A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems
This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites l...
Saved in:
| Published in | GIScience and remote sensing Vol. 58; no. 4; pp. 516 - 541 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
19.05.2021
Taylor & Francis Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1548-1603 1943-7226 1943-7226 |
| DOI | 10.1080/15481603.2021.1907896 |
Cover
| Abstract | This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites located in Portugal (PO) and Italy (IT). The entire processing workflow was developed in Python-based scripts. We analyzed two time-series covering about one month before and after the fire events and using both VH and VV polarizations for each study site. The speckle noise effects were reduced by performing a multitemporal filter and the backscatter time averages of pre- and post-fire datasets. The spectral contrast between changed and unchanged areas was enhanced by calculating two single-polarization radar indices: the radar burn difference (RBD) and the logarithmic radar burn ratio (LogRBR); and two temporal differences of dual-polarimetric indices: the delta modified radar vegetation index (ΔRVI) and the delta dual-polarization SAR vegetation index (ΔDPSVI), all exhibiting greater sensitivity to the backscatter changes. The scene's contrast was enhanced by extracting the Gray Level Co-occurrence Matrix (GLCM) textures (dissimilarity, entropy, correlation, mean, and variance). A principal component analysis (PCA) was applied for reducing the number of the GLCM image layers. The burned area was delineated through unsupervised classification using the k-means clustering algorithm. A suitable number of clusters (k value) were set using a silhouette score analysis. To assess the accuracy of the resulting detected burned areas, an official burned area map based on multispectral Sentinel-2 (S-2) was used for PO, while for IT, a reference map was produced from S-2 data, based on the normalized burned ratio difference (ΔNBR) index. Recall (r), precision (p) and the F-score accuracy metrics were calculated. Our approach reached the values of 0.805 (p), 0.801 (r) and 0.803 (F-score) for PO, and 0.851 (p), 0.856 (r) and 0.853 (F-score) for IT. These results confirm the suitability of our approach, based on SAR S-1 data, for burned area mapping in heterogeneous Mediterranean ecosystems. Moreover, the implemented workflow, completely based on free and open-source software and data, offers high adaptation flexibility, repeatability, and custom improvement. |
|---|---|
| AbstractList | This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised machine learning open-source processing solutions in the Mediterranean forest ecosystems. The study was carried out in two Mediterranean sites located in Portugal (PO) and Italy (IT). The entire processing workflow was developed in Python-based scripts. We analyzed two time-series covering about one month before and after the fire events and using both VH and VV polarizations for each study site. The speckle noise effects were reduced by performing a multitemporal filter and the backscatter time averages of pre- and post-fire datasets. The spectral contrast between changed and unchanged areas was enhanced by calculating two single-polarization radar indices: the radar burn difference (RBD) and the logarithmic radar burn ratio (LogRBR); and two temporal differences of dual-polarimetric indices: the delta modified radar vegetation index (ΔRVI) and the delta dual-polarization SAR vegetation index (ΔDPSVI), all exhibiting greater sensitivity to the backscatter changes. The scene’s contrast was enhanced by extracting the Gray Level Co-occurrence Matrix (GLCM) textures (dissimilarity, entropy, correlation, mean, and variance). A principal component analysis (PCA) was applied for reducing the number of the GLCM image layers. The burned area was delineated through unsupervised classification using the k-means clustering algorithm. A suitable number of clusters (k value) were set using a silhouette score analysis. To assess the accuracy of the resulting detected burned areas, an official burned area map based on multispectral Sentinel-2 (S-2) was used for PO, while for IT, a reference map was produced from S-2 data, based on the normalized burned ratio difference (ΔNBR) index. Recall (r), precision (p) and the F-score accuracy metrics were calculated. Our approach reached the values of 0.805 (p), 0.801 (r) and 0.803 (F-score) for PO, and 0.851 (p), 0.856 (r) and 0.853 (F-score) for IT. These results confirm the suitability of our approach, based on SAR S-1 data, for burned area mapping in heterogeneous Mediterranean ecosystems. Moreover, the implemented workflow, completely based on free and open-source software and data, offers high adaptation flexibility, repeatability, and custom improvement. |
| Author | Modica, Giuseppe De Luca, Giandomenico Silva, João M.N. |
| Author_xml | – sequence: 1 givenname: Giandomenico orcidid: 0000-0002-4740-6468 surname: De Luca fullname: De Luca, Giandomenico email: giandomenico.deluca@unirc.it organization: Università degli Studi Mediterranea di Reggio Calabria – sequence: 2 givenname: João M.N. orcidid: 0000-0001-5201-9836 surname: Silva fullname: Silva, João M.N. organization: Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa – sequence: 3 givenname: Giuseppe orcidid: 0000-0002-0388-0256 surname: Modica fullname: Modica, Giuseppe organization: Università degli Studi Mediterranea di Reggio Calabria |
| BookMark | eNqNkkGP1SAUhRszJs6M_gQTlm76hJbSNm58magzyRgTR9fkFm5HRgoVqC_vB_i_pdPRhQt1dQmc80HO4aw4cd5hUTxndMdoR1-yhndM0HpX0YrtWE_brhePilPW87psq0qc5HXWlKvoSXEW4x2ldcNYc1r82JODD19H6w9kgIiaeEdu0CXj0JaM3Ow_Eg0JCLh8NKMro1-CQgL21geTvkyRjD6QxcVlxvDdrIhhCS4PCAhEY0KVTKYaR96jNglDAIfgCCofjzHhFJ8Wj0ewEZ89zPPi89s3ny4uy-sP764u9tel4o1I5TjoAXs1cDaqinYVH3paC8FpPXIhmK6GfqDdCEhBi7YRzYi6ggHbXmHOQtfnxdXG1R7u5BzMBOEoPRh5v-HDrYSQjLIoW45dT5UaoAGu27rnrKVM0waAC1Qis8TGWtwMxwNY-xvIqFyLkb-KkWsx8qGYbHyxGefgvy0Yk5xMVGhtTsUvUVaiFpzXoumz9NUmVcHHGHCUyiRY00wBjP3nRc0f7v994OvNZ1yudoL8QayWCY7WhzF3p0yU9d8RPwFmbMkK |
| CitedBy_id | crossref_primary_10_1080_01431161_2024_2429784 crossref_primary_10_24057_2071_9388_2024_3109 crossref_primary_10_3390_ijgi12080332 crossref_primary_10_1016_j_measurement_2023_112961 crossref_primary_10_1080_15481603_2022_2128251 crossref_primary_10_3390_ijgi11120601 crossref_primary_10_3390_rs13245164 crossref_primary_10_1016_j_jag_2024_104015 crossref_primary_10_1080_19475705_2023_2190856 crossref_primary_10_1016_j_asej_2024_102949 crossref_primary_10_3390_rs17050741 crossref_primary_10_1016_j_rsase_2025_101514 crossref_primary_10_1117_1_JRS_18_014513 crossref_primary_10_1080_22797254_2021_2018667 crossref_primary_10_1080_10106049_2022_2097482 crossref_primary_10_3390_rs15051184 crossref_primary_10_1109_JSTARS_2022_3225070 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1080_15481603_2022_2082751 crossref_primary_10_3390_land13020236 crossref_primary_10_3390_rs14215430 crossref_primary_10_1007_s11356_023_26467_7 crossref_primary_10_1080_15481603_2022_2143872 crossref_primary_10_3390_rs16091553 crossref_primary_10_1016_j_ecoinf_2024_102601 crossref_primary_10_3390_rs13245138 crossref_primary_10_3390_rs15030724 crossref_primary_10_3390_rs16071227 crossref_primary_10_3389_ffgc_2023_1257806 crossref_primary_10_3390_rs16142629 crossref_primary_10_3390_inventions7010015 crossref_primary_10_1109_JSTARS_2024_3427382 crossref_primary_10_3390_ijgi11030199 crossref_primary_10_1515_geo_2022_0465 crossref_primary_10_1080_01431161_2023_2197131 crossref_primary_10_1109_TGRS_2024_3381468 crossref_primary_10_1016_j_apgeog_2022_102854 crossref_primary_10_1080_15481603_2023_2192157 |
| Cites_doi | 10.1080/07038992.2020.1735931 10.1109/CICT.2013.6558109 10.1080/01431160701281015 10.1016/j.rse.2018.09.003 10.1016/j.rse.2011.12.009 10.1016/j.rse.2019.111493 10.3390/app9040655 10.1109/ICSECS.2015.7333103 10.1016/j.jag.2011.09.005 10.1080/014311698215649 10.3390/rs9080764 10.5194/acp-11-2625-2011 10.5589/m11-060 10.1007/11499145_99 10.1016/s0378-1127(00)00438-2 10.1080/01431160412331269715 10.1016/0377-0427(87)90125-7 10.1109/PROC.1979.11328 10.1109/LGRS.2013.2279255 10.3390/rs12020334 10.1080/01431161.2020.1763512 10.1016/j.compag.2017.05.027 10.1038/s41598-019-56967-x 10.1016/j.jag.2012.05.004 10.2760/476964 10.1080/10106049.2019.1608592 10.1007/11941439_114 10.1016/j.rse.2019.02.013 10.25966/nr2c-s697 10.1109/34.761262 10.1016/j.gloplacha.2008.10.005 10.5589/m12-043 10.1109/JSTARS.2017.2717039 10.1117/12.2532953 10.1080/01431160701442039 10.1016/j.jag.2010.01.006 10.1109/TGRS.2009.2014944 10.1071/WF08038 10.1007/978-3-642-01754-4 10.1109/TGRS.2010.2049653 10.1080/0143116042000192367 10.3390/rs6010470 10.1016/j.rse.2020.111954 10.1109/TGRS.2011.2120616 10.1109/IGARSS.2017.8127148 10.3102/1076998619832248 10.1016/j.jag.2013.05.014 10.1109/LGRS.2018.2888641 10.1109/LGRS.2011.2174772 10.1016/j.rse.2004.03.018 10.3390/rs11060622 10.1016/j.jag.2021.102296 10.1007/s10618-019-00661-z 10.1071/WF07049 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TCYB.2017.2753880 10.1109/LGRS.2014.2382716 10.1088/1748-9326/ab7765 10.1016/j.rse.2019.111452 10.5120/888-1261 10.1080/014311600210993 10.1016/j.rse.2017.01.034 10.3390/rs9090967 10.3390/rs11192230 10.3390/rs70201320 10.1007/978-3-540-31865-1_25 10.1109/TSMC.1973.4309314 10.1016/j.rse.2008.11.004 10.1016/S0034-4257(00)00078-X 10.1080/01431161.2016.1278314 10.1029/2005RG000183 10.1016/j.procs.2015.06.090 10.1109/36.842003 10.1109/igarss.2019.8900269 10.1109/TGRS.2018.2848285 10.3390/rs12030369 10.1109/LGRS.2009.2025059 10.1007/978-3-642-60164-4_7 10.5721/EuJRS20144723 10.1007/978-3-642-30062-2 10.1016/j.rse.2014.09.034 10.1080/01431161.2019.1629503 10.1007/978-3-642-02020-9 10.1016/j.compag.2018.12.006 10.1016/j.rse.2011.04.009 10.1016/j.patrec.2009.09.011 10.1016/j.rse.2020.112244 10.1016/j.ipm.2009.03.002 10.3390/rs11222607 10.1109/igarss.2005.1526102 10.1016/B978-0-12-821379-7.00002-3 10.1109/IGARSS.2018.8518272 10.1016/j.rse.2015.08.025 10.1007/s10618-015-0444-8 10.1016/j.isprsjprs.2019.09.013 10.1007/s11056-017-9608-2 10.1016/j.rse.2019.111345 10.1016/j.rse.2005.04.014 10.1201/9781315154947-12 10.3390/rs11182079 10.1016/j.patrec.2017.03.008 10.1016/j.jag.2016.02.009 10.1016/j.compag.2020.105500 10.1016/j.rse.2017.07.038 10.1016/j.rse.2015.01.022 10.1109/IGARSS.2018.8518960ù 10.2760/1128 10.1109/jstars.2013.2261053 10.5772/20571 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| DBID | AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1080/15481603.2021.1907896 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 1943-7226 |
| EndPage | 541 |
| ExternalDocumentID | oai_doaj_org_article_74e890ccba5a4d73941701d05aa46ec6 10.1080/15481603.2021.1907896 10_1080_15481603_2021_1907896 1907896 |
| Genre | Research Article |
| GeographicLocations | Italy Portugal |
| GeographicLocations_xml | – name: Italy – name: Portugal |
| GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFW TTHFI UT5 ~02 AAYXX CITATION 7S9 L.6 ABJNI ACDHJ ACZPZ ADOPC ADTOC AI. AMATQ AURDB BFWEY CWRZV EJD GROUPED_DOAJ NUSFT PCLFJ UNPAY VH1 |
| ID | FETCH-LOGICAL-c456t-fbdbe9cb41fc20824b90366403f4661d2b9b08fae0ad67565fed2abe79ce943d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1548-1603 1943-7226 |
| IngestDate | Fri Oct 03 12:52:31 EDT 2025 Sun Oct 26 03:42:13 EDT 2025 Mon May 05 21:11:23 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Mon Oct 20 23:48:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c456t-fbdbe9cb41fc20824b90366403f4661d2b9b08fae0ad67565fed2abe79ce943d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5201-9836 0000-0002-0388-0256 0000-0002-4740-6468 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.tandfonline.com/doi/pdf/10.1080/15481603.2021.1907896?needAccess=true |
| PQID | 2636443659 |
| PQPubID | 24069 |
| PageCount | 26 |
| ParticipantIDs | unpaywall_primary_10_1080_15481603_2021_1907896 proquest_miscellaneous_2636443659 crossref_citationtrail_10_1080_15481603_2021_1907896 crossref_primary_10_1080_15481603_2021_1907896 informaworld_taylorfrancis_310_1080_15481603_2021_1907896 doaj_primary_oai_doaj_org_article_74e890ccba5a4d73941701d05aa46ec6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-19 |
| PublicationDateYYYYMMDD | 2021-05-19 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | GIScience and remote sensing |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | cit0110 cit0078 cit0111 cit0075 cit0076 cit0073 cit0074 cit0071 cit0072 cit0070 cit0118 cit0119 cit0116 cit0117 cit0114 cit0115 cit0079 cit0112 cit0113 cit0066 cit0100 cit0064 cit0065 cit0062 cit0060 cit0061 cit0109 cit0107 cit0108 cit0105 cit0106 cit0103 cit0068 cit0101 cit0069 cit0102 cit0011 cit0099 cit0012 cit0097 cit0130 cit0010 cit0098 cit0131 cit0095 cit0096 cit0093 cit0094 cit0091 cit0092 Key C. (cit0063) 2006 Camerano P. (cit0008) 2011 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0088 cit0121 cit0001 cit0089 cit0122 cit0086 cit0087 cit0120 cit0084 cit0085 cit0082 cit0083 cit0080 cit0081 Kodinariya T. M. (cit0067) 2013; 1 cit0129 cit0009 cit0006 cit0127 Arthur D. (cit0004) 2007 cit0007 cit0128 cit0125 cit0005 cit0126 cit0002 cit0123 cit0003 cit0124 cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 Pedregosa F. (cit0090) 2011; 12 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0055 cit0056 cit0053 cit0054 cit0051 cit0052 cit0050 MacQueen J. (cit0077) 1967 cit0059 cit0057 cit0058 cit0044 cit0045 San-Miguel-Ayanz J. (cit0104) 2016 cit0042 cit0043 cit0041 Fung T. (cit0040) 1987; 53 cit0048 cit0049 cit0046 cit0047 |
| References_xml | – volume: 53 start-page: 1649 year: 1987 ident: cit0040 publication-title: Photogrammetric Engineering and Remote Sensing – ident: cit0041 doi: 10.1080/07038992.2020.1735931 – ident: cit0086 doi: 10.1109/CICT.2013.6558109 – ident: cit0010 doi: 10.1080/01431160701281015 – ident: cit0093 doi: 10.1016/j.rse.2018.09.003 – ident: cit0001 doi: 10.1016/j.rse.2011.12.009 – ident: cit0076 doi: 10.1016/j.rse.2019.111493 – ident: cit0087 doi: 10.3390/app9040655 – ident: cit0109 doi: 10.1109/ICSECS.2015.7333103 – ident: cit0069 doi: 10.1016/j.jag.2011.09.005 – ident: cit0023 doi: 10.1080/014311698215649 – ident: cit0029 doi: 10.3390/rs9080764 – ident: cit0101 doi: 10.5194/acp-11-2625-2011 – ident: cit0047 doi: 10.5589/m11-060 – start-page: 1027 volume-title: SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms year: 2007 ident: cit0004 – ident: cit0055 doi: 10.1007/11499145_99 – volume: 12 start-page: 2825 year: 2011 ident: cit0090 publication-title: Journal of Machine Learning Research – ident: cit0127 – ident: cit0022 doi: 10.1016/s0378-1127(00)00438-2 – ident: cit0044 doi: 10.1080/01431160412331269715 – ident: cit0102 doi: 10.1016/0377-0427(87)90125-7 – ident: cit0053 doi: 10.1109/PROC.1979.11328 – ident: cit0066 doi: 10.1109/LGRS.2013.2279255 – ident: cit0003 – ident: cit0125 doi: 10.3390/rs12020334 – ident: cit0110 doi: 10.1080/01431161.2020.1763512 – ident: cit0111 doi: 10.1016/j.compag.2017.05.027 – ident: cit0005 doi: 10.1038/s41598-019-56967-x – ident: cit0027 doi: 10.1016/j.jag.2012.05.004 – ident: cit0030 – ident: cit0105 doi: 10.2760/476964 – ident: cit0072 doi: 10.1080/10106049.2019.1608592 – ident: cit0118 doi: 10.1007/11941439_114 – ident: cit0017 doi: 10.1016/j.rse.2019.02.013 – ident: cit0037 doi: 10.25966/nr2c-s697 – volume-title: European Forest Tree Species year: 2016 ident: cit0104 – ident: cit0112 doi: 10.1109/34.761262 – ident: cit0056 doi: 10.1016/j.gloplacha.2008.10.005 – ident: cit0128 doi: 10.5589/m12-043 – ident: cit0058 doi: 10.1109/JSTARS.2017.2717039 – ident: cit0049 doi: 10.1117/12.2532953 – ident: cit0059 doi: 10.1080/01431160701442039 – ident: cit0085 doi: 10.1016/j.jag.2010.01.006 – ident: cit0046 – ident: cit0088 – ident: cit0064 doi: 10.1109/TGRS.2009.2014944 – ident: cit0129 doi: 10.1071/WF08038 – ident: cit0016 doi: 10.1007/978-3-642-01754-4 – ident: cit0124 doi: 10.1109/TGRS.2010.2049653 – ident: cit0018 doi: 10.1080/0143116042000192367 – ident: cit0015 doi: 10.3390/rs6010470 – volume-title: Strumenti conoscitivi per la gestione delle risorse forestali della Sicilia year: 2011 ident: cit0008 – ident: cit0078 doi: 10.1016/j.rse.2020.111954 – ident: cit0114 doi: 10.1109/TGRS.2011.2120616 – ident: cit0079 doi: 10.1109/IGARSS.2017.8127148 – ident: cit0052 doi: 10.3102/1076998619832248 – ident: cit0084 doi: 10.1016/j.jag.2013.05.014 – ident: cit0071 doi: 10.1109/LGRS.2018.2888641 – ident: cit0065 doi: 10.1109/LGRS.2011.2174772 – ident: cit0043 doi: 10.1016/j.rse.2004.03.018 – ident: cit0036 doi: 10.3390/rs11060622 – ident: cit0021 doi: 10.1016/j.jag.2021.102296 – ident: cit0032 – ident: cit0057 – ident: cit0061 doi: 10.1007/s10618-019-00661-z – ident: cit0062 doi: 10.1071/WF07049 – ident: cit0024 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: cit0002 doi: 10.1109/TCYB.2017.2753880 – ident: cit0068 doi: 10.1109/LGRS.2014.2382716 – ident: cit0034 – ident: cit0011 doi: 10.1088/1748-9326/ab7765 – ident: cit0095 doi: 10.1016/j.rse.2019.111452 – ident: cit0119 doi: 10.5120/888-1261 – ident: cit0038 doi: 10.1080/014311600210993 – ident: cit0075 doi: 10.1016/j.rse.2017.01.034 – ident: cit0031 – ident: cit0094 doi: 10.3390/rs9090967 – ident: cit0131 doi: 10.3390/rs11192230 – ident: cit0120 doi: 10.3390/rs70201320 – ident: cit0048 doi: 10.1007/978-3-540-31865-1_25 – ident: cit0054 doi: 10.1109/TSMC.1973.4309314 – ident: cit0082 doi: 10.1016/j.rse.2008.11.004 – ident: cit0039 doi: 10.1016/S0034-4257(00)00078-X – ident: cit0051 doi: 10.1080/01431161.2016.1278314 – ident: cit0035 doi: 10.1029/2005RG000183 – ident: cit0025 doi: 10.1016/j.procs.2015.06.090 – ident: cit0096 doi: 10.1109/36.842003 – start-page: 1 volume-title: FIREMON: Fire Effects Monitoring and Inventory System year: 2006 ident: cit0063 – ident: cit0107 doi: 10.1109/igarss.2019.8900269 – ident: cit0028 – ident: cit0013 doi: 10.1109/TGRS.2018.2848285 – ident: cit0070 doi: 10.3390/rs12030369 – ident: cit0012 doi: 10.1109/LGRS.2009.2025059 – ident: cit0092 doi: 10.1007/978-3-642-60164-4_7 – ident: cit0074 doi: 10.5721/EuJRS20144723 – ident: cit0099 doi: 10.1007/978-3-642-30062-2 – ident: cit0073 doi: 10.1016/j.rse.2014.09.034 – ident: cit0050 doi: 10.1080/01431161.2019.1629503 – ident: cit0098 doi: 10.1007/978-3-642-02020-9 – ident: cit0116 – ident: cit0097 doi: 10.1016/j.compag.2018.12.006 – ident: cit0122 doi: 10.1016/j.rse.2011.04.009 – ident: cit0060 doi: 10.1016/j.patrec.2009.09.011 – volume-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability year: 1967 ident: cit0077 – ident: cit0100 doi: 10.1016/j.rse.2020.112244 – ident: cit0117 doi: 10.1016/j.ipm.2009.03.002 – ident: cit0026 doi: 10.3390/rs11222607 – ident: cit0020 doi: 10.1109/igarss.2005.1526102 – ident: cit0121 doi: 10.1016/B978-0-12-821379-7.00002-3 – ident: cit0091 doi: 10.1109/IGARSS.2018.8518272 – ident: cit0126 doi: 10.1016/j.rse.2015.08.025 – ident: cit0009 doi: 10.1007/s10618-015-0444-8 – ident: cit0130 doi: 10.1016/j.isprsjprs.2019.09.013 – ident: cit0014 doi: 10.1007/s11056-017-9608-2 – ident: cit0006 doi: 10.1016/j.rse.2019.111345 – ident: cit0115 doi: 10.1016/j.rse.2005.04.014 – ident: cit0081 doi: 10.1201/9781315154947-12 – ident: cit0113 – ident: cit0089 doi: 10.3390/rs11182079 – ident: cit0042 doi: 10.1016/j.patrec.2017.03.008 – ident: cit0080 doi: 10.1016/j.jag.2016.02.009 – ident: cit0083 doi: 10.1016/j.compag.2020.105500 – ident: cit0033 – ident: cit0108 doi: 10.1016/j.rse.2017.07.038 – ident: cit0007 doi: 10.1016/j.rse.2015.01.022 – ident: cit0103 doi: 10.1109/IGARSS.2018.8518960ù – ident: cit0106 doi: 10.2760/1128 – volume: 1 start-page: 2321 year: 2013 ident: cit0067 publication-title: International Journal of Advance Research in Computer Science and Management Studies – ident: cit0019 – ident: cit0123 doi: 10.1109/jstars.2013.2261053 – ident: cit0045 doi: 10.5772/20571 |
| SSID | ssj0035115 |
| Score | 2.438028 |
| Snippet | This paper investigates the capability of the free synthetic aperture radar (SAR) Sentinel-1 (S-1) C-band data for burned area mapping through unsupervised... |
| SourceID | doaj unpaywall proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 516 |
| SubjectTerms | algorithms computer software data collection dual-polarization sar vegetation index (DPSVI) entropy forests Italy k-means clustering Portugal principal component analysis radar vegetation index (RVI) scikit-learn libraries SNAP-python (snappy) interface synthetic aperture radar time series analysis variance vegetation index |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPNXlJSMhbuk6sZ3ExwVRVUhwoFTqzfITKqXOqklU9Qfwv5nJY7VwWQ7cIie2bM_Y88w3hLwDLdVEge6lIFkmHGOZkg6sFMmlq2pp2Zg8_uVreXYhPl_Ky71SX5gTNsEDTxu3rkSoFXPOGmmEr7gSiCDumTRGlMGNYNusVosxNd3BGB2TI1KqABupZHz5d6dma2zDJrANi_wE5GFVI2L_nlQawfv_gi79QwG9P6Stubs1TbMni04fkYezEkk30-Qfk3shPSHHmw7d2u31HX1Px-fJa9E9Jb82FPOvYtPeUhRbnraJnmOeUApNltPzzTeKqaLUJHi1DSmbfPrUND_am6v-53VHYZJ0SN2wxcsFh7DoDfXUgNZJfejHlK5ErxLF2A9QC4RgMImCeTuhRXfPyMXpp-8fz7K5_kLmQK3qs2i9DcpZkUcHe1wIq0DelYLxKECs-8Iqy-poAjMe7I5SxuALY0OlXFCCe_6cHKU2hWNCpTCB2xArXnhheW6jjzX0q0ovap_HFRHL_ms3g5NjjYxG5zOG6UI2jWTTM9lW5GTXbTuhcxzq8AGJu_sYwbXHBmA5PbOcPsRyK6L2WUP3o28lToVQND8wgbcLH2k4yBidAWq0Q6eLkoNuykupVmS9Y7B_W9aL_7Gsl-QBjompEbl6RY76myG8Bo2rt2_Gw_UbkgMhyQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2021.1907896 https://www.proquest.com/docview/2636443659 https://www.tandfonline.com/doi/pdf/10.1080/15481603.2021.1907896?needAccess=true https://doaj.org/article/74e890ccba5a4d73941701d05aa46ec6 |
| UnpaywallVersion | publishedVersion |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1943-7226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035115 issn: 1548-1603 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_a64O-WD_pWT1WEN9yTbKbrweRKJYieKj1oD6F_azFdHNcEkp99_92Jh9HW5Aq-JaE7JJkZmd-Mzv5DSEvAaUKyzG9ZCLf48r3vSxSEKVELFJJGkm_Kx7_uIiPlvzDSXSyRT6P_8JgWSXG0LYniuhsNS7ulbZjRdwBomzsjgzRXRjMwaMlaRa_cWDt867J4Otm3ZptshNHAM8nZGe5-JR_63hTOURMcdctGWJ35iWAPca_ev407zV_1dH63yA1vQZN77RuJS4vRFle8VKHu2Q9vl9fnPJj3jZyrn7eoH78rx_gPrk3YFqa90r4gGwZ95Ds5TVm2avzS_qKdsd9EqV-RH7lFMvBbFldUPSimlaOHmPZkjOlF9Dj_AvFylUKD0ixvZfXbzFQUZ5W67Pm-3lN4cvQ1tXtCm0dTiExOaupABBMtWm6CjNHzxzFrShQHvDJRjgK0XZPXl0_JsvD91_fHXlDOwhPAcprPCu1NJmSPLAqBOTCZQbuN-Y-sxxQhg5lJv3UCuMLDWFQHFmjQyFNkikD0tbsCZm4ypk9QiMuDJPGJizUXLJAWm1TGJfEmqc6sFPCR6EXauBKx5YdZREMlKqjCAoUQTGIYErmm2GrnizktgFvUaM2NyPXd3ehWp8Wg-koEm7SzFdKikhwnbCMI4e-9iMheGwUTJJd1cei6VI9tu_LUrBbHuDFqLwF2BXcLAJpVG1dhDEDqMxgDU3JwUar_-61nv7ziH1yF0-xLCPInpEJKvBzQHuNnJFt5i9mXa5kNqzl3_h8SVo |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqFN-ryNBLilm0S20l8XBDVAu0eaCv1FvnZVqTJapOoKnf-NzN5rLaVUJF6i5LYsp3JzDfj8TeEfASUqjzH8JITYcBNGAZSGPBSBBMmzYQOu-Txg0UyP-bfT8TJxlkYTKtEH9r3RBGdrsafG4PRY0rcLsJsLI8M7l0cTcGkpZlM7pMHAsA-VjFg4WLUxrhPJjrOVA7eErQZT_H8q5tr9qmj8b9BYnoNim635VJdXaqi2LBKe4-JGefTJ6P8mraNnprfN6ge7zbhJ-TRAFrprJeyp-SeK5-RnVmNYfTq4op-ot11HyWpn5M_M4r5Xr6oLimaSUurkh5iXlLpiiCih7OfFFNTKYyIYv2uoN9DoKo4rVbnzdlFTWEpaFvW7RKVGXahMfpqqQKUS61ruhSykp6XFPeaQDrA6DpVUnCne3bq-gU53vt69GUeDPUeAgMwrgm8ttpJo3nkTQzQhGsJ9jXhIfMcYISNtdRh5pULlQU_JxHe2Vhpl0rjJGeWvSRbZVW6HUIFV45p51MWW65ZpL31GbRLE8szG_kJ4eNXzs1Aho41OYo8GjhTxyXPccnzYcknZLputuzZQG5r8BlFaP0yknl3N6rVaT7ohjzlLpOhMVoJxW3KJEeSfBsKpXjiDHQiNwUwb7pYju8Lr-TslgF8GKU1B8WBu0HwNaq2zuOEARZmiZATsrsW4_-b1qs7jOg92Z4fHezn-98WP16Th_gIszEi-YZsNavWvQWQ1-h33V_8FzJDQhM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBZtCm1feodsTxVK37yxLclePW6PJb2W0jTQN6EzDXXsZW0T0vf-7874WJJASSFvi9cSkjye-ebwN4S8ApSqA8fwkhdxxG0cR1JY8FIEEzafCRN3xeNfltneAf_4Q4zVhPVQVok-dOiJIjpdjS_3yoWxIm4XUTZ2RwbvLk2mYNHymcyukxsZZsXwK454OSpjTJOJjjKVg7MEN4wf8fxrmnPmqWPxv8Bheg6J3mrLlT490UVxxigt7hIzbqevRfk1bRsztb8vMD1eab_3yJ0BstJ5L2P3yTVfPiA78xqD6NXxKX1Nu999jKR-SP7MKVZ7haI6oWgkHa1Kuo9VSaUvooTuz79RLEylsCCK3buiPoNAdXFYrY-an8c1hZOgbVm3K1RlOIXB2KujGjAudb7pCshKelRSzDSBbIDJ9bqk4Ez33NT1I3KweP_97V40dHuILIC4JgrGGS-t4UmwKQATbiRY14zHLHAAES410sSzoH2sHXg5mQjepdr4XFovOXNsm2yVVel3CBVce2Z8yFnquGGJCS7MYFyeOT5zSZgQPj5kZQcqdOzIUahkYEwdj1zhkavhyCdkuhm26rlALhvwBiVoczNSeXcXqvWhGjSDyrmfydhao4XmLmeSI0W-i4XWPPMWJpFn5U81XSQn9G1XFLtkAS9HYVWgNjAXBE-jamuVZgyQMMuEnJDdjRT_37YeX2FFL8jNr-8W6vOH5acn5Db-g6UYiXxKtpp1658BwmvM8-4d_gv7qUC3 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF7q6YO-eJceb6wgvuU0ye7m8iASxVIEi1oP1Kew11pMN4eThFLf_d_O5HJoC1IF35KQXZLM7Mw3s5NvCHkJKFU6juklK8KA6zAMcqEhShFM6DQTKuyLxz8eJPtL_uFIHG2Rz9O_MFhWiTG0G4gieluNi3tl3FQRt4soG7sjQ3QXRwvwaGmWJ288WPuibzL4ul139gbZTgTA8xnZXh58Kr71vKkcIqak75YMsTsLUsAe0189f5r3kr_qaf2vkJpegqY3O7-S52eyqi54qb07ZD2931Cc8mPRtWqhf16hfvyvH-AuuT1iWloMSniPbFl_n-wUDWbZ69Nz-or2x0MSpXlAfhUUy8FcVZ9R9KKG1p4eYtmSt1UQ0cPiC8XKVQoPSLG9VzBsMVBZHdfrk_b7aUPhy9DON90KbR1OoTA5a6gEEEyNbfsKM09PPMWtKFAe8MlWegrR9kBe3Twky733X9_tB2M7iEADymsDp4yyuVY8cjoG5MJVDu434SFzHFCGiVWuwsxJG0oDYVAinDWxVDbNtQVpG_aIzHzt7Q6hgkvLlHUpiw1XLFLOuAzGpYnhmYncnPBJ6KUeudKxZUdVRiOl6iSCEkVQjiKYk8Vm2GogC7luwFvUqM3NyPXdX6jXx-VoOsqU2ywPtVZSSG5SlnPk0DehkJInVsMk-UV9LNs-1eOGviwlu-YBXkzKW4Jdwc0ikEbdNWWcMIDKDNbQnOxutPrvXuvxP494Qm7hKZZlRPlTMkMFfgZor1XPx_X7G5oVR5M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+workflow+based+on+Sentinel-1+SAR+data+and+open-source+algorithms+for+unsupervised+burned+area+detection+in+Mediterranean+ecosystems&rft.jtitle=GIScience+and+remote+sensing&rft.au=De+Luca%2C+Giandomenico&rft.au=Silva%2C+Jo%C3%A3o+M.N.&rft.au=Modica%2C+Giuseppe&rft.date=2021-05-19&rft.pub=Taylor+%26+Francis&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=58&rft.issue=4&rft.spage=516&rft.epage=541&rft_id=info:doi/10.1080%2F15481603.2021.1907896&rft.externalDocID=1907896 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |