Neurophysiology of gait: From the spinal cord to the frontal lobe
ABSTRACT Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by aut...
Saved in:
Published in | Movement disorders Vol. 28; no. 11; pp. 1483 - 1491 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
15.09.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0885-3185 1531-8257 1531-8257 |
DOI | 10.1002/mds.25669 |
Cover
Abstract | ABSTRACT
Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society |
---|---|
AbstractList | ABSTRACT
Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose.Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori‐motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional processing in the limbic system. Regardless of whether the locomotion initiation is volitional or emotional, locomotion is accompanied by automatic controlled movement processes, such as the adjustment of postural muscle tone and rhythmic limb movements. Sensori-motor integration in the brainstem and the spinal cord plays crucial roles in this process. The basic locomotor motor pattern is generated by spinal interneuronal networks, termed central pattern generators (CPGs). Responding to signals in proprioceptive and skin afferents, the spinal interneuronal networks modify the locomotor pattern in cooperation with descending signals from the brainstem structures and the cerebral cortex. Information processing between the basal ganglia, the cerebellum, and the brainstem may enable automatic regulation of muscle tone and rhythmic limb movements in the absence of conscious awareness. However, when a locomoting subject encounters obstacles, the subject has to intentionally adjust bodily alignment to guide limb movements. Such an intentional gait modification requires motor programming in the premotor cortices. The motor programs utilize one's bodily information, such as the body schema, which is preserved and updated in the temporoparietal cortex. The motor programs are transmitted to the brainstem by the corticoreticulospinal system, so that one's posture is anticipatorily controlled. These processes enable the corticospinal system to generate limb trajectory and achieve accurate foot placement. Loops from the motor cortical areas to the basal ganglia and the cerebellum can serve this purpose. © 2013 International Parkinson and Movement Disorder Society [PUBLICATION ABSTRACT] |
Author | Takakusaki, Kaoru |
Author_xml | – sequence: 1 givenname: Kaoru surname: Takakusaki fullname: Takakusaki, Kaoru email: kusaki@asahikawa-med.ac.jp organization: The Research Center for Brain Function and Medical Engineering, School of Medicine, Asahikawa Medical University, Asahikawa, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24132836$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtP3TAQRq2Kqlygi_6BKhIbugj4HYfdhRaoeFRtQZW6sRxnAoYkvtiJ2vvva-6DBaKrkUbnfJr5ttBG73tA6APB-wRjetDVcZ8KKcs3aEIEI7miothAE6yUyBlRYhNtxXiPMSGCyHdok3LCqGJygqZXMAY_u5tH51t_O898k90aNxxmJ8F32XAHWZy53rSZ9aHOBr9YNcH3Q9q1voId9LYxbYT3q7mNbk6-XB-f5RffTr8eTy9yy0VR5kowqIWshVEMKJdgMJXAcFVVwGw6RlDJSiusEBwsqTgpaorLUpHaMt5UbBvtLXNnwT-OEAfduWihbU0PfoyacM44VqwoErr7Ar33Y0hPLChKMaGiTNTHFTVWHdR6Flxnwlyvy0nAwRKwwccYoNHWDWZw6fdgXKsJ1k_161S_XtSfjE8vjHXoa-wq_Y9rYf5_UF9-_rk28qXh4gB_nw0THrQsWCH0r6tTfXRelPLs9w_9nf0DwASglg |
CODEN | MOVDEA |
CitedBy_id | crossref_primary_10_3390_healthcare11212898 crossref_primary_10_1016_j_pneurobio_2020_101951 crossref_primary_10_1016_j_clinph_2015_11_016 crossref_primary_10_1016_j_humov_2016_07_002 crossref_primary_10_1016_j_nicl_2021_102667 crossref_primary_10_1007_s00429_019_01885_x crossref_primary_10_1016_j_neuroscience_2017_02_005 crossref_primary_10_3389_fncel_2019_00439 crossref_primary_10_17116_jnevro201811821100_104 crossref_primary_10_1088_1741_2552_ac7d0c crossref_primary_10_18857_jkpt_2022_34_6_326 crossref_primary_10_1016_j_bbr_2015_08_034 crossref_primary_10_3390_s22239301 crossref_primary_10_1097_TGR_0000000000000007 crossref_primary_10_1177_1545968318798938 crossref_primary_10_1016_j_clinbiomech_2020_105186 crossref_primary_10_1186_s12877_021_02103_2 crossref_primary_10_1016_j_nicl_2024_103591 crossref_primary_10_1177_1545968320969942 crossref_primary_10_1097_MD_0000000000010453 crossref_primary_10_1111_nyas_14276 crossref_primary_10_1111_jgs_16265 crossref_primary_10_1016_j_apmr_2023_05_012 crossref_primary_10_1016_j_neures_2019_10_001 crossref_primary_10_3390_healthcare12161636 crossref_primary_10_3390_app9214494 crossref_primary_10_1007_s12975_023_01180_2 crossref_primary_10_1002_acn3_52173 crossref_primary_10_1002_hbm_24326 crossref_primary_10_1016_j_neurom_2023_06_003 crossref_primary_10_2531_spinalsurg_27_208 crossref_primary_10_1002_mds_25672 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104857 crossref_primary_10_1016_j_neuron_2015_02_042 crossref_primary_10_1016_j_rehab_2016_07_003 crossref_primary_10_1016_j_expneurol_2015_09_002 crossref_primary_10_3389_fneur_2023_1188799 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104882 crossref_primary_10_3390_brainsci14020178 crossref_primary_10_1016_j_archger_2016_06_022 crossref_primary_10_14802_jmd_16062 crossref_primary_10_1016_j_sleep_2014_11_013 crossref_primary_10_1007_s10072_021_05796_w crossref_primary_10_1123_mc_2018_0044 crossref_primary_10_3389_fpubh_2018_00039 crossref_primary_10_1016_j_cell_2024_04_022 crossref_primary_10_1016_j_physbeh_2018_08_012 crossref_primary_10_1242_bio_028241 crossref_primary_10_4103_1673_5374_172329 crossref_primary_10_1016_j_nicl_2018_08_017 crossref_primary_10_3389_fnagi_2021_654931 crossref_primary_10_1111_acel_14342 crossref_primary_10_23736_S1973_9087_21_06847_7 crossref_primary_10_1113_JP281094 crossref_primary_10_1016_j_gaitpost_2018_06_171 crossref_primary_10_1016_j_bbr_2014_06_048 crossref_primary_10_1016_j_isci_2024_110301 crossref_primary_10_7554_eLife_92821_3 crossref_primary_10_1212_WNL_0000000000200108 crossref_primary_10_3109_07420528_2015_1124885 crossref_primary_10_1177_15459683231177606 crossref_primary_10_1177_08830738231204395 crossref_primary_10_1038_s41598_024_66177_9 crossref_primary_10_1016_j_expneurol_2014_08_022 crossref_primary_10_3389_fneur_2024_1502561 crossref_primary_10_3389_fnagi_2022_978976 crossref_primary_10_1016_j_gaitpost_2016_10_021 crossref_primary_10_1371_journal_pone_0293691 crossref_primary_10_3390_diagnostics11061068 crossref_primary_10_1016_j_gaitpost_2019_10_005 crossref_primary_10_1038_s41393_021_00658_w crossref_primary_10_18857_jkpt_2018_30_2_73 crossref_primary_10_1016_j_wneu_2024_04_055 crossref_primary_10_1126_sciadv_abk2241 crossref_primary_10_3390_brainsci13010154 crossref_primary_10_47924_neurotarget2024454 crossref_primary_10_3390_brainsci13111514 crossref_primary_10_1016_j_neubiorev_2018_12_017 crossref_primary_10_1016_j_neulet_2024_137736 crossref_primary_10_3389_fneur_2023_1244287 crossref_primary_10_1016_j_neubiorev_2019_10_008 crossref_primary_10_1016_j_nicl_2019_102059 crossref_primary_10_14326_abe_6_15 crossref_primary_10_3389_fnhum_2022_783452 crossref_primary_10_1515_revneuro_2017_0058 crossref_primary_10_3233_BMR_220395 crossref_primary_10_3390_app15010192 crossref_primary_10_1016_j_jns_2021_120083 crossref_primary_10_3389_fnsys_2014_00242 crossref_primary_10_1186_s12984_024_01363_4 crossref_primary_10_1093_gerona_glab247 crossref_primary_10_1093_brain_awad006 crossref_primary_10_3390_brainsci13121681 crossref_primary_10_1097_PHM_0000000000000881 crossref_primary_10_1186_s40035_020_00191_5 crossref_primary_10_1093_cercor_bhw391 crossref_primary_10_1007_s00426_024_02039_3 crossref_primary_10_1016_j_neuropharm_2014_09_028 crossref_primary_10_26862_jkpts_2020_09_27_2_1 crossref_primary_10_3389_fneur_2020_571086 crossref_primary_10_1017_cjn_2019_293 crossref_primary_10_1103_PhysRevE_109_014404 crossref_primary_10_1186_s40035_023_00347_z crossref_primary_10_3233_JPD_212801 crossref_primary_10_1016_j_bbadis_2019_165570 crossref_primary_10_3390_ijerph18073428 crossref_primary_10_1186_s12984_017_0242_1 crossref_primary_10_1016_j_cct_2021_106563 crossref_primary_10_1016_j_jnrt_2022_100028 crossref_primary_10_1111_jgs_15181 crossref_primary_10_1016_j_neuropsychologia_2015_06_039 crossref_primary_10_12786_bn_2022_15_e17 crossref_primary_10_3389_fnagi_2023_1156648 crossref_primary_10_3389_fneur_2022_1061363 crossref_primary_10_3390_s24092875 crossref_primary_10_47795_HNFE8191 crossref_primary_10_3389_fncir_2017_00034 crossref_primary_10_1016_j_parkreldis_2020_09_025 crossref_primary_10_3389_fnagi_2022_834496 crossref_primary_10_1016_j_isci_2022_105874 crossref_primary_10_1371_journal_pone_0228389 crossref_primary_10_3389_fnhum_2022_819232 crossref_primary_10_1371_journal_pone_0284278 crossref_primary_10_1016_j_jbmt_2016_09_012 crossref_primary_10_1002_mds_29189 crossref_primary_10_1145_3569476 crossref_primary_10_1152_jn_00385_2014 crossref_primary_10_1016_j_bbr_2015_08_017 crossref_primary_10_3389_fncir_2023_910207 crossref_primary_10_3389_fneur_2018_00400 crossref_primary_10_1016_j_neurobiolaging_2016_04_005 crossref_primary_10_1093_braincomms_fcaa045 crossref_primary_10_3389_fnagi_2022_806026 crossref_primary_10_1016_j_neuroscience_2025_01_050 crossref_primary_10_2147_NDT_S304567 crossref_primary_10_1016_j_jns_2023_120770 crossref_primary_10_1002_dneu_22601 crossref_primary_10_1016_j_parkreldis_2016_02_004 crossref_primary_10_3390_healthcare8010030 crossref_primary_10_1007_s11910_023_01305_y crossref_primary_10_1016_j_isci_2025_111970 crossref_primary_10_3390_brainsci10090587 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1007_s11571_014_9302_4 crossref_primary_10_3389_fneur_2017_00542 crossref_primary_10_3390_brainsci11070867 crossref_primary_10_3389_fneur_2017_00543 crossref_primary_10_1177_1545968316680487 crossref_primary_10_1002_mds_28883 crossref_primary_10_1371_journal_pone_0100291 crossref_primary_10_1093_gerona_glab010 crossref_primary_10_3390_brainsci13121690 crossref_primary_10_3389_fnhum_2022_812954 crossref_primary_10_1113_JP284505 crossref_primary_10_1002_mdc3_14293 crossref_primary_10_1186_s12984_024_01470_2 crossref_primary_10_3389_fnhum_2014_00475 crossref_primary_10_3389_fneur_2020_576569 crossref_primary_10_1152_jn_00079_2018 crossref_primary_10_17116_jnevro201911903253 crossref_primary_10_3389_fnsys_2019_00069 crossref_primary_10_1186_s12984_024_01324_x crossref_primary_10_1186_s41983_020_00236_6 crossref_primary_10_1080_00222895_2016_1241750 crossref_primary_10_1007_s00221_024_06808_9 crossref_primary_10_3389_fnbot_2019_00071 crossref_primary_10_3390_app11094053 crossref_primary_10_3390_healthcare8020128 crossref_primary_10_1109_TNSRE_2020_2991636 crossref_primary_10_7554_eLife_92821 crossref_primary_10_1016_j_heliyon_2024_e30007 crossref_primary_10_1002_mds_25846 crossref_primary_10_1016_j_maturitas_2018_04_011 crossref_primary_10_1097_WNR_0000000000001100 crossref_primary_10_17340_jkna_2017_4_23 crossref_primary_10_1007_s12264_023_01155_1 crossref_primary_10_1080_03091902_2021_1970839 crossref_primary_10_1080_14656566_2019_1614167 crossref_primary_10_1152_jn_00482_2018 crossref_primary_10_1002_hbm_22679 crossref_primary_10_1093_cercor_bhaa275 crossref_primary_10_1007_s11055_019_00881_2 crossref_primary_10_1016_j_celrep_2021_110231 crossref_primary_10_1186_s12877_020_01511_0 crossref_primary_10_1541_ieejeiss_143_13 crossref_primary_10_5507_bp_2020_052 crossref_primary_10_1038_s41598_018_22676_0 crossref_primary_10_1007_s11357_018_0043_x crossref_primary_10_1016_j_neuroimage_2017_07_013 crossref_primary_10_1016_j_parkreldis_2022_10_024 crossref_primary_10_1212_WNL_0000000000011989 crossref_primary_10_2169_internalmedicine_8949_21 crossref_primary_10_2522_ptj_20150334 crossref_primary_10_1016_j_parkreldis_2019_06_023 crossref_primary_10_1152_physiol_00034_2015 crossref_primary_10_1088_1741_2552_aad872 crossref_primary_10_1007_s13760_017_0862_z crossref_primary_10_1589_jpts_29_2151 crossref_primary_10_3390_s19040948 crossref_primary_10_1097_WNR_0000000000000360 crossref_primary_10_1007_s00221_017_5106_1 crossref_primary_10_1109_ACCESS_2019_2942712 crossref_primary_10_1016_j_jocn_2023_05_025 crossref_primary_10_1186_s12984_024_01493_9 crossref_primary_10_1016_j_nicl_2018_07_003 crossref_primary_10_1097_PHM_0000000000000591 crossref_primary_10_1186_s12984_025_01557_4 crossref_primary_10_1038_s41598_023_48072_x crossref_primary_10_1152_jn_00436_2014 crossref_primary_10_1371_journal_pone_0208691 crossref_primary_10_1016_j_parkreldis_2025_107339 crossref_primary_10_3233_RNN_170784 crossref_primary_10_1016_j_clinph_2020_05_023 crossref_primary_10_1038_s41537_022_00324_x crossref_primary_10_3389_fnins_2019_00722 crossref_primary_10_1111_jgs_17840 crossref_primary_10_1002_mdc3_13616 crossref_primary_10_1109_TNSRE_2023_3294435 crossref_primary_10_3390_app14020520 crossref_primary_10_2196_46264 crossref_primary_10_1016_j_neuroimage_2019_116095 crossref_primary_10_1093_cercor_bhac114 crossref_primary_10_3389_fnhum_2021_751242 crossref_primary_10_1093_cercor_bhx186 crossref_primary_10_3389_frobt_2023_1265543 crossref_primary_10_1134_S0022093023030304 crossref_primary_10_3389_fninf_2018_00044 crossref_primary_10_1113_JP279068 crossref_primary_10_1016_j_gaitpost_2025_02_004 crossref_primary_10_1016_j_clinph_2020_05_037 crossref_primary_10_1016_j_envres_2020_110087 crossref_primary_10_3389_fnins_2022_912075 crossref_primary_10_1038_nrn_2016_9 crossref_primary_10_3389_fnsys_2021_655980 crossref_primary_10_31857_S0869813923060092 crossref_primary_10_1080_01691864_2016_1252690 crossref_primary_10_1249_MSS_0000000000003122 crossref_primary_10_2522_ptj_20140603 crossref_primary_10_1016_j_jocn_2023_09_025 crossref_primary_10_1186_s12883_022_02972_z crossref_primary_10_1109_JBHI_2023_3308901 crossref_primary_10_1016_j_isci_2024_109162 crossref_primary_10_3233_JAD_150523 crossref_primary_10_1080_08990220_2018_1500363 crossref_primary_10_1016_j_gaitpost_2018_09_005 crossref_primary_10_14802_jmd_16043 crossref_primary_10_3389_fneur_2022_829714 crossref_primary_10_1080_01616412_2019_1709141 crossref_primary_10_3390_s22135001 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_1016_j_gaitpost_2019_02_017 crossref_primary_10_1016_j_otsr_2020_102769 crossref_primary_10_1080_07420528_2019_1594869 crossref_primary_10_1152_jn_00510_2014 crossref_primary_10_1371_journal_pone_0230083 crossref_primary_10_1016_j_parkreldis_2016_09_024 crossref_primary_10_1002_hbm_23725 crossref_primary_10_1016_j_exger_2018_04_004 crossref_primary_10_1111_ejn_15849 crossref_primary_10_3389_fnhum_2016_00325 crossref_primary_10_1097_MD_0000000000035215 crossref_primary_10_3390_brainsci13050703 crossref_primary_10_1016_j_bica_2018_07_012 crossref_primary_10_1103_PhysRevE_102_032406 crossref_primary_10_3389_fnhum_2025_1518230 crossref_primary_10_1152_jn_00043_2024 crossref_primary_10_1007_s00221_021_06217_2 crossref_primary_10_1016_j_gaitpost_2016_02_023 crossref_primary_10_1007_s00221_020_05935_3 crossref_primary_10_1080_09638288_2023_2185688 crossref_primary_10_1093_brain_awz325 crossref_primary_10_3389_fnagi_2023_1068943 crossref_primary_10_1016_j_neuroscience_2020_09_055 crossref_primary_10_3389_fnagi_2023_1280324 crossref_primary_10_3389_fnhum_2021_733067 crossref_primary_10_1113_EP092252 crossref_primary_10_1002_ana_26306 crossref_primary_10_3389_fnhum_2023_1082555 crossref_primary_10_1016_j_gaitpost_2023_09_001 crossref_primary_10_3389_fnagi_2021_766884 crossref_primary_10_2174_1567205016666190726100744 crossref_primary_10_1007_s10571_021_01151_x crossref_primary_10_1016_j_humov_2016_03_010 crossref_primary_10_1007_s00702_024_02829_4 crossref_primary_10_5812_ircmj_90337 crossref_primary_10_1002_mdc3_13814 crossref_primary_10_1016_j_neuroimage_2018_12_045 crossref_primary_10_1038_s41598_018_20129_2 crossref_primary_10_1093_braincomms_fcae246 crossref_primary_10_3389_fneur_2023_1244657 crossref_primary_10_3389_fnagi_2018_00126 crossref_primary_10_1360_TB_2023_0170 crossref_primary_10_1016_j_neulet_2022_136699 crossref_primary_10_1016_j_neubiorev_2022_104541 crossref_primary_10_1007_s00702_017_1801_0 crossref_primary_10_3390_sclerosis3010003 crossref_primary_10_3233_RNN_180895 crossref_primary_10_1016_j_nbd_2023_106216 crossref_primary_10_1186_s42466_020_00070_4 crossref_primary_10_1016_j_gaitpost_2017_09_035 crossref_primary_10_3390_toxics10040164 crossref_primary_10_1038_s41598_020_69367_3 crossref_primary_10_1016_j_amjmed_2017_11_051 crossref_primary_10_3390_ijms23105729 crossref_primary_10_1016_j_brs_2019_01_017 crossref_primary_10_1111_nan_12658 crossref_primary_10_3390_brainsci11101363 crossref_primary_10_3389_fnhum_2021_717291 crossref_primary_10_1007_s00702_015_1475_4 crossref_primary_10_1016_j_neucli_2015_09_005 crossref_primary_10_1016_j_neuroscience_2021_05_037 crossref_primary_10_1002_mds_28128 crossref_primary_10_1109_LRA_2021_3066961 crossref_primary_10_1371_journal_pone_0284308 crossref_primary_10_1007_s11332_024_01223_7 |
Cites_doi | 10.1093/brain/awl346 10.1093/brain/awn294 10.1523/JNEUROSCI.2622-06.2006 10.1016/0301-0082(87)90010-4 10.1016/S0306-4522(03)00542-6 10.1016/j.conb.2007.02.003 10.1152/physrev.00028.2005 10.1016/0301-0082(92)90034-C 10.1002/cne.903360302 10.1126/science.2675307 10.1016/j.brainresrev.2007.08.006 10.1152/jn.01028.2009 10.1152/jn.1999.81.5.2297 10.1016/S0306-4522(00)00586-8 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3 10.1016/S0306-4522(03)00095-2 10.1002/mds.21912 10.1016/j.brainresrev.2007.06.024 10.1007/s00415-008-4004-7 10.1007/BF00228973 10.1523/JNEUROSCI.20-22-08551.2000 10.1016/j.neuroscience.2003.10.028 10.1038/nn1930 10.1016/S1474-4422(11)70143-0 10.1152/jn.00089.2005 10.1126/science.1214778 10.1371/journal.pone.0064421 10.1152/jn.1999.82.1.290 10.1016/0006-8993(94)91329-3 10.1152/jn.1990.64.3.782 10.1016/j.neures.2004.06.015 10.1016/0301-0082(93)90003-B 10.1016/j.expneurol.2013.02.008 10.1152/jn.2000.84.5.2257 10.1152/physrev.2000.80.3.953 10.1139/y96-043 10.1146/annurev.ne.07.030184.001521 10.1016/S1474-4422(06)70678-0 10.1016/0306-4522(94)90599-1 10.1016/j.neuroscience.2003.12.016 10.1111/j.1479-8425.2006.00210.x 10.1111/j.1749-6632.1999.tb09193.x 10.1093/gerona/glr054 10.1212/WNL.43.2.268 10.1152/jn.00992.2010 10.1016/S0079-6123(03)43012-4 10.1016/0166-4328(88)90096-4 10.1093/brain/122.7.1271 10.1152/jn.01100.2009 10.1016/j.neuroimage.2007.09.047 10.1016/S0165-0173(99)00040-5 10.1002/cne.903300410 10.1089/neu.2005.22.172 10.1007/BF00248864 10.1002/ana.410350517 10.1016/S0079-6123(08)00652-3 10.1007/BF00229362 10.1016/0166-2236(90)90110-V 10.1152/jn.1979.42.4.936 10.1113/jphysiol.2011.224931 |
ContentType | Journal Article |
Copyright | 2013 Movement Disorder Society 2013 Movement Disorder Society. |
Copyright_xml | – notice: 2013 Movement Disorder Society – notice: 2013 Movement Disorder Society. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1002/mds.25669 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8257 |
EndPage | 1491 |
ExternalDocumentID | 3099866101 24132836 10_1002_mds_25669 MDS25669 ark_67375_WNG_BK796HZR_Q |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3PY 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TEORI TWZ UB1 V2E V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4579-853ed56d5a83e246ea026e30bbbe3c28352639c5c554ec1b417d209981dc34fb3 |
IEDL.DBID | DR2 |
ISSN | 0885-3185 1531-8257 |
IngestDate | Fri Jul 11 12:32:52 EDT 2025 Sun Jul 13 04:30:18 EDT 2025 Mon Jul 21 06:02:31 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Tue Jul 01 01:44:16 EDT 2025 Sun Sep 21 06:23:18 EDT 2025 Sun Sep 21 06:13:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | motor programming body schema corticoreticulospinal system postural muscle tone central pattern generator |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 Movement Disorder Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4579-853ed56d5a83e246ea026e30bbbe3c28352639c5c554ec1b417d209981dc34fb3 |
Notes | istex:19A27FA5041F77A67E63437C13EAE5918A8235D8 ark:/67375/WNG-BK796HZR-Q ArticleID:MDS25669 The author has no conflict of interest. KT prepared all text and figures. KT has no financial disclosure for the past 12 month other than those described above. This work was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology “Scientific Research B; grant no.: 2529001”, “Challenging Exploratory Research; grant no.: 23650202" and “Priority area; grant area no.: 454”, and by grants from “Quora‐rehabilitation Hospital Foundation” and “Sasson Hospital Foundation” Relevant conflicts of interest/financial disclosures Funding agencies ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 24132836 |
PQID | 1442201259 |
PQPubID | 1016421 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1443408377 proquest_journals_1442201259 pubmed_primary_24132836 crossref_citationtrail_10_1002_mds_25669 crossref_primary_10_1002_mds_25669 wiley_primary_10_1002_mds_25669_MDS25669 istex_primary_ark_67375_WNG_BK796HZR_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2013 |
PublicationDateYYYYMMDD | 2013-09-15 |
PublicationDate_xml | – month: 09 year: 2013 text: 15 September 2013 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Movement disorders |
PublicationTitleAlternate | Mov Disord |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mori S, Matsui T, Kuze B, et al. Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 1999;82:290-300. Takakusaki K, Saitoh K, Harada H, et al. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 2004;124:207-220. Georgopoulos AP, Grillner S. Visuomotor coordination in reaching and locomotion. Science 1989;245:1209-1210. McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008;57:134-146. Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744. Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008;23(Suppl):S461-S467. Takakusaki K, Shimoda N, Matsuyama K, et al. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 1994;99:361-374. Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 1989;74:311-318. Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev 2008;57:192-198. Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-2890. Takakusaki K, Kohyama J, Matsuyama K. Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 2003;121:731-746. Semba K. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 1993;330:543-556. Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res 2003;143:123-129. Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 1993;336:321-330. Leonald CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-330. Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007;20:1055-1062. Frigon A, Sirois J, Gossard JP. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010;103:1591-1605. Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 2004;50:137-151. Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1997;389:617-641. Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008;255(Suppl 4):19-29. Mori F, Nakajima K, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 2003;46(Suppl 1):S157. Drew T, Rossignol S. Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 1990;64:782-795. Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993;43:268-279. Takakusaki K, Saitoh K. A new category of spinal interneurons that mediate muscular atonia in cats. Soc Neurosci Abstr 2005;863:17/Z20. Honda T, Semba K. Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 1994;647:299-306. Snijders AH, van de Warrenburg BP, Giladi N, et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007;6:63-74. Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28:161-196. Takakusaki K, Kohyama J, Matsuyama K, et al. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 2001;103:511-527. Lajoie K, Andujar JE, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 2010;103:2234-2254. Nakajima K, Mori F, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 2003;46(Suppl 1):S156. Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 2000;84:2257-2276. Nakajima K, Mori F, Murata A. Inase M. Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey. Soc Neurosci Abstract 2010;183:2 Takakusaki K, Habaguchi T, Saitoh K, Kohyama J. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 2004;124:467-480. Cohen RG, Nutt JG, Horak FB. Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:705-713. Rho MJ, Lavoie S, Drew T. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophysiol 1999;81:2297-2315. Takakusaki K, Obara K, Nozu T, et al. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 2011;149:385-405. Takakusaki K, Saitoh K, Nonaka S, et al. Neurobiological basis of state-dependent control of motor behavior. Sleep Biol Rhyth 2006;4:87-104. Takakusaki K, Kohyama J, Matsuyama K, et al. Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 1993;93:471-482. Arshavsky YI, Orlovsky GN, Perret C. Activity of rubrospinal neurons during locomotion and scratching in the cat. Behav Brain Res 1988;28:193-199. Boothe DL, Cohen AH, Troyer TW. Phase locking asymmetries at flexor-extensor transitions during fictive locomotion. PLoS One 2013:8:e64421. Hoshi E, Tanji J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 2007;17:234-242. Grillner S. Human locomotor circuits conform. Science 2011;344:912-913. Forssberg H. Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion. J Neurophysiol 1979;42:936-953. Chastan N, Westby GW, Yelnik J, et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain 2009;132:172-184. Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 2007;13:1596-1607. Hanakawa T, Fukuyama H, Katsumi Y, et al. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol 1999;45:329-336. Mileykovskiy BY, Kiyashchenko LI, Kodama T, et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2000;20:8551-8558. Hikosaka O, Takikawa Y, Kawgoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80:954-978. Sinnamon HM. Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat. Prog Neurobiol 1993;41:323-344. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000;31:236-250. Brandt T, Dieterich M. The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 1999;871:293-312. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308. Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 2005;94:2403-2415. Sławińska U, Majczyński H, Dai Y, et al. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 2012;590:1721-1736. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006;26:9107-9116. Sławińska U, Miazga K, Cabaj AM, et al. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Exp Neurol. 2013;247:572-581. Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 2011;105:2457-2470. Cohen AH, Abdelnabi M, Guan L, et al. Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemi 2003; 119 1990; 13 2004; 124 2010; 103 2013; 247 2008; 39 1999; 45 1996; 74 2011; 10 2010; 183 1999; 122 1999; 82 2013; 8 1999; 81 2005; 22 2001; 103 1997; 389 1989; 74 2005; 863 2006; 26 2003; 46 1986 2008; 23 2007; 6 2011; 66 1994; 35 1981 2007; 20 1993; 336 1993; 330 2003; 121 2007; 17 1993; 43 1993; 41 2000; 20 2009 2009; 132 1996 2008; 57 2006; 4 1992; 38 2002 2007; 13 2011; 149 2012; 590 2011; 105 1990; 64 2011; 344 2004; 50 2006; 86 1987; 132 1989; 245 1993; 93 1984; 7 2000; 31 1988; 28 1994; 99 2000; 84 1994; 59 2000; 80 1999; 871 2005; 94 2008; 255 1979; 42 1994; 647 1987; 28 2003; 143 2008; 171 e_1_2_7_5_1 Wiesendanger M (e_1_2_7_56_1) 1987 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 Takakusaki K (e_1_2_7_34_1) 2011; 149 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Grillner S (e_1_2_7_10_1) 1981 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Hikosaka O (e_1_2_7_74_1) 2000; 80 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Matsuyama K (e_1_2_7_17_1) 2009 e_1_2_7_28_1 Mileykovskiy BY (e_1_2_7_46_1) 2000; 20 Nakajima K (e_1_2_7_69_1) 2010; 183 e_1_2_7_73_1 e_1_2_7_50_1 Mori F (e_1_2_7_59_1) 2003; 46 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Takakusaki K (e_1_2_7_36_1) 2005; 863 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Nakajima K (e_1_2_7_58_1) 2003; 46 Rossignol S (e_1_2_7_14_1) 1996 Grillner S (e_1_2_7_8_1) 2002 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_38_1 Brooks VB (e_1_2_7_3_1) 1986 |
References_xml | – reference: Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane. J Neurophysiol 2000;84:2257-2276. – reference: Honda T, Semba K. Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 1994;647:299-306. – reference: Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28:161-196. – reference: Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008;255(Suppl 4):19-29. – reference: Bartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008;23(Suppl):S461-S467. – reference: Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res 2003;143:123-129. – reference: Takakusaki K, Kohyama J, Matsuyama K, et al. Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res 1993;93:471-482. – reference: Hikosaka O, Takikawa Y, Kawgoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80:954-978. – reference: Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000;31:236-250. – reference: Sinnamon HM. Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat. Prog Neurobiol 1993;41:323-344. – reference: Takakusaki K, Kohyama J, Matsuyama K. Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments. Neuroscience 2003;121:731-746. – reference: Takakusaki K, Saitoh K, Harada H, et al. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 2004;124:207-220. – reference: Frigon A, Sirois J, Gossard JP. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 2010;103:1591-1605. – reference: Lajoie K, Andujar JE, Pearson K, Drew T. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 2010;103:2234-2254. – reference: Mori S, Matsui T, Kuze B, et al. Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 1999;82:290-300. – reference: Takakusaki K, Kohyama J, Matsuyama K, et al. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways. Neuroscience 2001;103:511-527. – reference: Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 1989;74:311-318. – reference: Nutt JG, Bloem BR, Giladi N, Hallet M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10:734-744. – reference: Chastan N, Westby GW, Yelnik J, et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain 2009;132:172-184. – reference: Masdeu JC, Alampur U, Cavaliere R, et al. Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 1994;35:619-621. – reference: Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol 1993;336:321-330. – reference: Semba K. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 1993;330:543-556. – reference: Arshavsky YI, Orlovsky GN, Perret C. Activity of rubrospinal neurons during locomotion and scratching in the cat. Behav Brain Res 1988;28:193-199. – reference: Snijders AH, van de Warrenburg BP, Giladi N, et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007;6:63-74. – reference: Jahn K, Deutschländer A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 2008;39:786-792. – reference: Drew T, Jiang W, Kably B, et al. Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 1996;74:426-442. – reference: Hoshi E, Tanji J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 2007;17:234-242. – reference: Matsuyama K, Drew T. Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1997;389:617-641. – reference: Nakajima K, Mori F, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1). Neurosci Res 2003;46(Suppl 1):S156. – reference: Rho MJ, Lavoie S, Drew T. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophysiol 1999;81:2297-2315. – reference: Grillner S. Human locomotor circuits conform. Science 2011;344:912-913. – reference: Brandt T, Dieterich M. The vestibular cortex: its locations, functions, and disorders. Ann N Y Acad Sci 1999;871:293-312. – reference: Cohen AH, Abdelnabi M, Guan L, et al. Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC. J Neurotrauma 2005;22:172-188. – reference: Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 2011;105:2457-2470. – reference: Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993;43:268-279. – reference: Sławińska U, Majczyński H, Dai Y, et al. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 2012;590:1721-1736. – reference: Takakusaki K, Shimoda N, Matsuyama K, et al. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats. Exp Brain Res 1994;99:361-374. – reference: Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007;20:1055-1062. – reference: Hanakawa T, Fukuyama H, Katsumi Y, et al. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol 1999;45:329-336. – reference: Delong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-2890. – reference: Basubaum AL, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 1984;7:309-338. – reference: Nakajima K, Mori F, Murata A. Inase M. Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey. Soc Neurosci Abstract 2010;183:2 – reference: Georgopoulos AP, Grillner S. Visuomotor coordination in reaching and locomotion. Science 1989;245:1209-1210. – reference: Forssberg H. Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion. J Neurophysiol 1979;42:936-953. – reference: Cohen RG, Nutt JG, Horak FB. Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:705-713. – reference: Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 2005;94:2403-2415. – reference: Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 1992;38:35-36. – reference: Hanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain 1999;122:1271-1282. – reference: Mori F, Nakajima K, Tachibana A, et al. Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA). Neurosci Res 2003;46(Suppl 1):S157. – reference: Boothe DL, Cohen AH, Troyer TW. Phase locking asymmetries at flexor-extensor transitions during fictive locomotion. PLoS One 2013:8:e64421. – reference: Takakusaki K, Saitoh K. A new category of spinal interneurons that mediate muscular atonia in cats. Soc Neurosci Abstr 2005;863:17/Z20. – reference: Rossignol S, Dubuc R, Gossard J-P. Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006;86:89-154. – reference: Jahn K, Deutschländer A, Stephan T, et al. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 2008;171:353-362. – reference: Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 2007;13:1596-1607. – reference: Sławińska U, Miazga K, Cabaj AM, et al. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Exp Neurol. 2013;247:572-581. – reference: Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 2004;50:137-151. – reference: Takakusaki K, Saitoh K, Nonaka S, et al. Neurobiological basis of state-dependent control of motor behavior. Sleep Biol Rhyth 2006;4:87-104. – reference: Takakusaki K, Habaguchi T, Saitoh K, Kohyama J. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats. Neuroscience 2004;124:467-480. – reference: Drew T, Rossignol S. Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation. J Neurophysiol 1990;64:782-795. – reference: Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev 2008;57:192-198. – reference: McCrea DA, Rybak IA. Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 2008;57:134-146. – reference: Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 2003;119:293-308. – reference: Takakusaki K, Obara K, Nozu T, et al. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 2011;149:385-405. – reference: Leonald CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994;59:309-330. – reference: Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006;26:9107-9116. – reference: Mileykovskiy BY, Kiyashchenko LI, Kodama T, et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci 2000;20:8551-8558. – volume: 132 start-page: 40 year: 1987 end-page: 62 – volume: 82 start-page: 290 year: 1999 end-page: 300 article-title: Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat publication-title: J Neurophysiol – volume: 4 start-page: 87 year: 2006 end-page: 104 article-title: Neurobiological basis of state‐dependent control of motor behavior publication-title: Sleep Biol Rhyth – volume: 22 start-page: 172 year: 2005 end-page: 188 article-title: Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC publication-title: J Neurotrauma – volume: 64 start-page: 782 year: 1990 end-page: 795 article-title: Functional organization within the medullary reticular formation of the intact unanesthetized cat. II. Electromyographic activity evoked by microstimulation publication-title: J Neurophysiol – volume: 183 start-page: 2 year: 2010 article-title: Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey publication-title: Soc Neurosci Abstract – volume: 93 start-page: 471 year: 1993 end-page: 482 article-title: Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats publication-title: Exp Brain Res – volume: 132 start-page: 172 year: 2009 end-page: 184 article-title: Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease publication-title: Brain – volume: 26 start-page: 9107 year: 2006 end-page: 9116 article-title: Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking publication-title: J Neurosci – start-page: 173 year: 1996 end-page: 216 – volume: 59 start-page: 309 year: 1994 end-page: 330 article-title: Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study publication-title: Neuroscience – volume: 863 start-page: 17/Z20 year: 2005 article-title: A new category of spinal interneurons that mediate muscular atonia in cats publication-title: Soc Neurosci Abstr – volume: 647 start-page: 299 year: 1994 end-page: 306 article-title: Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum publication-title: Brain Res – volume: 66 start-page: 705 year: 2011 end-page: 713 article-title: Errors in postural preparation lead to increased choice reaction times for step initiation in older adults publication-title: J Gerontol A Biol Sci Med Sci. – volume: 171 start-page: 353 year: 2008 end-page: 362 article-title: Supraspinal locomotor control in quadrupeds and humans publication-title: Prog Brain Res – volume: 247 start-page: 572 year: 2013 end-page: 581 article-title: Grafting of fetal brainstem 5‐HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion publication-title: Exp Neurol. – volume: 871 start-page: 293 year: 1999 end-page: 312 article-title: The vestibular cortex: its locations, functions, and disorders publication-title: Ann N Y Acad Sci – start-page: 140 year: 1986 end-page: 150 – start-page: 335 year: 2009 end-page: 356 – volume: 103 start-page: 2234 year: 2010 end-page: 2254 article-title: Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory publication-title: J Neurophysiol – volume: 39 start-page: 786 year: 2008 end-page: 792 article-title: Imaging human supraspinal locomotor centers in brainstem and cerebellum publication-title: Neuroimage – volume: 86 start-page: 89 year: 2006 end-page: 154 article-title: Dynamic sensorimotor interactions in locomotion publication-title: Physiol Rev – volume: 10 start-page: 734 year: 2011 end-page: 744 article-title: Freezing of gait: moving forward on a mysterious clinical phenomenon publication-title: Lancet Neurol – volume: 20 start-page: 1055 year: 2007 end-page: 1062 article-title: Adaptation reveals independent control networks for human walking publication-title: Nat Neurosci – volume: 17 start-page: 234 year: 2007 end-page: 242 article-title: Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties publication-title: Curr Opin Neurobiol – volume: 330 start-page: 543 year: 1993 end-page: 556 article-title: Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat publication-title: J Comp Neurol – volume: 103 start-page: 511 year: 2001 end-page: 527 article-title: Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways publication-title: Neuroscience – volume: 105 start-page: 2457 year: 2011 end-page: 2470 article-title: Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption publication-title: J Neurophysiol – volume: 43 start-page: 268 year: 1993 end-page: 279 article-title: Human walking and higher‐level gait disorders, particularly in the elderly publication-title: Neurology – volume: 122 start-page: 1271 year: 1999 end-page: 1282 article-title: Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study publication-title: Brain – volume: 119 start-page: 293 year: 2003 end-page: 308 article-title: Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction publication-title: Neuroscience – volume: 42 start-page: 936 year: 1979 end-page: 953 article-title: Stumbling corrective reaction: a phase dependent compensatory reaction during locomotion publication-title: J Neurophysiol – volume: 74 start-page: 426 year: 1996 end-page: 442 article-title: Role of the motor cortex in the control of visually triggered gait modifications publication-title: Can J Physiol Pharmacol – volume: 20 start-page: 8551 year: 2000 end-page: 8558 article-title: Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region publication-title: J Neurosci – volume: 13 start-page: 281 year: 1990 end-page: 2890 article-title: Primate models of movement disorders of basal ganglia origin publication-title: Trends Neurosci – volume: 389 start-page: 617 year: 1997 end-page: 641 article-title: Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris‐leucoagglutinin publication-title: J Comp Neurol – volume: 13 start-page: 1596 year: 2007 end-page: 1607 article-title: Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease publication-title: Brain – volume: 99 start-page: 361 year: 1994 end-page: 374 article-title: Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats publication-title: Exp Brain Res – volume: 50 start-page: 137 year: 2004 end-page: 151 article-title: Role of basal ganglia—brainstem pathways in the control of motor behaviors publication-title: Neurosci Res – volume: 28 start-page: 161 year: 1987 end-page: 196 article-title: Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats publication-title: Prog Neurobiol – volume: 8 start-page: e64421 year: 2013 article-title: Phase locking asymmetries at flexor‐extensor transitions during fictive locomotion publication-title: PLoS One – volume: 57 start-page: 192 year: 2008 end-page: 198 article-title: Forebrain control of locomotor behaviors publication-title: Brain Res Rev – start-page: 3 year: 2002 end-page: 19 – volume: 38 start-page: 35 year: 1992 end-page: 36 article-title: Movement, posture and equilibrium: interaction and coordination publication-title: Prog Neurobiol – volume: 81 start-page: 2297 year: 1999 end-page: 2315 article-title: Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex publication-title: J Neurophysiol – volume: 46 start-page: S157 issue: Suppl 1 year: 2003 article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA) publication-title: Neurosci Res – volume: 46 start-page: S156 issue: Suppl 1 year: 2003 article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1) publication-title: Neurosci Res – volume: 45 start-page: 329 year: 1999 end-page: 336 article-title: Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease publication-title: Ann Neurol – volume: 57 start-page: 134 year: 2008 end-page: 146 article-title: Organization of mammalian locomotor rhythm and pattern generation publication-title: Brain Res Rev – volume: 23 start-page: S461 issue: Suppl year: 2008 end-page: S467 article-title: Brain imaging in patients with freezing of gait publication-title: Mov Disord – volume: 94 start-page: 2403 year: 2005 end-page: 2415 article-title: Interlimb coordination during locomotion: what can be adapted and stored? publication-title: J Neurophysiol – volume: 35 start-page: 619 year: 1994 end-page: 621 article-title: Astasia and gait failure with damage of the pontomesencephalic locomotor region publication-title: Ann Neurol – volume: 7 start-page: 309 year: 1984 end-page: 338 article-title: Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry publication-title: Ann Rev Neurosci – volume: 336 start-page: 321 year: 1993 end-page: 330 article-title: Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry publication-title: J Comp Neurol – volume: 74 start-page: 311 year: 1989 end-page: 318 article-title: Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis) publication-title: Exp Brain Res – volume: 80 start-page: 954 year: 2000 end-page: 978 article-title: Role of the basal ganglia in the control of purposive saccadic eye movements publication-title: Physiol Rev – volume: 344 start-page: 912 year: 2011 end-page: 913 article-title: Human locomotor circuits conform publication-title: Science – volume: 121 start-page: 731 year: 2003 end-page: 746 article-title: Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments publication-title: Neuroscience – volume: 31 start-page: 236 year: 2000 end-page: 250 article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits publication-title: Brain Res Rev – volume: 143 start-page: 123 year: 2003 end-page: 129 article-title: Generating the walking gait: role of sensory feedback publication-title: Prog Brain Res – volume: 255 start-page: 19 issue: Suppl 4 year: 2008 end-page: 29 article-title: Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction publication-title: J Neurol – volume: 124 start-page: 207 year: 2004 end-page: 220 article-title: Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats publication-title: Neuroscience – volume: 84 start-page: 2257 year: 2000 end-page: 2276 article-title: Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. II. Walking on an inclined plane publication-title: J Neurophysiol – volume: 41 start-page: 323 year: 1993 end-page: 344 article-title: Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat publication-title: Prog Neurobiol – volume: 245 start-page: 1209 year: 1989 end-page: 1210 article-title: Visuomotor coordination in reaching and locomotion publication-title: Science – volume: 103 start-page: 1591 year: 2010 end-page: 1605 article-title: Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion publication-title: J Neurophysiol – volume: 6 start-page: 63 year: 2007 end-page: 74 article-title: Neurological gait disorders in elderly people: clinical approach and classification publication-title: Lancet Neurol – volume: 28 start-page: 193 year: 1988 end-page: 199 article-title: Activity of rubrospinal neurons during locomotion and scratching in the cat publication-title: Behav Brain Res – volume: 149 start-page: 385 year: 2011 end-page: 405 article-title: Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats publication-title: Arch Ital Biol – start-page: 1179 year: 1981 end-page: 1236 – volume: 124 start-page: 467 year: 2004 end-page: 480 article-title: Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats publication-title: Neuroscience – volume: 590 start-page: 1721 year: 2012 end-page: 1736 article-title: The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats publication-title: J Physiol – ident: e_1_2_7_29_1 doi: 10.1093/brain/awl346 – ident: e_1_2_7_51_1 doi: 10.1093/brain/awn294 – ident: e_1_2_7_72_1 doi: 10.1523/JNEUROSCI.2622-06.2006 – ident: e_1_2_7_13_1 doi: 10.1016/0301-0082(87)90010-4 – ident: e_1_2_7_23_1 doi: 10.1016/S0306-4522(03)00542-6 – start-page: 173 volume-title: Handbook of Physiology year: 1996 ident: e_1_2_7_14_1 – ident: e_1_2_7_62_1 doi: 10.1016/j.conb.2007.02.003 – start-page: 40 volume-title: Motor Area of the Cerebral Cortex year: 1987 ident: e_1_2_7_56_1 – ident: e_1_2_7_12_1 doi: 10.1152/physrev.00028.2005 – ident: e_1_2_7_2_1 doi: 10.1016/0301-0082(92)90034-C – ident: e_1_2_7_33_1 doi: 10.1002/cne.903360302 – ident: e_1_2_7_63_1 doi: 10.1126/science.2675307 – ident: e_1_2_7_16_1 doi: 10.1016/j.brainresrev.2007.08.006 – ident: e_1_2_7_19_1 doi: 10.1152/jn.01028.2009 – ident: e_1_2_7_49_1 doi: 10.1152/jn.1999.81.5.2297 – ident: e_1_2_7_22_1 doi: 10.1016/S0306-4522(00)00586-8 – ident: e_1_2_7_57_1 doi: 10.1002/1531-8249(199903)45:3<329::AID-ANA8>3.0.CO;2-S – volume: 863 start-page: 17/Z20 year: 2005 ident: e_1_2_7_36_1 article-title: A new category of spinal interneurons that mediate muscular atonia in cats publication-title: Soc Neurosci Abstr – ident: e_1_2_7_25_1 doi: 10.1002/(SICI)1096-9861(19971229)389:4<617::AID-CNE6>3.0.CO;2-3 – ident: e_1_2_7_31_1 doi: 10.1016/S0306-4522(03)00095-2 – ident: e_1_2_7_52_1 doi: 10.1002/mds.21912 – ident: e_1_2_7_7_1 doi: 10.1016/j.brainresrev.2007.06.024 – ident: e_1_2_7_6_1 doi: 10.1007/s00415-008-4004-7 – ident: e_1_2_7_35_1 doi: 10.1007/BF00228973 – volume: 46 start-page: S156 issue: 1 year: 2003 ident: e_1_2_7_58_1 article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: I. Local inactivation of the primary motor cortex (M1) publication-title: Neurosci Res – volume: 20 start-page: 8551 year: 2000 ident: e_1_2_7_46_1 article-title: Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-22-08551.2000 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroscience.2003.10.028 – ident: e_1_2_7_73_1 doi: 10.1038/nn1930 – ident: e_1_2_7_15_1 doi: 10.1016/S0306-4522(03)00542-6 – ident: e_1_2_7_55_1 doi: 10.1016/S1474-4422(11)70143-0 – ident: e_1_2_7_71_1 doi: 10.1152/jn.00089.2005 – ident: e_1_2_7_5_1 doi: 10.1126/science.1214778 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0064421 – ident: e_1_2_7_24_1 doi: 10.1152/jn.1999.82.1.290 – ident: e_1_2_7_42_1 doi: 10.1016/0006-8993(94)91329-3 – ident: e_1_2_7_61_1 doi: 10.1152/jn.1990.64.3.782 – ident: e_1_2_7_30_1 doi: 10.1016/j.neures.2004.06.015 – ident: e_1_2_7_9_1 doi: 10.1016/0301-0082(93)90003-B – ident: e_1_2_7_40_1 doi: 10.1016/j.expneurol.2013.02.008 – ident: e_1_2_7_47_1 doi: 10.1152/jn.2000.84.5.2257 – volume: 80 start-page: 954 year: 2000 ident: e_1_2_7_74_1 article-title: Role of the basal ganglia in the control of purposive saccadic eye movements publication-title: Physiol Rev doi: 10.1152/physrev.2000.80.3.953 – ident: e_1_2_7_70_1 doi: 10.1139/y96-043 – ident: e_1_2_7_38_1 doi: 10.1146/annurev.ne.07.030184.001521 – ident: e_1_2_7_67_1 doi: 10.1016/S1474-4422(06)70678-0 – ident: e_1_2_7_44_1 doi: 10.1016/0306-4522(94)90599-1 – ident: e_1_2_7_32_1 doi: 10.1016/j.neuroscience.2003.12.016 – ident: e_1_2_7_21_1 doi: 10.1111/j.1479-8425.2006.00210.x – volume: 149 start-page: 385 year: 2011 ident: e_1_2_7_34_1 article-title: Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats publication-title: Arch Ital Biol – ident: e_1_2_7_66_1 doi: 10.1111/j.1749-6632.1999.tb09193.x – start-page: 140 volume-title: The Neural Basis of Motor Control year: 1986 ident: e_1_2_7_3_1 – ident: e_1_2_7_68_1 doi: 10.1093/gerona/glr054 – ident: e_1_2_7_53_1 doi: 10.1212/WNL.43.2.268 – ident: e_1_2_7_64_1 doi: 10.1152/jn.00992.2010 – ident: e_1_2_7_18_1 doi: 10.1016/S0079-6123(03)43012-4 – ident: e_1_2_7_48_1 doi: 10.1016/0166-4328(88)90096-4 – ident: e_1_2_7_54_1 doi: 10.1093/brain/122.7.1271 – ident: e_1_2_7_65_1 doi: 10.1152/jn.01100.2009 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2007.09.047 – ident: e_1_2_7_4_1 doi: 10.1016/S0165-0173(99)00040-5 – ident: e_1_2_7_43_1 doi: 10.1002/cne.903300410 – volume: 46 start-page: S157 issue: 1 year: 2003 ident: e_1_2_7_59_1 article-title: Cortical mechanisms for the control of bipedal locomotion in Japanese monkeys: II. Local inactivation of the supplementary motor area (SMA) publication-title: Neurosci Res – ident: e_1_2_7_41_1 doi: 10.1089/neu.2005.22.172 – ident: e_1_2_7_60_1 doi: 10.1007/BF00248864 – ident: e_1_2_7_28_1 doi: 10.1002/ana.410350517 – ident: e_1_2_7_26_1 doi: 10.1016/S0079-6123(08)00652-3 – volume: 183 start-page: 2 year: 2010 ident: e_1_2_7_69_1 article-title: Neuronal activity in primary motor cortex during quadrupedal versus bipedal locomotion of an unrestrained Japanese monkey publication-title: Soc Neurosci Abstract – start-page: 335 volume-title: Handbook on White Matter: Structure, Function and Changes, chapter XVIII year: 2009 ident: e_1_2_7_17_1 – ident: e_1_2_7_45_1 doi: 10.1007/BF00229362 – ident: e_1_2_7_50_1 doi: 10.1016/0166-2236(90)90110-V – start-page: 3 volume-title: Neurons, Networks, and Motor Behavior year: 2002 ident: e_1_2_7_8_1 – ident: e_1_2_7_20_1 doi: 10.1152/jn.1979.42.4.936 – ident: e_1_2_7_39_1 doi: 10.1113/jphysiol.2011.224931 – start-page: 1179 volume-title: The Nervous System II year: 1981 ident: e_1_2_7_10_1 |
SSID | ssj0011516 |
Score | 2.5697308 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional... Locomotion is a purposeful, goal‐directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional... Locomotion is a purposeful, goal-directed behavior initiated by signals arising from either volitional processing in the cerebral cortex or emotional... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1483 |
SubjectTerms | Animals body schema central pattern generator corticoreticulospinal system Frontal Lobe - physiology Gait - physiology Humans motor programming Movement disorders Neurophysiology postural muscle tone Spinal Cord - physiology |
Title | Neurophysiology of gait: From the spinal cord to the frontal lobe |
URI | https://api.istex.fr/ark:/67375/WNG-BK796HZR-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.25669 https://www.ncbi.nlm.nih.gov/pubmed/24132836 https://www.proquest.com/docview/1442201259 https://www.proquest.com/docview/1443408377 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9KheIX-_DR7UOiiPhlr7ebZLPbfqrW81CuYLVYpBDyWpG2t-VuD6R_fSfZh1QqiN9CdpbNa3Z-k2R-A_AqL2npbK5jytwwZsqmcZErf5lKmMTkjrtApjM5zsan7OMZP1uCgy4WpuGH6DfcvGaE_7VXcKXne79JQ6_sfID2OvPBewnNPG_-0UlPHYVAJ6Q9RSXiIUK4YxUapnv9m3ds0QM_rL_uA5p3cWswPKNVOO-a3Nw3uRgsaj0wN3-wOf5nn9bgUQtIyWGzgtZhyU03YGXSHrk_hsNA3xE2QMIOPKlK8kP9rPfJaFZdEcSPZH7tU2sR78eSugpVpedFwDp_l-MJnI7ef303jtu8C7FhXBQxWnBneWa5yqlLWeYUOmqODrXWjhpP0JYirjHcIBRxJtEsEdZH4CL0NZSVmj6F5Wk1dZtASgRwpsipFRqBlxFFUdpEW5VjWZSMRfCmmwFpWlJynxvjUjZ0yqnEIZFhSCJ42YteN0wc9wm9DtPYS6jZhb-6Jrj8dvxBvv0kimz8_UR-jmCnm2fZau0c3SCWIiBCjzCCF_1j1Dd_iKKmrloEGcoQtwoRwbNmffQf82eUODwZ9irM8t_bKSdHX0Jh699Ft-FhGnJxFHHCd2C5ni3cLiKiWj8PS_8WDN8EPg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJOoLigpWUVdjjC89rt3dbkt4AfQ8hbtEhEBIyKb7UWOAK7nrJca_3tnth8FgYnjbbKfpfk3ntzO7vwF4mxa0sCZVIWW2H7LcxGGW5u4wldCRTi23nkxnNE6GR-zLCT9ZgK32LkzND9E53Jxm-P-1U3DnkN74wxp6aWY9NNhJdgeWfHzOQaKDjjwKoY5PfIpqxP0d4ZZXqB9vdK9es0ZLbmB_3gQ1ryNXb3oGD-CsbXR94uS8N69UT__6i8_xtr16CMsNJiXb9SJagQU7eQR3R03U_TFsewYP7wPxTnhSFuR7_qPaJINpeUkQQpLZlcuuRdxWllSlryocNQLWueMcT-Bo8PFwdxg2qRdCzbjIQjTi1vDE8DylNmaJzXGvZmlfKWWpdhxtMUIbzTWiEasjxSJh3CVcRL-askLRVViclBP7FEiBGE5nKTVCIfbSIssKEymTp1gWBWMBvG-nQOqGl9ylx7iQNaNyLHFIpB-SAN50olc1GcdNQu_8PHYS-fTcnV4TXB6PP8mdPZElw9MD-TWA9XaiZaO4M9wJsRgxEW4KA3jdPUaVc3GUfGLLuZehDKGrEAGs1Quk-5gLU-LwJNgrP83_bqccffjmC8_-X_QV3Bsejvbl_ufx3nO4H_vUHFkY8XVYrKZz-wIBUqVeej34DVTwCFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC8Uv9W1Xq0YR8ctebzfJZlc_Vet5Wu_Q2mIRIWxeIrW3x90eiH-9k-xDKhXEbyE7yyYzmZ1fXr8BeJw76qzJVUyZHcasNGlc5KU_TCV0onPLbSDTmUyz8TF7e8JP1uB5dxem4YfoF9y8Z4T_tXfwuXG7v0lDz8xygPE6Ky7BBsswTHpEdNhzRyHSCXlP0Yt4uCLc0QoN093-1XPBaMPr9cdFSPM8cA2RZ3QFvnRtbg6cnA5WtRron3_QOf5np67CVotIyV4zhK7Bmp1dh81Ju-d-A_YCf0dYAQlL8KRy5Gv5rX5GRovqjCCAJMu5z61F_ESW1FWocp4YAev8YY6bcDx6dfRyHLeJF2LNuChiDOHW8MzwMqc2ZZktcaZm6VApZan2DG0pAhvNNWIRqxPFEmH8FVzEvpoyp-gtWJ9VM7sNxCGC00VOjVCIvLQoCmcSZcocy8IxFsHTzgJSt6zkPjnGd9nwKacSVSKDSiJ41IvOGyqOi4SeBDP2EuXi1J9dE1x-mr6WLw5EkY0_H8oPEex0dpat2y5xHsRSREQ4JYzgYf8YHc7vopQzW62CDGUIXIWI4HYzPvqP-U1KVE-GvQpW_ns75WT_Yyjc-XfRB7D5fn8k372ZHtyFy2nIy1HECd-B9XqxsvcQHdXqfvCCXzPyBws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurophysiology+of+gait%3A+from+the+spinal+cord+to+the+frontal+lobe&rft.jtitle=Movement+disorders&rft.au=Takakusaki%2C+Kaoru&rft.date=2013-09-15&rft.eissn=1531-8257&rft.volume=28&rft.issue=11&rft.spage=1483&rft_id=info:doi/10.1002%2Fmds.25669&rft_id=info%3Apmid%2F24132836&rft.externalDocID=24132836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon |