Early EEG Features for Outcome Prediction After Cardiac Arrest in Children

We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest. This was a prospective, single-center observational study of infants and children resuscitated from cardia...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical neurophysiology Vol. 36; no. 5; p. 349
Main Authors Fung, France W, Topjian, Alexis A, Xiao, Rui, Abend, Nicholas S
Format Journal Article
LanguageEnglish
Published United States 01.09.2019
Subjects
Online AccessGet more information
ISSN1537-1603
DOI10.1097/WNP.0000000000000591

Cover

Abstract We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest. This was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity. Eighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%. The specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest.
AbstractList We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest. This was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity. Eighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%. The specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest.
Author Xiao, Rui
Abend, Nicholas S
Topjian, Alexis A
Fung, France W
Author_xml – sequence: 1
  givenname: France W
  surname: Fung
  fullname: Fung, France W
  organization: Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
– sequence: 2
  givenname: Alexis A
  surname: Topjian
  fullname: Topjian, Alexis A
  organization: Department of Anesthesia & and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
– sequence: 3
  givenname: Rui
  surname: Xiao
  fullname: Xiao, Rui
  organization: Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
– sequence: 4
  givenname: Nicholas S
  surname: Abend
  fullname: Abend, Nicholas S
  organization: Department of Anesthesia & and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31033654$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tOwzAURC0Eog_4A4T8Aym-8StZRlFaQBXtAsSycuxrYZRH5aSL_j1BgMQsZjaj0ZwFuez6Dgm5A7YCluuH95f9iv2XzOGCzEFynYBifEYWw_DJGGjO02sy48A4V1LMyXNlYnOmVbWhazTjKeJAfR_p7jTavkW6j-iCHUPf0cKPGGlpogvG0iJO1ZGGjpYfoXERuxty5U0z4O1vLsnbunotH5PtbvNUFtvECqkhEajA42TTAW11JgCEzmtuszzz3vE0d1ILqSBT4KyokdXqG8l7k4JhIl2S-5_d46lu0R2OMbQmng9_UOkXcp1NMA
CitedBy_id crossref_primary_10_1186_s13054_023_04305_z
crossref_primary_10_1161_CIR_0000000000000901
crossref_primary_10_1097_WNP_0000000000000828
crossref_primary_10_3390_children9091368
crossref_primary_10_1016_j_resuscitation_2024_110271
crossref_primary_10_1038_s41390_024_03401_2
crossref_primary_10_1161_CIR_0000000000001179
crossref_primary_10_1212_WNL_0000000000210043
crossref_primary_10_1016_j_resuscitation_2024_110414
crossref_primary_10_1016_j_bja_2024_03_021
crossref_primary_10_1016_j_resuscitation_2023_109992
crossref_primary_10_1542_peds_2021_052888E
crossref_primary_10_1212_WNL_0000000000210147
crossref_primary_10_1016_j_ejpn_2020_06_021
crossref_primary_10_1055_s_0044_1787047
crossref_primary_10_1016_j_bja_2023_04_042
crossref_primary_10_1109_JBHI_2020_2965858
crossref_primary_10_1007_s12028_023_01737_x
crossref_primary_10_1161_CIRCULATIONAHA_123_066659
crossref_primary_10_1016_j_resuscitation_2021_06_020
crossref_primary_10_11622_smedj_2021107
crossref_primary_10_1097_WNP_0000000000000772
crossref_primary_10_1016_j_pediatrneurol_2022_06_005
crossref_primary_10_1016_j_resuscitation_2024_110483
crossref_primary_10_3389_fcvm_2023_1320231
crossref_primary_10_1161_CIR_0000000000001288
crossref_primary_10_1097_PCC_0000000000003669
crossref_primary_10_1097_MOP_0000000000001399
crossref_primary_10_1212_WNL_0000000000209134
crossref_primary_10_1016_j_pediatrneurol_2020_03_010
crossref_primary_10_1212_WNL_0000000000012032
crossref_primary_10_1016_j_pediatrneurol_2022_01_006
crossref_primary_10_1016_j_semperi_2024_151993
crossref_primary_10_1161_JAHA_122_028147
crossref_primary_10_1177_08830738241289161
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/WNP.0000000000000591
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1537-1603
ExternalDocumentID 31033654
Genre Journal Article
Observational Study
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K02 NS096058
GroupedDBID ---
.-D
.Z2
0R~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
AAAAV
AAHPQ
AAIQE
AAQQT
AARTV
AASCR
AAWTL
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFUWQ
AGINI
AHQNM
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
IPNFZ
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
N9A
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OL1
OLG
OLV
OLW
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
ZFV
ZZMQN
ID FETCH-LOGICAL-c4571-4e61fee613657c78411479b3c898ffd329d574561861dc4be0b60000ffa21a042
IngestDate Wed Feb 19 02:31:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4571-4e61fee613657c78411479b3c898ffd329d574561861dc4be0b60000ffa21a042
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6731130
PMID 31033654
ParticipantIDs pubmed_primary_31033654
PublicationCentury 2000
PublicationDate 2019-Sep
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sep
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of clinical neurophysiology
PublicationTitleAlternate J Clin Neurophysiol
PublicationYear 2019
SSID ssj0017332
Score 2.445315
Snippet We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children...
SourceID pubmed
SourceType Index Database
StartPage 349
SubjectTerms Child
Child, Preschool
Critical Illness - therapy
Electroencephalography - methods
Electroencephalography - mortality
Electroencephalography - trends
Female
Heart Arrest - diagnosis
Heart Arrest - mortality
Heart Arrest - physiopathology
Humans
Infant
Male
Prognosis
Prospective Studies
Resuscitation - methods
Resuscitation - mortality
Resuscitation - trends
Treatment Outcome
Title Early EEG Features for Outcome Prediction After Cardiac Arrest in Children
URI https://www.ncbi.nlm.nih.gov/pubmed/31033654
Volume 36
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qgngR32_Zg3gp0Tx3k2OQqgg-kIq9SbLZhQhNC7YHvfjXnZ3dNPWJ2sNSspCk-b5OZmdnviHkAMuUhXId5TLhhEwlTqIC6bBIALuEm2SYm3N5xc7vwote1Gu1Xqeylsaj_Ei8fFlX8h9U4Rjgqqtk_4Ds5KRwAL4DvjACwjD-CmOjTtzpnLW1JzeGlTNmDV6PR3A1qdMritK0Ak-xFfgJ0kG0U-zIgQV_tpb7Gx91UjeJspcYBXkXhj-1pgLbc8j2JF7THQwfSxNaTVFxswmZ9soMo7O347LZerLhbaClXmo_2XisDUZ4TbYVvEtqA8od3bp62sIaiRPLpGjKXAZGrvSTGTfywPdXN0Zesv5EprHXFLLDPkKrm6UFzKhR_zz7QVy7npohM2Bodd9UHeyxm1A8CPy62jLhx1_dzgKZr0_xYV2C_kl3iSxa0GhqWLJMWrJaIatplY0G_Wd6SG8m4K2Q-UubUbFKLpBDFDhEaw5R4BC1HKINhyhyiFoOUcMhWla05tAauTvtdE_OHdtfwxFhxD0nlMxTEga4fS70BrQX8iQPRJzEShWBnxQR1w52zLxChLl0c6Z_t1KZ72Vg7dfJbDWo5CahCZd-nKm88AsZKi_OeZhJxTJWcDeWMt4iG-bhPAyNiMpD_di2v53ZIQsNxXbJnIJ_rdwDF3CU7yNQb27CVyM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+EEG+Features+for+Outcome+Prediction+After+Cardiac+Arrest+in+Children&rft.jtitle=Journal+of+clinical+neurophysiology&rft.au=Fung%2C+France+W&rft.au=Topjian%2C+Alexis+A&rft.au=Xiao%2C+Rui&rft.au=Abend%2C+Nicholas+S&rft.date=2019-09-01&rft.eissn=1537-1603&rft.volume=36&rft.issue=5&rft.spage=349&rft_id=info:doi/10.1097%2FWNP.0000000000000591&rft_id=info%3Apmid%2F31033654&rft_id=info%3Apmid%2F31033654&rft.externalDocID=31033654