Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer

Monolithic perovskite–silicon tandem solar cells with MoOx hole selective contact silicon bottom solar cells show a power conversion efficiency of 8%. A thin 15 nm-thick MoOx contact to n-type Si was used instead of a standard p+ emitter to collect holes and the SiOx/n+ poly-Si structure was deposit...

Full description

Saved in:
Bibliographic Details
Published inEnergies Vol. 14; no. 11; p. 3108
Main Authors Song, Hoyoung, Lee, Changhyun, Hyun, Jiyeon, Lee, Sang-Won, Choi, Dongjin, Pyun, Dowon, Nam, Jiyeon, Jeong, Seok-Hyun, Kim, Jiryang, Bae, Soohyun, Lee, Hyunju, Kang, Yoonmook, Kim, Donghwan, Lee, Hae-Seok
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.05.2021
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en14113108

Cover

Abstract Monolithic perovskite–silicon tandem solar cells with MoOx hole selective contact silicon bottom solar cells show a power conversion efficiency of 8%. A thin 15 nm-thick MoOx contact to n-type Si was used instead of a standard p+ emitter to collect holes and the SiOx/n+ poly-Si structure was deposited on the other side of the device for direct tunneling of electrons and this silicon bottom cell structure shows ~15% of power conversion efficiency. With this bottom carrier selective silicon cell, tin oxide, and subsequent perovskite structure were deposited to fabricate monolithic tandem solar cells. Monolithic tandem structure without ITO interlayer was also compared to confirm the role of MoOx in tandem cells and this tandem structure shows the power conversion efficiency of 3.3%. This research has confirmed that the MoOx layer simultaneously acts as a passivation layer and a hole collecting layer in this tandem structure.
AbstractList Monolithic perovskite–silicon tandem solar cells with MoOx hole selective contact silicon bottom solar cells show a power conversion efficiency of 8%. A thin 15 nm-thick MoOx contact to n-type Si was used instead of a standard p+ emitter to collect holes and the SiOx/n+ poly-Si structure was deposited on the other side of the device for direct tunneling of electrons and this silicon bottom cell structure shows ~15% of power conversion efficiency. With this bottom carrier selective silicon cell, tin oxide, and subsequent perovskite structure were deposited to fabricate monolithic tandem solar cells. Monolithic tandem structure without ITO interlayer was also compared to confirm the role of MoOx in tandem cells and this tandem structure shows the power conversion efficiency of 3.3%. This research has confirmed that the MoOx layer simultaneously acts as a passivation layer and a hole collecting layer in this tandem structure.
Author Hoyoung Song
Dongjin Choi
Hae-Seok Lee
Seok-Hyun Jeong
Jiryang Kim
Changhyun Lee
Sang-Won Lee
Jiyeon Nam
Jiyeon Hyun
Soohyun Bae
Hyunju Lee
Donghwan Kim
Dowon Pyun
Yoonmook Kang
Author_xml – sequence: 1
  givenname: Hoyoung
  surname: Song
  fullname: Song, Hoyoung
– sequence: 2
  givenname: Changhyun
  surname: Lee
  fullname: Lee, Changhyun
– sequence: 3
  givenname: Jiyeon
  orcidid: 0000-0001-6999-4830
  surname: Hyun
  fullname: Hyun, Jiyeon
– sequence: 4
  givenname: Sang-Won
  surname: Lee
  fullname: Lee, Sang-Won
– sequence: 5
  givenname: Dongjin
  surname: Choi
  fullname: Choi, Dongjin
– sequence: 6
  givenname: Dowon
  surname: Pyun
  fullname: Pyun, Dowon
– sequence: 7
  givenname: Jiyeon
  surname: Nam
  fullname: Nam, Jiyeon
– sequence: 8
  givenname: Seok-Hyun
  surname: Jeong
  fullname: Jeong, Seok-Hyun
– sequence: 9
  givenname: Jiryang
  surname: Kim
  fullname: Kim, Jiryang
– sequence: 10
  givenname: Soohyun
  surname: Bae
  fullname: Bae, Soohyun
– sequence: 11
  givenname: Hyunju
  surname: Lee
  fullname: Lee, Hyunju
– sequence: 12
  givenname: Yoonmook
  surname: Kang
  fullname: Kang, Yoonmook
– sequence: 13
  givenname: Donghwan
  surname: Kim
  fullname: Kim, Donghwan
– sequence: 14
  givenname: Hae-Seok
  surname: Lee
  fullname: Lee, Hae-Seok
BackLink https://cir.nii.ac.jp/crid/1872553967634312832$$DView record in CiNii
BookMark eNptkV1rFDEUhoNUsNbe-AsCeiWM5nsmlzKoLWypsO31cCZzpqZmk5pki4t_3tmu1CLeJOHwnOe85LwkRzFFJOQ1Z--ltOwDRq44l5x1z8gxt9Y0nLXy6Mn7BTktxY9MaSmUtN0x-XWRYgq-fvOOfsWc7st3X7HpIWePma4xoKv-HmmfYgVX6doH71KkVxAn3NB1CpBpjyEUel18vKEXKezGCeN2Qy9_-gkpFAr0LAV8YlvBDvMr8nyGUPD0z31Crj9_uurPmtXll_P-46pxSpvazBasQW5G0LxjkxZOO-Ns67TV2hqF04xSjQw5YwoUIIIapw4EogXNZnlCzg_eKcHtcJf9BvJuSOCHh0LKNwPk6l3AATXMzrTCziiUksIKUAq6RTJC6yZcXG8Orrucfmyx1OE2bXNc4g9CS2usMdwu1LsD5XIqJeP8OJWzYb-r4e-uFpj9AztfofrlwzP48P-Wt4eW6P1C70_etULvE7RGKslFJ4X8DbT8o2Y
CitedBy_id crossref_primary_10_1021_acsaem_2c02649
crossref_primary_10_1002_pip_3648
crossref_primary_10_3390_en16041586
crossref_primary_10_3390_en14248199
crossref_primary_10_1109_JPHOTOV_2024_3483266
crossref_primary_10_1016_j_jallcom_2022_164102
crossref_primary_10_3390_photonics9070477
crossref_primary_10_1021_acsami_4c01864
crossref_primary_10_3390_en15030870
Cites_doi 10.1021/acsenergylett.7b01279
10.1109/JPHOTOV.2013.2270351
10.1039/C9TC00494G
10.1039/C4EE03802A
10.1038/nenergy.2017.32
10.1063/1.5139202
10.1016/j.solmat.2019.110074
10.1016/j.apsusc.2017.06.011
10.1039/C9RA03560E
10.3390/app5040695
10.1007/s42341-018-00089-0
10.1002/pip.3190
10.1002/aenm.201801312
10.1016/j.solmat.2015.08.028
10.1002/smtd.202100046
10.1109/JPHOTOV.2015.2455346
10.1109/JPHOTOV.2013.2282737
10.1063/1.4868880
10.1002/solr.201800193
10.1016/j.solmat.2015.03.017
10.1063/1.4903467
10.1002/pip.3250
10.1109/PVSC.2017.8366202
10.1002/solr.202000353
10.1002/solr.201700227
10.1007/s40820-019-0287-8
10.1016/j.solmat.2018.04.029
10.1063/1.4928747
10.3390/cryst8110430
10.7567/APEX.6.095701
10.1038/am.2013.29
10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
10.1002/pip.2994
10.1016/j.mser.2020.100579
10.1063/1.5121327
10.1016/j.solmat.2018.05.019
10.1126/science.abd4016
10.1021/nl404389u
10.3390/en13030678
10.1109/IRSEC.2017.8477335
10.1016/j.solmat.2013.09.017
10.1016/j.materresbull.2018.10.018
10.1021/ja3026906
10.1364/OE.23.00A391
10.1063/1.5045250
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14113108
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_e5afc6729fe2443292a44a80f3ba7cde
10_3390_en14113108
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RYH
TR2
TUS
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c456t-f9a96e16ba5180d52c5c6c97c5955964edfe34b0e1004a4aeea4bd8a2ee9a50f3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:11:06 EDT 2025
Mon Jun 30 07:28:26 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Tue Jul 01 01:18:04 EDT 2025
Thu Jun 26 21:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-f9a96e16ba5180d52c5c6c97c5955964edfe34b0e1004a4aeea4bd8a2ee9a50f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7746-0377
0000-0001-6999-4830
OpenAccessLink https://www.proquest.com/docview/2539696619?pq-origsite=%requestingapplication%&accountid=15518
PQID 2539696619
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_e5afc6729fe2443292a44a80f3ba7cde
proquest_journals_2539696619
crossref_primary_10_3390_en14113108
crossref_citationtrail_10_3390_en14113108
nii_cinii_1872553967634312832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-26
PublicationDateYYYYMMDD 2021-05-26
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-26
  day: 26
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pan (ref_23) 2019; 7
Greiner (ref_24) 2013; 5
Messmer (ref_25) 2018; 124
Gerling (ref_30) 2016; 145
Hossain (ref_5) 2019; 11
Lee (ref_17) 2020; 4
Vasilopoulou (ref_27) 2012; 134
Richter (ref_4) 2013; 3
Wu (ref_7) 2018; 2
Steinkemper (ref_39) 2015; 5
ref_34
Yoshikawa (ref_3) 2017; 2
Li (ref_6) 2020; 370
Bullock (ref_21) 2014; 105
Hussain (ref_20) 2015; 139
ref_19
Feldmann (ref_37) 2014; 120
ref_16
Limodio (ref_10) 2020; 28
Mallem (ref_14) 2019; 110
Hussain (ref_15) 2019; 20
Glunz (ref_38) 2018; 185
Werner (ref_33) 2015; 107
Cuevas (ref_35) 1997; 5
Tong (ref_11) 2017; 423
Park (ref_40) 2019; 27
Cho (ref_36) 2019; 201
Jeon (ref_18) 2019; 9
Taguchi (ref_8) 2014; 4
Bullock (ref_13) 2018; 3
Gerling (ref_46) 2015; 5
Hermle (ref_9) 2020; 7
Montero (ref_29) 2018; 185
Mrazkova (ref_41) 2018; 26
Park (ref_43) 2019; 9
ref_22
Battaglia (ref_32) 2014; 104
ref_2
Zhang (ref_45) 2013; 6
Liu (ref_1) 2020; 142
ref_28
Barugkin (ref_42) 2015; 23
Essig (ref_44) 2018; 2
Battaglia (ref_31) 2014; 14
Wang (ref_12) 2015; 8
Wang (ref_26) 2019; 7
References_xml – volume: 3
  start-page: 508
  year: 2018
  ident: ref_13
  article-title: Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01279
– volume: 3
  start-page: 1184
  year: 2013
  ident: ref_4
  article-title: Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2013.2270351
– volume: 7
  start-page: 4449
  year: 2019
  ident: ref_23
  article-title: Zn(O,S)-based electron-selective contacts with tunable band structure for silicon heterojunction solar cells
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC00494G
– volume: 8
  start-page: 1059
  year: 2015
  ident: ref_12
  article-title: Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03802A
– volume: 2
  start-page: 17032
  year: 2017
  ident: ref_3
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– volume: 7
  start-page: 021305
  year: 2020
  ident: ref_9
  article-title: Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5139202
– volume: 201
  start-page: 110074
  year: 2019
  ident: ref_36
  article-title: Interface analysis and intrinsic thermal stability of MoOx based hole-selective contacts for silicon heterojunction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110074
– volume: 423
  start-page: 139
  year: 2017
  ident: ref_11
  article-title: Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.011
– volume: 9
  start-page: 23261
  year: 2019
  ident: ref_43
  article-title: Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03560E
– volume: 5
  start-page: 695
  year: 2015
  ident: ref_46
  article-title: Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications
  publication-title: Appl. Sci.
  doi: 10.3390/app5040695
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: Versatile Hole Carrier Selective MoOx Contact for High Efficiency Silicon Heterojunction Solar Cells: A Review
  publication-title: Trans. Electr. Electron. Mater.
  doi: 10.1007/s42341-018-00089-0
– volume: 27
  start-page: 1104
  year: 2019
  ident: ref_40
  article-title: Tunnel oxide passivating electron contacts for high-efficiency n-type silicon solar cells with amorphous silicon passivating hole contacts
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3190
– volume: 9
  start-page: 1801312
  year: 2019
  ident: ref_18
  article-title: Single-Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801312
– volume: 145
  start-page: 109
  year: 2016
  ident: ref_30
  article-title: Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.08.028
– ident: ref_34
  doi: 10.1002/smtd.202100046
– volume: 5
  start-page: 1348
  year: 2015
  ident: ref_39
  article-title: Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2015.2455346
– volume: 4
  start-page: 96
  year: 2014
  ident: ref_8
  article-title: 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2013.2282737
– volume: 104
  start-page: 113902
  year: 2014
  ident: ref_32
  article-title: Silicon heterojunction solar cell with passivated hole selective MoOx contact
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868880
– volume: 2
  start-page: 1800193
  year: 2018
  ident: ref_7
  article-title: A Step-by-Step Optimization of the c-Si Bottom Cell in Monolithic Perovskite/c-Si Tandem Devices
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800193
– volume: 139
  start-page: 95
  year: 2015
  ident: ref_20
  article-title: Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.03.017
– volume: 105
  start-page: 232109
  year: 2014
  ident: ref_21
  article-title: Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4903467
– volume: 28
  start-page: 403
  year: 2020
  ident: ref_10
  article-title: Implantation-based passivating contacts for crystalline silicon front/rear contacted solar cells
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3250
– ident: ref_16
  doi: 10.1109/PVSC.2017.8366202
– volume: 4
  start-page: 2000353
  year: 2020
  ident: ref_17
  article-title: Carbon Nanotube Electrode-Based Perovskite–Silicon Tandem Solar Cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000353
– volume: 2
  start-page: 1700227
  year: 2018
  ident: ref_44
  article-title: Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts for Silicon Photovoltaics
  publication-title: Sol. RRL
  doi: 10.1002/solr.201700227
– volume: 11
  start-page: 58
  year: 2019
  ident: ref_5
  article-title: Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0287-8
– volume: 185
  start-page: 260
  year: 2018
  ident: ref_38
  article-title: SiO2 surface passivation layers—A key technology for silicon solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.04.029
– volume: 107
  start-page: 081601
  year: 2015
  ident: ref_33
  article-title: 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4928747
– ident: ref_22
  doi: 10.3390/cryst8110430
– volume: 6
  start-page: 095701
  year: 2013
  ident: ref_45
  article-title: Impact of Oxygen Vacancy on Energy-Level Alignment at MoOx/Organic Interfaces
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.095701
– ident: ref_2
– volume: 5
  start-page: e55
  year: 2013
  ident: ref_24
  article-title: Thin-film metal oxides in organic semiconductor devices: Their electronic structures, work functions and interfaces
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2013.29
– volume: 5
  start-page: 79
  year: 1997
  ident: ref_35
  article-title: Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
– volume: 26
  start-page: 369
  year: 2018
  ident: ref_41
  article-title: Optical properties and performance of pyramidal texture silicon heterojunction solar cells: Key role of vertex angles
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.2994
– volume: 142
  start-page: 100579
  year: 2020
  ident: ref_1
  article-title: High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2020.100579
– volume: 7
  start-page: 110701
  year: 2019
  ident: ref_26
  article-title: Hole selective materials and device structures of heterojunction solar cells: Recent assessment and future trends
  publication-title: Appl. Mater.
  doi: 10.1063/1.5121327
– volume: 185
  start-page: 61
  year: 2018
  ident: ref_29
  article-title: Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.05.019
– volume: 370
  start-page: 1300
  year: 2020
  ident: ref_6
  article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
  publication-title: Science
  doi: 10.1126/science.abd4016
– volume: 14
  start-page: 967
  year: 2014
  ident: ref_31
  article-title: Hole Selective MoOx Contact for Silicon Solar Cells
  publication-title: Nano Lett.
  doi: 10.1021/nl404389u
– ident: ref_19
  doi: 10.3390/en13030678
– ident: ref_28
  doi: 10.1109/IRSEC.2017.8477335
– volume: 120
  start-page: 270
  year: 2014
  ident: ref_37
  article-title: Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.09.017
– volume: 110
  start-page: 90
  year: 2019
  ident: ref_14
  article-title: Molybdenum oxide: A superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.10.018
– volume: 134
  start-page: 16178
  year: 2012
  ident: ref_27
  article-title: The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3026906
– volume: 23
  start-page: A391
  year: 2015
  ident: ref_42
  article-title: Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence
  publication-title: Opt. Express
  doi: 10.1364/OE.23.00A391
– volume: 124
  start-page: 085702
  year: 2018
  ident: ref_25
  article-title: Requirements for efficient hole extraction in transition metal oxide-based silicon heterojunction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5045250
SSID ssib045324398
ssib045324465
ssj0000331333
ssib045316222
ssib045317840
ssib045318874
ssib045321338
ssib045320965
ssib045316771
ssib045318900
ssib045321345
ssib045316202
ssib045316213
ssib045316785
ssib045320970
ssib045321341
ssib045315868
ssib045318903
ssib045316910
ssib045318846
ssib045321370
ssib045317828
ssib045317827
Score 2.3154812
Snippet Monolithic perovskite–silicon tandem solar cells with MoOx hole selective contact silicon bottom solar cells show a power conversion efficiency of 8%. A thin...
SourceID doaj
proquest
crossref
nii
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3108
SubjectTerms carrier selective contact
Efficiency
Electrodes
Glass substrates
hole selective layer
Metal oxides
Molybdenum
molybdenum oxide
monolithic tandem cell
perovskite–silicon tandem solar cell
perovskite–silicon tandem solar cell; monolithic tandem cell; carrier selective contact; molybdenum oxide; hole selective layer
Photovoltaic cells
Silicon wafers
T
Technology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kp3oQ6weutjKgFw-hmcxMZuZYF8siVoVtobfwMvOCgZiV3VUq_vN9L0nbFQUvXnIIj2R4n783PH5PiNeEwaNTSPGtTciMBsxC6fPMaR0M6NK6YWfk2cdycWHeX9rLnVVfPBM20gOPijtGC00sCQI2SJVIF6EAY8Dnja7BxYScffOQ7zRTQw7WmpovPfKR0m_zY-yVUYrAjP-tAg1E_VRX-rb9IxsPJeb0oXgwYUN5Mp7pQNzD_pG4v8MY-Fj8ohjkibUvbZSfcb36seHb12wOa948J5fDVhtKYJJZpyBu5bLtyNa9POfL4q9yyZ2snGPXbeQwLSDPVt3POvFAvPx01SaUsJEgF6sOd772AQiZPxEXp-_O54ts2p-QRYJF26wJEEpUZQ1W-TzZItpYxuCiZdq50mBqUJs6R2aNAwOIYOrkoUAMYEnDT8Vev-rxmZDgFNTOa5-8ZRMGpV2AFFNTh5hsMxNvbnRaxYlcnHdcdBU1Gaz_6k7_M_HqVvbbSKnxV6m3bJpbCabBHl6Qc1STc1T_co6ZOCLD0on4qbyj_kmHklIqwSbe0TQThzcmr6bY3VQFy1AXqMLz_3GGF2K_4DmYnKcJD8Xedv0djwjIbOuXg89eA2Tx7yc
  priority: 102
  providerName: Directory of Open Access Journals
Title Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer
URI https://cir.nii.ac.jp/crid/1872553967634312832
https://www.proquest.com/docview/2539696619
https://doaj.org/article/e5afc6729fe2443292a44a80f3ba7cde
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF216QUOiE8RaKOV4MLBqu3dtb0HhGjUNEI0VKSVcrPGu2OIZOySBATizzPj2GkRiIsP9spa7ezMvhmP3xPiJWFwl0ZI_q20DbQCDGyShUGqlNWgEpO2mpHns2R6pd8tzGJPzPp_Ybitso-JbaD2jeMa-XFsFBO5EN5_c_01YNUo_rraS2hAJ63gX7cUY_vigEKyCQfi4OR0dvFxV3UJlaKkTG15Smk64THWkY4iAjnZHydTS-BP5029XP4VpdujZ3Jf3Oswo3y7NfIDsYf1Q3H3FpPgI_GLfJM72T4vnbzAVfN9zVXZYAwrVqST81bthgKbZDYqcBs5X1a0B2p5yUXkL3LOGa4cY1WtZdtFIM-b6mfhuVFefvix9ChhLUFOmwpvve09EGJ_LK4mp5fjadDpKgSO4NImKC3YBKOkAFqq0JvYGZc4mzrDdHSJRl-i0kWIzCYHGhBBFz6DGNGCCUv1RAzqpsanQkIaQZFmKvOZYdPaSKUWvPNlYZ035VC86tc0dx3pOGtfVDklH7z--c36D8WL3djrLdXGP0edsGl2I5geu73RrD7lnbflaKB0CeUNJRJ8UbGNQWvIaOoFpM7jUByRYWlGfI2ylPIq2l0UaglOsXbTUBz2Js87n17nNzvw2f8fPxd3Yu58Cbl_8FAMNqtveETQZVOMxH42ORt1u3LUFgDoeraIfgM27O9E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE8RaGEl4MDBqu1dP_ZQIRpapTQJFUml3sx4dwyRjF2S8Kj4b_w2ZhwnLQJx68UHe71a78zOzoxnv0-I5-SD2yRAWt9KG08rQM_Eqe8lShkNKo6ShjNyOIr7J_rtaXS6IX6tzsJwWeXKJjaG2tWWc-Q7YaQYyIX8_VdnXzxmjeK_qysKDWipFdxuAzHWHuw4wvPvFMLNdw_fkLxfhOHB_qTX91qWAc-S87DwCgMmxiDOgV70XRTayMbWJDZicLZYoytQ6dxHxlYDDYigc5dCiGgg8gtF_V4Tm5oTKB2xubc_On6_zvL4SlEQqJa4qPT5_g5WgQ4CcqrSP3bChjCA9rdqOv1rV2i2uoPb4lbro8rXS6W6IzawuituXkIuvCd-ki3gyrlPUyuPcVZ_m3MW2OvBjBnw5Lhh1yFDKhn9CuxCjqcl6VwlJ5y0_izHHFHLHpblXDZVC3JYl-e548J8-e7H1KGEuQTZr0u81NsAKEK4L06uZIYfiE5VV_hQSEgCyJNUpS6NWJVMoBIDzroiN9ZFRVe8XM1pZluQc-baKDMKdnj-s4v574pn67ZnS2iPf7baY9GsWzAcd3Ojnn3M2tWdYQSFjSlOKZDcJRWaELSGlIaeQ2IddsU2CZZGxNcgTSiOI20m007uG3NFdcXWSuRZa0Pm2YXGP_r_46fien8yHGSDw9HRY3Ej5Kobn2sXt0RnMfuK2-Q2LfInrW5K8eGql8NvIDIqvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVkJwQDxFoIWVgAMHK7Z3_dhDhWjaKKVtiEgr9eaOd8cQydglCY-Kf8ivYsZx0iIQt158sNcra3Z2Xp79PiFeUgxukwBpfyttPK0APROnvpcoZTSoOEoazsijYTw40e9Oo9M18Wt5FobbKpc2sTHUrrZcI--GkWIgF4r3u0XbFjHa7b85_-IxgxT_aV3SaUBLs-C2G7ix9pDHAV58p3Rutr2_S2v_Kgz7e8e9gdcyDniWAom5VxgwMQZxDvSi76LQRja2JrERA7XFGl2BSuc-Ms4aaEAEnbsUQkQDkV8omveG2EjI61MiuLGzNxx9WFV8fKUoIVQLjFQShd_FKtBBQAFW-odXbMgDyNdVk8lfHqJxe_274k4br8q3CwW7J9awui9uX0ExfCB-kl3gLrpPEytHOK2_zbgi7PVgymx4ctww7ZBRlYyEBXYux5OS9K-Sx1zA_izHnF3LHpblTDYdDPKoLi9yx0368v2PiUMJMwlyUJd4ZbZDoGzhoTi5Fgk_EutVXeFjISEJIE9Slbo0YrUygUoMOOuK3FgXFR3xeinTzLaA58y7UWaU-LD8s0v5d8SL1djzBczHP0ft8NKsRjA0d3Ojnn7M2p2eYQSFjSlnKZBCJxWaELSGlD49h8Q67IgtWlj6Ir4GaUI5HWk2mXkK5Zg3qiM2l0uetfZkll1q_5P_P34ubtK2yA73hwdPxa2QG3B8bmPcFOvz6Vfcoghqnj9rVVOKs-veDb8BBaEvAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monolithic+Perovskite-Carrier+Selective+Contact+Silicon+Tandem+Solar+Cells+Using+Molybdenum+Oxide+as+a+Hole+Selective+Layer&rft.jtitle=Energies+%28Basel%29&rft.au=Song%2C+Hoyoung&rft.au=Lee%2C+Changhyun&rft.au=Hyun%2C+Jiyeon&rft.au=Lee%2C+Sang-Won&rft.date=2021-05-26&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=11&rft.spage=3108&rft_id=info:doi/10.3390%2Fen14113108&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14113108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon