A unified determinant-preserving formulation for compressible/incompressible finite viscoelasticity
This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide ran...
        Saved in:
      
    
          | Published in | Journal of the mechanics and physics of solids Vol. 177; p. 105312 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        01.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-5096 1873-4782  | 
| DOI | 10.1016/j.jmps.2023.105312 | 
Cover
| Abstract | This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint detFv=1. To solve the resulting initial–boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint detFv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint detFv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation. | 
    
|---|---|
| AbstractList | This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation. This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint detFv=1. To solve the resulting initial–boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint detFv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint detFv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation. This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable is required to satisfy the constraint det . To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det , a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det identically. A series of test cases is presented that showcase the capabilities of the proposed formulation. This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic materials undergoing arbitrary quasistatic finite deformations. With the objective of having a unified formulation that applies to a wide range of highly compressible, nearly incompressible, and fully incompressible soft organic materials in a numerically tractable manner, the viscoelasticity is described within a Lagrangian setting by a two-potential mixed formulation. In this formulation, the deformation field, a pressure field that ensues from a Legendre transform, and an internal variable of state Fv that describes the viscous part of the deformation are the independent fields. Consistent with the experimental evidence that viscous deformation is a volume-preserving process, the internal variable Fv is required to satisfy the constraint det Fv=1. To solve the resulting initial-boundary-value problem, a numerical solution algorithm is proposed that is based on a finite-element (FE) discretization of space and a finite-difference discretization of time. Specifically, a Variational Multiscale FE method is employed that allows for an arbitrary combination of shape functions for the deformation and pressure fields. To deal with the challenging non-convex constraint det Fv=1, a new time integration scheme is introduced that allows to convert any explicit or implicit scheme of choice into a stable scheme that preserves the constraint det Fv=1 identically. A series of test cases is presented that showcase the capabilities of the proposed formulation.  | 
    
| ArticleNumber | 105312 | 
    
| Author | Wijaya, Ignasius P.A. Lopez-Pamies, Oscar Masud, Arif  | 
    
| Author_xml | – sequence: 1 givenname: Ignasius P.A. surname: Wijaya fullname: Wijaya, Ignasius P.A. email: iwijaya2@illinois.edu – sequence: 2 givenname: Oscar surname: Lopez-Pamies fullname: Lopez-Pamies, Oscar email: pamies@illinois.edu – sequence: 3 givenname: Arif orcidid: 0000-0002-4708-4251 surname: Masud fullname: Masud, Arif email: amasud@illinois.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37724292$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv1TAQhb0oog_6B1igLNnk1rHzsoSEqgpopUps6NrydcZlrhw72M5F99_jkNIWFhUrP2a-c-wzp-TIeQeEvK3opqJVe7Hb7MYpbhhlPF80vGJH5IRSxsqGivaYnMa4o5Q2tKtek2Pedaxmgp0QfVnMDg3CUAyQIIzolEvlFCBC2KO7L4wP42xVQu-WfaH9uFQjbi1coHt-LAw6TFDsMWoPVsWEGtPhDXlllI1w_rCekbvPn75dXZe3X7_cXF3elrpu2lSauh8Up5wzZYTeVkp1sG25Ef1Q14OuKtYLobveCA6CNTWnouu46hvdc6i54WeEr7qzm9Thp7JWTgFHFQ6yonKJSe7kEpNcYpJrTJn6uFLTvB1h0OBSUE-kVyj_rjj8Lu_9fuGzQiOywvsHheB_zBCTHHMAYK1y4Ofs1rftkjjvcuu752aPLn8GkhvY2qCDjzGA-b8v9P9AOfbfE8sPRvsy-mFFIQ9mjxBk1AhOw4ABdJKDx5fwX_-DyD8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_mechmat_2024_105187 crossref_primary_10_1016_j_jmps_2024_105934 crossref_primary_10_1016_j_ijsolstr_2024_113023 crossref_primary_10_1016_j_jmbbm_2024_106502 crossref_primary_10_1016_j_jmps_2025_106033 crossref_primary_10_1016_j_ijsolstr_2024_112670 crossref_primary_10_1016_j_mechmat_2024_105108 crossref_primary_10_1177_10812865241263788 crossref_primary_10_1016_j_finel_2024_104114  | 
    
| Cites_doi | 10.1016/j.ijnonlinmec.2019.06.008 10.1016/j.crme.2015.11.004 10.1016/0045-7825(93)90080-H 10.6028/jres.068A.022 10.1016/j.jmps.2020.104172 10.1016/0022-5096(68)90016-1 10.1137/0703051 10.1016/0001-8686(72)80001-0 10.1016/j.ijengsci.2013.06.009 10.5254/1.3538357 10.1007/s007910050004 10.1146/annurev.fluid.36.050802.122132 10.1007/s00707-016-1673-7 10.1016/j.cma.2013.08.010 10.1016/S0020-7683(97)00217-5 10.1016/j.media.2009.10.006 10.1016/j.actbio.2017.06.024 10.1016/j.jmps.2016.12.011 10.1016/j.jmbbm.2019.02.024 10.1016/0022-5096(93)90013-6 10.1016/j.jmps.2021.104544 10.1023/B:ELAS.0000005553.38563.91 10.1016/S0022-5096(97)00075-6 10.1016/j.jmbbm.2013.07.013 10.1002/fld.4287 10.1007/s11012-020-01179-1 10.1016/S0065-2156(08)70278-3 10.1557/JMR.2003.0020 10.1016/0045-7825(92)90123-2 10.1016/j.compscitech.2018.11.025 10.1007/BF01048304 10.1007/BF00297992 10.1016/j.ijengsci.2010.09.007 10.1016/j.jmps.2021.104650 10.1016/j.crme.2012.02.018 10.1016/S0045-7949(99)00137-6 10.1002/nme.3320 10.1017/S0962492910000048 10.1137/070704770 10.1016/j.crme.2009.12.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.jmps.2023.105312 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10505359 PMC10505359 37724292 10_1016_j_jmps_2023_105312 S0022509623001163  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM135921  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SST SSZ T5K VH1 WUQ XFK XPP YQT ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c456t-f48da30332af9cb1aa7eb63f98d44dc112899c78f93e9254309773a85c83e43f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0022-5096 1873-4782  | 
    
| IngestDate | Sun Oct 26 02:48:13 EDT 2025 Tue Sep 30 17:08:23 EDT 2025 Sun Sep 28 05:28:50 EDT 2025 Mon Jul 21 06:04:18 EDT 2025 Wed Oct 01 05:13:21 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 23 02:37:21 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Stabilized finite elements Finite deformations Elastomers Stable ODE solvers  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c456t-f48da30332af9cb1aa7eb63f98d44dc112899c78f93e9254309773a85c83e43f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 All authors declare that they do not have any financial or personal relationships that may be perceived as influencing their work. Author Statement  | 
    
| ORCID | 0000-0002-4708-4251 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10505359/pdf/nihms-1904472.pdf | 
    
| PMID | 37724292 | 
    
| PQID | 2866377237 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_jmps_2023_105312 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10505359 proquest_miscellaneous_2866377237 pubmed_primary_37724292 crossref_primary_10_1016_j_jmps_2023_105312 crossref_citationtrail_10_1016_j_jmps_2023_105312 elsevier_sciencedirect_doi_10_1016_j_jmps_2023_105312  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-08-01 | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Journal of the mechanics and physics of solids | 
    
| PublicationTitleAlternate | J Mech Phys Solids | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gent (b14) 1996; 69 Zener (b45) 1948 Lockett (b29) 1972 Anand, Kwack, Masud (b2) 2013; 72 Ghosh, Lopez-Pamies (b15) 2021; 56 Bergstrom, Boyce (b5) 1998; 46 Chockalingam, Roth, Henzel, Cohen (b10) 2021; 146 Hosseini-Farid, Ramzanpour, Ziejewski, Karami (b20) 2019; 116 Schöberl (b38) 1997; 1 Ghosh, Shrimali, Kumar, Lopez-Pamies (b16) 2021; 154 Shrimali, Ghosh, Lopez-Pamies (b39) 2021 Kumar, Lopez-Pamies (b24) 2016; 344 Halphen, Nguyen (b18) 1975; 14 Oyen, Cook (b34) 2003; 18 Green, Rivlin (b17) 1957; 1 Hochbruck, Ostermann (b19) 2010; 31 Beatty (b4) 2003; 70 Budday, Sommer, Haybaeck, Steinmann, Holzapfel, Kuhl (b7) 2017; 60 Weir (b43) 1951; 46 Birzle, Wall (b6) 2019; 94 Croom, Jin, Carroll, Long, Li (b11) 2019; 169 Chen, Ravi-Chandar (b9) 2022; 158 Ipsen, Rehman (b22) 2008; 30 Sidoroff (b40) 1974; 13 Lawson (b27) 1966; 3 Arruda, Boyce (b3) 1993; 41 Idiart, Lopez-Pamies (b21) 2012; 340 Lubachevsky, Stillinger, Pinson (b31) 1991; 64 Krieger (b23) 1972; 3 Simo (b41) 1992; 99 Reese, Wriggers, Reddy (b37) 2000; 75 Eleni, Perivoliotis, Dragatogiannis, Krokida, Polyzois, Charitidis, Ziomas, Gettleman (b12) 2013; 28 Wood, Martin (b44) 1964; 68A Le Tallec, Rahier, Kaiss (b28) 1993; 109 Pipkin, Rogers (b35) 1968; 16 Masud, Truster (b33) 2013; 267 Lopez-Pamies (b30) 2010; 338 Mao, Lin, Zhao, Anand (b32) 2017; 100 Freed, Rajagopal (b13) 2016; 227 Kwack, Masud, Rajagopal (b26) 2017; 83 Caylak, Mahnken (b8) 2012; 90 Kwack, Masud (b25) 2010; 48 Stickel, Powell (b42) 2005; 37 Ziegler, Wehrli (b46) 1987; 25 Ahn, Kim (b1) 2010; 14 Reese, Govindjee (b36) 1998; 35 Ahn (10.1016/j.jmps.2023.105312_b1) 2010; 14 Stickel (10.1016/j.jmps.2023.105312_b42) 2005; 37 Ziegler (10.1016/j.jmps.2023.105312_b46) 1987; 25 Masud (10.1016/j.jmps.2023.105312_b33) 2013; 267 Mao (10.1016/j.jmps.2023.105312_b32) 2017; 100 Ghosh (10.1016/j.jmps.2023.105312_b16) 2021; 154 Schöberl (10.1016/j.jmps.2023.105312_b38) 1997; 1 Beatty (10.1016/j.jmps.2023.105312_b4) 2003; 70 Arruda (10.1016/j.jmps.2023.105312_b3) 1993; 41 Idiart (10.1016/j.jmps.2023.105312_b21) 2012; 340 Reese (10.1016/j.jmps.2023.105312_b36) 1998; 35 Croom (10.1016/j.jmps.2023.105312_b11) 2019; 169 Kwack (10.1016/j.jmps.2023.105312_b25) 2010; 48 Halphen (10.1016/j.jmps.2023.105312_b18) 1975; 14 Lawson (10.1016/j.jmps.2023.105312_b27) 1966; 3 Le Tallec (10.1016/j.jmps.2023.105312_b28) 1993; 109 Shrimali (10.1016/j.jmps.2023.105312_b39) 2021 Freed (10.1016/j.jmps.2023.105312_b13) 2016; 227 Ipsen (10.1016/j.jmps.2023.105312_b22) 2008; 30 Birzle (10.1016/j.jmps.2023.105312_b6) 2019; 94 Ghosh (10.1016/j.jmps.2023.105312_b15) 2021; 56 Reese (10.1016/j.jmps.2023.105312_b37) 2000; 75 Bergstrom (10.1016/j.jmps.2023.105312_b5) 1998; 46 Eleni (10.1016/j.jmps.2023.105312_b12) 2013; 28 Gent (10.1016/j.jmps.2023.105312_b14) 1996; 69 Weir (10.1016/j.jmps.2023.105312_b43) 1951; 46 Zener (10.1016/j.jmps.2023.105312_b45) 1948 Pipkin (10.1016/j.jmps.2023.105312_b35) 1968; 16 Sidoroff (10.1016/j.jmps.2023.105312_b40) 1974; 13 Chen (10.1016/j.jmps.2023.105312_b9) 2022; 158 Chockalingam (10.1016/j.jmps.2023.105312_b10) 2021; 146 Hosseini-Farid (10.1016/j.jmps.2023.105312_b20) 2019; 116 Green (10.1016/j.jmps.2023.105312_b17) 1957; 1 Krieger (10.1016/j.jmps.2023.105312_b23) 1972; 3 Kwack (10.1016/j.jmps.2023.105312_b26) 2017; 83 Caylak (10.1016/j.jmps.2023.105312_b8) 2012; 90 Lockett (10.1016/j.jmps.2023.105312_b29) 1972 Simo (10.1016/j.jmps.2023.105312_b41) 1992; 99 Budday (10.1016/j.jmps.2023.105312_b7) 2017; 60 Wood (10.1016/j.jmps.2023.105312_b44) 1964; 68A Hochbruck (10.1016/j.jmps.2023.105312_b19) 2010; 31 Anand (10.1016/j.jmps.2023.105312_b2) 2013; 72 Lubachevsky (10.1016/j.jmps.2023.105312_b31) 1991; 64 Oyen (10.1016/j.jmps.2023.105312_b34) 2003; 18 Kumar (10.1016/j.jmps.2023.105312_b24) 2016; 344 Lopez-Pamies (10.1016/j.jmps.2023.105312_b30) 2010; 338  | 
    
| References_xml | – volume: 72 start-page: 78 year: 2013 end-page: 88 ident: b2 article-title: A new generalized Oldroyd-B model for blood flow in complex geometries publication-title: Internat. J. Engrg. Sci. – volume: 31 start-page: 209 year: 2010 end-page: 286 ident: b19 article-title: Exponential integrators publication-title: Acta Numer. – volume: 340 start-page: 359 year: 2012 end-page: 368 ident: b21 article-title: On the overall response of elastomeric solids with pressurized cavities publication-title: C. R. Mecanique – volume: 30 start-page: 762 year: 2008 end-page: 776 ident: b22 article-title: Perturbation bounds for determinants and characteristic polynomials publication-title: SIAM J. Matrix Anal. Appl. – volume: 109 start-page: 233 year: 1993 end-page: 258 ident: b28 article-title: Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 14 start-page: 138 year: 2010 end-page: 148 ident: b1 article-title: Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations publication-title: Med. Image Anal. – volume: 60 start-page: 315 year: 2017 end-page: 329 ident: b7 article-title: Rheological characterization of human brain tissue publication-title: Acta Biomater. – volume: 169 start-page: 195 year: 2019 end-page: 202 ident: b11 article-title: Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses publication-title: Compos. Sci. Technol. – volume: 99 start-page: 61 year: 1992 end-page: 112 ident: b41 article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 46 year: 1951 ident: b43 article-title: Compressibility of natural and synthetic high polymers at high pressures publication-title: J. Res. Natl. Bur. Stand. – volume: 100 start-page: 103 year: 2017 end-page: 130 ident: b32 article-title: A large deformation viscoelastic model for double-network hydrogels publication-title: J. Mech. Phys. Solids – volume: 158 year: 2022 ident: b9 article-title: Nonlinear poroviscoelastic behavior of gelatin-based hydrogel publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 1413 year: 2010 end-page: 1432 ident: b25 article-title: A three-field formulation for incompressible viscoelastic fluids publication-title: Internat. J. Engrg. Sci. – volume: 13 start-page: 679 year: 1974 end-page: 713 ident: b40 article-title: Un modèle viscoélastique non linéaire avec configuration intermédiaire publication-title: J. de Mécanique – volume: 28 start-page: 147 year: 2013 end-page: 155 ident: b12 article-title: Tensile and microindentation properties of maxillofacial elastomers after different disinfecting procedures publication-title: J. Mech. Behav. Biomed. Mater. – volume: 154 year: 2021 ident: b16 article-title: The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber: I — Gaussian rubber with constant viscosity publication-title: J. Mech. Phys. Solids – volume: 227 start-page: 3367 year: 2016 end-page: 3380 ident: b13 article-title: A viscoelastic model for describing the response of biological fibers publication-title: Acta Mech. – volume: 116 start-page: 147 year: 2019 end-page: 154 ident: b20 article-title: A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters publication-title: Int. J. Non-Linear Mech. – volume: 16 start-page: 59 year: 1968 end-page: 72 ident: b35 article-title: A non-linear integral representation for viscoelastic behaviour publication-title: J. Mech. Phys. Solids – volume: 37 start-page: 129 year: 2005 end-page: 149 ident: b42 article-title: Fluid mechanics and rheology of dense suspensions publication-title: Annu. Rev. Fluid Mech. – volume: 83 start-page: 704 year: 2017 end-page: 734 ident: b26 article-title: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model: Stabilized mixed method for a generalized Oldroyd-B model publication-title: Internat. J. Numer. Methods Fluids – year: 1972 ident: b29 article-title: Nonlinear Viscoelastic Solids – year: 2021 ident: b39 article-title: The nonlinear viscoelastic response of suspensions of vacuous bubbles in rubber: I — Gaussian rubber with constant viscosity publication-title: J. Elasticity – volume: 90 start-page: 218 year: 2012 end-page: 242 ident: b8 article-title: Stabilization of mixed tetrahedral elements at large deformations publication-title: Int. J. Numer. Methods Eng. – volume: 344 start-page: 102 year: 2016 end-page: 112 ident: b24 article-title: On the two-potential constitutive modelling of rubber viscoelastic materials publication-title: C. R. Mecanique – volume: 68A start-page: 259 year: 1964 end-page: 268 ident: b44 article-title: Compressibility of natural rubber at pressures below 500 kg/cm publication-title: J. Res. Natl. Bur. Stand. – volume: 1 start-page: 1 year: 1957 end-page: 21 ident: b17 article-title: The mechanics of non-linear materials with memory: Part I publication-title: Arch. Ration. Mech. Anal. – volume: 46 start-page: 931 year: 1998 end-page: 954 ident: b5 article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers publication-title: J. Mech. Phys. Solids – volume: 3 start-page: 111 year: 1972 end-page: 136 ident: b23 article-title: Rheology of monodisperse latices publication-title: Adv. Colloid Interface Sci. – volume: 3 start-page: 593 year: 1966 end-page: 597 ident: b27 article-title: An order five Runge–Kutta process with extended region of stability publication-title: SIAM J. Numer. Anal. – volume: 18 start-page: 139 year: 2003 end-page: 150 ident: b34 article-title: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials publication-title: J. Mater. Res. – volume: 94 start-page: 164 year: 2019 end-page: 175 ident: b6 article-title: A viscoelastic nonlinear compressible material model of lung parenchyma — Experiments and numerical identification publication-title: J. Mech. Behav. Biomed. Mater. – volume: 14 start-page: 39 year: 1975 end-page: 63 ident: b18 article-title: Sur les matériaux standard généralisés publication-title: J. Méc. – volume: 338 start-page: 3 year: 2010 end-page: 11 ident: b30 article-title: A new publication-title: C. R. Mecanique – volume: 267 start-page: 359 year: 2013 end-page: 399 ident: b33 article-title: A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 1 start-page: 41 year: 1997 end-page: 52 ident: b38 article-title: Netgen an advancing front 2d/3d-mesh generator based on abstract rules publication-title: Comput. Visual. Sci. – volume: 56 start-page: 1505 year: 2021 end-page: 1521 ident: b15 article-title: On the two-potential constitutive modeling of dielectric elastomers publication-title: Meccanica – volume: 64 start-page: 501 year: 1991 end-page: 523 ident: b31 article-title: Disks vs spheres: Contrasting properties of random packings publication-title: J. Stat. Phys. – volume: 35 start-page: 3455 year: 1998 end-page: 3482 ident: b36 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solids Struct. – volume: 69 start-page: 59 year: 1996 end-page: 61 ident: b14 article-title: A new constitutive relation for rubber publication-title: Rubber Chem. Technol. – year: 1948 ident: b45 article-title: Elasticity and Anelasticity of Metals – volume: 25 start-page: 183 year: 1987 end-page: 238 ident: b46 article-title: The derivation of constitutive relations from the free energy and the dissipation function publication-title: Adv. Appl. Mech. – volume: 146 year: 2021 ident: b10 article-title: Probing local nonlinear viscoelastic properties in soft materials publication-title: J. Mech. Phys. Solids – volume: 41 start-page: 389 year: 1993 end-page: 412 ident: b3 article-title: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials publication-title: J. Mech. Phys. Solids – volume: 70 start-page: 65 year: 2003 end-page: 86 ident: b4 article-title: An average-stretch full-network model for rubber elasticity publication-title: J. Elasticity – volume: 75 start-page: 291 year: 2000 end-page: 304 ident: b37 article-title: New locking-free brick element technique for large deformation problems in elasticity publication-title: Comput. Struct. – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.jmps.2023.105312_b20 article-title: A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2019.06.008 – year: 1948 ident: 10.1016/j.jmps.2023.105312_b45 – volume: 14 start-page: 39 year: 1975 ident: 10.1016/j.jmps.2023.105312_b18 article-title: Sur les matériaux standard généralisés publication-title: J. Méc. – volume: 344 start-page: 102 year: 2016 ident: 10.1016/j.jmps.2023.105312_b24 article-title: On the two-potential constitutive modelling of rubber viscoelastic materials publication-title: C. R. Mecanique doi: 10.1016/j.crme.2015.11.004 – volume: 109 start-page: 233 year: 1993 ident: 10.1016/j.jmps.2023.105312_b28 article-title: Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(93)90080-H – volume: 68A start-page: 259 year: 1964 ident: 10.1016/j.jmps.2023.105312_b44 article-title: Compressibility of natural rubber at pressures below 500 kg/cm2 publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.068A.022 – volume: 146 year: 2021 ident: 10.1016/j.jmps.2023.105312_b10 article-title: Probing local nonlinear viscoelastic properties in soft materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104172 – volume: 16 start-page: 59 year: 1968 ident: 10.1016/j.jmps.2023.105312_b35 article-title: A non-linear integral representation for viscoelastic behaviour publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(68)90016-1 – volume: 3 start-page: 593 year: 1966 ident: 10.1016/j.jmps.2023.105312_b27 article-title: An order five Runge–Kutta process with extended region of stability publication-title: SIAM J. Numer. Anal. doi: 10.1137/0703051 – year: 2021 ident: 10.1016/j.jmps.2023.105312_b39 article-title: The nonlinear viscoelastic response of suspensions of vacuous bubbles in rubber: I — Gaussian rubber with constant viscosity publication-title: J. Elasticity – volume: 46 issue: 207 year: 1951 ident: 10.1016/j.jmps.2023.105312_b43 article-title: Compressibility of natural and synthetic high polymers at high pressures publication-title: J. Res. Natl. Bur. Stand. – volume: 3 start-page: 111 year: 1972 ident: 10.1016/j.jmps.2023.105312_b23 article-title: Rheology of monodisperse latices publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(72)80001-0 – volume: 72 start-page: 78 year: 2013 ident: 10.1016/j.jmps.2023.105312_b2 article-title: A new generalized Oldroyd-B model for blood flow in complex geometries publication-title: Internat. J. Engrg. Sci. doi: 10.1016/j.ijengsci.2013.06.009 – volume: 69 start-page: 59 year: 1996 ident: 10.1016/j.jmps.2023.105312_b14 article-title: A new constitutive relation for rubber publication-title: Rubber Chem. Technol. doi: 10.5254/1.3538357 – year: 1972 ident: 10.1016/j.jmps.2023.105312_b29 – volume: 1 start-page: 41 year: 1997 ident: 10.1016/j.jmps.2023.105312_b38 article-title: Netgen an advancing front 2d/3d-mesh generator based on abstract rules publication-title: Comput. Visual. Sci. doi: 10.1007/s007910050004 – volume: 37 start-page: 129 year: 2005 ident: 10.1016/j.jmps.2023.105312_b42 article-title: Fluid mechanics and rheology of dense suspensions publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122132 – volume: 227 start-page: 3367 year: 2016 ident: 10.1016/j.jmps.2023.105312_b13 article-title: A viscoelastic model for describing the response of biological fibers publication-title: Acta Mech. doi: 10.1007/s00707-016-1673-7 – volume: 267 start-page: 359 year: 2013 ident: 10.1016/j.jmps.2023.105312_b33 article-title: A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and F¯ methods for linear triangles and tetrahedra publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2013.08.010 – volume: 35 start-page: 3455 year: 1998 ident: 10.1016/j.jmps.2023.105312_b36 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(97)00217-5 – volume: 14 start-page: 138 year: 2010 ident: 10.1016/j.jmps.2023.105312_b1 article-title: Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.10.006 – volume: 60 start-page: 315 year: 2017 ident: 10.1016/j.jmps.2023.105312_b7 article-title: Rheological characterization of human brain tissue publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.06.024 – volume: 100 start-page: 103 year: 2017 ident: 10.1016/j.jmps.2023.105312_b32 article-title: A large deformation viscoelastic model for double-network hydrogels publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2016.12.011 – volume: 13 start-page: 679 year: 1974 ident: 10.1016/j.jmps.2023.105312_b40 article-title: Un modèle viscoélastique non linéaire avec configuration intermédiaire publication-title: J. de Mécanique – volume: 94 start-page: 164 year: 2019 ident: 10.1016/j.jmps.2023.105312_b6 article-title: A viscoelastic nonlinear compressible material model of lung parenchyma — Experiments and numerical identification publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.02.024 – volume: 41 start-page: 389 year: 1993 ident: 10.1016/j.jmps.2023.105312_b3 article-title: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90013-6 – volume: 154 year: 2021 ident: 10.1016/j.jmps.2023.105312_b16 article-title: The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber: I — Gaussian rubber with constant viscosity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104544 – volume: 70 start-page: 65 year: 2003 ident: 10.1016/j.jmps.2023.105312_b4 article-title: An average-stretch full-network model for rubber elasticity publication-title: J. Elasticity doi: 10.1023/B:ELAS.0000005553.38563.91 – volume: 46 start-page: 931 year: 1998 ident: 10.1016/j.jmps.2023.105312_b5 article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(97)00075-6 – volume: 28 start-page: 147 year: 2013 ident: 10.1016/j.jmps.2023.105312_b12 article-title: Tensile and microindentation properties of maxillofacial elastomers after different disinfecting procedures publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.07.013 – volume: 83 start-page: 704 year: 2017 ident: 10.1016/j.jmps.2023.105312_b26 article-title: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model: Stabilized mixed method for a generalized Oldroyd-B model publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.4287 – volume: 56 start-page: 1505 year: 2021 ident: 10.1016/j.jmps.2023.105312_b15 article-title: On the two-potential constitutive modeling of dielectric elastomers publication-title: Meccanica doi: 10.1007/s11012-020-01179-1 – volume: 25 start-page: 183 year: 1987 ident: 10.1016/j.jmps.2023.105312_b46 article-title: The derivation of constitutive relations from the free energy and the dissipation function publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70278-3 – volume: 18 start-page: 139 year: 2003 ident: 10.1016/j.jmps.2023.105312_b34 article-title: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials publication-title: J. Mater. Res. doi: 10.1557/JMR.2003.0020 – volume: 99 start-page: 61 year: 1992 ident: 10.1016/j.jmps.2023.105312_b41 article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90123-2 – volume: 169 start-page: 195 year: 2019 ident: 10.1016/j.jmps.2023.105312_b11 article-title: Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.025 – volume: 64 start-page: 501 year: 1991 ident: 10.1016/j.jmps.2023.105312_b31 article-title: Disks vs spheres: Contrasting properties of random packings publication-title: J. Stat. Phys. doi: 10.1007/BF01048304 – volume: 1 start-page: 1 year: 1957 ident: 10.1016/j.jmps.2023.105312_b17 article-title: The mechanics of non-linear materials with memory: Part I publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00297992 – volume: 48 start-page: 1413 year: 2010 ident: 10.1016/j.jmps.2023.105312_b25 article-title: A three-field formulation for incompressible viscoelastic fluids publication-title: Internat. J. Engrg. Sci. doi: 10.1016/j.ijengsci.2010.09.007 – volume: 158 year: 2022 ident: 10.1016/j.jmps.2023.105312_b9 article-title: Nonlinear poroviscoelastic behavior of gelatin-based hydrogel publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104650 – volume: 340 start-page: 359 year: 2012 ident: 10.1016/j.jmps.2023.105312_b21 article-title: On the overall response of elastomeric solids with pressurized cavities publication-title: C. R. Mecanique doi: 10.1016/j.crme.2012.02.018 – volume: 75 start-page: 291 year: 2000 ident: 10.1016/j.jmps.2023.105312_b37 article-title: New locking-free brick element technique for large deformation problems in elasticity publication-title: Comput. Struct. doi: 10.1016/S0045-7949(99)00137-6 – volume: 90 start-page: 218 year: 2012 ident: 10.1016/j.jmps.2023.105312_b8 article-title: Stabilization of mixed tetrahedral elements at large deformations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3320 – volume: 31 start-page: 209 year: 2010 ident: 10.1016/j.jmps.2023.105312_b19 article-title: Exponential integrators publication-title: Acta Numer. doi: 10.1017/S0962492910000048 – volume: 30 start-page: 762 year: 2008 ident: 10.1016/j.jmps.2023.105312_b22 article-title: Perturbation bounds for determinants and characteristic polynomials publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/070704770 – volume: 338 start-page: 3 year: 2010 ident: 10.1016/j.jmps.2023.105312_b30 article-title: A new I1-based hyperelastic model for rubber elastic materials publication-title: C. R. Mecanique doi: 10.1016/j.crme.2009.12.007  | 
    
| SSID | ssj0005071 | 
    
| Score | 2.4977424 | 
    
| Snippet | This paper presents a formulation alongside a numerical solution algorithm to describe the mechanical response of bodies made of a large class of viscoelastic... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 105312 | 
    
| SubjectTerms | Elastomers Finite deformations Stabilized finite elements Stable ODE solvers  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WL-pBfFtfVPCmVdukbXqUxWUR9OTC3ko2D62s3UV3FS_-dmf6chdRxFuTJpBk8vhCvvkG4JhF9LwltBfaiHvcSuNJxgLPV0rzMMA7hyZv5JvbqNvj1_2w34J27QtDtMpq7y_39GK3rnLOq9E8H2cZ-fjiXEQEjiCaXhNI8ZPzmKIYnH3M0DwuYr9WDKfSleNMyfF6fBqTZHfAKNwt84OfDqfv4PM7h3Jxmo_l-5scDmcOqM4qrFTI0r0sG78GLZOvw_KM3uAGqEt3mmcWUaerv2gwHnFhacvI712CsFVAL_p2iXFeMGUHOB4k5PCVdG1GeNV9zV7UyCAIJ3725H0Tep2ru3bXq6IseArB08SzXGiJBxkLpE3UwJeSwqQwmwjNuVaIx_BKpmJhE2YScp2_QMjIpAiVYIYzy7ZgIR_lZgfcRAkdhdYYofCWEkcykTqwsc9lENlIhg749fCmqpIgp0gYw7Tmmj2mZJKUTJKWJnHgpKkzLgU4fi0d1lZL56ZRiifEr_WOahOnuL7o0UTmZjTFQgIxGV5BWOzAdmnyph2UT-G-HBBzk6EpQNrd83_y7KHQ8PYpgiALEwdOm3nzh_7t_rN_e7BEqZK5uA8Lk-epOUA0NRkcFsvlE-mkH3I priority: 102 providerName: Elsevier  | 
    
| Title | A unified determinant-preserving formulation for compressible/incompressible finite viscoelasticity | 
    
| URI | https://dx.doi.org/10.1016/j.jmps.2023.105312 https://www.ncbi.nlm.nih.gov/pubmed/37724292 https://www.proquest.com/docview/2866377237 https://pubmed.ncbi.nlm.nih.gov/PMC10505359 https://pmc.ncbi.nlm.nih.gov/articles/PMC10505359/pdf/nihms-1904472.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 177 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0022-5096 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005071 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0022-5096 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005071 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection issn: 0022-5096 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005071 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0022-5096 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005071 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0022-5096 databaseCode: AKRWK dateStart: 19521001 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQE48H6YR2QkbuCk9q7t9TGqKIGoUYWIKCdrvQ-akjgWtUHlwG9nJn60paICiZO99qxle2c938jffgPwgkX0e0toL7QR97iVxpOMBZ6vlOZhgDmHptXI-7NoMufvDsPDLXjTroUpVngVlS2G-XI1zBdHG25lyxEbHezv-lR6jYXJqNB2hAarEw9jGucxJojabkM_ChGU96A_nx2MP7Va4SRyQqmXiJnHMSg2y2dqptfxqiDh7oBR0VvmB38KUZch6GUm5bUqL-Tpd7lcngtTe7fgqHvADTvly7Aqs6H68Zv24394A7fhZgNl3XHd6Q5smfwu3DgncHgP1Nit8oVFmOvqM96NR-Rb-kbln13CzE0FMdp3ieK-oeZmSzMi5YizpmsXBJDdb4sTtTaI-okQXp7eh_ne6w-7E68p6-ApRGulZ7nQEiMnC6RNVOZLSXVZmE2E5lwrBICYA6pY2ISZhNbq7yBGZVKESjDDmWUPoJevc_MI3EQJHYXWGKEwLYojmUgd2NjnMohsJEMH_HYkU9VonlPpjWXaktuOUxr9lEY_rUffgZddn6JW_LjSOmwdJG0wS41FUgxJV_Z73npTihOa_tLI3KwrNBIIAjHnYbEDD2vv6u6DjlN9MQfEBb_rDEgs_OIZdJCNaHjrNQ686lz0L57v8b-ZP4Hr1KoZkk-hV36tzDNEbWU2gO3hT38A_fHb6WRG2-n7j9NBM09_AcAcRYg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5B9wAc0C7PsAsEiRuEkthJnCNCi7rL4wQSN8v1A4JKWkEL6oXfzkyTlFYIhLgl8TiyPX58I38zA7DLErreEiaIXcID7pQNFGNREGpteByhzWHIG_n8Imld8f_X8fUMHNe-MESrrPb-ck8f7dbVl2Y1ms1enpOPL85FROAIouk2gc3CD_o7WWAHLxM8j8M0rEOGk3jlOVOSvO7uexSzO2KU75aF0Uen03v0-Z5EOTcoemr4rDqdiRPq5CcsVtDSPypb_wtmbLEECxMBB5dBH_mDIncIO33zxoMJiAxLe0Zx4xOGrTJ60bNPlPMRVbaNA0KRHN5efZcTYPWf8kfdtYjCiaDdH67A1cnfy-NWUKVZCDSip37guDAKTzIWKZfpdqgU5UlhLhOGc6MRkKFNplPhMmYz8p0_RMzIlIi1YJYzx1ahUXQLuw5-poVJYmet0GimpInKlIlcGnIVJS5RsQdhPbxSVzHIKRVGR9ZksztJKpGkElmqxIO9cZ1eGYHjU-m41pqcmkcSj4hP6-3UKpa4wOjWRBW2O0AhgaAMbRCWerBWqnzcDvpO-b48EFOTYSxAwbunS4r8dhTEO6QUgizOPNgfz5sv9G_jm_3bhrnW5fmZPPt3cfob5qmkpDH-gUb_YWA3EVr121ujpfMKYUsilQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QF64P0ILwWJG3iXxE7iHFcVpUJq1QMrlVPk-NGmZLNRm4DKr2dm82hLRQUStzgZR3E8yXwjf_4G4C2PaXlLGha5WDDhlGWK85AFWhsRhZhzGNqNvLcf7y7E58PocAM-DXth6iXeRefFtCqX06o4XnMrB47Y7GBvO6DSazxKZ7VxMzRYnjGMaUIkmCAadws24whB-QQ2F_sH86-DVjiJnFDqJRPOBAbFfvtMx_Q6WdYk3B1yKnrLg_BPIeo6BL3OpLzdVrU6_6HK8lKY2rkHx-MA1-yUb9O2yaf652_aj__hDdyHuz2U9eddpwewYauHsHVJ4PAR6LnfVoVDmOubC94NI_It_aOqI58wc19BjI59orivqbl5aWekHHHR9F1BANn_XpzplUXUT4Tw5vwxLHY-ftneZX1ZB6YRrTXMCWkURk4eKpfqPFCK6rJwl0ojhNEIADEH1Il0Kbcp7dX_gBiVKxlpya3gjj-BSbWq7DPwUy1NHDlrpca0KIlVqkzokkCoMHaxijwIhpnMdK95TqU3ymwgt51kNPsZzX7Wzb4H78Y-daf4caN1NDhI1mOWDotkGJJu7Pdm8KYMP2hapVGVXbVoJBEEYs7DEw-edt41Pgedp_piHsgrfjcakFj41SvoIGvR8MFrPHg_uuhfjO_5v5m_gDvU6hiSL2HSnLb2FaK2Jn_df5G_APxZQVk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Determinant-Preserving+Formulation+for+Compressible%2FIncompressible+Finite+Viscoelasticity&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Wijaya%2C+Ignasius+P.A.&rft.au=Lopez-Pamies%2C+Oscar&rft.au=Masud%2C+Arif&rft.date=2023-08-01&rft.issn=0022-5096&rft.volume=177&rft_id=info:doi/10.1016%2Fj.jmps.2023.105312&rft_id=info%3Apmid%2F37724292&rft.externalDocID=PMC10505359 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon |