A data‐driven optimization algorithm for differential algebraic equations with numerical infeasibilities
Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numeric...
        Saved in:
      
    
          | Published in | AIChE journal Vol. 66; no. 10 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.10.2020
     American Institute of Chemical Engineers  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0001-1541 1547-5905 1547-5905  | 
| DOI | 10.1002/aic.16657 | 
Cover
| Abstract | Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data‐driven approach is demonstrated on a two‐dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multidimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data‐driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey‐box optimization algorithm, namely the ARGONAUT framework. | 
    
|---|---|
| AbstractList | Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework. Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic equations (DAEs) without the full discretization of the underlying first‐principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data‐driven approach is demonstrated on a two‐dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multidimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data‐driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey‐box optimization algorithm, namely the ARGONAUT framework. Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic Equations (DAEs) without the full discretization of the underlying first-principles model. By formulating the stability constraint of the numerical integration of a DAE system as a supervised classification problem, we are able to demonstrate that SVMs can accurately map the boundary of numerical infeasibility. The necessity of this data-driven approach is demonstrated on a 2-dimensional motivating example, where highly accurate SVM models are trained, validated, and tested using the data collected from the numerical integration of DAEs. Furthermore, this methodology is extended and tested for a multi-dimensional case study from reaction engineering (i.e., thermal cracking of natural gas liquids). The data-driven optimization of this complex case study is explored through integrating the SVM models with a constrained global grey-box optimization algorithm, namely the ARGONAUT framework.  | 
    
| Author | Onel, Onur Pistikopoulos, Efstratios N. Beykal, Burcu Onel, Melis  | 
    
| AuthorAffiliation | a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA c Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ 08544, USA  | 
    
| AuthorAffiliation_xml | – name: a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA – name: b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA – name: c Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ 08544, USA  | 
    
| Author_xml | – sequence: 1 givenname: Burcu orcidid: 0000-0002-6967-6661 surname: Beykal fullname: Beykal, Burcu organization: Texas A&M Energy Institute, Texas A&M University – sequence: 2 givenname: Melis surname: Onel fullname: Onel, Melis organization: Texas A&M Energy Institute, Texas A&M University – sequence: 3 givenname: Onur surname: Onel fullname: Onel, Onur organization: Princeton University – sequence: 4 givenname: Efstratios N. orcidid: 0000-0001-6220-818X surname: Pistikopoulos fullname: Pistikopoulos, Efstratios N. email: stratos@tamu.edu organization: Texas A&M Energy Institute, Texas A&M University  | 
    
| BookMark | eNp9kdFuFCEYhYmpsdvVC99gEm_UZFtgYGBuTDabqk2aeKPXhGGg_TcMbGGmm_XKR_AZ-ySyu02MTewVgf87h8PhDJ2EGCxCbwk-JxjTCw3mnDQNFy_QjHAmFrzF_ATNMMZkUQ7IKTrLeV12VEj6Cp3WtKVEtHKG1suq16N--PW7T3BvQxU3IwzwU48QQ6X9TUww3g6Vi6nqwTmbbBhB-_3IdqncXNm76UDnalvQKkyDTWAKAsFZnaEDDyPY_Bq9dNpn--ZxnaMfny-_r74urr99uVotrxeGcSEWriMMc6f7FmvBKeUOE2GkZc40vG4N6UhtJW5s3UvR1Q5j6WgnmkYz6Swz9Rx9PPpOYaN3W-292iQYdNopgtW-MFViq0NhBf50hDdTN9jelNcl_VcQNah_JwFu1U28V4JJ3tZ7g_ePBineTTaPaoBsrPc62DhlRRmjvG1pyT5H756g6zilULrYU4RKWTNcqA9HyqSYc7Lu2fQXT1gD4-EzSlbwzym24O3u_9ZqebU6Kv4AtJy-yA | 
    
| CitedBy_id | crossref_primary_10_1016_j_cherd_2022_10_002 crossref_primary_10_3390_app112311488 crossref_primary_10_1016_j_dche_2025_100218 crossref_primary_10_1016_j_jclepro_2024_143804 crossref_primary_10_1016_j_fbp_2023_10_005 crossref_primary_10_1016_j_seppur_2021_120130 crossref_primary_10_1016_j_compchemeng_2025_109087 crossref_primary_10_1016_j_ces_2023_119086 crossref_primary_10_1016_j_compchemeng_2021_107551 crossref_primary_10_3390_app12020890 crossref_primary_10_3390_app10249027 crossref_primary_10_1016_j_compchemeng_2024_108584 crossref_primary_10_1016_j_compchemeng_2023_108210 crossref_primary_10_1021_acs_iecr_1c03728 crossref_primary_10_1016_j_compchemeng_2022_107711 crossref_primary_10_1016_j_compchemeng_2022_107989 crossref_primary_10_1021_acsomega_1c00481 crossref_primary_10_1016_j_ccst_2024_100319  | 
    
| Cites_doi | 10.1002/aic.16497 10.1016/j.compchemeng.2014.03.019 10.1002/aic.12341 10.1371/journal.pone.0223517 10.1007/s00158-011-0745-5 10.1137/1.9780898719383 10.1016/B978-0-444-64235-6.50076-0 10.1007/s10898-018-0640-3 10.1016/B978-0-444-64241-7.50309-8 10.1016/j.compchemeng.2012.06.006 10.1016/j.compchemeng.2018.01.005 10.1007/s10898-015-0376-2 10.1002/aic.10315 10.1016/j.compchemeng.2011.05.010 10.1016/j.compchemeng.2006.10.017 10.1016/j.compchemeng.2017.05.010 10.1007/s10898-020-00890-3 10.1002/aic.11579 10.1002/aic.15825 10.1016/B978-0-444-63578-5.50148-1 10.1016/0098-1354(91)87006-U 10.1016/j.compchemeng.2018.02.017 10.1016/j.compchemeng.2017.09.017 10.1007/s11081-019-09459-w 10.1007/978-3-319-11050-9_2 10.1002/aic.14418 10.1016/j.compchemeng.2003.10.002 10.1007/s10596-016-9610-3 10.1016/j.compchemeng.2018.03.025 10.1007/s11590-016-1028-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 American Institute of Chemical Engineers | 
    
| Copyright_xml | – notice: 2020 American Institute of Chemical Engineers | 
    
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/aic.16657 | 
    
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1547-5905 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7485937 PMC7485937 10_1002_aic_16657 AIC16657  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: U.S. National Institutes of Health Superfund Research Program funderid: NIH P42‐ES027704  | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABJIA ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION PHGZM PHGZT PQGLB 7ST 7U5 8FD C1K L7M SOI 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4577-fb1405fad90a75225f017c8e4fc6539c1b13e806e3d87b3f008f2b766a48fe4c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0001-1541 1547-5905  | 
    
| IngestDate | Sun Oct 26 04:11:34 EDT 2025 Thu Aug 21 14:04:53 EDT 2025 Fri Jul 11 08:39:20 EDT 2025 Fri Jul 25 10:56:30 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Thu Oct 09 00:37:27 EDT 2025 Wed Jan 22 16:32:10 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4577-fb1405fad90a75225f017c8e4fc6539c1b13e806e3d87b3f008f2b766a48fe4c3 | 
    
| Notes | Funding information U.S. National Institutes of Health Superfund Research Program, Grant/Award Number: NIH P42‐ES027704 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-6967-6661 0000-0001-6220-818X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7485937 | 
    
| PMID | 32921798 | 
    
| PQID | 2441288340 | 
    
| PQPubID | 7879 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_aic_16657 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7485937 proquest_miscellaneous_2442599265 proquest_journals_2441288340 crossref_primary_10_1002_aic_16657 crossref_citationtrail_10_1002_aic_16657 wiley_primary_10_1002_aic_16657_AIC16657  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2020 | 
    
| PublicationDateYYYYMMDD | 2020-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: New York  | 
    
| PublicationTitle | AIChE journal | 
    
| PublicationYear | 2020 | 
    
| Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers  | 
    
| References | 2015; 37 2017; 63 2014; 70 1991; 15 2012 2019; 74 2010 2018; 108 2004; 28 2017; 21 2017; 67 2019; 14 1997 2007 1996 2011; 35 2008; 54 2011; 57 1992 2007; 31 2018; 44 2018; 43 2014; 60 2019; 20 2000 2018; 116 2020 2019; 65 2017; 11 2018; 115 2018; 114 2005; 51 2017 2015 2012; 46 2017; 106 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Cavazzuti M (e_1_2_10_28_1) 2012 Barton PI (e_1_2_10_26_1) 1992 Allgor RJ (e_1_2_10_23_1) 1997 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Abbott KA (e_1_2_10_25_1) 1996 Onel O (e_1_2_10_9_1) 2017 e_1_2_10_29_1 e_1_2_10_27_1  | 
    
| References_xml | – volume: 15 start-page: 53 issue: 1 year: 1991 end-page: 72 article-title: ASCEND: an object‐oriented computer environment for modeling and analysis: the modeling language publication-title: Comput Chem Eng – volume: 74 start-page: 611 issue: 4 year: 2019 end-page: 637 article-title: Tuning BARON using derivative‐free optimization algorithms publication-title: J Glob Optim – volume: 46 start-page: 105 year: 2012 end-page: 123 article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models publication-title: Comput Chem Eng – volume: 21 start-page: 247 issue: 2 year: 2017 end-page: 266 article-title: Dimensionality reduction for production optimization using polynomial approximations publication-title: Comput Geosci – year: 2007 – year: 2000 – volume: 108 start-page: 250 year: 2018 end-page: 267 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: a review publication-title: Comput Chem Eng – year: 1996 – volume: 28 start-page: 1389 issue: 8 year: 2004 end-page: 1401 article-title: Fault diagnosis based on fisher discriminant analysis and support vector machines publication-title: Comput Chem Eng – volume: 65 start-page: 992 issue: 3 year: 2019 end-page: 1005 article-title: A nonlinear support vector machine‐based feature selection approach for fault detection and diagnosis: application to the Tennessee Eastman process publication-title: AIChE J – volume: 35 start-page: 2876 issue: 12 year: 2011 end-page: 2885 article-title: Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing publication-title: Comput Chem Eng – year: 1992 – volume: 31 start-page: 931 issue: 8 year: 2007 end-page: 942 article-title: A software environment for simultaneous dynamic optimization publication-title: Comput Chem Eng – volume: 115 start-page: 46 year: 2018 end-page: 63 article-title: Big data approach to batch process monitoring: simultaneous fault detection and diagnosis using nonlinear support vector machine‐based feature selection publication-title: Comput Chem Eng – year: 2010 – year: 2012 – volume: 43 start-page: 421 year: 2018 end-page: 426 article-title: Optimal chemical grouping and sorbent material design by data analysis, modeling and dimensionality reduction techniques publication-title: Comput Aided Chem Eng – year: 2020 article-title: DOMINO: data‐driven optimization of bi‐level mixed‐integer nonlinear problems publication-title: J Glob Optim – volume: 67 start-page: 3 year: 2017 end-page: 42 article-title: Global optimization of general constrained grey‐box models: new method and its application to constrained PDEs for pressure swing adsorption publication-title: J Glob Optim – volume: 54 start-page: 2633 issue: 10 year: 2008 end-page: 2650 article-title: An algorithm for the use of surrogate models in modular flowsheet optimization publication-title: AIChE J – start-page: 69 year: 2015 end-page: 102 – volume: 51 start-page: 526 issue: 2 year: 2005 end-page: 543 article-title: Improving process operations using support vector machines and decision trees publication-title: AIChE J – volume: 44 start-page: 1885 year: 2018 end-page: 1890 article-title: A hierarchical food‐energy‐water nexus (FEW‐N) decision‐making approach for land use optimization publication-title: Comput Aided Chem Eng – volume: 46 start-page: 201 issue: 2 year: 2012 end-page: 221 article-title: Constrained efficient global optimization with support vector machines publication-title: Struct Multidiscip Optim – volume: 63 start-page: 4827 issue: 11 year: 2017 end-page: 4846 article-title: Process design and control optimization: a simultaneous approach by multi‐parametric programming publication-title: AIChE J – volume: 11 start-page: 895 year: 2017 end-page: 913 article-title: ARGONAUT: algorithms for global optimization of coNstrAined grey‐box compUTational problems publication-title: Optim Lett – year: 1997 – volume: 57 start-page: 1216 issue: 5 year: 2011 end-page: 1232 article-title: Surrogate‐based superstructure optimization framework publication-title: AIChE J – volume: 116 start-page: 488 year: 2018 end-page: 502 article-title: Optimal design of energy systems using constrained grey‐box multi‐objective optimization publication-title: Comput Chem Eng – volume: 14 issue: 10 year: 2019 article-title: Grouping of complex substances using analytical chemistry data: a framework for quantitative evaluation and visualization publication-title: PLoS One – volume: 20 start-page: 1029 issue: 4 year: 2019 end-page: 1066 article-title: Data‐driven feasibility analysis for the integration of planning and scheduling problems publication-title: Optim Eng – volume: 106 start-page: 71 year: 2017 end-page: 95 article-title: Design of computer experiments: a review publication-title: Comput Chem Eng – year: 2017 – volume: 37 start-page: 917 year: 2015 end-page: 922 article-title: Simulation and optimization of the ethane cracking process to produce ethylene publication-title: Comput Aided Chem Eng – volume: 114 start-page: 99 year: 2018 end-page: 110 article-title: Global optimization of grey‐box computational systems using surrogate functions and application to highly constrained oil‐field operations publication-title: Comput Chem Eng – volume: 60 start-page: 2211 issue: 6 year: 2014 end-page: 2227 article-title: Learning surrogate models for simulation‐based optimization publication-title: AIChE J – volume: 70 start-page: 50 year: 2014 end-page: 66 article-title: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. single reduction via mixed integer linear optimization publication-title: Comput Chem Eng – ident: e_1_2_10_32_1 doi: 10.1002/aic.16497 – ident: e_1_2_10_41_1 doi: 10.1016/j.compchemeng.2014.03.019 – ident: e_1_2_10_12_1 doi: 10.1002/aic.12341 – ident: e_1_2_10_2_1 – ident: e_1_2_10_35_1 doi: 10.1371/journal.pone.0223517 – ident: e_1_2_10_39_1 – ident: e_1_2_10_30_1 doi: 10.1007/s00158-011-0745-5 – ident: e_1_2_10_7_1 doi: 10.1137/1.9780898719383 – ident: e_1_2_10_36_1 doi: 10.1016/B978-0-444-64235-6.50076-0 – ident: e_1_2_10_42_1 doi: 10.1007/s10898-018-0640-3 – ident: e_1_2_10_18_1 doi: 10.1016/B978-0-444-64241-7.50309-8 – ident: e_1_2_10_13_1 doi: 10.1016/j.compchemeng.2012.06.006 – volume-title: The Modelling and Simulation of Combined Discrete/Continuous Processes year: 1992 ident: e_1_2_10_26_1 – ident: e_1_2_10_15_1 doi: 10.1016/j.compchemeng.2018.01.005 – volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics year: 2012 ident: e_1_2_10_28_1 – ident: e_1_2_10_38_1 – ident: e_1_2_10_21_1 doi: 10.1007/s10898-015-0376-2 – volume-title: Very Large Scale Modeling year: 1996 ident: e_1_2_10_25_1 – ident: e_1_2_10_40_1 – ident: e_1_2_10_34_1 doi: 10.1002/aic.10315 – ident: e_1_2_10_5_1 doi: 10.1016/j.compchemeng.2011.05.010 – ident: e_1_2_10_6_1 doi: 10.1016/j.compchemeng.2006.10.017 – ident: e_1_2_10_27_1 doi: 10.1016/j.compchemeng.2017.05.010 – ident: e_1_2_10_19_1 doi: 10.1007/s10898-020-00890-3 – ident: e_1_2_10_37_1 – ident: e_1_2_10_11_1 doi: 10.1002/aic.11579 – ident: e_1_2_10_4_1 doi: 10.1002/aic.15825 – ident: e_1_2_10_8_1 doi: 10.1016/B978-0-444-63578-5.50148-1 – ident: e_1_2_10_24_1 doi: 10.1016/0098-1354(91)87006-U – ident: e_1_2_10_17_1 doi: 10.1016/j.compchemeng.2018.02.017 – ident: e_1_2_10_10_1 doi: 10.1016/j.compchemeng.2017.09.017 – ident: e_1_2_10_29_1 doi: 10.1007/s11081-019-09459-w – ident: e_1_2_10_3_1 doi: 10.1007/978-3-319-11050-9_2 – volume-title: Modeling and Computational Issues in the Development of Batch Processes year: 1997 ident: e_1_2_10_23_1 – ident: e_1_2_10_16_1 doi: 10.1002/aic.14418 – ident: e_1_2_10_31_1 doi: 10.1016/j.compchemeng.2003.10.002 – volume-title: Advances in Modeling, Synthesis, and Global Optimization of Hybrid Energy Systems Toward the Production of Liquid Fuels and Olefins year: 2017 ident: e_1_2_10_9_1 – ident: e_1_2_10_14_1 doi: 10.1007/s10596-016-9610-3 – ident: e_1_2_10_22_1 – ident: e_1_2_10_33_1 doi: 10.1016/j.compchemeng.2018.03.025 – ident: e_1_2_10_20_1 doi: 10.1007/s11590-016-1028-2  | 
    
| SSID | ssj0012782 | 
    
| Score | 2.4359307 | 
    
| Snippet | Support vector machines (SVMs) based optimization framework is presented for the data‐driven optimization of numerically infeasible differential algebraic... Support Vector Machines (SVMs) based optimization framework is presented for the data-driven optimization of numerically infeasible Differential Algebraic...  | 
    
| SourceID | unpaywall pubmedcentral proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algebra Algorithms Case studies Constraint modelling data‐driven optimization differential algebraic equations Differential equations dynamic optimization Integration Natural gas Numerical integration Optimization Optimization algorithms steam cracking Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvVAOPAqIhVK5wKGXbDeJEyfitKqo2kpwQFTqASnyky6k2bK7EaKn_oT-xv6SzjiPditAiFskT2Qnnhl_Y4-_AXgbxTwXRsYBapMLSEOCXCk0PGmlTXJrlK9a8uFjun_ED4-T4xV4192Fafgh-g03sgzvr8nApZrv3JCGyokehnRugP43jFMfTn3qqaPCSGQNUziGywgTwo5VaBTt9G8ur0U3APNueuS9ujqTv37KslyGsH4N2nsIX7rRN6kn34f1Qg31-R1ix__8vEfwoMWmbNwo02NYsdU63L_FWPgEvo0Z5ZReXVyaGflJNkWXc9re5WSy_DqdTRYnpwyhMOtqr6APKamJjqgnmtkfDbv4nNEeMKvq5syoZJQXJttsXYzfn8LR3vvPu_tBW64h0DwRInAKg7XESZOPpEBYlzi0dp1Z7jTx3-pQhbHNRqmNTSZU7BB9uEiJNJU8c5br-BmsVtPKPgeGIEvY3DhjpOFaovLwTKdpzk0iZGzdALa7iSt0y2VOJTXKomFhjgr8nsL_vgG87kXPGgKP3wltdLNftDY8LxD4hFSLmY8GsNU3o_XRkYqs7LT2Mhg_5lGaDEAsaU3fGfF3L7dUkxPP4y04kc1h5296_frbELe9uvxZohgf7PqHF_8u-hLWItpA8NmJG7C6mNX2FaKshdr05nQNlOkoUQ priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | A data‐driven optimization algorithm for differential algebraic equations with numerical infeasibilities | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16657 https://www.proquest.com/docview/2441288340 https://www.proquest.com/docview/2442599265 https://pubmed.ncbi.nlm.nih.gov/PMC7485937 https://www.ncbi.nlm.nih.gov/pmc/articles/7485937  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 66 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1547-5905 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0001-1541 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF64I0IlMo8Dr0km4cdJ8dVRVWQqFDFSuUU2Y7dBrLZ7XYjBCd-Ar-RX8LYSRa2AgS3SLYSRzNjf_Z8_gbgRZzQnJci8dGbjG89xM-lxMATWmiW61K6qiVvjtOjKX19yk63IBruwjjSvpJV0NSzoKnOHbdyMVPjgSc25tRKdPFrsJ0yhN8j2J4ev52872Bu5CMk6DRSKfdZHrJBTSiMx6JSQWQzDZtr0E9geZUWeb1tFuLzJ1HXm9DVrT2Ht-BkGHVHOfkYtCsZqC9XBB3_67duw80eiZJJ13QHtnRzF3Z-0Se8Bx8mxDJIv3_9Vi7trEjmOMHM-pubRNRn82W1Op8RBL5kqLSCM0Ztm2xCulJEX3Ra4pfEnviSpu0yRDWxLDDRc3Nxt34fpocv3x0c-X1xBl9RxrlvJG7NmBFlHgqOII4ZjG2VaWqUVbtVkYwSnYWpTsqMy8Qg1jCx5GkqaGY0VckDGDXzRj8EgpCK67w0ZSlKqgS6Cs1Umua0ZFwk2niwP5irUL1yuS2gURed5nJc4P8UzrIePFt3XXRyHb_rtDvYvOgj9rJAmBPZyss09ODpuhljzSZQRKPnreuDu8U8TpkHfMNX1h-zat2bLWhtp9rdG9iD52uv-tsQ952__blHMXl14B4e_dMLH8ON2J4UOBriLoxWy1Y_QTi1knu4kTiJ9_ow-gGtDSS6 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigceFcsFDCPQy_ZbhInTiQuq4pqC20PqJV6QZGfdCHNlu1GCE78BH4jv4QZ51G2AoS4RfJEduIZ-5vx-BuAF1HMc2FkHKA2uYA0JMiVQsOTVtokt0b5qiX7B-nkiL8-To5X4GV3F6bhh-gDbmQZfr0mA6eA9NYFa6ic6mFIBwdX4CpP0U8hSPS2J48KI5E1XOHoMCNQCDteoVG01b-6vBtdQMzLCZJrdXUmv3yWZbkMYv0utHMT3nXjb5JPPg7rhRrqr5eoHf_3A2_BjRaesnGjT7dhxVZ34PovpIV34cOYUVrpj2_fzZyWSjbDVee0vc7JZPl-Np8uTk4ZomHWlV_BZaSkJjqlnmpmPzUE4-eMwsCsqptjo5JRaphsE3bRhb8HRzuvDrcnQVuxIdA8ESJwCv21xEmTj6RAZJc4NHidWe40UeDqUIWxzUapjU0mVOwQgLhIiTSVPHOW63gdVqtZZe8DQ5wlbG6cMdJwLVF_eKbTNOcmETK2bgCb3cwVuqUzp6oaZdEQMUcFfk_hf98AnvWiZw2Hx--ENrrpL1ozPi8Q-4RUjpmPBvC0b0YDpFMVWdlZ7WXQhcyjNBmAWFKbvjOi8F5uqaYnnspbcOKbw86f9wr2tyFuen35s0Qx3t32Dw_-XfQJrE0O9_eKvd2DNw_hWkTxBJ-suAGri3ltHyHoWqjH3rZ-AvwWLHI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgE9lFdRFwqYx6GXbDeJEycSl1XLquVRIUSlXlDk-EGXptntdiNET_wEfiO_hBnnUbYChLhF8kR24pnxZ8_4G4DnQchToWXooTZZjzTES_McDU8aaaLU6NxVLXm7H-8e8FeH0eESvGjvwtT8EN2BG1mG89dk4Gaq7dYFa6gcq75PgYMrcJVHaUIJfTvvO_IoPxBJzRWOG2YECn7LKzQItrpXF1ejC4h5OUHyelVO5dcvsigWQaxbhUY34WM7_jr55LhfzfO-Or9E7fi_H3gLVht4yoa1Pt2GJVPegZVfSAvvwucho7TSH9--6xm5SjZBr3PSXOdksvg0mY3nRycM0TBry6-gGymoiaLUY8XMaU0wfsboGJiVVR02KhilhskmYRe38GtwMHr5YXvXayo2eIpHQng2x_1aZKVOB1IgsossGrxKDLeKKHCVn_uhSQaxCXUi8tAiALFBLuJY8sQarsJ7sFxOSrMODHGWMKm2WkvNlUT94YmK45TrSMjQ2B5stjOXqYbOnKpqFFlNxBxk-D2Z-309eNqJTmsOj98JbbTTnzVmfJYh9vGpHDMf9OBJ14wGSFEVWZpJ5WRwC5kGcdQDsaA2XWdE4b3YUo6PHJW34MQ3h50_6xTsb0PcdPryZ4lsuLftHu7_u-hjuPZuZ5S92dt__QBuBHSc4HIVN2B5PqvMQ8Rc8_yRM62fauQr9g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48EYECjKPQy_ZzcOOk-OqoipIVAixUjlFfraBbHbZboTgxE_gN_JLGDvJwlaA4BbJVuJoZuzPns_fADxLUlpwLdIQvcmGzkPCQkoMPGGEYYXR0lcteXWcHc3oyxN2sgPxcBfGk_aVrMZNPR831ZnnVi7najLwxCacOokufgl2M4bwewS7s-PX03cdzI1DhASdRirlISsiNqgJRclEVGocu0zD9hr0E1hepEVebpul-PxJ1PU2dPVrz-F1eDOMuqOcfBi3azlWXy4IOv7Xb92Aaz0SJdOu6SbsmOYWXP1Fn_A2vJ8SxyD9_vWbXrlZkSxwgpn3NzeJqE8Xq2p9NicIfMlQaQVnjNo1uYR0pYj52GmJnxN34kuatssQ1cSxwETPzcXd-h2YHT5_e3AU9sUZQkUZ56GVuDVjVugiEhxBHLMY2yo31CqndqtiGacmjzKT6pzL1CLWsInkWSZobg1V6V0YNYvG3AOCkIqbQluthaZKoKvQXGVZQTXjIjU2gP3BXKXqlctdAY267DSXkxL_p_SWDeDJpuuyk-v4Xae9weZlH7HnJcKc2FVeplEAjzfNGGsugSIas2h9H9wtFknGAuBbvrL5mFPr3m5Ba3vV7t7AATzdeNXfhrjv_e3PPcrpiwP_cP-fXvgAriTupMDTEPdgtF615iHCqbV81AfQD9aOI9E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90driven+optimization+algorithm+for+differential+algebraic+equations+with+numerical+infeasibilities&rft.jtitle=AIChE+journal&rft.au=Beykal%2C+Burcu&rft.au=Onel%2C+Melis&rft.au=Onel%2C+Onur&rft.au=Pistikopoulos%2C+Efstratios+N.&rft.date=2020-10-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=66&rft.issue=10&rft_id=info:doi/10.1002%2Faic.16657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_16657 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |