A data‐driven optimization algorithm for differential algebraic equations with numerical infeasibilities

Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numeric...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 66; no. 10
Main Authors Beykal, Burcu, Onel, Melis, Onel, Onur, Pistikopoulos, Efstratios N.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2020
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
1547-5905
DOI10.1002/aic.16657

Cover

Abstract Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data‐driven approach is demonstrated on a two‐dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multidimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data‐driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey‐box optimization algorithm, namely the ARGONAUT framework.
AbstractList Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.
Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data‐driven approach is demonstrated on a two‐dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multidimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data‐driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey‐box optimization algorithm, namely the ARGONAUT framework.
Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.
Author Onel, Onur
Pistikopoulos, Efstratios N.
Beykal, Burcu
Onel, Melis
AuthorAffiliation a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA
c Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ 08544, USA
AuthorAffiliation_xml – name: a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
– name: b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA
– name: c Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ 08544, USA
Author_xml – sequence: 1
  givenname: Burcu
  orcidid: 0000-0002-6967-6661
  surname: Beykal
  fullname: Beykal, Burcu
  organization: Texas A&M Energy Institute, Texas A&M University
– sequence: 2
  givenname: Melis
  surname: Onel
  fullname: Onel, Melis
  organization: Texas A&M Energy Institute, Texas A&M University
– sequence: 3
  givenname: Onur
  surname: Onel
  fullname: Onel, Onur
  organization: Princeton University
– sequence: 4
  givenname: Efstratios N.
  orcidid: 0000-0001-6220-818X
  surname: Pistikopoulos
  fullname: Pistikopoulos, Efstratios N.
  email: stratos@tamu.edu
  organization: Texas A&M Energy Institute, Texas A&M University
BookMark eNp9kdFuFCEYhYmpsdvVC99gEm_UZFtgYGBuTDabqk2aeKPXhGGg_TcMbGGmm_XKR_AZ-ySyu02MTewVgf87h8PhDJ2EGCxCbwk-JxjTCw3mnDQNFy_QjHAmFrzF_ATNMMZkUQ7IKTrLeV12VEj6Cp3WtKVEtHKG1suq16N--PW7T3BvQxU3IwzwU48QQ6X9TUww3g6Vi6nqwTmbbBhB-_3IdqncXNm76UDnalvQKkyDTWAKAsFZnaEDDyPY_Bq9dNpn--ZxnaMfny-_r74urr99uVotrxeGcSEWriMMc6f7FmvBKeUOE2GkZc40vG4N6UhtJW5s3UvR1Q5j6WgnmkYz6Swz9Rx9PPpOYaN3W-292iQYdNopgtW-MFViq0NhBf50hDdTN9jelNcl_VcQNah_JwFu1U28V4JJ3tZ7g_ePBineTTaPaoBsrPc62DhlRRmjvG1pyT5H756g6zilULrYU4RKWTNcqA9HyqSYc7Lu2fQXT1gD4-EzSlbwzym24O3u_9ZqebU6Kv4AtJy-yA
CitedBy_id crossref_primary_10_1016_j_cherd_2022_10_002
crossref_primary_10_3390_app112311488
crossref_primary_10_1016_j_dche_2025_100218
crossref_primary_10_1016_j_jclepro_2024_143804
crossref_primary_10_1016_j_fbp_2023_10_005
crossref_primary_10_1016_j_seppur_2021_120130
crossref_primary_10_1016_j_compchemeng_2025_109087
crossref_primary_10_1016_j_ces_2023_119086
crossref_primary_10_1016_j_compchemeng_2021_107551
crossref_primary_10_3390_app12020890
crossref_primary_10_3390_app10249027
crossref_primary_10_1016_j_compchemeng_2024_108584
crossref_primary_10_1016_j_compchemeng_2023_108210
crossref_primary_10_1021_acs_iecr_1c03728
crossref_primary_10_1016_j_compchemeng_2022_107711
crossref_primary_10_1016_j_compchemeng_2022_107989
crossref_primary_10_1021_acsomega_1c00481
crossref_primary_10_1016_j_ccst_2024_100319
Cites_doi 10.1002/aic.16497
10.1016/j.compchemeng.2014.03.019
10.1002/aic.12341
10.1371/journal.pone.0223517
10.1007/s00158-011-0745-5
10.1137/1.9780898719383
10.1016/B978-0-444-64235-6.50076-0
10.1007/s10898-018-0640-3
10.1016/B978-0-444-64241-7.50309-8
10.1016/j.compchemeng.2012.06.006
10.1016/j.compchemeng.2018.01.005
10.1007/s10898-015-0376-2
10.1002/aic.10315
10.1016/j.compchemeng.2011.05.010
10.1016/j.compchemeng.2006.10.017
10.1016/j.compchemeng.2017.05.010
10.1007/s10898-020-00890-3
10.1002/aic.11579
10.1002/aic.15825
10.1016/B978-0-444-63578-5.50148-1
10.1016/0098-1354(91)87006-U
10.1016/j.compchemeng.2018.02.017
10.1016/j.compchemeng.2017.09.017
10.1007/s11081-019-09459-w
10.1007/978-3-319-11050-9_2
10.1002/aic.14418
10.1016/j.compchemeng.2003.10.002
10.1007/s10596-016-9610-3
10.1016/j.compchemeng.2018.03.025
10.1007/s11590-016-1028-2
ContentType Journal Article
Copyright 2020 American Institute of Chemical Engineers
Copyright_xml – notice: 2020 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/aic.16657
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Solid State and Superconductivity Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID oai:pubmedcentral.nih.gov:7485937
PMC7485937
10_1002_aic_16657
AIC16657
Genre article
GrantInformation_xml – fundername: U.S. National Institutes of Health Superfund Research Program
  funderid: NIH P42‐ES027704
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4577-fb1405fad90a75225f017c8e4fc6539c1b13e806e3d87b3f008f2b766a48fe4c3
IEDL.DBID UNPAY
ISSN 0001-1541
1547-5905
IngestDate Sun Oct 26 04:11:34 EDT 2025
Thu Aug 21 14:04:53 EDT 2025
Fri Jul 11 08:39:20 EDT 2025
Fri Jul 25 10:56:30 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Thu Oct 09 00:37:27 EDT 2025
Wed Jan 22 16:32:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4577-fb1405fad90a75225f017c8e4fc6539c1b13e806e3d87b3f008f2b766a48fe4c3
Notes Funding information
U.S. National Institutes of Health Superfund Research Program, Grant/Award Number: NIH P42‐ES027704
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6967-6661
0000-0001-6220-818X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7485937
PMID 32921798
PQID 2441288340
PQPubID 7879
PageCount 11
ParticipantIDs unpaywall_primary_10_1002_aic_16657
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7485937
proquest_miscellaneous_2442599265
proquest_journals_2441288340
crossref_primary_10_1002_aic_16657
crossref_citationtrail_10_1002_aic_16657
wiley_primary_10_1002_aic_16657_AIC16657
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2020
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2015; 37
2017; 63
2014; 70
1991; 15
2012
2019; 74
2010
2018; 108
2004; 28
2017; 21
2017; 67
2019; 14
1997
2007
1996
2011; 35
2008; 54
2011; 57
1992
2007; 31
2018; 44
2018; 43
2014; 60
2019; 20
2000
2018; 116
2020
2019; 65
2017; 11
2018; 115
2018; 114
2005; 51
2017
2015
2012; 46
2017; 106
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Cavazzuti M (e_1_2_10_28_1) 2012
Barton PI (e_1_2_10_26_1) 1992
Allgor RJ (e_1_2_10_23_1) 1997
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Abbott KA (e_1_2_10_25_1) 1996
Onel O (e_1_2_10_9_1) 2017
e_1_2_10_29_1
e_1_2_10_27_1
References_xml – volume: 15
  start-page: 53
  issue: 1
  year: 1991
  end-page: 72
  article-title: ASCEND: an object‐oriented computer environment for modeling and analysis: the modeling language
  publication-title: Comput Chem Eng
– volume: 74
  start-page: 611
  issue: 4
  year: 2019
  end-page: 637
  article-title: Tuning BARON using derivative‐free optimization algorithms
  publication-title: J Glob Optim
– volume: 46
  start-page: 105
  year: 2012
  end-page: 123
  article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models
  publication-title: Comput Chem Eng
– volume: 21
  start-page: 247
  issue: 2
  year: 2017
  end-page: 266
  article-title: Dimensionality reduction for production optimization using polynomial approximations
  publication-title: Comput Geosci
– year: 2007
– year: 2000
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review
  publication-title: Comput Chem Eng
– year: 1996
– volume: 28
  start-page: 1389
  issue: 8
  year: 2004
  end-page: 1401
  article-title: Fault diagnosis based on fisher discriminant analysis and support vector machines
  publication-title: Comput Chem Eng
– volume: 65
  start-page: 992
  issue: 3
  year: 2019
  end-page: 1005
  article-title: A nonlinear support vector machine‐based feature selection approach for fault detection and diagnosis: application to the Tennessee Eastman process
  publication-title: AIChE J
– volume: 35
  start-page: 2876
  issue: 12
  year: 2011
  end-page: 2885
  article-title: Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing
  publication-title: Comput Chem Eng
– year: 1992
– volume: 31
  start-page: 931
  issue: 8
  year: 2007
  end-page: 942
  article-title: A software environment for simultaneous dynamic optimization
  publication-title: Comput Chem Eng
– volume: 115
  start-page: 46
  year: 2018
  end-page: 63
  article-title: Big data approach to batch process monitoring: simultaneous fault detection and diagnosis using nonlinear support vector machine‐based feature selection
  publication-title: Comput Chem Eng
– year: 2010
– year: 2012
– volume: 43
  start-page: 421
  year: 2018
  end-page: 426
  article-title: Optimal chemical grouping and sorbent material design by data analysis, modeling and dimensionality reduction techniques
  publication-title: Comput Aided Chem Eng
– year: 2020
  article-title: DOMINO: data‐driven optimization of bi‐level mixed‐integer nonlinear problems
  publication-title: J Glob Optim
– volume: 67
  start-page: 3
  year: 2017
  end-page: 42
  article-title: Global optimization of general constrained grey‐box models: new method and its application to constrained PDEs for pressure swing adsorption
  publication-title: J Glob Optim
– volume: 54
  start-page: 2633
  issue: 10
  year: 2008
  end-page: 2650
  article-title: An algorithm for the use of surrogate models in modular flowsheet optimization
  publication-title: AIChE J
– start-page: 69
  year: 2015
  end-page: 102
– volume: 51
  start-page: 526
  issue: 2
  year: 2005
  end-page: 543
  article-title: Improving process operations using support vector machines and decision trees
  publication-title: AIChE J
– volume: 44
  start-page: 1885
  year: 2018
  end-page: 1890
  article-title: A hierarchical food‐energy‐water nexus (FEW‐N) decision‐making approach for land use optimization
  publication-title: Comput Aided Chem Eng
– volume: 46
  start-page: 201
  issue: 2
  year: 2012
  end-page: 221
  article-title: Constrained efficient global optimization with support vector machines
  publication-title: Struct Multidiscip Optim
– volume: 63
  start-page: 4827
  issue: 11
  year: 2017
  end-page: 4846
  article-title: Process design and control optimization: a simultaneous approach by multi‐parametric programming
  publication-title: AIChE J
– volume: 11
  start-page: 895
  year: 2017
  end-page: 913
  article-title: ARGONAUT: algorithms for global optimization of coNstrAined grey‐box compUTational problems
  publication-title: Optim Lett
– year: 1997
– volume: 57
  start-page: 1216
  issue: 5
  year: 2011
  end-page: 1232
  article-title: Surrogate‐based superstructure optimization framework
  publication-title: AIChE J
– volume: 116
  start-page: 488
  year: 2018
  end-page: 502
  article-title: Optimal design of energy systems using constrained grey‐box multi‐objective optimization
  publication-title: Comput Chem Eng
– volume: 14
  issue: 10
  year: 2019
  article-title: Grouping of complex substances using analytical chemistry data: a framework for quantitative evaluation and visualization
  publication-title: PLoS One
– volume: 20
  start-page: 1029
  issue: 4
  year: 2019
  end-page: 1066
  article-title: Data‐driven feasibility analysis for the integration of planning and scheduling problems
  publication-title: Optim Eng
– volume: 106
  start-page: 71
  year: 2017
  end-page: 95
  article-title: Design of computer experiments: a review
  publication-title: Comput Chem Eng
– year: 2017
– volume: 37
  start-page: 917
  year: 2015
  end-page: 922
  article-title: Simulation and optimization of the ethane cracking process to produce ethylene
  publication-title: Comput Aided Chem Eng
– volume: 114
  start-page: 99
  year: 2018
  end-page: 110
  article-title: Global optimization of grey‐box computational systems using surrogate functions and application to highly constrained oil‐field operations
  publication-title: Comput Chem Eng
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  end-page: 2227
  article-title: Learning surrogate models for simulation‐based optimization
  publication-title: AIChE J
– volume: 70
  start-page: 50
  year: 2014
  end-page: 66
  article-title: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. single reduction via mixed integer linear optimization
  publication-title: Comput Chem Eng
– ident: e_1_2_10_32_1
  doi: 10.1002/aic.16497
– ident: e_1_2_10_41_1
  doi: 10.1016/j.compchemeng.2014.03.019
– ident: e_1_2_10_12_1
  doi: 10.1002/aic.12341
– ident: e_1_2_10_2_1
– ident: e_1_2_10_35_1
  doi: 10.1371/journal.pone.0223517
– ident: e_1_2_10_39_1
– ident: e_1_2_10_30_1
  doi: 10.1007/s00158-011-0745-5
– ident: e_1_2_10_7_1
  doi: 10.1137/1.9780898719383
– ident: e_1_2_10_36_1
  doi: 10.1016/B978-0-444-64235-6.50076-0
– ident: e_1_2_10_42_1
  doi: 10.1007/s10898-018-0640-3
– ident: e_1_2_10_18_1
  doi: 10.1016/B978-0-444-64241-7.50309-8
– ident: e_1_2_10_13_1
  doi: 10.1016/j.compchemeng.2012.06.006
– volume-title: The Modelling and Simulation of Combined Discrete/Continuous Processes
  year: 1992
  ident: e_1_2_10_26_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.compchemeng.2018.01.005
– volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics
  year: 2012
  ident: e_1_2_10_28_1
– ident: e_1_2_10_38_1
– ident: e_1_2_10_21_1
  doi: 10.1007/s10898-015-0376-2
– volume-title: Very Large Scale Modeling
  year: 1996
  ident: e_1_2_10_25_1
– ident: e_1_2_10_40_1
– ident: e_1_2_10_34_1
  doi: 10.1002/aic.10315
– ident: e_1_2_10_5_1
  doi: 10.1016/j.compchemeng.2011.05.010
– ident: e_1_2_10_6_1
  doi: 10.1016/j.compchemeng.2006.10.017
– ident: e_1_2_10_27_1
  doi: 10.1016/j.compchemeng.2017.05.010
– ident: e_1_2_10_19_1
  doi: 10.1007/s10898-020-00890-3
– ident: e_1_2_10_37_1
– ident: e_1_2_10_11_1
  doi: 10.1002/aic.11579
– ident: e_1_2_10_4_1
  doi: 10.1002/aic.15825
– ident: e_1_2_10_8_1
  doi: 10.1016/B978-0-444-63578-5.50148-1
– ident: e_1_2_10_24_1
  doi: 10.1016/0098-1354(91)87006-U
– ident: e_1_2_10_17_1
  doi: 10.1016/j.compchemeng.2018.02.017
– ident: e_1_2_10_10_1
  doi: 10.1016/j.compchemeng.2017.09.017
– ident: e_1_2_10_29_1
  doi: 10.1007/s11081-019-09459-w
– ident: e_1_2_10_3_1
  doi: 10.1007/978-3-319-11050-9_2
– volume-title: Modeling and Computational Issues in the Development of Batch Processes
  year: 1997
  ident: e_1_2_10_23_1
– ident: e_1_2_10_16_1
  doi: 10.1002/aic.14418
– ident: e_1_2_10_31_1
  doi: 10.1016/j.compchemeng.2003.10.002
– volume-title: Advances in Modeling, Synthesis, and Global Optimization of Hybrid Energy Systems Toward the Production of Liquid Fuels and Olefins
  year: 2017
  ident: e_1_2_10_9_1
– ident: e_1_2_10_14_1
  doi: 10.1007/s10596-016-9610-3
– ident: e_1_2_10_22_1
– ident: e_1_2_10_33_1
  doi: 10.1016/j.compchemeng.2018.03.025
– ident: e_1_2_10_20_1
  doi: 10.1007/s11590-016-1028-2
SSID ssj0012782
Score 2.4359307
Snippet Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic...
Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic...
SourceID unpaywall
pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algebra
Algorithms
Case studies
Constraint modelling
data‐driven optimization
differential algebraic equations
Differential equations
dynamic optimization
Integration
Natural gas
Numerical integration
Optimization
Optimization algorithms
steam cracking
Support vector machines
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvVAOPAqIhVK5wKGXbDeJEyfitKqo2kpwQFTqASnyky6k2bK7EaKn_oT-xv6SzjiPditAiFskT2Qnnhl_Y4-_AXgbxTwXRsYBapMLSEOCXCk0PGmlTXJrlK9a8uFjun_ED4-T4xV4192Fafgh-g03sgzvr8nApZrv3JCGyokehnRugP43jFMfTn3qqaPCSGQNUziGywgTwo5VaBTt9G8ur0U3APNueuS9ujqTv37KslyGsH4N2nsIX7rRN6kn34f1Qg31-R1ix__8vEfwoMWmbNwo02NYsdU63L_FWPgEvo0Z5ZReXVyaGflJNkWXc9re5WSy_DqdTRYnpwyhMOtqr6APKamJjqgnmtkfDbv4nNEeMKvq5syoZJQXJttsXYzfn8LR3vvPu_tBW64h0DwRInAKg7XESZOPpEBYlzi0dp1Z7jTx3-pQhbHNRqmNTSZU7BB9uEiJNJU8c5br-BmsVtPKPgeGIEvY3DhjpOFaovLwTKdpzk0iZGzdALa7iSt0y2VOJTXKomFhjgr8nsL_vgG87kXPGgKP3wltdLNftDY8LxD4hFSLmY8GsNU3o_XRkYqs7LT2Mhg_5lGaDEAsaU3fGfF3L7dUkxPP4y04kc1h5296_frbELe9uvxZohgf7PqHF_8u-hLWItpA8NmJG7C6mNX2FaKshdr05nQNlOkoUQ
  priority: 102
  providerName: Wiley-Blackwell
Title A data‐driven optimization algorithm for differential algebraic equations with numerical infeasibilities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16657
https://www.proquest.com/docview/2441288340
https://www.proquest.com/docview/2442599265
https://pubmed.ncbi.nlm.nih.gov/PMC7485937
https://www.ncbi.nlm.nih.gov/pmc/articles/7485937
UnpaywallVersion submittedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF64I0IlMo8Dr0km4cdJ8dVRVWQqFDFSuUU2Y7dBrLZ7XYjBCd-Ar-RX8LYSRa2AgS3SLYSRzNjf_Z8_gbgRZzQnJci8dGbjG89xM-lxMATWmiW61K6qiVvjtOjKX19yk63IBruwjjSvpJV0NSzoKnOHbdyMVPjgSc25tRKdPFrsJ0yhN8j2J4ev52872Bu5CMk6DRSKfdZHrJBTSiMx6JSQWQzDZtr0E9geZUWeb1tFuLzJ1HXm9DVrT2Ht-BkGHVHOfkYtCsZqC9XBB3_67duw80eiZJJ13QHtnRzF3Z-0Se8Bx8mxDJIv3_9Vi7trEjmOMHM-pubRNRn82W1Op8RBL5kqLSCM0Ztm2xCulJEX3Ra4pfEnviSpu0yRDWxLDDRc3Nxt34fpocv3x0c-X1xBl9RxrlvJG7NmBFlHgqOII4ZjG2VaWqUVbtVkYwSnYWpTsqMy8Qg1jCx5GkqaGY0VckDGDXzRj8EgpCK67w0ZSlKqgS6Cs1Umua0ZFwk2niwP5irUL1yuS2gURed5nJc4P8UzrIePFt3XXRyHb_rtDvYvOgj9rJAmBPZyss09ODpuhljzSZQRKPnreuDu8U8TpkHfMNX1h-zat2bLWhtp9rdG9iD52uv-tsQ952__blHMXl14B4e_dMLH8ON2J4UOBriLoxWy1Y_QTi1knu4kTiJ9_ow-gGtDSS6
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigceFcsFDCPQy_ZbhInTiQuq4pqC20PqJV6QZGfdCHNlu1GCE78BH4jv4QZ51G2AoS4RfJEduIZ-5vx-BuAF1HMc2FkHKA2uYA0JMiVQsOTVtokt0b5qiX7B-nkiL8-To5X4GV3F6bhh-gDbmQZfr0mA6eA9NYFa6ic6mFIBwdX4CpP0U8hSPS2J48KI5E1XOHoMCNQCDteoVG01b-6vBtdQMzLCZJrdXUmv3yWZbkMYv0utHMT3nXjb5JPPg7rhRrqr5eoHf_3A2_BjRaesnGjT7dhxVZ34PovpIV34cOYUVrpj2_fzZyWSjbDVee0vc7JZPl-Np8uTk4ZomHWlV_BZaSkJjqlnmpmPzUE4-eMwsCsqptjo5JRaphsE3bRhb8HRzuvDrcnQVuxIdA8ESJwCv21xEmTj6RAZJc4NHidWe40UeDqUIWxzUapjU0mVOwQgLhIiTSVPHOW63gdVqtZZe8DQ5wlbG6cMdJwLVF_eKbTNOcmETK2bgCb3cwVuqUzp6oaZdEQMUcFfk_hf98AnvWiZw2Hx--ENrrpL1ozPi8Q-4RUjpmPBvC0b0YDpFMVWdlZ7WXQhcyjNBmAWFKbvjOi8F5uqaYnnspbcOKbw86f9wr2tyFuen35s0Qx3t32Dw_-XfQJrE0O9_eKvd2DNw_hWkTxBJ-suAGri3ltHyHoWqjH3rZ-AvwWLHI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgE9lFdRFwqYx6GXbDeJEycSl1XLquVRIUSlXlDk-EGXptntdiNET_wEfiO_hBnnUbYChLhF8kR24pnxZ8_4G4DnQchToWXooTZZjzTES_McDU8aaaLU6NxVLXm7H-8e8FeH0eESvGjvwtT8EN2BG1mG89dk4Gaq7dYFa6gcq75PgYMrcJVHaUIJfTvvO_IoPxBJzRWOG2YECn7LKzQItrpXF1ejC4h5OUHyelVO5dcvsigWQaxbhUY34WM7_jr55LhfzfO-Or9E7fi_H3gLVht4yoa1Pt2GJVPegZVfSAvvwucho7TSH9--6xm5SjZBr3PSXOdksvg0mY3nRycM0TBry6-gGymoiaLUY8XMaU0wfsboGJiVVR02KhilhskmYRe38GtwMHr5YXvXayo2eIpHQng2x_1aZKVOB1IgsossGrxKDLeKKHCVn_uhSQaxCXUi8tAiALFBLuJY8sQarsJ7sFxOSrMODHGWMKm2WkvNlUT94YmK45TrSMjQ2B5stjOXqYbOnKpqFFlNxBxk-D2Z-309eNqJTmsOj98JbbTTnzVmfJYh9vGpHDMf9OBJ14wGSFEVWZpJ5WRwC5kGcdQDsaA2XWdE4b3YUo6PHJW34MQ3h50_6xTsb0PcdPryZ4lsuLftHu7_u-hjuPZuZ5S92dt__QBuBHSc4HIVN2B5PqvMQ8Rc8_yRM62fauQr9g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48EYECjKPQy_ZzcOOk-OqoipIVAixUjlFfraBbHbZboTgxE_gN_JLGDvJwlaA4BbJVuJoZuzPns_fADxLUlpwLdIQvcmGzkPCQkoMPGGEYYXR0lcteXWcHc3oyxN2sgPxcBfGk_aVrMZNPR831ZnnVi7najLwxCacOokufgl2M4bwewS7s-PX03cdzI1DhASdRirlISsiNqgJRclEVGocu0zD9hr0E1hepEVebpul-PxJ1PU2dPVrz-F1eDOMuqOcfBi3azlWXy4IOv7Xb92Aaz0SJdOu6SbsmOYWXP1Fn_A2vJ8SxyD9_vWbXrlZkSxwgpn3NzeJqE8Xq2p9NicIfMlQaQVnjNo1uYR0pYj52GmJnxN34kuatssQ1cSxwETPzcXd-h2YHT5_e3AU9sUZQkUZ56GVuDVjVugiEhxBHLMY2yo31CqndqtiGacmjzKT6pzL1CLWsInkWSZobg1V6V0YNYvG3AOCkIqbQluthaZKoKvQXGVZQTXjIjU2gP3BXKXqlctdAY267DSXkxL_p_SWDeDJpuuyk-v4Xae9weZlH7HnJcKc2FVeplEAjzfNGGsugSIas2h9H9wtFknGAuBbvrL5mFPr3m5Ba3vV7t7AATzdeNXfhrjv_e3PPcrpiwP_cP-fXvgAriTupMDTEPdgtF615iHCqbV81AfQD9aOI9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90driven+optimization+algorithm+for+differential+algebraic+equations+with+numerical+infeasibilities&rft.jtitle=AIChE+journal&rft.au=Beykal%2C+Burcu&rft.au=Onel%2C+Melis&rft.au=Onel%2C+Onur&rft.au=Pistikopoulos%2C+Efstratios+N.&rft.date=2020-10-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=66&rft.issue=10&rft_id=info:doi/10.1002%2Faic.16657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_16657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon