@asahikawa-med.ac.jp
  organization: The Research Center for Brain Function and Medical Engineering, School of Medicine, Asahikawa Medical University, Asahikawa, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24132836$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtP3TAQRq2Kqlygi_6BKhIbugj4HYfdhRaoeFRtQZW6sRxnAoYkvtiJ2vvva-6DBaKrkUbnfJr5ttBG73tA6APB-wRjetDVcZ8KKcs3aEIEI7miothAE6yUyBlRYhNtxXiPMSGCyHdok3LCqGJygqZXMAY_u5tH51t_O898k90aNxxmJ8F32XAHWZy53rSZ9aHOBr9YNcH3Q9q1voId9LYxbYT3q7mNbk6-XB-f5RffTr8eTy9yy0VR5kowqIWshVEMKJdgMJXAcFVVwGw6RlDJSiusEBwsqTgpaorLUpHaMt5UbBvtLXNnwT-OEAfduWihbU0PfoyacM44VqwoErr7Ar33Y0hPLChKMaGiTNTHFTVWHdR6Flxnwlyvy0nAwRKwwccYoNHWDWZw6fdgXKsJ1k_161S_XtSfjE8vjHXoa-wq_Y9rYf5_UF9-_rk28qXh4gB_nw0THrQsWCH0r6tTfXRelPLs9w_9nf0DwASglg
CODEN MOVDEA
CitedBy_id crossref_primary_10_3390_healthcare11212898
crossref_primary_10_1016_j_pneurobio_2020_101951
crossref_primary_10_1016_j_clinph_2015_11_016
crossref_primary_10_1016_j_humov_2016_07_002
crossref_primary_10_1016_j_nicl_2021_102667
crossref_primary_10_1007_s00429_019_01885_x
crossref_primary_10_1016_j_neuroscience_2017_02_005
crossref_primary_10_3389_fncel_2019_00439
crossref_primary_10_17116_jnevro201811821100_104
crossref_primary_10_1088_1741_2552_ac7d0c
crossref_primary_10_18857_jkpt_2022_34_6_326
crossref_primary_10_1016_j_bbr_2015_08_034
crossref_primary_10_3390_s22239301
crossref_primary_10_1097_TGR_0000000000000007
crossref_primary_10_1177_1545968318798938
crossref_primary_10_1016_j_clinbiomech_2020_105186
crossref_primary_10_1186_s12877_021_02103_2
crossref_primary_10_1016_j_nicl_2024_103591
crossref_primary_10_1177_1545968320969942
crossref_primary_10_1097_MD_0000000000010453
crossref_primary_10_1111_nyas_14276
crossref_primary_10_1111_jgs_16265
crossref_primary_10_1016_j_apmr_2023_05_012
crossref_primary_10_1016_j_neures_2019_10_001
crossref_primary_10_3390_healthcare12161636
crossref_primary_10_3390_app9214494
crossref_primary_10_1007_s12975_023_01180_2
crossref_primary_10_1002_acn3_52173
crossref_primary_10_1002_hbm_24326
crossref_primary_10_1016_j_neurom_2023_06_003
crossref_primary_10_2531_spinalsurg_27_208
crossref_primary_10_1002_mds_25672
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104857
crossref_primary_10_1016_j_neuron_2015_02_042
crossref_primary_10_1016_j_rehab_2016_07_003
crossref_primary_10_1016_j_expneurol_2015_09_002
crossref_primary_10_3389_fneur_2023_1188799
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104882
crossref_primary_10_3390_brainsci14020178
crossref_primary_10_1016_j_archger_2016_06_022
crossref_primary_10_14802_jmd_16062
crossref_primary_10_1016_j_sleep_2014_11_013
crossref_primary_10_1007_s10072_021_05796_w
crossref_primary_10_1123_mc_2018_0044
crossref_primary_10_3389_fpubh_2018_00039
crossref_primary_10_1016_j_cell_2024_04_022
crossref_primary_10_1016_j_physbeh_2018_08_012
crossref_primary_10_1242_bio_028241
crossref_primary_10_4103_1673_5374_172329
crossref_primary_10_1016_j_nicl_2018_08_017
crossref_primary_10_3389_fnagi_2021_654931
crossref_primary_10_1111_acel_14342
crossref_primary_10_23736_S1973_9087_21_06847_7
crossref_primary_10_1113_JP281094
crossref_primary_10_1016_j_gaitpost_2018_06_171
crossref_primary_10_1016_j_bbr_2014_06_048
crossref_primary_10_1016_j_isci_2024_110301
crossref_primary_10_7554_eLife_92821_3
crossref_primary_10_1212_WNL_0000000000200108
crossref_primary_10_3109_07420528_2015_1124885
crossref_primary_10_1177_15459683231177606
crossref_primary_10_1177_08830738231204395
crossref_primary_10_1038_s41598_024_66177_9
crossref_primary_10_1016_j_expneurol_2014_08_022
crossref_primary_10_3389_fneur_2024_1502561
crossref_primary_10_3389_fnagi_2022_978976
crossref_primary_10_1016_j_gaitpost_2016_10_021
crossref_primary_10_1371_journal_pone_0293691
crossref_primary_10_3390_diagnostics11061068
crossref_primary_10_1016_j_gaitpost_2019_10_005
crossref_primary_10_1038_s41393_021_00658_w
crossref_primary_10_18857_jkpt_2018_30_2_73
crossref_primary_10_1016_j_wneu_2024_04_055
crossref_primary_10_1126_sciadv_abk2241
crossref_primary_10_3390_brainsci13010154
crossref_primary_10_47924_neurotarget2024454
crossref_primary_10_3390_brainsci13111514
crossref_primary_10_1016_j_neubiorev_2018_12_017
crossref_primary_10_1016_j_neulet_2024_137736
crossref_primary_10_3389_fneur_2023_1244287
crossref_primary_10_1016_j_neubiorev_2019_10_008
crossref_primary_10_1016_j_nicl_2019_102059
crossref_primary_10_14326_abe_6_15
crossref_primary_10_3389_fnhum_2022_783452
crossref_primary_10_1515_revneuro_2017_0058
crossref_primary_10_3233_BMR_220395
crossref_primary_10_3390_app15010192
crossref_primary_10_1016_j_jns_2021_120083
crossref_primary_10_3389_fnsys_2014_00242
crossref_primary_10_1186_s12984_024_01363_4
crossref_primary_10_1093_gerona_glab247
crossref_primary_10_1093_brain_awad006
crossref_primary_10_3390_brainsci13121681
crossref_primary_10_1097_PHM_0000000000000881
crossref_primary_10_1186_s40035_020_00191_5
crossref_primary_10_1093_cercor_bhw391
crossref_primary_10_1007_s00426_024_02039_3
crossref_primary_10_1016_j_neuropharm_2014_09_028
crossref_primary_10_26862_jkpts_2020_09_27_2_1
crossref_primary_10_3389_fneur_2020_571086
crossref_primary_10_1017_cjn_2019_293
crossref_primary_10_1103_PhysRevE_109_014404
crossref_primary_10_1186_s40035_023_00347_z
crossref_primary_10_3233_JPD_212801
crossref_primary_10_1016_j_bbadis_2019_165570
crossref_primary_10_3390_ijerph18073428
crossref_primary_10_1186_s12984_017_0242_1
crossref_primary_10_1016_j_cct_2021_106563
crossref_primary_10_1016_j_jnrt_2022_100028
crossref_primary_10_1111_jgs_15181
crossref_primary_10_1016_j_neuropsychologia_2015_06_039
crossref_primary_10_12786_bn_2022_15_e17
crossref_primary_10_3389_fnagi_2023_1156648
crossref_primary_10_3389_fneur_2022_1061363
crossref_primary_10_3390_s24092875
crossref_primary_10_47795_HNFE8191
crossref_primary_10_3389_fncir_2017_00034
crossref_primary_10_1016_j_parkreldis_2020_09_025
crossref_primary_10_3389_fnagi_2022_834496
crossref_primary_10_1016_j_isci_2022_105874
crossref_primary_10_1371_journal_pone_0228389
crossref_primary_10_3389_fnhum_2022_819232
crossref_primary_10_1371_journal_pone_0284278
crossref_primary_10_1016_j_jbmt_2016_09_012
crossref_primary_10_1002_mds_29189
crossref_primary_10_1145_3569476
crossref_primary_10_1152_jn_00385_2014
crossref_primary_10_1016_j_bbr_2015_08_017
crossref_primary_10_3389_fncir_2023_910207
crossref_primary_10_3389_fneur_2018_00400
crossref_primary_10_1016_j_neurobiolaging_2016_04_005
crossref_primary_10_1093_braincomms_fcaa045
crossref_primary_10_3389_fnagi_2022_806026
crossref_primary_10_1016_j_neuroscience_2025_01_050
crossref_primary_10_2147_NDT_S304567
crossref_primary_10_1016_j_jns_2023_120770
crossref_primary_10_1002_dneu_22601
crossref_primary_10_1016_j_parkreldis_2016_02_004
crossref_primary_10_3390_healthcare8010030
crossref_primary_10_1007_s11910_023_01305_y
crossref_primary_10_1016_j_isci_2025_111970
crossref_primary_10_3390_brainsci10090587
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1007_s11571_014_9302_4
crossref_primary_10_3389_fneur_2017_00542
crossref_primary_10_3390_brainsci11070867
crossref_primary_10_3389_fneur_2017_00543
crossref_primary_10_1177_1545968316680487
crossref_primary_10_1002_mds_28883
crossref_primary_10_1371_journal_pone_0100291
crossref_primary_10_1093_gerona_glab010
crossref_primary_10_3390_brainsci13121690
crossref_primary_10_3389_fnhum_2022_812954
crossref_primary_10_1113_JP284505
crossref_primary_10_1002_mdc3_14293
crossref_primary_10_1186_s12984_024_01470_2
crossref_primary_10_3389_fnhum_2014_00475
crossref_primary_10_3389_fneur_2020_576569
crossref_primary_10_1152_jn_00079_2018
crossref_primary_10_17116_jnevro201911903253
crossref_primary_10_3389_fnsys_2019_00069
crossref_primary_10_1186_s12984_024_01324_x
crossref_primary_10_1186_s41983_020_00236_6
crossref_primary_10_1080_00222895_2016_1241750
crossref_primary_10_1007_s00221_024_06808_9
crossref_primary_10_3389_fnbot_2019_00071
crossref_primary_10_3390_app11094053
crossref_primary_10_3390_healthcare8020128
crossref_primary_10_1109_TNSRE_2020_2991636
crossref_primary_10_7554_eLife_92821
crossref_primary_10_1016_j_heliyon_2024_e30007
crossref_primary_10_1002_mds_25846
crossref_primary_10_1016_j_maturitas_2018_04_011
crossref_primary_10_1097_WNR_0000000000001100
crossref_primary_10_17340_jkna_2017_4_23
crossref_primary_10_1007_s12264_023_01155_1
crossref_primary_10_1080_03091902_2021_1970839
crossref_primary_10_1080_14656566_2019_1614167
crossref_primary_10_1152_jn_00482_2018
crossref_primary_10_1002_hbm_22679
crossref_primary_10_1093_cercor_bhaa275
crossref_primary_10_1007_s11055_019_00881_2
crossref_primary_10_1016_j_celrep_2021_110231
crossref_primary_10_1186_s12877_020_01511_0
crossref_primary_10_1541_ieejeiss_143_13
crossref_primary_10_5507_bp_2020_052
crossref_primary_10_1038_s41598_018_22676_0
crossref_primary_10_1007_s11357_018_0043_x
crossref_primary_10_1016_j_neuroimage_2017_07_013
crossref_primary_10_1016_j_parkreldis_2022_10_024
crossref_primary_10_1212_WNL_0000000000011989
crossref_primary_10_2169_internalmedicine_8949_21
crossref_primary_10_2522_ptj_20150334
crossref_primary_10_1016_j_parkreldis_2019_06_023
crossref_primary_10_1152_physiol_00034_2015
crossref_primary_10_1088_1741_2552_aad872
crossref_primary_10_1007_s13760_017_0862_z
crossref_primary_10_1589_jpts_29_2151
crossref_primary_10_3390_s19040948
crossref_primary_10_1097_WNR_0000000000000360
crossref_primary_10_1007_s00221_017_5106_1
crossref_primary_10_1109_ACCESS_2019_2942712
crossref_primary_10_1016_j_jocn_2023_05_025
crossref_primary_10_1186_s12984_024_01493_9
crossref_primary_10_1016_j_nicl_2018_07_003
crossref_primary_10_1097_PHM_0000000000000591
crossref_primary_10_1186_s12984_025_01557_4
crossref_primary_10_1038_s41598_023_48072_x
crossref_primary_10_1152_jn_00436_2014
crossref_primary_10_1371_journal_pone_0208691
crossref_primary_10_1016_j_parkreldis_2025_107339
crossref_primary_10_3233_RNN_170784
crossref_primary_10_1016_j_clinph_2020_05_023
crossref_primary_10_1038_s41537_022_00324_x
crossref_primary_10_3389_fnins_2019_00722
crossref_primary_10_1111_jgs_17840
crossref_primary_10_1002_mdc3_13616
crossref_primary_10_1109_TNSRE_2023_3294435
crossref_primary_10_3390_app14020520
crossref_primary_10_2196_46264
crossref_primary_10_1016_j_neuroimage_2019_116095
crossref_primary_10_1093_cercor_bhac114
crossref_primary_10_3389_fnhum_2021_751242
crossref_primary_10_1093_cercor_bhx186
crossref_primary_10_3389_frobt_2023_1265543
crossref_primary_10_1134_S0022093023030304
crossref_primary_10_3389_fninf_2018_00044
crossref_primary_10_1113_JP279068
crossref_primary_10_1016_j_gaitpost_2025_02_004
crossref_primary_10_1016_j_clinph_2020_05_037
crossref_primary_10_1016_j_envres_2020_110087
crossref_primary_10_3389_fnins_2022_912075
crossref_primary_10_1038_nrn_2016_9
crossref_primary_10_3389_fnsys_2021_655980
crossref_primary_10_31857_S0869813923060092
crossref_primary_10_1080_01691864_2016_1252690
crossref_primary_10_1249_MSS_0000000000003122
crossref_primary_10_2522_ptj_20140603
crossref_primary_10_1016_j_jocn_2023_09_025
crossref_primary_10_1186_s12883_022_02972_z
crossref_primary_10_1109_JBHI_2023_3308901
crossref_primary_10_1016_j_isci_2024_109162
crossref_primary_10_3233_JAD_150523
crossref_primary_10_1080_08990220_2018_1500363
crossref_primary_10_1016_j_gaitpost_2018_09_005
crossref_primary_10_14802_jmd_16043
crossref_primary_10_3389_fneur_2022_829714
crossref_primary_10_1080_01616412_2019_1709141
crossref_primary_10_3390_s22135001
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_1016_j_gaitpost_2019_02_017
crossref_primary_10_1016_j_otsr_2020_102769
crossref_primary_10_1080_07420528_2019_1594869
crossref_primary_10_1152_jn_00510_2014
crossref_primary_10_1371_journal_pone_0230083
crossref_primary_10_1016_j_parkreldis_2016_09_024
crossref_primary_10_1002_hbm_23725
crossref_primary_10_1016_j_exger_2018_04_004
crossref_primary_10_1111_ejn_15849
crossref_primary_10_3389_fnhum_2016_00325
crossref_primary_10_1097_MD_0000000000035215
crossref_primary_10_3390_brainsci13050703
crossref_primary_10_1016_j_bica_2018_07_012
crossref_primary_10_1103_PhysRevE_102_032406
crossref_primary_10_3389_fnhum_2025_1518230
crossref_primary_10_1152_jn_00043_2024
crossref_primary_10_1007_s00221_021_06217_2
crossref_primary_10_1016_j_gaitpost_2016_02_023
crossref_primary_10_1007_s00221_020_05935_3
crossref_primary_10_1080_09638288_2023_2185688
crossref_primary_10_1093_brain_awz325
crossref_primary_10_3389_fnagi_2023_1068943
crossref_primary_10_1016_j_neuroscience_2020_09_055
crossref_primary_10_3389_fnagi_2023_1280324
crossref_primary_10_3389_fnhum_2021_733067
crossref_primary_10_1113_EP092252
crossref_primary_10_1002_ana_26306
crossref_primary_10_3389_fnhum_2023_1082555
crossref_primary_10_1016_j_gaitpost_2023_09_001
crossref_primary_10_3389_fnagi_2021_766884
crossref_primary_10_2174_1567205016666190726100744
crossref_primary_10_1007_s10571_021_01151_x
crossref_primary_10_1016_j_humov_2016_03_010
crossref_primary_10_1007_s00702_024_02829_4
crossref_primary_10_5812_ircmj_90337
crossref_primary_10_1002_mdc3_13814
crossref_primary_10_1016_j_neuroimage_2018_12_045
crossref_primary_10_1038_s41598_018_20129_2
crossref_primary_10_1093_braincomms_fcae246
crossref_primary_10_3389_fneur_2023_1244657
crossref_primary_10_3389_fnagi_2018_00126
crossref_primary_10_1360_TB_2023_0170
crossref_primary_10_1016_j_neulet_2022_136699
crossref_primary_10_1016_j_neubiorev_2022_104541
crossref_primary_10_1007_s00702_017_1801_0
crossref_primary_10_3390_sclerosis3010003
crossref_primary_10_3233_RNN_180895
crossref_primary_10_1016_j_nbd_2023_106216
crossref_primary_10_1186_s42466_020_00070_4
crossref_primary_10_1016_j_gaitpost_2017_09_035
crossref_primary_10_3390_toxics10040164
crossref_primary_10_1038_s41598_020_69367_3
crossref_primary_10_1016_j_amjmed_2017_11_051
crossref_primary_10_3390_ijms23105729
crossref_primary_10_1016_j_brs_2019_01_017
crossref_primary_10_1111_nan_12658
crossref_primary_10_3390_brainsci11101363
crossref_primary_10_3389_fnhum_2021_717291
crossref_primary_10_1007_s00702_015_1475_4
crossref_primary_10_1016_j_neucli_2015_09_005
crossref_primary_10_1016_j_neuroscience_2021_05_037
crossref_primary_10_1002_mds_28128
crossref_primary_10_1109_LRA_2021_3066961
crossref_primary_10_1371_journal_pone_0284308
crossref_primary_10_1007_s11332_024_01223_7
Cites_doi 10.1093/brain/awl346
10.1093/brain/awn294
10.1523/JNEUROSCI.2622-06.2006
10.1016/0301-0082(87)90010-4
10.1016/S0306-4522(03)00542-6
10.1016/j.conb.2007.02.003
10.1152/physrev.00028.2005
10.1016/0301-0082(92)90034-C
10.1002/cne.903360302
10.1126/science.2675307
10.1016/j.brainresrev.2007.08.006
10.1152/jn.01028.2009
10.1152/jn.1999.81.5.2297
10.1016/S0306-4522(00)00586-8
10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S
10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3
10.1016/S0306-4522(03)00095-2
10.1002/mds.21912
10.1016/j.brainresrev.2007.06.024
10.1007/s00415-008-4004-7
10.1007/BF00228973
10.1523/JNEUROSCI.20-22-08551.2000
10.1016/j.neuroscience.2003.10.028
10.1038/nn1930
10.1016/S1474-4422(11)70143-0
10.1152/jn.00089.2005
10.1126/science.1214778
10.1371/journal.pone.0064421
10.1152/jn.1999.82.1.290
10.1016/0006-8993(94)91329-3
10.1152/jn.1990.64.3.782
10.1016/j.neures.2004.06.015
10.1016/0301-0082(93)90003-B
10.1016/j.expneurol.2013.02.008
10.1152/jn.2000.84.5.2257
10.1152/physrev.2000.80.3.953
10.1139/y96-043
10.1146/annurev.ne.07.030184.001521
10.1016/S1474-4422(06)70678-0
10.1016/0306-4522(94)90599-1
10.1016/j.neuroscience.2003.12.016
10.1111/j.1479-8425.2006.00210.x
10.1111/j.1749-6632.1999.tb09193.x
10.1093/gerona/glr054
10.1212/WNL.43.2.268
10.1152/jn.00992.2010
10.1016/S0079-6123(03)43012-4
10.1016/0166-4328(88)90096-4
10.1093/brain/122.7.1271
10.1152/jn.01100.2009
10.1016/j.neuroimage.2007.09.047
10.1016/S0165-0173(99)00040-5
10.1002/cne.903300410
10.1089/neu.2005.22.172
10.1007/BF00248864
10.1002/ana.410350517
10.1016/S0079-6123(08)00652-3
10.1007/BF00229362
10.1016/0166-2236(90)90110-V
10.1152/jn.1979.42.4.936
10.1113/jphysiol.2011.224931
ContentType Journal Article
Copyright 2013 Movement Disorder Society
2013 Movement Disorder Society.
Copyright_xml – notice: 2013 Movement Disorder Society
– notice: 2013 Movement Disorder Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1002/mds.25669
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 1491
ExternalDocumentID 3099866101
24132836
10_1002_mds_25669
MDS25669
ark_67375_WNG_BK796HZR_Q
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c4579-853ed56d5a83e246ea026e30bbbe3c28352639c5c554ec1b417d209981dc34fb3
IEDL.DBID DR2
ISSN 0885-3185
1531-8257
IngestDate Fri Jul 11 12:32:52 EDT 2025
Sun Jul 13 04:30:18 EDT 2025
Mon Jul 21 06:02:31 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Tue Jul 01 01:44:16 EDT 2025
Sun Sep 21 06:23:18 EDT 2025
Sun Sep 21 06:13:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords motor programming
body schema
corticoreticulospinal system
postural muscle tone
central pattern generator
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4579-853ed56d5a83e246ea026e30bbbe3c28352639c5c554ec1b417d209981dc34fb3
Notes istex:19A27FA5041F77A67E63437C13EAE5918A8235D8
ark:/67375/WNG-BK796HZR-Q
ArticleID:MDS25669
The author has no conflict of interest. KT prepared all text and figures. KT has no financial disclosure for the past 12 month other than those described above.
This work was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology “Scientific Research B; grant no.: 2529001”, “Challenging Exploratory Research; grant no.: 23650202" and “Priority area; grant area no.: 454”, and by grants from “Quora‐rehabilitation Hospital Foundation” and “Sasson Hospital Foundation”
Relevant conflicts of interest/financial disclosures
Funding agencies
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 24132836
PQID 1442201259
PQPubID 1016421
PageCount 9
ParticipantIDs proquest_miscellaneous_1443408377
proquest_journals_1442201259
pubmed_primary_24132836
crossref_citationtrail_10_1002_mds_25669
crossref_primary_10_1002_mds_25669
wiley_primary_10_1002_mds_25669_MDS25669
istex_primary_ark_67375_WNG_BK796HZR_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2013
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 15 September 2013
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mori S, Matsui T, Kuze B, et al. Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 1999;82:290-300.
Takakusaki K, Saitoh K, Harada H, et al. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 2004;124:207-220.
Georgopoulos AP, Grillner S. Visuomotor coordination in reaching and locomotion. Science 1989;245:1209-1210.
McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008;57:134-146.
Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744.
Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008;23(Suppl):S461-S467.
Takakusaki K, Shimoda N, Matsuyama K, et al. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 1994;99:361-374.
Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 1989;74:311-318.
Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev 2008;57:192-198.
Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-2890.
Takakusaki K, Kohyama J, Matsuyama K. Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 2003;121:731-746.
Semba K. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 1993;330:543-556.
Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res 2003;143:123-129.
Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 1993;336:321-330.
Leonald CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-330.
Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007;20:1055-1062.
Frigon A, Sirois J, Gossard JP. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010;103:1591-1605.
Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 2004;50:137-151.
Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1997;389:617-641.
Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008;255(Suppl 4):19-29.
Mori F, Nakajima K, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 2003;46(Suppl 1):S157.
Drew T, Rossignol S. Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 1990;64:782-795.
Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993;43:268-279.
Takakusaki K, Saitoh K. A new category of spinal interneurons that mediate muscular atonia in cats. Soc Neurosci Abstr 2005;863:17/Z20.
Honda T, Semba K. Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 1994;647:299-306.
Snijders AH, van de Warrenburg BP, Giladi N, et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007;6:63-74.
Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28:161-196.
Takakusaki K, Kohyama J, Matsuyama K, et al. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 2001;103:511-527.
Lajoie K, Andujar JE, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 2010;103:2234-2254.
Nakajima K, Mori F, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 2003;46(Suppl 1):S156.
Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 2000;84:2257-2276.
Nakajima K, Mori F, Murata A. Inase M. Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey. Soc Neurosci Abstract 2010;183:2
Takakusaki K, Habaguchi T, Saitoh K, Kohyama J. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 2004;124:467-480.
Cohen RG, Nutt JG, Horak FB. Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:705-713.
Rho MJ, Lavoie S, Drew T. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophysiol 1999;81:2297-2315.
Takakusaki K, Obara K, Nozu T, et al. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 2011;149:385-405.
Takakusaki K, Saitoh K, Nonaka S, et al. Neurobiological basis of state-dependent control of motor behavior. Sleep Biol Rhyth 2006;4:87-104.
Takakusaki K, Kohyama J, Matsuyama K, et al. Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 1993;93:471-482.
Arshavsky YI, Orlovsky GN, Perret C. Activity of rubrospinal neurons during locomotion and scratching in the cat. Behav Brain Res 1988;28:193-199.
Boothe DL, Cohen AH, Troyer TW. Phase locking asymmetries at flexor-extensor transitions during fictive locomotion. PLoS One 2013:8:e64421.
Hoshi E, Tanji J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 2007;17:234-242.
Grillner S. Human locomotor circuits conform. Science 2011;344:912-913.
Forssberg H. Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion. J Neurophysiol 1979;42:936-953.
Chastan N, Westby GW, Yelnik J, et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain 2009;132:172-184.
Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 2007;13:1596-1607.
Hanakawa T, Fukuyama H, Katsumi Y, et al. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol 1999;45:329-336.
Mileykovskiy BY, Kiyashchenko LI, Kodama T, et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2000;20:8551-8558.
Hikosaka O, Takikawa Y, Kawgoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80:954-978.
Sinnamon HM. Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat. Prog Neurobiol 1993;41:323-344.
Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000;31:236-250.
Brandt T, Dieterich M. The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 1999;871:293-312.
Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308.
Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 2005;94:2403-2415.
Sławińska U, Majczyński H, Dai Y, et al. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 2012;590:1721-1736.
Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006;26:9107-9116.
Sławińska U, Miazga K, Cabaj AM, et al. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Exp Neurol. 2013;247:572-581.
Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 2011;105:2457-2470.
Cohen AH, Abdelnabi M, Guan L, et al. Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemi
2003; 119
1990; 13
2004; 124
2010; 103
2013; 247
2008; 39
1999; 45
1996; 74
2011; 10
2010; 183
1999; 122
1999; 82
2013; 8
1999; 81
2005; 22
2001; 103
1997; 389
1989; 74
2005; 863
2006; 26
2003; 46
1986
2008; 23
2007; 6
2011; 66
1994; 35
1981
2007; 20
1993; 336
1993; 330
2003; 121
2007; 17
1993; 43
1993; 41
2000; 20
2009
2009; 132
1996
2008; 57
2006; 4
1992; 38
2002
2007; 13
2011; 149
2012; 590
2011; 105
1990; 64
2011; 344
2004; 50
2006; 86
1987; 132
1989; 245
1993; 93
1984; 7
2000; 31
1988; 28
1994; 99
2000; 84
1994; 59
2000; 80
1999; 871
2005; 94
2008; 255
1979; 42
1994; 647
1987; 28
2003; 143
2008; 171
e_1_2_7_5_1
Wiesendanger M (e_1_2_7_56_1) 1987
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_62_1
Takakusaki K (e_1_2_7_34_1) 2011; 149
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
Grillner S (e_1_2_7_10_1) 1981
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Hikosaka O (e_1_2_7_74_1) 2000; 80
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Matsuyama K (e_1_2_7_17_1) 2009
e_1_2_7_28_1
Mileykovskiy BY (e_1_2_7_46_1) 2000; 20
Nakajima K (e_1_2_7_69_1) 2010; 183
e_1_2_7_73_1
e_1_2_7_50_1
Mori F (e_1_2_7_59_1) 2003; 46
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
Takakusaki K (e_1_2_7_36_1) 2005; 863
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Nakajima K (e_1_2_7_58_1) 2003; 46
Rossignol S (e_1_2_7_14_1) 1996
Grillner S (e_1_2_7_8_1) 2002
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_38_1
Brooks VB (e_1_2_7_3_1) 1986
References_xml – reference: Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 2000;84:2257-2276.
– reference: Honda T, Semba K. Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 1994;647:299-306.
– reference: Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28:161-196.
– reference: Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008;255(Suppl 4):19-29.
– reference: Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008;23(Suppl):S461-S467.
– reference: Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res 2003;143:123-129.
– reference: Takakusaki K, Kohyama J, Matsuyama K, et al. Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 1993;93:471-482.
– reference: Hikosaka O, Takikawa Y, Kawgoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80:954-978.
– reference: Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000;31:236-250.
– reference: Sinnamon HM. Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat. Prog Neurobiol 1993;41:323-344.
– reference: Takakusaki K, Kohyama J, Matsuyama K. Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 2003;121:731-746.
– reference: Takakusaki K, Saitoh K, Harada H, et al. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 2004;124:207-220.
– reference: Frigon A, Sirois J, Gossard JP. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010;103:1591-1605.
– reference: Lajoie K, Andujar JE, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 2010;103:2234-2254.
– reference: Mori S, Matsui T, Kuze B, et al. Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 1999;82:290-300.
– reference: Takakusaki K, Kohyama J, Matsuyama K, et al. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 2001;103:511-527.
– reference: Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 1989;74:311-318.
– reference: Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744.
– reference: Chastan N, Westby GW, Yelnik J, et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain 2009;132:172-184.
– reference: Masdeu JC, Alampur U, Cavaliere R, et al. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 1994;35:619-621.
– reference: Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 1993;336:321-330.
– reference: Semba K. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 1993;330:543-556.
– reference: Arshavsky YI, Orlovsky GN, Perret C. Activity of rubrospinal neurons during locomotion and scratching in the cat. Behav Brain Res 1988;28:193-199.
– reference: Snijders AH, van de Warrenburg BP, Giladi N, et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007;6:63-74.
– reference: Jahn K, Deutschländer A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 2008;39:786-792.
– reference: Drew T, Jiang W, Kably B, et al. Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 1996;74:426-442.
– reference: Hoshi E, Tanji J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 2007;17:234-242.
– reference: Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1997;389:617-641.
– reference: Nakajima K, Mori F, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 2003;46(Suppl 1):S156.
– reference: Rho MJ, Lavoie S, Drew T. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophysiol 1999;81:2297-2315.
– reference: Grillner S. Human locomotor circuits conform. Science 2011;344:912-913.
– reference: Brandt T, Dieterich M. The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 1999;871:293-312.
– reference: Cohen AH, Abdelnabi M, Guan L, et al. Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC. J Neurotrauma 2005;22:172-188.
– reference: Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 2011;105:2457-2470.
– reference: Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993;43:268-279.
– reference: Sławińska U, Majczyński H, Dai Y, et al. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 2012;590:1721-1736.
– reference: Takakusaki K, Shimoda N, Matsuyama K, et al. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 1994;99:361-374.
– reference: Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007;20:1055-1062.
– reference: Hanakawa T, Fukuyama H, Katsumi Y, et al. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol 1999;45:329-336.
– reference: Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-2890.
– reference: Basubaum AL, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 1984;7:309-338.
– reference: Nakajima K, Mori F, Murata A. Inase M. Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey. Soc Neurosci Abstract 2010;183:2
– reference: Georgopoulos AP, Grillner S. Visuomotor coordination in reaching and locomotion. Science 1989;245:1209-1210.
– reference: Forssberg H. Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion. J Neurophysiol 1979;42:936-953.
– reference: Cohen RG, Nutt JG, Horak FB. Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:705-713.
– reference: Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 2005;94:2403-2415.
– reference: Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 1992;38:35-36.
– reference: Hanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain 1999;122:1271-1282.
– reference: Mori F, Nakajima K, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 2003;46(Suppl 1):S157.
– reference: Boothe DL, Cohen AH, Troyer TW. Phase locking asymmetries at flexor-extensor transitions during fictive locomotion. PLoS One 2013:8:e64421.
– reference: Takakusaki K, Saitoh K. A new category of spinal interneurons that mediate muscular atonia in cats. Soc Neurosci Abstr 2005;863:17/Z20.
– reference: Rossignol S, Dubuc R, Gossard J-P. Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006;86:89-154.
– reference: Jahn K, Deutschländer A, Stephan T, et al. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 2008;171:353-362.
– reference: Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 2007;13:1596-1607.
– reference: Sławińska U, Miazga K, Cabaj AM, et al. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Exp Neurol. 2013;247:572-581.
– reference: Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 2004;50:137-151.
– reference: Takakusaki K, Saitoh K, Nonaka S, et al. Neurobiological basis of state-dependent control of motor behavior. Sleep Biol Rhyth 2006;4:87-104.
– reference: Takakusaki K, Habaguchi T, Saitoh K, Kohyama J. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 2004;124:467-480.
– reference: Drew T, Rossignol S. Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 1990;64:782-795.
– reference: Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev 2008;57:192-198.
– reference: McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008;57:134-146.
– reference: Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308.
– reference: Takakusaki K, Obara K, Nozu T, et al. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 2011;149:385-405.
– reference: Leonald CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-330.
– reference: Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006;26:9107-9116.
– reference: Mileykovskiy BY, Kiyashchenko LI, Kodama T, et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2000;20:8551-8558.
– volume: 132
  start-page: 40
  year: 1987
  end-page: 62
– volume: 82
  start-page: 290
  year: 1999
  end-page: 300
  article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat
  publication-title: J Neurophysiol
– volume: 4
  start-page: 87
  year: 2006
  end-page: 104
  article-title: Neurobiological basis of state‐dependent control of motor behavior
  publication-title: Sleep Biol Rhyth
– volume: 22
  start-page: 172
  year: 2005
  end-page: 188
  article-title: Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC
  publication-title: J Neurotrauma
– volume: 64
  start-page: 782
  year: 1990
  end-page: 795
  article-title: Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation
  publication-title: J Neurophysiol
– volume: 183
  start-page: 2
  year: 2010
  article-title: Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey
  publication-title: Soc Neurosci Abstract
– volume: 93
  start-page: 471
  year: 1993
  end-page: 482
  article-title: Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats
  publication-title: Exp Brain Res
– volume: 132
  start-page: 172
  year: 2009
  end-page: 184
  article-title: Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease
  publication-title: Brain
– volume: 26
  start-page: 9107
  year: 2006
  end-page: 9116
  article-title: Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking
  publication-title: J Neurosci
– start-page: 173
  year: 1996
  end-page: 216
– volume: 59
  start-page: 309
  year: 1994
  end-page: 330
  article-title: Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study
  publication-title: Neuroscience
– volume: 863
  start-page: 17/Z20
  year: 2005
  article-title: A new category of spinal interneurons that mediate muscular atonia in cats
  publication-title: Soc Neurosci Abstr
– volume: 647
  start-page: 299
  year: 1994
  end-page: 306
  article-title: Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum
  publication-title: Brain Res
– volume: 66
  start-page: 705
  year: 2011
  end-page: 713
  article-title: Errors in postural preparation lead to increased choice reaction times for step initiation in older adults
  publication-title: J Gerontol A Biol Sci Med Sci.
– volume: 171
  start-page: 353
  year: 2008
  end-page: 362
  article-title: Supraspinal locomotor control in quadrupeds and humans
  publication-title: Prog Brain Res
– volume: 247
  start-page: 572
  year: 2013
  end-page: 581
  article-title: Grafting of fetal brainstem 5‐HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion
  publication-title: Exp Neurol.
– volume: 871
  start-page: 293
  year: 1999
  end-page: 312
  article-title: The vestibular cortex: its locations, functions, and disorders
  publication-title: Ann N Y Acad Sci
– start-page: 140
  year: 1986
  end-page: 150
– start-page: 335
  year: 2009
  end-page: 356
– volume: 103
  start-page: 2234
  year: 2010
  end-page: 2254
  article-title: Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory
  publication-title: J Neurophysiol
– volume: 39
  start-page: 786
  year: 2008
  end-page: 792
  article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum
  publication-title: Neuroimage
– volume: 86
  start-page: 89
  year: 2006
  end-page: 154
  article-title: Dynamic sensorimotor interactions in locomotion
  publication-title: Physiol Rev
– volume: 10
  start-page: 734
  year: 2011
  end-page: 744
  article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon
  publication-title: Lancet Neurol
– volume: 20
  start-page: 1055
  year: 2007
  end-page: 1062
  article-title: Adaptation reveals independent control networks for human walking
  publication-title: Nat Neurosci
– volume: 17
  start-page: 234
  year: 2007
  end-page: 242
  article-title: Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties
  publication-title: Curr Opin Neurobiol
– volume: 330
  start-page: 543
  year: 1993
  end-page: 556
  article-title: Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat
  publication-title: J Comp Neurol
– volume: 103
  start-page: 511
  year: 2001
  end-page: 527
  article-title: Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways
  publication-title: Neuroscience
– volume: 105
  start-page: 2457
  year: 2011
  end-page: 2470
  article-title: Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption
  publication-title: J Neurophysiol
– volume: 43
  start-page: 268
  year: 1993
  end-page: 279
  article-title: Human walking and higher‐level gait disorders, particularly in the elderly
  publication-title: Neurology
– volume: 122
  start-page: 1271
  year: 1999
  end-page: 1282
  article-title: Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study
  publication-title: Brain
– volume: 119
  start-page: 293
  year: 2003
  end-page: 308
  article-title: Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction
  publication-title: Neuroscience
– volume: 42
  start-page: 936
  year: 1979
  end-page: 953
  article-title: Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion
  publication-title: J Neurophysiol
– volume: 74
  start-page: 426
  year: 1996
  end-page: 442
  article-title: Role of the motor cortex in the control of visually triggered gait modifications
  publication-title: Can J Physiol Pharmacol
– volume: 20
  start-page: 8551
  year: 2000
  end-page: 8558
  article-title: Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region
  publication-title: J Neurosci
– volume: 13
  start-page: 281
  year: 1990
  end-page: 2890
  article-title: Primate models of movement disorders of basal ganglia origin
  publication-title: Trends Neurosci
– volume: 389
  start-page: 617
  year: 1997
  end-page: 641
  article-title: Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris‐leucoagglutinin
  publication-title: J Comp Neurol
– volume: 13
  start-page: 1596
  year: 2007
  end-page: 1607
  article-title: Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease
  publication-title: Brain
– volume: 99
  start-page: 361
  year: 1994
  end-page: 374
  article-title: Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats
  publication-title: Exp Brain Res
– volume: 50
  start-page: 137
  year: 2004
  end-page: 151
  article-title: Role of basal ganglia—brainstem pathways in the control of motor behaviors
  publication-title: Neurosci Res
– volume: 28
  start-page: 161
  year: 1987
  end-page: 196
  article-title: Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats
  publication-title: Prog Neurobiol
– volume: 8
  start-page: e64421
  year: 2013
  article-title: Phase locking asymmetries at flexor‐extensor transitions during fictive locomotion
  publication-title: PLoS One
– volume: 57
  start-page: 192
  year: 2008
  end-page: 198
  article-title: Forebrain control of locomotor behaviors
  publication-title: Brain Res Rev
– start-page: 3
  year: 2002
  end-page: 19
– volume: 38
  start-page: 35
  year: 1992
  end-page: 36
  article-title: Movement, posture and equilibrium: interaction and coordination
  publication-title: Prog Neurobiol
– volume: 81
  start-page: 2297
  year: 1999
  end-page: 2315
  article-title: Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex
  publication-title: J Neurophysiol
– volume: 46
  start-page: S157
  issue: Suppl 1
  year: 2003
  article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA)
  publication-title: Neurosci Res
– volume: 46
  start-page: S156
  issue: Suppl 1
  year: 2003
  article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1)
  publication-title: Neurosci Res
– volume: 45
  start-page: 329
  year: 1999
  end-page: 336
  article-title: Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease
  publication-title: Ann Neurol
– volume: 57
  start-page: 134
  year: 2008
  end-page: 146
  article-title: Organization of mammalian locomotor rhythm and pattern generation
  publication-title: Brain Res Rev
– volume: 23
  start-page: S461
  issue: Suppl
  year: 2008
  end-page: S467
  article-title: Brain imaging in patients with freezing of gait
  publication-title: Mov Disord
– volume: 94
  start-page: 2403
  year: 2005
  end-page: 2415
  article-title: Interlimb coordination during locomotion: what can be adapted and stored?
  publication-title: J Neurophysiol
– volume: 35
  start-page: 619
  year: 1994
  end-page: 621
  article-title: Astasia and gait failure with damage of the pontomesencephalic locomotor region
  publication-title: Ann Neurol
– volume: 7
  start-page: 309
  year: 1984
  end-page: 338
  article-title: Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry
  publication-title: Ann Rev Neurosci
– volume: 336
  start-page: 321
  year: 1993
  end-page: 330
  article-title: Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry
  publication-title: J Comp Neurol
– volume: 74
  start-page: 311
  year: 1989
  end-page: 318
  article-title: Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis)
  publication-title: Exp Brain Res
– volume: 80
  start-page: 954
  year: 2000
  end-page: 978
  article-title: Role of the basal ganglia in the control of purposive saccadic eye movements
  publication-title: Physiol Rev
– volume: 344
  start-page: 912
  year: 2011
  end-page: 913
  article-title: Human locomotor circuits conform
  publication-title: Science
– volume: 121
  start-page: 731
  year: 2003
  end-page: 746
  article-title: Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments
  publication-title: Neuroscience
– volume: 31
  start-page: 236
  year: 2000
  end-page: 250
  article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits
  publication-title: Brain Res Rev
– volume: 143
  start-page: 123
  year: 2003
  end-page: 129
  article-title: Generating the walking gait: role of sensory feedback
  publication-title: Prog Brain Res
– volume: 255
  start-page: 19
  issue: Suppl 4
  year: 2008
  end-page: 29
  article-title: Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction
  publication-title: J Neurol
– volume: 124
  start-page: 207
  year: 2004
  end-page: 220
  article-title: Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats
  publication-title: Neuroscience
– volume: 84
  start-page: 2257
  year: 2000
  end-page: 2276
  article-title: Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane
  publication-title: J Neurophysiol
– volume: 41
  start-page: 323
  year: 1993
  end-page: 344
  article-title: Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat
  publication-title: Prog Neurobiol
– volume: 245
  start-page: 1209
  year: 1989
  end-page: 1210
  article-title: Visuomotor coordination in reaching and locomotion
  publication-title: Science
– volume: 103
  start-page: 1591
  year: 2010
  end-page: 1605
  article-title: Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion
  publication-title: J Neurophysiol
– volume: 6
  start-page: 63
  year: 2007
  end-page: 74
  article-title: Neurological gait disorders in elderly people: clinical approach and classification
  publication-title: Lancet Neurol
– volume: 28
  start-page: 193
  year: 1988
  end-page: 199
  article-title: Activity of rubrospinal neurons during locomotion and scratching in the cat
  publication-title: Behav Brain Res
– volume: 149
  start-page: 385
  year: 2011
  end-page: 405
  article-title: Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats
  publication-title: Arch Ital Biol
– start-page: 1179
  year: 1981
  end-page: 1236
– volume: 124
  start-page: 467
  year: 2004
  end-page: 480
  article-title: Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats
  publication-title: Neuroscience
– volume: 590
  start-page: 1721
  year: 2012
  end-page: 1736
  article-title: The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats
  publication-title: J Physiol
– ident: e_1_2_7_29_1
  doi: 10.1093/brain/awl346
– ident: e_1_2_7_51_1
  doi: 10.1093/brain/awn294
– ident: e_1_2_7_72_1
  doi: 10.1523/JNEUROSCI.2622-06.2006
– ident: e_1_2_7_13_1
  doi: 10.1016/0301-0082(87)90010-4
– ident: e_1_2_7_23_1
  doi: 10.1016/S0306-4522(03)00542-6
– start-page: 173
  volume-title: Handbook of Physiology
  year: 1996
  ident: e_1_2_7_14_1
– ident: e_1_2_7_62_1
  doi: 10.1016/j.conb.2007.02.003
– start-page: 40
  volume-title: Motor Area of the Cerebral Cortex
  year: 1987
  ident: e_1_2_7_56_1
– ident: e_1_2_7_12_1
  doi: 10.1152/physrev.00028.2005
– ident: e_1_2_7_2_1
  doi: 10.1016/0301-0082(92)90034-C
– ident: e_1_2_7_33_1
  doi: 10.1002/cne.903360302
– ident: e_1_2_7_63_1
  doi: 10.1126/science.2675307
– ident: e_1_2_7_16_1
  doi: 10.1016/j.brainresrev.2007.08.006
– ident: e_1_2_7_19_1
  doi: 10.1152/jn.01028.2009
– ident: e_1_2_7_49_1
  doi: 10.1152/jn.1999.81.5.2297
– ident: e_1_2_7_22_1
  doi: 10.1016/S0306-4522(00)00586-8
– ident: e_1_2_7_57_1
  doi: 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S
– volume: 863
  start-page: 17/Z20
  year: 2005
  ident: e_1_2_7_36_1
  article-title: A new category of spinal interneurons that mediate muscular atonia in cats
  publication-title: Soc Neurosci Abstr
– ident: e_1_2_7_25_1
  doi: 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3
– ident: e_1_2_7_31_1
  doi: 10.1016/S0306-4522(03)00095-2
– ident: e_1_2_7_52_1
  doi: 10.1002/mds.21912
– ident: e_1_2_7_7_1
  doi: 10.1016/j.brainresrev.2007.06.024
– ident: e_1_2_7_6_1
  doi: 10.1007/s00415-008-4004-7
– ident: e_1_2_7_35_1
  doi: 10.1007/BF00228973
– volume: 46
  start-page: S156
  issue: 1
  year: 2003
  ident: e_1_2_7_58_1
  article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1)
  publication-title: Neurosci Res
– volume: 20
  start-page: 8551
  year: 2000
  ident: e_1_2_7_46_1
  article-title: Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-22-08551.2000
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroscience.2003.10.028
– ident: e_1_2_7_73_1
  doi: 10.1038/nn1930
– ident: e_1_2_7_15_1
  doi: 10.1016/S0306-4522(03)00542-6
– ident: e_1_2_7_55_1
  doi: 10.1016/S1474-4422(11)70143-0
– ident: e_1_2_7_71_1
  doi: 10.1152/jn.00089.2005
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1214778
– ident: e_1_2_7_11_1
  doi: 10.1371/journal.pone.0064421
– ident: e_1_2_7_24_1
  doi: 10.1152/jn.1999.82.1.290
– ident: e_1_2_7_42_1
  doi: 10.1016/0006-8993(94)91329-3
– ident: e_1_2_7_61_1
  doi: 10.1152/jn.1990.64.3.782
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neures.2004.06.015
– ident: e_1_2_7_9_1
  doi: 10.1016/0301-0082(93)90003-B
– ident: e_1_2_7_40_1
  doi: 10.1016/j.expneurol.2013.02.008
– ident: e_1_2_7_47_1
  doi: 10.1152/jn.2000.84.5.2257
– volume: 80
  start-page: 954
  year: 2000
  ident: e_1_2_7_74_1
  article-title: Role of the basal ganglia in the control of purposive saccadic eye movements
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2000.80.3.953
– ident: e_1_2_7_70_1
  doi: 10.1139/y96-043
– ident: e_1_2_7_38_1
  doi: 10.1146/annurev.ne.07.030184.001521
– ident: e_1_2_7_67_1
  doi: 10.1016/S1474-4422(06)70678-0
– ident: e_1_2_7_44_1
  doi: 10.1016/0306-4522(94)90599-1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.neuroscience.2003.12.016
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1479-8425.2006.00210.x
– volume: 149
  start-page: 385
  year: 2011
  ident: e_1_2_7_34_1
  article-title: Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats
  publication-title: Arch Ital Biol
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1749-6632.1999.tb09193.x
– start-page: 140
  volume-title: The Neural Basis of Motor Control
  year: 1986
  ident: e_1_2_7_3_1
– ident: e_1_2_7_68_1
  doi: 10.1093/gerona/glr054
– ident: e_1_2_7_53_1
  doi: 10.1212/WNL.43.2.268
– ident: e_1_2_7_64_1
  doi: 10.1152/jn.00992.2010
– ident: e_1_2_7_18_1
  doi: 10.1016/S0079-6123(03)43012-4
– ident: e_1_2_7_48_1
  doi: 10.1016/0166-4328(88)90096-4
– ident: e_1_2_7_54_1
  doi: 10.1093/brain/122.7.1271
– ident: e_1_2_7_65_1
  doi: 10.1152/jn.01100.2009
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2007.09.047
– ident: e_1_2_7_4_1
  doi: 10.1016/S0165-0173(99)00040-5
– ident: e_1_2_7_43_1
  doi: 10.1002/cne.903300410
– volume: 46
  start-page: S157
  issue: 1
  year: 2003
  ident: e_1_2_7_59_1
  article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA)
  publication-title: Neurosci Res
– ident: e_1_2_7_41_1
  doi: 10.1089/neu.2005.22.172
– ident: e_1_2_7_60_1
  doi: 10.1007/BF00248864
– ident: e_1_2_7_28_1
  doi: 10.1002/ana.410350517
– ident: e_1_2_7_26_1
  doi: 10.1016/S0079-6123(08)00652-3
– volume: 183
  start-page: 2
  year: 2010
  ident: e_1_2_7_69_1
  article-title: Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey
  publication-title: Soc Neurosci Abstract
– start-page: 335
  volume-title: Handbook on White Matter: Structure, Function and Changes, chapter XVIII
  year: 2009
  ident: e_1_2_7_17_1
– ident: e_1_2_7_45_1
  doi: 10.1007/BF00229362
– ident: e_1_2_7_50_1
  doi: 10.1016/0166-2236(90)90110-V
– start-page: 3
  volume-title: Neurons, Networks, and Motor Behavior
  year: 2002
  ident: e_1_2_7_8_1
– ident: e_1_2_7_20_1
  doi: 10.1152/jn.1979.42.4.936
– ident: e_1_2_7_39_1
  doi: 10.1113/jphysiol.2011.224931
– start-page: 1179
  volume-title: The Nervous System II
  year: 1981
  ident: e_1_2_7_10_1
SSID ssj0011516
Score 2.5697308
SecondaryResourceType review_article
Snippet ABSTRACT Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional...
Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional...
Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1483
SubjectTerms Animals
body schema
central pattern generator
corticoreticulospinal system
Frontal Lobe - physiology
Gait - physiology
Humans
motor programming
Movement disorders
Neurophysiology
postural muscle tone
Spinal Cord - physiology
Title Neurophysiology of gait: From the spinal cord to the frontal lobe
URI https://api.istex.fr/ark:/67375/WNG-BK796HZR-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.25669
https://www.ncbi.nlm.nih.gov/pubmed/24132836
https://www.proquest.com/docview/1442201259
https://www.proquest.com/docview/1443408377
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KheIX-_DR7UOiiPhlr7ebZLPbfqrW81CuYLVYpBDyWpG2t-VuD6R_fSfZh1QqiN9CdpbNa3Z-k2R-A_AqL2npbK5jytwwZsqmcZErf5lKmMTkjrtApjM5zsan7OMZP1uCgy4WpuGH6DfcvGaE_7VXcKXne79JQ6_sfID2OvPBewnNPG_-0UlPHYVAJ6Q9RSXiIUK4YxUapnv9m3ds0QM_rL_uA5p3cWswPKNVOO-a3Nw3uRgsaj0wN3-wOf5nn9bgUQtIyWGzgtZhyU03YGXSHrk_hsNA3xE2QMIOPKlK8kP9rPfJaFZdEcSPZH7tU2sR78eSugpVpedFwDp_l-MJnI7ef303jtu8C7FhXBQxWnBneWa5yqlLWeYUOmqODrXWjhpP0JYirjHcIBRxJtEsEdZH4CL0NZSVmj6F5Wk1dZtASgRwpsipFRqBlxFFUdpEW5VjWZSMRfCmmwFpWlJynxvjUjZ0yqnEIZFhSCJ42YteN0wc9wm9DtPYS6jZhb-6Jrj8dvxBvv0kimz8_UR-jmCnm2fZau0c3SCWIiBCjzCCF_1j1Dd_iKKmrloEGcoQtwoRwbNmffQf82eUODwZ9irM8t_bKSdHX0Jh699Ft-FhGnJxFHHCd2C5ni3cLiKiWj8PS_8WDN8EPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJOoLigpWUVdjjC89rt3dbkt4AfQ8hbtEhEBIyKb7UWOAK7nrJca_3tnth8FgYnjbbKfpfk3ntzO7vwF4mxa0sCZVIWW2H7LcxGGW5u4wldCRTi23nkxnNE6GR-zLCT9ZgK32LkzND9E53Jxm-P-1U3DnkN74wxp6aWY9NNhJdgeWfHzOQaKDjjwKoY5PfIpqxP0d4ZZXqB9vdK9es0ZLbmB_3gQ1ryNXb3oGD-CsbXR94uS8N69UT__6i8_xtr16CMsNJiXb9SJagQU7eQR3R03U_TFsewYP7wPxTnhSFuR7_qPaJINpeUkQQpLZlcuuRdxWllSlryocNQLWueMcT-Bo8PFwdxg2qRdCzbjIQjTi1vDE8DylNmaJzXGvZmlfKWWpdhxtMUIbzTWiEasjxSJh3CVcRL-askLRVViclBP7FEiBGE5nKTVCIfbSIssKEymTp1gWBWMBvG-nQOqGl9ylx7iQNaNyLHFIpB-SAN50olc1GcdNQu_8PHYS-fTcnV4TXB6PP8mdPZElw9MD-TWA9XaiZaO4M9wJsRgxEW4KA3jdPUaVc3GUfGLLuZehDKGrEAGs1Quk-5gLU-LwJNgrP83_bqccffjmC8_-X_QV3Bsejvbl_ufx3nO4H_vUHFkY8XVYrKZz-wIBUqVeej34DVTwCFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC8Uv9W1Xq0YR8ctebzfJZlc_Vet5Wu_Q2mIRIWxeIrW3x90eiH-9k-xDKhXEbyE7yyYzmZ1fXr8BeJw76qzJVUyZHcasNGlc5KU_TCV0onPLbSDTmUyz8TF7e8JP1uB5dxem4YfoF9y8Z4T_tXfwuXG7v0lDz8xygPE6Ky7BBsswTHpEdNhzRyHSCXlP0Yt4uCLc0QoN093-1XPBaMPr9cdFSPM8cA2RZ3QFvnRtbg6cnA5WtRron3_QOf5np67CVotIyV4zhK7Bmp1dh81Ju-d-A_YCf0dYAQlL8KRy5Gv5rX5GRovqjCCAJMu5z61F_ESW1FWocp4YAev8YY6bcDx6dfRyHLeJF2LNuChiDOHW8MzwMqc2ZZktcaZm6VApZan2DG0pAhvNNWIRqxPFEmH8FVzEvpoyp-gtWJ9VM7sNxCGC00VOjVCIvLQoCmcSZcocy8IxFsHTzgJSt6zkPjnGd9nwKacSVSKDSiJ41IvOGyqOi4SeBDP2EuXi1J9dE1x-mr6WLw5EkY0_H8oPEex0dpat2y5xHsRSREQ4JYzgYf8YHc7vopQzW62CDGUIXIWI4HYzPvqP-U1KVE-GvQpW_ns75WT_Yyjc-XfRB7D5fn8k372ZHtyFy2nIy1HECd-B9XqxsvcQHdXqfvCCXzPyBws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurophysiology+of+gait%3A+from+the+spinal+cord+to+the+frontal+lobe&rft.jtitle=Movement+disorders&rft.au=Takakusaki%2C+Kaoru&rft.date=2013-09-15&rft.eissn=1531-8257&rft.volume=28&rft.issue=11&rft.spage=1483&rft_id=info:doi/10.1002%2Fmds.25669&rft_id=info%3Apmid%2F24132836&rft.externalDocID=24132836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon