Early EEG Features for Outcome Prediction After Cardiac Arrest in Children
We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest. This was a prospective, single-center observational study of infants and children resuscitated from cardia...
Saved in:
Published in | Journal of clinical neurophysiology Vol. 36; no. 5; p. 349 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2019
|
Subjects | |
Online Access | Get more information |
ISSN | 1537-1603 |
DOI | 10.1097/WNP.0000000000000591 |
Cover
Abstract | We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest.
This was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity.
Eighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%.
The specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest. |
---|---|
AbstractList | We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest.
This was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity.
Eighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%.
The specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest. |
Author | Xiao, Rui Abend, Nicholas S Topjian, Alexis A Fung, France W |
Author_xml | – sequence: 1 givenname: France W surname: Fung fullname: Fung, France W organization: Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A – sequence: 2 givenname: Alexis A surname: Topjian fullname: Topjian, Alexis A organization: Department of Anesthesia & and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A – sequence: 3 givenname: Rui surname: Xiao fullname: Xiao, Rui organization: Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A – sequence: 4 givenname: Nicholas S surname: Abend fullname: Abend, Nicholas S organization: Department of Anesthesia & and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31033654$$D View this record in MEDLINE/PubMed |
BookMark | eNpNj8tOwzAURC0Eog_4A4T8Aym-8StZRlFaQBXtAsSycuxrYZRH5aSL_j1BgMQsZjaj0ZwFuez6Dgm5A7YCluuH95f9iv2XzOGCzEFynYBifEYWw_DJGGjO02sy48A4V1LMyXNlYnOmVbWhazTjKeJAfR_p7jTavkW6j-iCHUPf0cKPGGlpogvG0iJO1ZGGjpYfoXERuxty5U0z4O1vLsnbunotH5PtbvNUFtvECqkhEajA42TTAW11JgCEzmtuszzz3vE0d1ILqSBT4KyokdXqG8l7k4JhIl2S-5_d46lu0R2OMbQmng9_UOkXcp1NMA |
CitedBy_id | crossref_primary_10_1186_s13054_023_04305_z crossref_primary_10_1161_CIR_0000000000000901 crossref_primary_10_1097_WNP_0000000000000828 crossref_primary_10_3390_children9091368 crossref_primary_10_1016_j_resuscitation_2024_110271 crossref_primary_10_1038_s41390_024_03401_2 crossref_primary_10_1161_CIR_0000000000001179 crossref_primary_10_1212_WNL_0000000000210043 crossref_primary_10_1016_j_resuscitation_2024_110414 crossref_primary_10_1016_j_bja_2024_03_021 crossref_primary_10_1016_j_resuscitation_2023_109992 crossref_primary_10_1542_peds_2021_052888E crossref_primary_10_1212_WNL_0000000000210147 crossref_primary_10_1016_j_ejpn_2020_06_021 crossref_primary_10_1055_s_0044_1787047 crossref_primary_10_1016_j_bja_2023_04_042 crossref_primary_10_1109_JBHI_2020_2965858 crossref_primary_10_1007_s12028_023_01737_x crossref_primary_10_1161_CIRCULATIONAHA_123_066659 crossref_primary_10_1016_j_resuscitation_2021_06_020 crossref_primary_10_11622_smedj_2021107 crossref_primary_10_1097_WNP_0000000000000772 crossref_primary_10_1016_j_pediatrneurol_2022_06_005 crossref_primary_10_1016_j_resuscitation_2024_110483 crossref_primary_10_3389_fcvm_2023_1320231 crossref_primary_10_1161_CIR_0000000000001288 crossref_primary_10_1097_PCC_0000000000003669 crossref_primary_10_1097_MOP_0000000000001399 crossref_primary_10_1212_WNL_0000000000209134 crossref_primary_10_1016_j_pediatrneurol_2020_03_010 crossref_primary_10_1212_WNL_0000000000012032 crossref_primary_10_1016_j_pediatrneurol_2022_01_006 crossref_primary_10_1016_j_semperi_2024_151993 crossref_primary_10_1161_JAHA_122_028147 crossref_primary_10_1177_08830738241289161 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/WNP.0000000000000591 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1537-1603 |
ExternalDocumentID | 31033654 |
Genre | Journal Article Observational Study |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K02 NS096058 |
GroupedDBID | --- .-D .Z2 0R~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS AAAAV AAHPQ AAIQE AAQQT AARTV AASCR AAWTL AAYEP ABASU ABBUW ABDIG ABJNI ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFUWQ AGINI AHQNM AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BQLVK BS7 C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ IPNFZ JF9 JG8 JK3 JK8 K8S KD2 KMI L-C N9A NPM N~M O9- OAG OAH OCUKA ODA OL1 OLG OLV OLW OLZ OPUJH ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S T8P TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W XXN XYM YFH YOC ZFV ZZMQN |
ID | FETCH-LOGICAL-c4571-4e61fee613657c78411479b3c898ffd329d574561861dc4be0b60000ffa21a042 |
IngestDate | Wed Feb 19 02:31:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4571-4e61fee613657c78411479b3c898ffd329d574561861dc4be0b60000ffa21a042 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6731130 |
PMID | 31033654 |
ParticipantIDs | pubmed_primary_31033654 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sep |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sep |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of clinical neurophysiology |
PublicationTitleAlternate | J Clin Neurophysiol |
PublicationYear | 2019 |
SSID | ssj0017332 |
Score | 2.445315 |
Snippet | We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 349 |
SubjectTerms | Child Child, Preschool Critical Illness - therapy Electroencephalography - methods Electroencephalography - mortality Electroencephalography - trends Female Heart Arrest - diagnosis Heart Arrest - mortality Heart Arrest - physiopathology Humans Infant Male Prognosis Prospective Studies Resuscitation - methods Resuscitation - mortality Resuscitation - trends Treatment Outcome |
Title | Early EEG Features for Outcome Prediction After Cardiac Arrest in Children |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31033654 |
Volume | 36 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qgngR32_Zg3gp0Tx3k2OQqgg-kIq9SbLZhQhNC7YHvfjXnZ3dNPWJ2sNSspCk-b5OZmdnviHkAMuUhXId5TLhhEwlTqIC6bBIALuEm2SYm3N5xc7vwote1Gu1Xqeylsaj_Ei8fFlX8h9U4Rjgqqtk_4Ds5KRwAL4DvjACwjD-CmOjTtzpnLW1JzeGlTNmDV6PR3A1qdMritK0Ak-xFfgJ0kG0U-zIgQV_tpb7Gx91UjeJspcYBXkXhj-1pgLbc8j2JF7THQwfSxNaTVFxswmZ9soMo7O347LZerLhbaClXmo_2XisDUZ4TbYVvEtqA8od3bp62sIaiRPLpGjKXAZGrvSTGTfywPdXN0Zesv5EprHXFLLDPkKrm6UFzKhR_zz7QVy7npohM2Bodd9UHeyxm1A8CPy62jLhx1_dzgKZr0_xYV2C_kl3iSxa0GhqWLJMWrJaIatplY0G_Wd6SG8m4K2Q-UubUbFKLpBDFDhEaw5R4BC1HKINhyhyiFoOUcMhWla05tAauTvtdE_OHdtfwxFhxD0nlMxTEga4fS70BrQX8iQPRJzEShWBnxQR1w52zLxChLl0c6Z_t1KZ72Vg7dfJbDWo5CahCZd-nKm88AsZKi_OeZhJxTJWcDeWMt4iG-bhPAyNiMpD_di2v53ZIQsNxXbJnIJ_rdwDF3CU7yNQb27CVyM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+EEG+Features+for+Outcome+Prediction+After+Cardiac+Arrest+in+Children&rft.jtitle=Journal+of+clinical+neurophysiology&rft.au=Fung%2C+France+W&rft.au=Topjian%2C+Alexis+A&rft.au=Xiao%2C+Rui&rft.au=Abend%2C+Nicholas+S&rft.date=2019-09-01&rft.eissn=1537-1603&rft.volume=36&rft.issue=5&rft.spage=349&rft_id=info:doi/10.1097%2FWNP.0000000000000591&rft_id=info%3Apmid%2F31033654&rft_id=info%3Apmid%2F31033654&rft.externalDocID=31033654 |