A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems

This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites l...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 58; no. 4; pp. 516 - 541
Main Authors De Luca, Giandomenico, Silva, João M.N., Modica, Giuseppe
Format Journal Article
LanguageEnglish
Published Taylor & Francis 19.05.2021
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2021.1907896

Cover

Abstract This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites located in Portugal (PO) and Italy (IT). The entire processing workflow was developed in Python-based scripts. We analyzed two time-series covering about one month before and after the fire events and using both VH and VV polarizations for each study site. The speckle noise effects were reduced by performing a multitemporal filter and the backscatter time averages of pre- and post-fire datasets. The spectral contrast between changed and unchanged areas was enhanced by calculating two single-polarization radar indices: the radar burn difference (RBD) and the logarithmic radar burn ratio (LogRBR); and two temporal differences of dual-polarimetric indices: the delta modified radar vegetation index (ΔRVI) and the delta dual-polarization SAR vegetation index (ΔDPSVI), all exhibiting greater sensitivity to the backscatter changes. The scene's contrast was enhanced by extracting the Gray Level Co-occurrence Matrix (GLCM) textures (dissimilarity, entropy, correlation, mean, and variance). A principal component analysis (PCA) was applied for reducing the number of the GLCM image layers. The burned area was delineated through unsupervised classification using the k-means clustering algorithm. A suitable number of clusters (k value) were set using a silhouette score analysis. To assess the accuracy of the resulting detected burned areas, an official burned area map based on multispectral Sentinel-2 (S-2) was used for PO, while for IT, a reference map was produced from S-2 data, based on the normalized burned ratio difference (ΔNBR) index. Recall (r), precision (p) and the F-score accuracy metrics were calculated. Our approach reached the values of 0.805 (p), 0.801 (r) and 0.803 (F-score) for PO, and 0.851 (p), 0.856 (r) and 0.853 (F-score) for IT. These results confirm the suitability of our approach, based on SAR S-1 data, for burned area mapping in heterogeneous Mediterranean ecosystems. Moreover, the implemented workflow, completely based on free and open-source software and data, offers high adaptation flexibility, repeatability, and custom improvement.
AbstractList This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites located in Portugal (PO) and Italy (IT). The entire processing workflow was developed in Python-based scripts. We analyzed two time-series covering about one month before and after the fire events and using both VH and VV polarizations for each study site. The speckle noise effects were reduced by performing a multitemporal filter and the backscatter time averages of pre- and post-fire datasets. The spectral contrast between changed and unchanged areas was enhanced by calculating two single-polarization radar indices: the radar burn difference (RBD) and the logarithmic radar burn ratio (LogRBR); and two temporal differences of dual-polarimetric indices: the delta modified radar vegetation index (ΔRVI) and the delta dual-polarization SAR vegetation index (ΔDPSVI), all exhibiting greater sensitivity to the backscatter changes. The scene’s contrast was enhanced by extracting the Gray Level Co-occurrence Matrix (GLCM) textures (dissimilarity, entropy, correlation, mean, and variance). A principal component analysis (PCA) was applied for reducing the number of the GLCM image layers. The burned area was delineated through unsupervised classification using the k-means clustering algorithm. A suitable number of clusters (k value) were set using a silhouette score analysis. To assess the accuracy of the resulting detected burned areas, an official burned area map based on multispectral Sentinel-2 (S-2) was used for PO, while for IT, a reference map was produced from S-2 data, based on the normalized burned ratio difference (ΔNBR) index. Recall (r), precision (p) and the F-score accuracy metrics were calculated. Our approach reached the values of 0.805 (p), 0.801 (r) and 0.803 (F-score) for PO, and 0.851 (p), 0.856 (r) and 0.853 (F-score) for IT. These results confirm the suitability of our approach, based on SAR S-1 data, for burned area mapping in heterogeneous Mediterranean ecosystems. Moreover, the implemented workflow, completely based on free and open-source software and data, offers high adaptation flexibility, repeatability, and custom improvement.
Author Modica, Giuseppe
De Luca, Giandomenico
Silva, João M.N.
Author_xml – sequence: 1
  givenname: Giandomenico
  orcidid: 0000-0002-4740-6468
  surname: De Luca
  fullname: De Luca, Giandomenico
  email: giandomenico.deluca@unirc.it
  organization: Università degli Studi Mediterranea di Reggio Calabria
– sequence: 2
  givenname: João M.N.
  orcidid: 0000-0001-5201-9836
  surname: Silva
  fullname: Silva, João M.N.
  organization: Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa
– sequence: 3
  givenname: Giuseppe
  orcidid: 0000-0002-0388-0256
  surname: Modica
  fullname: Modica, Giuseppe
  organization: Università degli Studi Mediterranea di Reggio Calabria
BookMark eNqNkkGP1SAUhRszJs6M_gQTlm76hJbSNm58magzyRgTR9fkFm5HRgoVqC_vB_i_pdPRhQt1dQmc80HO4aw4cd5hUTxndMdoR1-yhndM0HpX0YrtWE_brhePilPW87psq0qc5HXWlKvoSXEW4x2ldcNYc1r82JODD19H6w9kgIiaeEdu0CXj0JaM3Ow_Eg0JCLh8NKMro1-CQgL21geTvkyRjD6QxcVlxvDdrIhhCS4PCAhEY0KVTKYaR96jNglDAIfgCCofjzHhFJ8Wj0ewEZ89zPPi89s3ny4uy-sP764u9tel4o1I5TjoAXs1cDaqinYVH3paC8FpPXIhmK6GfqDdCEhBi7YRzYi6ggHbXmHOQtfnxdXG1R7u5BzMBOEoPRh5v-HDrYSQjLIoW45dT5UaoAGu27rnrKVM0waAC1Qis8TGWtwMxwNY-xvIqFyLkb-KkWsx8qGYbHyxGefgvy0Yk5xMVGhtTsUvUVaiFpzXoumz9NUmVcHHGHCUyiRY00wBjP3nRc0f7v994OvNZ1yudoL8QayWCY7WhzF3p0yU9d8RPwFmbMkK
CitedBy_id crossref_primary_10_1080_01431161_2024_2429784
crossref_primary_10_24057_2071_9388_2024_3109
crossref_primary_10_3390_ijgi12080332
crossref_primary_10_1016_j_measurement_2023_112961
crossref_primary_10_1080_15481603_2022_2128251
crossref_primary_10_3390_ijgi11120601
crossref_primary_10_3390_rs13245164
crossref_primary_10_1016_j_jag_2024_104015
crossref_primary_10_1080_19475705_2023_2190856
crossref_primary_10_1016_j_asej_2024_102949
crossref_primary_10_3390_rs17050741
crossref_primary_10_1016_j_rsase_2025_101514
crossref_primary_10_1117_1_JRS_18_014513
crossref_primary_10_1080_22797254_2021_2018667
crossref_primary_10_1080_10106049_2022_2097482
crossref_primary_10_3390_rs15051184
crossref_primary_10_1109_JSTARS_2022_3225070
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1080_15481603_2022_2082751
crossref_primary_10_3390_land13020236
crossref_primary_10_3390_rs14215430
crossref_primary_10_1007_s11356_023_26467_7
crossref_primary_10_1080_15481603_2022_2143872
crossref_primary_10_3390_rs16091553
crossref_primary_10_1016_j_ecoinf_2024_102601
crossref_primary_10_3390_rs13245138
crossref_primary_10_3390_rs15030724
crossref_primary_10_3390_rs16071227
crossref_primary_10_3389_ffgc_2023_1257806
crossref_primary_10_3390_rs16142629
crossref_primary_10_3390_inventions7010015
crossref_primary_10_1109_JSTARS_2024_3427382
crossref_primary_10_3390_ijgi11030199
crossref_primary_10_1515_geo_2022_0465
crossref_primary_10_1080_01431161_2023_2197131
crossref_primary_10_1109_TGRS_2024_3381468
crossref_primary_10_1016_j_apgeog_2022_102854
crossref_primary_10_1080_15481603_2023_2192157
Cites_doi 10.1080/07038992.2020.1735931
10.1109/CICT.2013.6558109
10.1080/01431160701281015
10.1016/j.rse.2018.09.003
10.1016/j.rse.2011.12.009
10.1016/j.rse.2019.111493
10.3390/app9040655
10.1109/ICSECS.2015.7333103
10.1016/j.jag.2011.09.005
10.1080/014311698215649
10.3390/rs9080764
10.5194/acp-11-2625-2011
10.5589/m11-060
10.1007/11499145_99
10.1016/s0378-1127(00)00438-2
10.1080/01431160412331269715
10.1016/0377-0427(87)90125-7
10.1109/PROC.1979.11328
10.1109/LGRS.2013.2279255
10.3390/rs12020334
10.1080/01431161.2020.1763512
10.1016/j.compag.2017.05.027
10.1038/s41598-019-56967-x
10.1016/j.jag.2012.05.004
10.2760/476964
10.1080/10106049.2019.1608592
10.1007/11941439_114
10.1016/j.rse.2019.02.013
10.25966/nr2c-s697
10.1109/34.761262
10.1016/j.gloplacha.2008.10.005
10.5589/m12-043
10.1109/JSTARS.2017.2717039
10.1117/12.2532953
10.1080/01431160701442039
10.1016/j.jag.2010.01.006
10.1109/TGRS.2009.2014944
10.1071/WF08038
10.1007/978-3-642-01754-4
10.1109/TGRS.2010.2049653
10.1080/0143116042000192367
10.3390/rs6010470
10.1016/j.rse.2020.111954
10.1109/TGRS.2011.2120616
10.1109/IGARSS.2017.8127148
10.3102/1076998619832248
10.1016/j.jag.2013.05.014
10.1109/LGRS.2018.2888641
10.1109/LGRS.2011.2174772
10.1016/j.rse.2004.03.018
10.3390/rs11060622
10.1016/j.jag.2021.102296
10.1007/s10618-019-00661-z
10.1071/WF07049
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TCYB.2017.2753880
10.1109/LGRS.2014.2382716
10.1088/1748-9326/ab7765
10.1016/j.rse.2019.111452
10.5120/888-1261
10.1080/014311600210993
10.1016/j.rse.2017.01.034
10.3390/rs9090967
10.3390/rs11192230
10.3390/rs70201320
10.1007/978-3-540-31865-1_25
10.1109/TSMC.1973.4309314
10.1016/j.rse.2008.11.004
10.1016/S0034-4257(00)00078-X
10.1080/01431161.2016.1278314
10.1029/2005RG000183
10.1016/j.procs.2015.06.090
10.1109/36.842003
10.1109/igarss.2019.8900269
10.1109/TGRS.2018.2848285
10.3390/rs12030369
10.1109/LGRS.2009.2025059
10.1007/978-3-642-60164-4_7
10.5721/EuJRS20144723
10.1007/978-3-642-30062-2
10.1016/j.rse.2014.09.034
10.1080/01431161.2019.1629503
10.1007/978-3-642-02020-9
10.1016/j.compag.2018.12.006
10.1016/j.rse.2011.04.009
10.1016/j.patrec.2009.09.011
10.1016/j.rse.2020.112244
10.1016/j.ipm.2009.03.002
10.3390/rs11222607
10.1109/igarss.2005.1526102
10.1016/B978-0-12-821379-7.00002-3
10.1109/IGARSS.2018.8518272
10.1016/j.rse.2015.08.025
10.1007/s10618-015-0444-8
10.1016/j.isprsjprs.2019.09.013
10.1007/s11056-017-9608-2
10.1016/j.rse.2019.111345
10.1016/j.rse.2005.04.014
10.1201/9781315154947-12
10.3390/rs11182079
10.1016/j.patrec.2017.03.008
10.1016/j.jag.2016.02.009
10.1016/j.compag.2020.105500
10.1016/j.rse.2017.07.038
10.1016/j.rse.2015.01.022
10.1109/IGARSS.2018.8518960ù
10.2760/1128
10.1109/jstars.2013.2261053
10.5772/20571
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1080/15481603.2021.1907896
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 541
ExternalDocumentID oai_doaj_org_article_74e890ccba5a4d73941701d05aa46ec6
10.1080/15481603.2021.1907896
10_1080_15481603_2021_1907896
1907896
Genre Research Article
GeographicLocations Italy
Portugal
GeographicLocations_xml – name: Italy
– name: Portugal
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFW
TTHFI
UT5
~02
AAYXX
CITATION
7S9
L.6
ABJNI
ACDHJ
ACZPZ
ADOPC
ADTOC
AI.
AMATQ
AURDB
BFWEY
CWRZV
EJD
GROUPED_DOAJ
NUSFT
PCLFJ
UNPAY
VH1
ID FETCH-LOGICAL-c456t-fbdbe9cb41fc20824b90366403f4661d2b9b08fae0ad67565fed2abe79ce943d3
IEDL.DBID UNPAY
ISSN 1548-1603
1943-7226
IngestDate Fri Oct 03 12:52:31 EDT 2025
Sun Oct 26 03:42:13 EDT 2025
Mon May 05 21:11:23 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Mon Oct 20 23:48:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-fbdbe9cb41fc20824b90366403f4661d2b9b08fae0ad67565fed2abe79ce943d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5201-9836
0000-0002-0388-0256
0000-0002-4740-6468
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/15481603.2021.1907896?needAccess=true
PQID 2636443659
PQPubID 24069
PageCount 26
ParticipantIDs unpaywall_primary_10_1080_15481603_2021_1907896
proquest_miscellaneous_2636443659
crossref_citationtrail_10_1080_15481603_2021_1907896
crossref_primary_10_1080_15481603_2021_1907896
informaworld_taylorfrancis_310_1080_15481603_2021_1907896
doaj_primary_oai_doaj_org_article_74e890ccba5a4d73941701d05aa46ec6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0110
cit0078
cit0111
cit0075
cit0076
cit0073
cit0074
cit0071
cit0072
cit0070
cit0118
cit0119
cit0116
cit0117
cit0114
cit0115
cit0079
cit0112
cit0113
cit0066
cit0100
cit0064
cit0065
cit0062
cit0060
cit0061
cit0109
cit0107
cit0108
cit0105
cit0106
cit0103
cit0068
cit0101
cit0069
cit0102
cit0011
cit0099
cit0012
cit0097
cit0130
cit0010
cit0098
cit0131
cit0095
cit0096
cit0093
cit0094
cit0091
cit0092
Key C. (cit0063) 2006
Camerano P. (cit0008) 2011
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0088
cit0121
cit0001
cit0089
cit0122
cit0086
cit0087
cit0120
cit0084
cit0085
cit0082
cit0083
cit0080
cit0081
Kodinariya T. M. (cit0067) 2013; 1
cit0129
cit0009
cit0006
cit0127
Arthur D. (cit0004) 2007
cit0007
cit0128
cit0125
cit0005
cit0126
cit0002
cit0123
cit0003
cit0124
cit0033
cit0034
cit0031
cit0032
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
Pedregosa F. (cit0090) 2011; 12
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0055
cit0056
cit0053
cit0054
cit0051
cit0052
cit0050
MacQueen J. (cit0077) 1967
cit0059
cit0057
cit0058
cit0044
cit0045
San-Miguel-Ayanz J. (cit0104) 2016
cit0042
cit0043
cit0041
Fung T. (cit0040) 1987; 53
cit0048
cit0049
cit0046
cit0047
References_xml – volume: 53
  start-page: 1649
  year: 1987
  ident: cit0040
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: cit0041
  doi: 10.1080/07038992.2020.1735931
– ident: cit0086
  doi: 10.1109/CICT.2013.6558109
– ident: cit0010
  doi: 10.1080/01431160701281015
– ident: cit0093
  doi: 10.1016/j.rse.2018.09.003
– ident: cit0001
  doi: 10.1016/j.rse.2011.12.009
– ident: cit0076
  doi: 10.1016/j.rse.2019.111493
– ident: cit0087
  doi: 10.3390/app9040655
– ident: cit0109
  doi: 10.1109/ICSECS.2015.7333103
– ident: cit0069
  doi: 10.1016/j.jag.2011.09.005
– ident: cit0023
  doi: 10.1080/014311698215649
– ident: cit0029
  doi: 10.3390/rs9080764
– ident: cit0101
  doi: 10.5194/acp-11-2625-2011
– ident: cit0047
  doi: 10.5589/m11-060
– start-page: 1027
  volume-title: SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
  year: 2007
  ident: cit0004
– ident: cit0055
  doi: 10.1007/11499145_99
– volume: 12
  start-page: 2825
  year: 2011
  ident: cit0090
  publication-title: Journal of Machine Learning Research
– ident: cit0127
– ident: cit0022
  doi: 10.1016/s0378-1127(00)00438-2
– ident: cit0044
  doi: 10.1080/01431160412331269715
– ident: cit0102
  doi: 10.1016/0377-0427(87)90125-7
– ident: cit0053
  doi: 10.1109/PROC.1979.11328
– ident: cit0066
  doi: 10.1109/LGRS.2013.2279255
– ident: cit0003
– ident: cit0125
  doi: 10.3390/rs12020334
– ident: cit0110
  doi: 10.1080/01431161.2020.1763512
– ident: cit0111
  doi: 10.1016/j.compag.2017.05.027
– ident: cit0005
  doi: 10.1038/s41598-019-56967-x
– ident: cit0027
  doi: 10.1016/j.jag.2012.05.004
– ident: cit0030
– ident: cit0105
  doi: 10.2760/476964
– ident: cit0072
  doi: 10.1080/10106049.2019.1608592
– ident: cit0118
  doi: 10.1007/11941439_114
– ident: cit0017
  doi: 10.1016/j.rse.2019.02.013
– ident: cit0037
  doi: 10.25966/nr2c-s697
– volume-title: European Forest Tree Species
  year: 2016
  ident: cit0104
– ident: cit0112
  doi: 10.1109/34.761262
– ident: cit0056
  doi: 10.1016/j.gloplacha.2008.10.005
– ident: cit0128
  doi: 10.5589/m12-043
– ident: cit0058
  doi: 10.1109/JSTARS.2017.2717039
– ident: cit0049
  doi: 10.1117/12.2532953
– ident: cit0059
  doi: 10.1080/01431160701442039
– ident: cit0085
  doi: 10.1016/j.jag.2010.01.006
– ident: cit0046
– ident: cit0088
– ident: cit0064
  doi: 10.1109/TGRS.2009.2014944
– ident: cit0129
  doi: 10.1071/WF08038
– ident: cit0016
  doi: 10.1007/978-3-642-01754-4
– ident: cit0124
  doi: 10.1109/TGRS.2010.2049653
– ident: cit0018
  doi: 10.1080/0143116042000192367
– ident: cit0015
  doi: 10.3390/rs6010470
– volume-title: Strumenti conoscitivi per la gestione delle risorse forestali della Sicilia
  year: 2011
  ident: cit0008
– ident: cit0078
  doi: 10.1016/j.rse.2020.111954
– ident: cit0114
  doi: 10.1109/TGRS.2011.2120616
– ident: cit0079
  doi: 10.1109/IGARSS.2017.8127148
– ident: cit0052
  doi: 10.3102/1076998619832248
– ident: cit0084
  doi: 10.1016/j.jag.2013.05.014
– ident: cit0071
  doi: 10.1109/LGRS.2018.2888641
– ident: cit0065
  doi: 10.1109/LGRS.2011.2174772
– ident: cit0043
  doi: 10.1016/j.rse.2004.03.018
– ident: cit0036
  doi: 10.3390/rs11060622
– ident: cit0021
  doi: 10.1016/j.jag.2021.102296
– ident: cit0032
– ident: cit0057
– ident: cit0061
  doi: 10.1007/s10618-019-00661-z
– ident: cit0062
  doi: 10.1071/WF07049
– ident: cit0024
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: cit0002
  doi: 10.1109/TCYB.2017.2753880
– ident: cit0068
  doi: 10.1109/LGRS.2014.2382716
– ident: cit0034
– ident: cit0011
  doi: 10.1088/1748-9326/ab7765
– ident: cit0095
  doi: 10.1016/j.rse.2019.111452
– ident: cit0119
  doi: 10.5120/888-1261
– ident: cit0038
  doi: 10.1080/014311600210993
– ident: cit0075
  doi: 10.1016/j.rse.2017.01.034
– ident: cit0031
– ident: cit0094
  doi: 10.3390/rs9090967
– ident: cit0131
  doi: 10.3390/rs11192230
– ident: cit0120
  doi: 10.3390/rs70201320
– ident: cit0048
  doi: 10.1007/978-3-540-31865-1_25
– ident: cit0054
  doi: 10.1109/TSMC.1973.4309314
– ident: cit0082
  doi: 10.1016/j.rse.2008.11.004
– ident: cit0039
  doi: 10.1016/S0034-4257(00)00078-X
– ident: cit0051
  doi: 10.1080/01431161.2016.1278314
– ident: cit0035
  doi: 10.1029/2005RG000183
– ident: cit0025
  doi: 10.1016/j.procs.2015.06.090
– ident: cit0096
  doi: 10.1109/36.842003
– start-page: 1
  volume-title: FIREMON: Fire Effects Monitoring and Inventory System
  year: 2006
  ident: cit0063
– ident: cit0107
  doi: 10.1109/igarss.2019.8900269
– ident: cit0028
– ident: cit0013
  doi: 10.1109/TGRS.2018.2848285
– ident: cit0070
  doi: 10.3390/rs12030369
– ident: cit0012
  doi: 10.1109/LGRS.2009.2025059
– ident: cit0092
  doi: 10.1007/978-3-642-60164-4_7
– ident: cit0074
  doi: 10.5721/EuJRS20144723
– ident: cit0099
  doi: 10.1007/978-3-642-30062-2
– ident: cit0073
  doi: 10.1016/j.rse.2014.09.034
– ident: cit0050
  doi: 10.1080/01431161.2019.1629503
– ident: cit0098
  doi: 10.1007/978-3-642-02020-9
– ident: cit0116
– ident: cit0097
  doi: 10.1016/j.compag.2018.12.006
– ident: cit0122
  doi: 10.1016/j.rse.2011.04.009
– ident: cit0060
  doi: 10.1016/j.patrec.2009.09.011
– volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
  year: 1967
  ident: cit0077
– ident: cit0100
  doi: 10.1016/j.rse.2020.112244
– ident: cit0117
  doi: 10.1016/j.ipm.2009.03.002
– ident: cit0026
  doi: 10.3390/rs11222607
– ident: cit0020
  doi: 10.1109/igarss.2005.1526102
– ident: cit0121
  doi: 10.1016/B978-0-12-821379-7.00002-3
– ident: cit0091
  doi: 10.1109/IGARSS.2018.8518272
– ident: cit0126
  doi: 10.1016/j.rse.2015.08.025
– ident: cit0009
  doi: 10.1007/s10618-015-0444-8
– ident: cit0130
  doi: 10.1016/j.isprsjprs.2019.09.013
– ident: cit0014
  doi: 10.1007/s11056-017-9608-2
– ident: cit0006
  doi: 10.1016/j.rse.2019.111345
– ident: cit0115
  doi: 10.1016/j.rse.2005.04.014
– ident: cit0081
  doi: 10.1201/9781315154947-12
– ident: cit0113
– ident: cit0089
  doi: 10.3390/rs11182079
– ident: cit0042
  doi: 10.1016/j.patrec.2017.03.008
– ident: cit0080
  doi: 10.1016/j.jag.2016.02.009
– ident: cit0083
  doi: 10.1016/j.compag.2020.105500
– ident: cit0033
– ident: cit0108
  doi: 10.1016/j.rse.2017.07.038
– ident: cit0007
  doi: 10.1016/j.rse.2015.01.022
– ident: cit0103
  doi: 10.1109/IGARSS.2018.8518960ù
– ident: cit0106
  doi: 10.2760/1128
– volume: 1
  start-page: 2321
  year: 2013
  ident: cit0067
  publication-title: International Journal of Advance Research in Computer Science and Management Studies
– ident: cit0019
– ident: cit0123
  doi: 10.1109/jstars.2013.2261053
– ident: cit0045
  doi: 10.5772/20571
SSID ssj0035115
Score 2.438028
Snippet This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 516
SubjectTerms algorithms
computer software
data collection
dual-polarization sar vegetation index (DPSVI)
entropy
forests
Italy
k-means clustering
Portugal
principal component analysis
radar vegetation index (RVI)
scikit-learn libraries
SNAP-python (snappy) interface
synthetic aperture radar
time series analysis
variance
vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPNXlJSMhbuk6sZ3ExwVRVUhwoFTqzfITKqXOqklU9Qfwv5nJY7VwWQ7cIie2bM_Y88w3hLwDLdVEge6lIFkmHGOZkg6sFMmlq2pp2Zg8_uVreXYhPl_Ky71SX5gTNsEDTxu3rkSoFXPOGmmEr7gSiCDumTRGlMGNYNusVosxNd3BGB2TI1KqABupZHz5d6dma2zDJrANi_wE5GFVI2L_nlQawfv_gi79QwG9P6Stubs1TbMni04fkYezEkk30-Qfk3shPSHHmw7d2u31HX1Px-fJa9E9Jb82FPOvYtPeUhRbnraJnmOeUApNltPzzTeKqaLUJHi1DSmbfPrUND_am6v-53VHYZJ0SN2wxcsFh7DoDfXUgNZJfejHlK5ErxLF2A9QC4RgMImCeTuhRXfPyMXpp-8fz7K5_kLmQK3qs2i9DcpZkUcHe1wIq0DelYLxKECs-8Iqy-poAjMe7I5SxuALY0OlXFCCe_6cHKU2hWNCpTCB2xArXnhheW6jjzX0q0ovap_HFRHL_ms3g5NjjYxG5zOG6UI2jWTTM9lW5GTXbTuhcxzq8AGJu_sYwbXHBmA5PbOcPsRyK6L2WUP3o28lToVQND8wgbcLH2k4yBidAWq0Q6eLkoNuykupVmS9Y7B_W9aL_7Gsl-QBjompEbl6RY76myG8Bo2rt2_Gw_UbkgMhyQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2021.1907896
https://www.proquest.com/docview/2636443659
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2021.1907896?needAccess=true
https://doaj.org/article/74e890ccba5a4d73941701d05aa46ec6
UnpaywallVersion publishedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1943-7226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035115
  issn: 1548-1603
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_a64O-WD_pWT1WEN9yTbKbrweRKJYieKj1oD6F_azFdHNcEkp99_92Jh9HW5Aq-JaE7JJkZmd-Mzv5DSEvAaUKyzG9ZCLf48r3vSxSEKVELFJJGkm_Kx7_uIiPlvzDSXSyRT6P_8JgWSXG0LYniuhsNS7ulbZjRdwBomzsjgzRXRjMwaMlaRa_cWDt867J4Otm3ZptshNHAM8nZGe5-JR_63hTOURMcdctGWJ35iWAPca_ev407zV_1dH63yA1vQZN77RuJS4vRFle8VKHu2Q9vl9fnPJj3jZyrn7eoH78rx_gPrk3YFqa90r4gGwZ95Ds5TVm2avzS_qKdsd9EqV-RH7lFMvBbFldUPSimlaOHmPZkjOlF9Dj_AvFylUKD0ixvZfXbzFQUZ5W67Pm-3lN4cvQ1tXtCm0dTiExOaupABBMtWm6CjNHzxzFrShQHvDJRjgK0XZPXl0_JsvD91_fHXlDOwhPAcprPCu1NJmSPLAqBOTCZQbuN-Y-sxxQhg5lJv3UCuMLDWFQHFmjQyFNkikD0tbsCZm4ypk9QiMuDJPGJizUXLJAWm1TGJfEmqc6sFPCR6EXauBKx5YdZREMlKqjCAoUQTGIYErmm2GrnizktgFvUaM2NyPXd3ehWp8Wg-koEm7SzFdKikhwnbCMI4e-9iMheGwUTJJd1cei6VI9tu_LUrBbHuDFqLwF2BXcLAJpVG1dhDEDqMxgDU3JwUar_-61nv7ziH1yF0-xLCPInpEJKvBzQHuNnJFt5i9mXa5kNqzl3_h8SVo
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqFN-ryNBLilm0S20l8XBDVAu0eaCv1FvnZVqTJapOoKnf-NzN5rLaVUJF6i5LYsp3JzDfj8TeEfASUqjzH8JITYcBNGAZSGPBSBBMmzYQOu-Txg0UyP-bfT8TJxlkYTKtEH9r3RBGdrsafG4PRY0rcLsJsLI8M7l0cTcGkpZlM7pMHAsA-VjFg4WLUxrhPJjrOVA7eErQZT_H8q5tr9qmj8b9BYnoNim635VJdXaqi2LBKe4-JGefTJ6P8mraNnprfN6ge7zbhJ-TRAFrprJeyp-SeK5-RnVmNYfTq4op-ot11HyWpn5M_M4r5Xr6oLimaSUurkh5iXlLpiiCih7OfFFNTKYyIYv2uoN9DoKo4rVbnzdlFTWEpaFvW7RKVGXahMfpqqQKUS61ruhSykp6XFPeaQDrA6DpVUnCne3bq-gU53vt69GUeDPUeAgMwrgm8ttpJo3nkTQzQhGsJ9jXhIfMcYISNtdRh5pULlQU_JxHe2Vhpl0rjJGeWvSRbZVW6HUIFV45p51MWW65ZpL31GbRLE8szG_kJ4eNXzs1Aho41OYo8GjhTxyXPccnzYcknZLputuzZQG5r8BlFaP0yknl3N6rVaT7ohjzlLpOhMVoJxW3KJEeSfBsKpXjiDHQiNwUwb7pYju8Lr-TslgF8GKU1B8WBu0HwNaq2zuOEARZmiZATsrsW4_-b1qs7jOg92Z4fHezn-98WP16Th_gIszEi-YZsNavWvQWQ1-h33V_8FzJDQhM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBZtCm1feodsTxVK37yxLclePW6PJb2W0jTQN6EzDXXsZW0T0vf-7874WJJASSFvi9cSkjye-ebwN4S8ApSqA8fwkhdxxG0cR1JY8FIEEzafCRN3xeNfltneAf_4Q4zVhPVQVok-dOiJIjpdjS_3yoWxIm4XUTZ2RwbvLk2mYNHymcyukxsZZsXwK454OSpjTJOJjjKVg7MEN4wf8fxrmnPmqWPxv8Bheg6J3mrLlT490UVxxigt7hIzbqevRfk1bRsztb8vMD1eab_3yJ0BstJ5L2P3yTVfPiA78xqD6NXxKX1Nu999jKR-SP7MKVZ7haI6oWgkHa1Kuo9VSaUvooTuz79RLEylsCCK3buiPoNAdXFYrY-an8c1hZOgbVm3K1RlOIXB2KujGjAudb7pCshKelRSzDSBbIDJ9bqk4Ez33NT1I3KweP_97V40dHuILIC4JgrGGS-t4UmwKQATbiRY14zHLHAAES410sSzoH2sHXg5mQjepdr4XFovOXNsm2yVVel3CBVce2Z8yFnquGGJCS7MYFyeOT5zSZgQPj5kZQcqdOzIUahkYEwdj1zhkavhyCdkuhm26rlALhvwBiVoczNSeXcXqvWhGjSDyrmfydhao4XmLmeSI0W-i4XWPPMWJpFn5U81XSQn9G1XFLtkAS9HYVWgNjAXBE-jamuVZgyQMMuEnJDdjRT_37YeX2FFL8jNr-8W6vOH5acn5Db-g6UYiXxKtpp1658BwmvM8-4d_gv7qUC3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF7q6YO-eJceb6wgvuU0ye7m8iASxVIEi1oP1Kew11pMN4eThFLf_d_O5HJoC1IF35KQXZLM7Mw3s5NvCHkJKFU6juklK8KA6zAMcqEhShFM6DQTKuyLxz8eJPtL_uFIHG2Rz9O_MFhWiTG0G4gieluNi3tl3FQRt4soG7sjQ3QXRwvwaGmWJ288WPuibzL4ul139gbZTgTA8xnZXh58Kr71vKkcIqak75YMsTsLUsAe0189f5r3kr_qaf2vkJpegqY3O7-S52eyqi54qb07ZD2931Cc8mPRtWqhf16hfvyvH-AuuT1iWloMSniPbFl_n-wUDWbZ69Nz-or2x0MSpXlAfhUUy8FcVZ9R9KKG1p4eYtmSt1UQ0cPiC8XKVQoPSLG9VzBsMVBZHdfrk_b7aUPhy9DON90KbR1OoTA5a6gEEEyNbfsKM09PPMWtKFAe8MlWegrR9kBe3Twky733X9_tB2M7iEADymsDp4yyuVY8cjoG5MJVDu434SFzHFCGiVWuwsxJG0oDYVAinDWxVDbNtQVpG_aIzHzt7Q6hgkvLlHUpiw1XLFLOuAzGpYnhmYncnPBJ6KUeudKxZUdVRiOl6iSCEkVQjiKYk8Vm2GogC7luwFvUqM3NyPXdX6jXx-VoOsqU2ywPtVZSSG5SlnPk0DehkJInVsMk-UV9LNs-1eOGviwlu-YBXkzKW4Jdwc0ikEbdNWWcMIDKDNbQnOxutPrvXuvxP494Qm7hKZZlRPlTMkMFfgZor1XPx_X7G5oVR5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+workflow+based+on+Sentinel-1+SAR+data+and+open-source+algorithms+for+unsupervised+burned+area+detection+in+Mediterranean+ecosystems&rft.jtitle=GIScience+and+remote+sensing&rft.au=De+Luca%2C+Giandomenico&rft.au=Silva%2C+Jo%C3%A3o+M.N.&rft.au=Modica%2C+Giuseppe&rft.date=2021-05-19&rft.pub=Taylor+%26+Francis&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=58&rft.issue=4&rft.spage=516&rft.epage=541&rft_id=info:doi/10.1080%2F15481603.2021.1907896&rft.externalDocID=1907896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon