A unified determinant-preserving formulation for compressible/incompressible finite viscoelasticity

This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide ran...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanics and physics of solids Vol. 177; p. 105312
Main Authors Wijaya, Ignasius P.A., Lopez-Pamies, Oscar, Masud, Arif
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0022-5096
1873-4782
DOI10.1016/j.jmps.2023.105312

Cover

Abstract This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint detFv=1. To solve the resulting initial–boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint detFv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint detFv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.
AbstractList This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.
This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint detFv=1. To solve the resulting initial–boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint detFv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint detFv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.
This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable is required to satisfy the constraint det . To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det , a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.
This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.
ArticleNumber 105312
Author Wijaya, Ignasius P.A.
Lopez-Pamies, Oscar
Masud, Arif
Author_xml – sequence: 1
  givenname: Ignasius P.A.
  surname: Wijaya
  fullname: Wijaya, Ignasius P.A.
  email: iwijaya2@illinois.edu
– sequence: 2
  givenname: Oscar
  surname: Lopez-Pamies
  fullname: Lopez-Pamies, Oscar
  email: pamies@illinois.edu
– sequence: 3
  givenname: Arif
  orcidid: 0000-0002-4708-4251
  surname: Masud
  fullname: Masud, Arif
  email: amasud@illinois.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37724292$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhb0oog_6B1igLNnk1rHzsoSEqgpopUps6NrydcZlrhw72M5F99_jkNIWFhUrP2a-c-wzp-TIeQeEvK3opqJVe7Hb7MYpbhhlPF80vGJH5IRSxsqGivaYnMa4o5Q2tKtek2Pedaxmgp0QfVnMDg3CUAyQIIzolEvlFCBC2KO7L4wP42xVQu-WfaH9uFQjbi1coHt-LAw6TFDsMWoPVsWEGtPhDXlllI1w_rCekbvPn75dXZe3X7_cXF3elrpu2lSauh8Up5wzZYTeVkp1sG25Ef1Q14OuKtYLobveCA6CNTWnouu46hvdc6i54WeEr7qzm9Thp7JWTgFHFQ6yonKJSe7kEpNcYpJrTJn6uFLTvB1h0OBSUE-kVyj_rjj8Lu_9fuGzQiOywvsHheB_zBCTHHMAYK1y4Ofs1rftkjjvcuu752aPLn8GkhvY2qCDjzGA-b8v9P9AOfbfE8sPRvsy-mFFIQ9mjxBk1AhOw4ABdJKDx5fwX_-DyD8
CitedBy_id crossref_primary_10_1016_j_mechmat_2024_105187
crossref_primary_10_1016_j_jmps_2024_105934
crossref_primary_10_1016_j_ijsolstr_2024_113023
crossref_primary_10_1016_j_jmbbm_2024_106502
crossref_primary_10_1016_j_jmps_2025_106033
crossref_primary_10_1016_j_ijsolstr_2024_112670
crossref_primary_10_1016_j_mechmat_2024_105108
crossref_primary_10_1177_10812865241263788
crossref_primary_10_1016_j_finel_2024_104114
Cites_doi 10.1016/j.ijnonlinmec.2019.06.008
10.1016/j.crme.2015.11.004
10.1016/0045-7825(93)90080-H
10.6028/jres.068A.022
10.1016/j.jmps.2020.104172
10.1016/0022-5096(68)90016-1
10.1137/0703051
10.1016/0001-8686(72)80001-0
10.1016/j.ijengsci.2013.06.009
10.5254/1.3538357
10.1007/s007910050004
10.1146/annurev.fluid.36.050802.122132
10.1007/s00707-016-1673-7
10.1016/j.cma.2013.08.010
10.1016/S0020-7683(97)00217-5
10.1016/j.media.2009.10.006
10.1016/j.actbio.2017.06.024
10.1016/j.jmps.2016.12.011
10.1016/j.jmbbm.2019.02.024
10.1016/0022-5096(93)90013-6
10.1016/j.jmps.2021.104544
10.1023/B:ELAS.0000005553.38563.91
10.1016/S0022-5096(97)00075-6
10.1016/j.jmbbm.2013.07.013
10.1002/fld.4287
10.1007/s11012-020-01179-1
10.1016/S0065-2156(08)70278-3
10.1557/JMR.2003.0020
10.1016/0045-7825(92)90123-2
10.1016/j.compscitech.2018.11.025
10.1007/BF01048304
10.1007/BF00297992
10.1016/j.ijengsci.2010.09.007
10.1016/j.jmps.2021.104650
10.1016/j.crme.2012.02.018
10.1016/S0045-7949(99)00137-6
10.1002/nme.3320
10.1017/S0962492910000048
10.1137/070704770
10.1016/j.crme.2009.12.007
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.jmps.2023.105312
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai:pubmedcentral.nih.gov:10505359
PMC10505359
37724292
10_1016_j_jmps_2023_105312
S0022509623001163
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM135921
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SST
SSZ
T5K
VH1
WUQ
XFK
XPP
YQT
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c456t-f48da30332af9cb1aa7eb63f98d44dc112899c78f93e9254309773a85c83e43f3
IEDL.DBID UNPAY
ISSN 0022-5096
1873-4782
IngestDate Sun Oct 26 02:48:13 EDT 2025
Tue Sep 30 17:08:23 EDT 2025
Sun Sep 28 05:28:50 EDT 2025
Mon Jul 21 06:04:18 EDT 2025
Wed Oct 01 05:13:21 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 23 02:37:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stabilized finite elements
Finite deformations
Elastomers
Stable ODE solvers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-f48da30332af9cb1aa7eb63f98d44dc112899c78f93e9254309773a85c83e43f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
All authors declare that they do not have any financial or personal relationships that may be perceived as influencing their work.
Author Statement
ORCID 0000-0002-4708-4251
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10505359/pdf/nihms-1904472.pdf
PMID 37724292
PQID 2866377237
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_jmps_2023_105312
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10505359
proquest_miscellaneous_2866377237
pubmed_primary_37724292
crossref_primary_10_1016_j_jmps_2023_105312
crossref_citationtrail_10_1016_j_jmps_2023_105312
elsevier_sciencedirect_doi_10_1016_j_jmps_2023_105312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the mechanics and physics of solids
PublicationTitleAlternate J Mech Phys Solids
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gent (b14) 1996; 69
Zener (b45) 1948
Lockett (b29) 1972
Anand, Kwack, Masud (b2) 2013; 72
Ghosh, Lopez-Pamies (b15) 2021; 56
Bergstrom, Boyce (b5) 1998; 46
Chockalingam, Roth, Henzel, Cohen (b10) 2021; 146
Hosseini-Farid, Ramzanpour, Ziejewski, Karami (b20) 2019; 116
Schöberl (b38) 1997; 1
Ghosh, Shrimali, Kumar, Lopez-Pamies (b16) 2021; 154
Shrimali, Ghosh, Lopez-Pamies (b39) 2021
Kumar, Lopez-Pamies (b24) 2016; 344
Halphen, Nguyen (b18) 1975; 14
Oyen, Cook (b34) 2003; 18
Green, Rivlin (b17) 1957; 1
Hochbruck, Ostermann (b19) 2010; 31
Beatty (b4) 2003; 70
Budday, Sommer, Haybaeck, Steinmann, Holzapfel, Kuhl (b7) 2017; 60
Weir (b43) 1951; 46
Birzle, Wall (b6) 2019; 94
Croom, Jin, Carroll, Long, Li (b11) 2019; 169
Chen, Ravi-Chandar (b9) 2022; 158
Ipsen, Rehman (b22) 2008; 30
Sidoroff (b40) 1974; 13
Lawson (b27) 1966; 3
Arruda, Boyce (b3) 1993; 41
Idiart, Lopez-Pamies (b21) 2012; 340
Lubachevsky, Stillinger, Pinson (b31) 1991; 64
Krieger (b23) 1972; 3
Simo (b41) 1992; 99
Reese, Wriggers, Reddy (b37) 2000; 75
Eleni, Perivoliotis, Dragatogiannis, Krokida, Polyzois, Charitidis, Ziomas, Gettleman (b12) 2013; 28
Wood, Martin (b44) 1964; 68A
Le Tallec, Rahier, Kaiss (b28) 1993; 109
Pipkin, Rogers (b35) 1968; 16
Masud, Truster (b33) 2013; 267
Lopez-Pamies (b30) 2010; 338
Mao, Lin, Zhao, Anand (b32) 2017; 100
Freed, Rajagopal (b13) 2016; 227
Kwack, Masud, Rajagopal (b26) 2017; 83
Caylak, Mahnken (b8) 2012; 90
Kwack, Masud (b25) 2010; 48
Stickel, Powell (b42) 2005; 37
Ziegler, Wehrli (b46) 1987; 25
Ahn, Kim (b1) 2010; 14
Reese, Govindjee (b36) 1998; 35
Ahn (10.1016/j.jmps.2023.105312_b1) 2010; 14
Stickel (10.1016/j.jmps.2023.105312_b42) 2005; 37
Ziegler (10.1016/j.jmps.2023.105312_b46) 1987; 25
Masud (10.1016/j.jmps.2023.105312_b33) 2013; 267
Mao (10.1016/j.jmps.2023.105312_b32) 2017; 100
Ghosh (10.1016/j.jmps.2023.105312_b16) 2021; 154
Schöberl (10.1016/j.jmps.2023.105312_b38) 1997; 1
Beatty (10.1016/j.jmps.2023.105312_b4) 2003; 70
Arruda (10.1016/j.jmps.2023.105312_b3) 1993; 41
Idiart (10.1016/j.jmps.2023.105312_b21) 2012; 340
Reese (10.1016/j.jmps.2023.105312_b36) 1998; 35
Croom (10.1016/j.jmps.2023.105312_b11) 2019; 169
Kwack (10.1016/j.jmps.2023.105312_b25) 2010; 48
Halphen (10.1016/j.jmps.2023.105312_b18) 1975; 14
Lawson (10.1016/j.jmps.2023.105312_b27) 1966; 3
Le Tallec (10.1016/j.jmps.2023.105312_b28) 1993; 109
Shrimali (10.1016/j.jmps.2023.105312_b39) 2021
Freed (10.1016/j.jmps.2023.105312_b13) 2016; 227
Ipsen (10.1016/j.jmps.2023.105312_b22) 2008; 30
Birzle (10.1016/j.jmps.2023.105312_b6) 2019; 94
Ghosh (10.1016/j.jmps.2023.105312_b15) 2021; 56
Reese (10.1016/j.jmps.2023.105312_b37) 2000; 75
Bergstrom (10.1016/j.jmps.2023.105312_b5) 1998; 46
Eleni (10.1016/j.jmps.2023.105312_b12) 2013; 28
Gent (10.1016/j.jmps.2023.105312_b14) 1996; 69
Weir (10.1016/j.jmps.2023.105312_b43) 1951; 46
Zener (10.1016/j.jmps.2023.105312_b45) 1948
Pipkin (10.1016/j.jmps.2023.105312_b35) 1968; 16
Sidoroff (10.1016/j.jmps.2023.105312_b40) 1974; 13
Chen (10.1016/j.jmps.2023.105312_b9) 2022; 158
Chockalingam (10.1016/j.jmps.2023.105312_b10) 2021; 146
Hosseini-Farid (10.1016/j.jmps.2023.105312_b20) 2019; 116
Green (10.1016/j.jmps.2023.105312_b17) 1957; 1
Krieger (10.1016/j.jmps.2023.105312_b23) 1972; 3
Kwack (10.1016/j.jmps.2023.105312_b26) 2017; 83
Caylak (10.1016/j.jmps.2023.105312_b8) 2012; 90
Lockett (10.1016/j.jmps.2023.105312_b29) 1972
Simo (10.1016/j.jmps.2023.105312_b41) 1992; 99
Budday (10.1016/j.jmps.2023.105312_b7) 2017; 60
Wood (10.1016/j.jmps.2023.105312_b44) 1964; 68A
Hochbruck (10.1016/j.jmps.2023.105312_b19) 2010; 31
Anand (10.1016/j.jmps.2023.105312_b2) 2013; 72
Lubachevsky (10.1016/j.jmps.2023.105312_b31) 1991; 64
Oyen (10.1016/j.jmps.2023.105312_b34) 2003; 18
Kumar (10.1016/j.jmps.2023.105312_b24) 2016; 344
Lopez-Pamies (10.1016/j.jmps.2023.105312_b30) 2010; 338
References_xml – volume: 72
  start-page: 78
  year: 2013
  end-page: 88
  ident: b2
  article-title: A new generalized Oldroyd-B model for blood flow in complex geometries
  publication-title: Internat. J. Engrg. Sci.
– volume: 31
  start-page: 209
  year: 2010
  end-page: 286
  ident: b19
  article-title: Exponential integrators
  publication-title: Acta Numer.
– volume: 340
  start-page: 359
  year: 2012
  end-page: 368
  ident: b21
  article-title: On the overall response of elastomeric solids with pressurized cavities
  publication-title: C. R. Mecanique
– volume: 30
  start-page: 762
  year: 2008
  end-page: 776
  ident: b22
  article-title: Perturbation bounds for determinants and characteristic polynomials
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 109
  start-page: 233
  year: 1993
  end-page: 258
  ident: b28
  article-title: Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 14
  start-page: 138
  year: 2010
  end-page: 148
  ident: b1
  article-title: Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations
  publication-title: Med. Image Anal.
– volume: 60
  start-page: 315
  year: 2017
  end-page: 329
  ident: b7
  article-title: Rheological characterization of human brain tissue
  publication-title: Acta Biomater.
– volume: 169
  start-page: 195
  year: 2019
  end-page: 202
  ident: b11
  article-title: Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses
  publication-title: Compos. Sci. Technol.
– volume: 99
  start-page: 61
  year: 1992
  end-page: 112
  ident: b41
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 46
  year: 1951
  ident: b43
  article-title: Compressibility of natural and synthetic high polymers at high pressures
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 100
  start-page: 103
  year: 2017
  end-page: 130
  ident: b32
  article-title: A large deformation viscoelastic model for double-network hydrogels
  publication-title: J. Mech. Phys. Solids
– volume: 158
  year: 2022
  ident: b9
  article-title: Nonlinear poroviscoelastic behavior of gelatin-based hydrogel
  publication-title: J. Mech. Phys. Solids
– volume: 48
  start-page: 1413
  year: 2010
  end-page: 1432
  ident: b25
  article-title: A three-field formulation for incompressible viscoelastic fluids
  publication-title: Internat. J. Engrg. Sci.
– volume: 13
  start-page: 679
  year: 1974
  end-page: 713
  ident: b40
  article-title: Un modèle viscoélastique non linéaire avec configuration intermédiaire
  publication-title: J. de Mécanique
– volume: 28
  start-page: 147
  year: 2013
  end-page: 155
  ident: b12
  article-title: Tensile and microindentation properties of maxillofacial elastomers after different disinfecting procedures
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 154
  year: 2021
  ident: b16
  article-title: The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber: I — Gaussian rubber with constant viscosity
  publication-title: J. Mech. Phys. Solids
– volume: 227
  start-page: 3367
  year: 2016
  end-page: 3380
  ident: b13
  article-title: A viscoelastic model for describing the response of biological fibers
  publication-title: Acta Mech.
– volume: 116
  start-page: 147
  year: 2019
  end-page: 154
  ident: b20
  article-title: A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters
  publication-title: Int. J. Non-Linear Mech.
– volume: 16
  start-page: 59
  year: 1968
  end-page: 72
  ident: b35
  article-title: A non-linear integral representation for viscoelastic behaviour
  publication-title: J. Mech. Phys. Solids
– volume: 37
  start-page: 129
  year: 2005
  end-page: 149
  ident: b42
  article-title: Fluid mechanics and rheology of dense suspensions
  publication-title: Annu. Rev. Fluid Mech.
– volume: 83
  start-page: 704
  year: 2017
  end-page: 734
  ident: b26
  article-title: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model: Stabilized mixed method for a generalized Oldroyd-B model
  publication-title: Internat. J. Numer. Methods Fluids
– year: 1972
  ident: b29
  article-title: Nonlinear Viscoelastic Solids
– year: 2021
  ident: b39
  article-title: The nonlinear viscoelastic response of suspensions of vacuous bubbles in rubber: I — Gaussian rubber with constant viscosity
  publication-title: J. Elasticity
– volume: 90
  start-page: 218
  year: 2012
  end-page: 242
  ident: b8
  article-title: Stabilization of mixed tetrahedral elements at large deformations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 344
  start-page: 102
  year: 2016
  end-page: 112
  ident: b24
  article-title: On the two-potential constitutive modelling of rubber viscoelastic materials
  publication-title: C. R. Mecanique
– volume: 68A
  start-page: 259
  year: 1964
  end-page: 268
  ident: b44
  article-title: Compressibility of natural rubber at pressures below 500 kg/cm
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 1
  start-page: 1
  year: 1957
  end-page: 21
  ident: b17
  article-title: The mechanics of non-linear materials with memory: Part I
  publication-title: Arch. Ration. Mech. Anal.
– volume: 46
  start-page: 931
  year: 1998
  end-page: 954
  ident: b5
  article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers
  publication-title: J. Mech. Phys. Solids
– volume: 3
  start-page: 111
  year: 1972
  end-page: 136
  ident: b23
  article-title: Rheology of monodisperse latices
  publication-title: Adv. Colloid Interface Sci.
– volume: 3
  start-page: 593
  year: 1966
  end-page: 597
  ident: b27
  article-title: An order five Runge–Kutta process with extended region of stability
  publication-title: SIAM J. Numer. Anal.
– volume: 18
  start-page: 139
  year: 2003
  end-page: 150
  ident: b34
  article-title: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials
  publication-title: J. Mater. Res.
– volume: 94
  start-page: 164
  year: 2019
  end-page: 175
  ident: b6
  article-title: A viscoelastic nonlinear compressible material model of lung parenchyma — Experiments and numerical identification
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 14
  start-page: 39
  year: 1975
  end-page: 63
  ident: b18
  article-title: Sur les matériaux standard généralisés
  publication-title: J. Méc.
– volume: 338
  start-page: 3
  year: 2010
  end-page: 11
  ident: b30
  article-title: A new
  publication-title: C. R. Mecanique
– volume: 267
  start-page: 359
  year: 2013
  end-page: 399
  ident: b33
  article-title: A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 1
  start-page: 41
  year: 1997
  end-page: 52
  ident: b38
  article-title: Netgen an advancing front 2d/3d-mesh generator based on abstract rules
  publication-title: Comput. Visual. Sci.
– volume: 56
  start-page: 1505
  year: 2021
  end-page: 1521
  ident: b15
  article-title: On the two-potential constitutive modeling of dielectric elastomers
  publication-title: Meccanica
– volume: 64
  start-page: 501
  year: 1991
  end-page: 523
  ident: b31
  article-title: Disks vs spheres: Contrasting properties of random packings
  publication-title: J. Stat. Phys.
– volume: 35
  start-page: 3455
  year: 1998
  end-page: 3482
  ident: b36
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solids Struct.
– volume: 69
  start-page: 59
  year: 1996
  end-page: 61
  ident: b14
  article-title: A new constitutive relation for rubber
  publication-title: Rubber Chem. Technol.
– year: 1948
  ident: b45
  article-title: Elasticity and Anelasticity of Metals
– volume: 25
  start-page: 183
  year: 1987
  end-page: 238
  ident: b46
  article-title: The derivation of constitutive relations from the free energy and the dissipation function
  publication-title: Adv. Appl. Mech.
– volume: 146
  year: 2021
  ident: b10
  article-title: Probing local nonlinear viscoelastic properties in soft materials
  publication-title: J. Mech. Phys. Solids
– volume: 41
  start-page: 389
  year: 1993
  end-page: 412
  ident: b3
  article-title: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials
  publication-title: J. Mech. Phys. Solids
– volume: 70
  start-page: 65
  year: 2003
  end-page: 86
  ident: b4
  article-title: An average-stretch full-network model for rubber elasticity
  publication-title: J. Elasticity
– volume: 75
  start-page: 291
  year: 2000
  end-page: 304
  ident: b37
  article-title: New locking-free brick element technique for large deformation problems in elasticity
  publication-title: Comput. Struct.
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.jmps.2023.105312_b20
  article-title: A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2019.06.008
– year: 1948
  ident: 10.1016/j.jmps.2023.105312_b45
– volume: 14
  start-page: 39
  year: 1975
  ident: 10.1016/j.jmps.2023.105312_b18
  article-title: Sur les matériaux standard généralisés
  publication-title: J. Méc.
– volume: 344
  start-page: 102
  year: 2016
  ident: 10.1016/j.jmps.2023.105312_b24
  article-title: On the two-potential constitutive modelling of rubber viscoelastic materials
  publication-title: C. R. Mecanique
  doi: 10.1016/j.crme.2015.11.004
– volume: 109
  start-page: 233
  year: 1993
  ident: 10.1016/j.jmps.2023.105312_b28
  article-title: Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(93)90080-H
– volume: 68A
  start-page: 259
  year: 1964
  ident: 10.1016/j.jmps.2023.105312_b44
  article-title: Compressibility of natural rubber at pressures below 500 kg/cm2
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.068A.022
– volume: 146
  year: 2021
  ident: 10.1016/j.jmps.2023.105312_b10
  article-title: Probing local nonlinear viscoelastic properties in soft materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104172
– volume: 16
  start-page: 59
  year: 1968
  ident: 10.1016/j.jmps.2023.105312_b35
  article-title: A non-linear integral representation for viscoelastic behaviour
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(68)90016-1
– volume: 3
  start-page: 593
  year: 1966
  ident: 10.1016/j.jmps.2023.105312_b27
  article-title: An order five Runge–Kutta process with extended region of stability
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0703051
– year: 2021
  ident: 10.1016/j.jmps.2023.105312_b39
  article-title: The nonlinear viscoelastic response of suspensions of vacuous bubbles in rubber: I — Gaussian rubber with constant viscosity
  publication-title: J. Elasticity
– volume: 46
  issue: 207
  year: 1951
  ident: 10.1016/j.jmps.2023.105312_b43
  article-title: Compressibility of natural and synthetic high polymers at high pressures
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 3
  start-page: 111
  year: 1972
  ident: 10.1016/j.jmps.2023.105312_b23
  article-title: Rheology of monodisperse latices
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(72)80001-0
– volume: 72
  start-page: 78
  year: 2013
  ident: 10.1016/j.jmps.2023.105312_b2
  article-title: A new generalized Oldroyd-B model for blood flow in complex geometries
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/j.ijengsci.2013.06.009
– volume: 69
  start-page: 59
  year: 1996
  ident: 10.1016/j.jmps.2023.105312_b14
  article-title: A new constitutive relation for rubber
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3538357
– year: 1972
  ident: 10.1016/j.jmps.2023.105312_b29
– volume: 1
  start-page: 41
  year: 1997
  ident: 10.1016/j.jmps.2023.105312_b38
  article-title: Netgen an advancing front 2d/3d-mesh generator based on abstract rules
  publication-title: Comput. Visual. Sci.
  doi: 10.1007/s007910050004
– volume: 37
  start-page: 129
  year: 2005
  ident: 10.1016/j.jmps.2023.105312_b42
  article-title: Fluid mechanics and rheology of dense suspensions
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122132
– volume: 227
  start-page: 3367
  year: 2016
  ident: 10.1016/j.jmps.2023.105312_b13
  article-title: A viscoelastic model for describing the response of biological fibers
  publication-title: Acta Mech.
  doi: 10.1007/s00707-016-1673-7
– volume: 267
  start-page: 359
  year: 2013
  ident: 10.1016/j.jmps.2023.105312_b33
  article-title: A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and F¯ methods for linear triangles and tetrahedra
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.08.010
– volume: 35
  start-page: 3455
  year: 1998
  ident: 10.1016/j.jmps.2023.105312_b36
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(97)00217-5
– volume: 14
  start-page: 138
  year: 2010
  ident: 10.1016/j.jmps.2023.105312_b1
  article-title: Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.10.006
– volume: 60
  start-page: 315
  year: 2017
  ident: 10.1016/j.jmps.2023.105312_b7
  article-title: Rheological characterization of human brain tissue
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.06.024
– volume: 100
  start-page: 103
  year: 2017
  ident: 10.1016/j.jmps.2023.105312_b32
  article-title: A large deformation viscoelastic model for double-network hydrogels
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2016.12.011
– volume: 13
  start-page: 679
  year: 1974
  ident: 10.1016/j.jmps.2023.105312_b40
  article-title: Un modèle viscoélastique non linéaire avec configuration intermédiaire
  publication-title: J. de Mécanique
– volume: 94
  start-page: 164
  year: 2019
  ident: 10.1016/j.jmps.2023.105312_b6
  article-title: A viscoelastic nonlinear compressible material model of lung parenchyma — Experiments and numerical identification
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.02.024
– volume: 41
  start-page: 389
  year: 1993
  ident: 10.1016/j.jmps.2023.105312_b3
  article-title: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(93)90013-6
– volume: 154
  year: 2021
  ident: 10.1016/j.jmps.2023.105312_b16
  article-title: The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber: I — Gaussian rubber with constant viscosity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104544
– volume: 70
  start-page: 65
  year: 2003
  ident: 10.1016/j.jmps.2023.105312_b4
  article-title: An average-stretch full-network model for rubber elasticity
  publication-title: J. Elasticity
  doi: 10.1023/B:ELAS.0000005553.38563.91
– volume: 46
  start-page: 931
  year: 1998
  ident: 10.1016/j.jmps.2023.105312_b5
  article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(97)00075-6
– volume: 28
  start-page: 147
  year: 2013
  ident: 10.1016/j.jmps.2023.105312_b12
  article-title: Tensile and microindentation properties of maxillofacial elastomers after different disinfecting procedures
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.07.013
– volume: 83
  start-page: 704
  year: 2017
  ident: 10.1016/j.jmps.2023.105312_b26
  article-title: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model: Stabilized mixed method for a generalized Oldroyd-B model
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.4287
– volume: 56
  start-page: 1505
  year: 2021
  ident: 10.1016/j.jmps.2023.105312_b15
  article-title: On the two-potential constitutive modeling of dielectric elastomers
  publication-title: Meccanica
  doi: 10.1007/s11012-020-01179-1
– volume: 25
  start-page: 183
  year: 1987
  ident: 10.1016/j.jmps.2023.105312_b46
  article-title: The derivation of constitutive relations from the free energy and the dissipation function
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70278-3
– volume: 18
  start-page: 139
  year: 2003
  ident: 10.1016/j.jmps.2023.105312_b34
  article-title: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0020
– volume: 99
  start-page: 61
  year: 1992
  ident: 10.1016/j.jmps.2023.105312_b41
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90123-2
– volume: 169
  start-page: 195
  year: 2019
  ident: 10.1016/j.jmps.2023.105312_b11
  article-title: Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.11.025
– volume: 64
  start-page: 501
  year: 1991
  ident: 10.1016/j.jmps.2023.105312_b31
  article-title: Disks vs spheres: Contrasting properties of random packings
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01048304
– volume: 1
  start-page: 1
  year: 1957
  ident: 10.1016/j.jmps.2023.105312_b17
  article-title: The mechanics of non-linear materials with memory: Part I
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00297992
– volume: 48
  start-page: 1413
  year: 2010
  ident: 10.1016/j.jmps.2023.105312_b25
  article-title: A three-field formulation for incompressible viscoelastic fluids
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/j.ijengsci.2010.09.007
– volume: 158
  year: 2022
  ident: 10.1016/j.jmps.2023.105312_b9
  article-title: Nonlinear poroviscoelastic behavior of gelatin-based hydrogel
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104650
– volume: 340
  start-page: 359
  year: 2012
  ident: 10.1016/j.jmps.2023.105312_b21
  article-title: On the overall response of elastomeric solids with pressurized cavities
  publication-title: C. R. Mecanique
  doi: 10.1016/j.crme.2012.02.018
– volume: 75
  start-page: 291
  year: 2000
  ident: 10.1016/j.jmps.2023.105312_b37
  article-title: New locking-free brick element technique for large deformation problems in elasticity
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(99)00137-6
– volume: 90
  start-page: 218
  year: 2012
  ident: 10.1016/j.jmps.2023.105312_b8
  article-title: Stabilization of mixed tetrahedral elements at large deformations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3320
– volume: 31
  start-page: 209
  year: 2010
  ident: 10.1016/j.jmps.2023.105312_b19
  article-title: Exponential integrators
  publication-title: Acta Numer.
  doi: 10.1017/S0962492910000048
– volume: 30
  start-page: 762
  year: 2008
  ident: 10.1016/j.jmps.2023.105312_b22
  article-title: Perturbation bounds for determinants and characteristic polynomials
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/070704770
– volume: 338
  start-page: 3
  year: 2010
  ident: 10.1016/j.jmps.2023.105312_b30
  article-title: A new I1-based hyperelastic model for rubber elastic materials
  publication-title: C. R. Mecanique
  doi: 10.1016/j.crme.2009.12.007
SSID ssj0005071
Score 2.4977424
Snippet This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105312
SubjectTerms Elastomers
Finite deformations
Stabilized finite elements
Stable ODE solvers
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WL-pBfFtfVPCmVdukbXqUxWUR9OTC3ko2D62s3UV3FS_-dmf6chdRxFuTJpBk8vhCvvkG4JhF9LwltBfaiHvcSuNJxgLPV0rzMMA7hyZv5JvbqNvj1_2w34J27QtDtMpq7y_39GK3rnLOq9E8H2cZ-fjiXEQEjiCaXhNI8ZPzmKIYnH3M0DwuYr9WDKfSleNMyfF6fBqTZHfAKNwt84OfDqfv4PM7h3Jxmo_l-5scDmcOqM4qrFTI0r0sG78GLZOvw_KM3uAGqEt3mmcWUaerv2gwHnFhacvI712CsFVAL_p2iXFeMGUHOB4k5PCVdG1GeNV9zV7UyCAIJ3725H0Tep2ru3bXq6IseArB08SzXGiJBxkLpE3UwJeSwqQwmwjNuVaIx_BKpmJhE2YScp2_QMjIpAiVYIYzy7ZgIR_lZgfcRAkdhdYYofCWEkcykTqwsc9lENlIhg749fCmqpIgp0gYw7Tmmj2mZJKUTJKWJnHgpKkzLgU4fi0d1lZL56ZRiifEr_WOahOnuL7o0UTmZjTFQgIxGV5BWOzAdmnyph2UT-G-HBBzk6EpQNrd83_y7KHQ8PYpgiALEwdOm3nzh_7t_rN_e7BEqZK5uA8Lk-epOUA0NRkcFsvlE-mkH3I
  priority: 102
  providerName: Elsevier
Title A unified determinant-preserving formulation for compressible/incompressible finite viscoelasticity
URI https://dx.doi.org/10.1016/j.jmps.2023.105312
https://www.ncbi.nlm.nih.gov/pubmed/37724292
https://www.proquest.com/docview/2866377237
https://pubmed.ncbi.nlm.nih.gov/PMC10505359
https://pmc.ncbi.nlm.nih.gov/articles/PMC10505359/pdf/nihms-1904472.pdf
UnpaywallVersion submittedVersion
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0022-5096
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005071
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0022-5096
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005071
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  issn: 0022-5096
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005071
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0022-5096
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005071
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0022-5096
  databaseCode: AKRWK
  dateStart: 19521001
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQE48H6YR2QkbuCk9q7t9TGqKIGoUYWIKCdrvQ-akjgWtUHlwG9nJn60paICiZO99qxle2c938jffgPwgkX0e0toL7QR97iVxpOMBZ6vlOZhgDmHptXI-7NoMufvDsPDLXjTroUpVngVlS2G-XI1zBdHG25lyxEbHezv-lR6jYXJqNB2hAarEw9jGucxJojabkM_ChGU96A_nx2MP7Va4SRyQqmXiJnHMSg2y2dqptfxqiDh7oBR0VvmB38KUZch6GUm5bUqL-Tpd7lcngtTe7fgqHvADTvly7Aqs6H68Zv24394A7fhZgNl3XHd6Q5smfwu3DgncHgP1Nit8oVFmOvqM96NR-Rb-kbln13CzE0FMdp3ieK-oeZmSzMi5YizpmsXBJDdb4sTtTaI-okQXp7eh_ne6w-7E68p6-ApRGulZ7nQEiMnC6RNVOZLSXVZmE2E5lwrBICYA6pY2ISZhNbq7yBGZVKESjDDmWUPoJevc_MI3EQJHYXWGKEwLYojmUgd2NjnMohsJEMH_HYkU9VonlPpjWXaktuOUxr9lEY_rUffgZddn6JW_LjSOmwdJG0wS41FUgxJV_Z73npTihOa_tLI3KwrNBIIAjHnYbEDD2vv6u6DjlN9MQfEBb_rDEgs_OIZdJCNaHjrNQ686lz0L57v8b-ZP4Hr1KoZkk-hV36tzDNEbWU2gO3hT38A_fHb6WRG2-n7j9NBM09_AcAcRYg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5B9wAc0C7PsAsEiRuEkthJnCNCi7rL4wQSN8v1A4JKWkEL6oXfzkyTlFYIhLgl8TiyPX58I38zA7DLErreEiaIXcID7pQNFGNREGpteByhzWHIG_n8Imld8f_X8fUMHNe-MESrrPb-ck8f7dbVl2Y1ms1enpOPL85FROAIouk2gc3CD_o7WWAHLxM8j8M0rEOGk3jlOVOSvO7uexSzO2KU75aF0Uen03v0-Z5EOTcoemr4rDqdiRPq5CcsVtDSPypb_wtmbLEECxMBB5dBH_mDIncIO33zxoMJiAxLe0Zx4xOGrTJ60bNPlPMRVbaNA0KRHN5efZcTYPWf8kfdtYjCiaDdH67A1cnfy-NWUKVZCDSip37guDAKTzIWKZfpdqgU5UlhLhOGc6MRkKFNplPhMmYz8p0_RMzIlIi1YJYzx1ahUXQLuw5-poVJYmet0GimpInKlIlcGnIVJS5RsQdhPbxSVzHIKRVGR9ZksztJKpGkElmqxIO9cZ1eGYHjU-m41pqcmkcSj4hP6-3UKpa4wOjWRBW2O0AhgaAMbRCWerBWqnzcDvpO-b48EFOTYSxAwbunS4r8dhTEO6QUgizOPNgfz5sv9G_jm_3bhrnW5fmZPPt3cfob5qmkpDH-gUb_YWA3EVr121ujpfMKYUsilQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P0ILwWJG3iXxE7iHFcVpUJq1QMrlVPk-NGmZLNRm4DKr2dm82hLRQUStzgZR3E8yXwjf_4G4C2PaXlLGha5WDDhlGWK85AFWhsRhZhzGNqNvLcf7y7E58PocAM-DXth6iXeRefFtCqX06o4XnMrB47Y7GBvO6DSazxKZ7VxMzRYnjGMaUIkmCAadws24whB-QQ2F_sH86-DVjiJnFDqJRPOBAbFfvtMx_Q6WdYk3B1yKnrLg_BPIeo6BL3OpLzdVrU6_6HK8lKY2rkHx-MA1-yUb9O2yaf652_aj__hDdyHuz2U9eddpwewYauHsHVJ4PAR6LnfVoVDmOubC94NI_It_aOqI58wc19BjI59orivqbl5aWekHHHR9F1BANn_XpzplUXUT4Tw5vwxLHY-ftneZX1ZB6YRrTXMCWkURk4eKpfqPFCK6rJwl0ojhNEIADEH1Il0Kbcp7dX_gBiVKxlpya3gjj-BSbWq7DPwUy1NHDlrpca0KIlVqkzokkCoMHaxijwIhpnMdK95TqU3ymwgt51kNPsZzX7Wzb4H78Y-daf4caN1NDhI1mOWDotkGJJu7Pdm8KYMP2hapVGVXbVoJBEEYs7DEw-edt41Pgedp_piHsgrfjcakFj41SvoIGvR8MFrPHg_uuhfjO_5v5m_gDvU6hiSL2HSnLb2FaK2Jn_df5G_APxZQVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Determinant-Preserving+Formulation+for+Compressible%2FIncompressible+Finite+Viscoelasticity&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Wijaya%2C+Ignasius+P.A.&rft.au=Lopez-Pamies%2C+Oscar&rft.au=Masud%2C+Arif&rft.date=2023-08-01&rft.issn=0022-5096&rft.volume=177&rft_id=info:doi/10.1016%2Fj.jmps.2023.105312&rft_id=info%3Apmid%2F37724292&rft.externalDocID=PMC10505359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon