Robustness of radiomic features in healthy abdominal parenchyma of patients with repeated examinations on dual-layer dual-energy CT

Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robust...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of radiology Vol. 175; p. 111447
Main Authors Schöneck, Mirjam, Lennartz, Simon, Zopfs, David, Sonnabend, Kristina, Wawer Matos Reimer, Robert, Rinneburger, Miriam, Graffe, Josefine, Persigehl, Thorsten, Hentschke, Clemens, Baeßler, Bettina, Lourenco Caldeira, Liliana, Große Hokamp, Nils
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text
ISSN0720-048X
1872-7727
1872-7727
DOI10.1016/j.ejrad.2024.111447

Cover

Abstract Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval. Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust. In total, 160 patients with 480 repeated abdominal CT examinations (range: 2–4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs). Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.
AbstractList Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval. Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust. In total, 160 patients with 480 repeated abdominal CT examinations (range: 2–4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs). Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.
Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.OBJECTIVESRobustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.MATERIALS AND METHODSPatients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.In total, 160 patients with 480 repeated abdominal CT examinations (range: 2-4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).RESULTSIn total, 160 patients with 480 repeated abdominal CT examinations (range: 2-4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.CONCLUSIONRadiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.
ArticleNumber 111447
Author Hentschke, Clemens
Lennartz, Simon
Persigehl, Thorsten
Schöneck, Mirjam
Sonnabend, Kristina
Große Hokamp, Nils
Lourenco Caldeira, Liliana
Graffe, Josefine
Zopfs, David
Rinneburger, Miriam
Wawer Matos Reimer, Robert
Baeßler, Bettina
Author_xml – sequence: 1
  givenname: Mirjam
  orcidid: 0000-0002-1630-4012
  surname: Schöneck
  fullname: Schöneck, Mirjam
  email: Mirjam.schoeneck@uk-koeln.de
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 2
  givenname: Simon
  surname: Lennartz
  fullname: Lennartz, Simon
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 3
  givenname: David
  surname: Zopfs
  fullname: Zopfs, David
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 4
  givenname: Kristina
  surname: Sonnabend
  fullname: Sonnabend, Kristina
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 5
  givenname: Robert
  surname: Wawer Matos Reimer
  fullname: Wawer Matos Reimer, Robert
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 6
  givenname: Miriam
  surname: Rinneburger
  fullname: Rinneburger, Miriam
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 7
  givenname: Josefine
  surname: Graffe
  fullname: Graffe, Josefine
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 8
  givenname: Thorsten
  surname: Persigehl
  fullname: Persigehl, Thorsten
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 9
  givenname: Clemens
  surname: Hentschke
  fullname: Hentschke, Clemens
  organization: Mint Medical GmbH, Burgstraße 61, 69121 Heidelberg, Germany
– sequence: 10
  givenname: Bettina
  surname: Baeßler
  fullname: Baeßler, Bettina
  organization: University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
– sequence: 11
  givenname: Liliana
  surname: Lourenco Caldeira
  fullname: Lourenco Caldeira, Liliana
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
– sequence: 12
  givenname: Nils
  surname: Große Hokamp
  fullname: Große Hokamp, Nils
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38677039$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2L1TAUhoOMOHdGf4EgWbrpNUnTJkVcyMUvGBBkBHchTU-9uaZpTdIZu_aPmzsdXczmukrgvM_L4TkX6MyPHhB6TsmWElq_OmzhEHS3ZYTxLaWUc_EIbagUrBCCiTO0IYKRgnD57RxdxHgghFS8YU_QeSlrIUjZbNDvL2M7x-QhRjz2OPfZcbAG96DTHCBi6_EetEv7Beu2yzOvHZ50AG_2y6CP0KSTBZ8ivrVpjwNMmYUOwy99TCc7-tztcTdrVzi9QFi_4CF8X_Du-il63GsX4dn9e4m-vn93vftYXH3-8Gn39qowvKpTAZVoegqsqytZVqTpZQsMWNvrPClbykH2bd0Q1pi6pVUrpSilYUzUpjaCdeUl4mvv7Ce93Grn1BTsoMOiKFFHp-qg7pyqo1O1Os3YyxWbwvhzhpjUYKMB57SHcY6qJFw0nHHJc_TFfXRuB-j-1f_1nQPNGjBhjDFAr4xNd4pS0Nad2KN8wP7f9m9WCrLZGwtBRZOvZaCzAUxS3WhP8K8f8MZZb412P2A5Sf8Bv63S6g
CitedBy_id crossref_primary_10_1007_s11547_024_01878_9
crossref_primary_10_1007_s11547_024_01904_w
Cites_doi 10.1148/radiol.2018172361
10.3389/fonc.2022.937277
10.1016/j.ejca.2011.11.036
10.1007/s00330-022-08628-3
10.1148/radiol.2019182023
10.1148/radiol.2015151169
10.1186/s13244-020-00887-2
10.1148/radiol.2020209019
10.1148/radiol.2019190928
10.1016/j.compmedimag.2015.04.006
10.1055/s-0030-1247132
10.1016/j.ejca.2008.10.026
10.3390/jpm11090842
10.1158/0008-5472.CAN-17-0339
10.1038/srep23428
10.1016/j.ijrobp.2018.05.053
10.1148/radiol.2020191145
10.1038/nrclinonc.2017.141
10.1148/radiol.2018172300
10.1007/s00330-020-07108-w
10.1007/s00330-019-06495-z
10.1016/j.ijrobp.2019.06.530
10.1038/ncomms5006
10.18632/oncotarget.12199
10.1136/jitc-2020-001429
10.1007/s00330-021-08249-2
10.3389/fonc.2016.00071
10.1093/annonc/mdz108
10.1016/j.lungcan.2019.01.010
10.1002/mp.12123
10.1007/s11547-022-01494-5
10.7150/thno.30309
10.7150/thno.50565
10.3390/tomography7020022
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.ejrad.2024.111447
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7727
ExternalDocumentID 10.1016/j.ejrad.2024.111447
38677039
10_1016_j_ejrad_2024_111447
S0720048X24001633
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UV1
WUQ
Z5R
ZGI
~G-
~HD
6I.
AACTN
AAFTH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
AGCQF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c456t-e579f1e2d6583509f8be2e2bfae573b14e8fb69029c6b15b88738c2276c6c72d3
IEDL.DBID UNPAY
ISSN 0720-048X
1872-7727
IngestDate Tue Aug 19 16:40:38 EDT 2025
Sun Sep 28 07:06:56 EDT 2025
Mon Aug 11 07:11:11 EDT 2025
Wed Oct 01 03:49:35 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
Sat Oct 19 15:55:00 EDT 2024
Tue Oct 14 19:31:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dual-energy CT
Computed Tomography
Reproducibility
Radiomics
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-e579f1e2d6583509f8be2e2bfae573b14e8fb69029c6b15b88738c2276c6c72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1630-4012
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ejrad.2024.111447
PMID 38677039
PQID 3047942484
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_ejrad_2024_111447
proquest_miscellaneous_3047942484
pubmed_primary_38677039
crossref_citationtrail_10_1016_j_ejrad_2024_111447
crossref_primary_10_1016_j_ejrad_2024_111447
elsevier_sciencedirect_doi_10_1016_j_ejrad_2024_111447
elsevier_clinicalkey_doi_10_1016_j_ejrad_2024_111447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle European journal of radiology
PublicationTitleAlternate Eur J Radiol
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Zwanenburg, M. Vallières, M.A. Abdalah, H.J.W.L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Götz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K.H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R.J.H.M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Löck, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology. 295 (2020) 328–338. Doi: 10.1148/radiol.2020191145.
Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (b0005) 2012; 1990
RStudio Team, RStudio: Integrated Development Environment for R, (2020). http://www.rstudio.com/.
Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford, Dancey, Arbuck, Gwyther, Mooney, Rubinstein, Shankar, Dodd, Kaplan, Lacombe, Verweij (b0030) 2009; 45
Lencioni, Llovet (b0035) 2010; 30
Cozzi, Bicci, Cavigli, Danti, Bettarini, Tortoli, Mazzoni, Busoni, Pradella, Miele (b0170) 2022; 127
Liu, Wang, Dong, Wei, Fang, Zhou, Sun, Li, Li, Wang, Tian (b0025) 2019; 9
Zhang, Liang, Gensheimer, Guo, Zhu, Yu, Diehn, Loo, Li, Wu (b0055) 2020; 10
A. et mult. al. Signorell, DescTools: Tools for Descriptive Statistics, (2022). https://cran.r-project.org/package=DescTools.
Trebeschi, Drago, Birkbak, Kurilova, Cǎlin, Delli Pizzi, Lalezari, Lambregts, Rohaan, Parmar, Rozeman, Hartemink, Swanton, Haanen, Blank, Smit, Beets-Tan, Aerts (b0195) 2019; 30
Chen, Zhong, Wang, Shi, Lu, Li, Feng, Xia, Chang, Fan, Chen, Zhu, Yan, Yao, Zhang (b0095) 2022; 32
Euler, Laqua, Cester, Lohaus, Sartoretti, Pinto Dos Santos, Alkadhi, Baessler (b0200) 2021; 13
Baessler, Nestler, Pinto Dos Santos, Paffenholz, Zeuch, Pfister, Maintz, Heidenreich (b0045) 2020; 30
Orlhac, Frouin, Nioche, Ayache, Buvat (b0210) 2019; 291
Korpics, Bhave, Redler, Pitroda, Luke, Chmura (b0190) 2019; 105
Wu, Woodruff, Shen, Refaee, Sanduleanu, Ibrahim, Leijenaar, Wang, Xiong, Bian, Wu, Lambin (b0040) 2020; 297
Lennartz, O’Shea, Parakh, Persigehl, Baessler, Kambadakone (b0090) 2022; 32
Wang, Zhou, Wang, Zhang, Ma, Liu, Kong, Yue, Xu, Nie (b0165) 2021; 11
Gillies, Kinahan, Hricak (b0010) 2016; 278
Pinto Dos Santos, Dietzel, Baessler (b0065) 2021; 31
van Timmeren, Leijenaar, van Elmpt, Wang, Zhang, Dekker, Lambin (b0105) 2016; 2
Berenguer, del Rosario Pastor-Juan, Canales-Vázquez, Castro-García, Villas, Mansilla Legorburo, Sabater (b0085) 2018; 288
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (b0015) 2014; 5
Jensen, Kim, Elgeti, Steffen, Hamm, Nagel (b0155) 2021; 7
Tunali, Gray, Qi, Abdalah, Jeong, Guvenis, Gillies, Schabath (b0185) 2019; 129
R Core Team, R Foundation for Statistical Computing, R: A language and environment for statistical computing, (2021). https://www.R-project.org/.
Mali, Ibrahim, Woodruff, Andrearczyk, Müller, Primakov, Salahuddin, Chatterjee, Lambin (b0205) 2021; 11
Meyer, Ronald, Vernuccio, Nelson, Ramirez-Giraldo, Solomon, Patel, Samei, Marin (b0080) 2019; 293
Wu, Parmar, Grossmann, Quackenbush, Lambin, Bussink, Mak, Aerts (b0175) 2016; 6
Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren, Sanduleanu, Larue, Even, Jochems, van Wijk, Woodruff, van Soest, Lustberg, Roelofs, van Elmpt, Dekker, Mottaghy, Wildberger, Walsh (b0020) 2017; 14
Traverso, Wee, Dekker, Gillies (b0145) 2018; 102
Horvat, Veeraraghavan, Khan, Blazic, Zheng, Capanu, Sala, Garcia-Aguilar, Gollub, Petkovska (b0060) 2018; 287
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (b0110) 2017; 77
van Timmeren, Cester, Tanadini-Lang, Alkadhi, Baessler (b0150) 2020; 11
Sun, Sundahl, Hecht, Putz, Lancia, Rouyar, Milic, Carré, Battistella, Alvarez Andres, Niyoteka, Romano, Louvel, Durand-Labrunie, Bockel, Bahleda, Robert, Boutros, Vakalopoulou, Paragios, Frey, Soria, Massard, Ferté, Fietkau, Ost, Gaipl, Deutsch (b0050) 2020; 8
Hu, Wang, Zhong, Zhou, Shen, Hu, Zhang (b0100) 2016; 7
Lin, Wu, Song, Tang (b0180) 2022; 12
Zhao, Tan, Tsai, Qi, Xie, Lu, Schwartz (b0125) 2016; 6
Shafiq-ul-Hassan, Zhang, Latifi, Ullah, Hunt, Balagurunathan, Abdalah, Schabath, Goldgof, Mackin, Court, Gillies, Moros (b0075) 2017; 44
Fave, Cook, Frederick, Zhang, Yang, Fried, Stingo, Court (b0160) 2015; 44
Kalpathy-Cramer, Mamomov, Zhao, Lu, Cherezov, Napel, Echegaray, Rubin, McNitt-Gray, Lo, Sieren, Uthoff, Dilger, Driscoll, Yeung, Hadjiiski, Cha, Balagurunathan, Gillies, Goldgof (b0120) 2016; 2
Tixier, Le Rest, Hatt, Albarghach, Pradier, Metges, Corcos, Visvikis (b0115) 2011; 52
Zhao (10.1016/j.ejrad.2024.111447_b0125) 2016; 6
Euler (10.1016/j.ejrad.2024.111447_b0200) 2021; 13
Lambin (10.1016/j.ejrad.2024.111447_b0005) 2012; 1990
Chen (10.1016/j.ejrad.2024.111447_b0095) 2022; 32
Lambin (10.1016/j.ejrad.2024.111447_b0020) 2017; 14
Liu (10.1016/j.ejrad.2024.111447_b0025) 2019; 9
Sun (10.1016/j.ejrad.2024.111447_b0050) 2020; 8
Orlhac (10.1016/j.ejrad.2024.111447_b0210) 2019; 291
Lencioni (10.1016/j.ejrad.2024.111447_b0035) 2010; 30
Mali (10.1016/j.ejrad.2024.111447_b0205) 2021; 11
10.1016/j.ejrad.2024.111447_b0070
Hu (10.1016/j.ejrad.2024.111447_b0100) 2016; 7
10.1016/j.ejrad.2024.111447_b0130
Traverso (10.1016/j.ejrad.2024.111447_b0145) 2018; 102
van Timmeren (10.1016/j.ejrad.2024.111447_b0150) 2020; 11
Pinto Dos Santos (10.1016/j.ejrad.2024.111447_b0065) 2021; 31
Baessler (10.1016/j.ejrad.2024.111447_b0045) 2020; 30
Wang (10.1016/j.ejrad.2024.111447_b0165) 2021; 11
Shafiq-ul-Hassan (10.1016/j.ejrad.2024.111447_b0075) 2017; 44
van Griethuysen (10.1016/j.ejrad.2024.111447_b0110) 2017; 77
10.1016/j.ejrad.2024.111447_b0135
Korpics (10.1016/j.ejrad.2024.111447_b0190) 2019; 105
Lin (10.1016/j.ejrad.2024.111447_b0180) 2022; 12
van Timmeren (10.1016/j.ejrad.2024.111447_b0105) 2016; 2
Gillies (10.1016/j.ejrad.2024.111447_b0010) 2016; 278
Aerts (10.1016/j.ejrad.2024.111447_b0015) 2014; 5
Fave (10.1016/j.ejrad.2024.111447_b0160) 2015; 44
Eisenhauer (10.1016/j.ejrad.2024.111447_b0030) 2009; 45
Kalpathy-Cramer (10.1016/j.ejrad.2024.111447_b0120) 2016; 2
Tixier (10.1016/j.ejrad.2024.111447_b0115) 2011; 52
Horvat (10.1016/j.ejrad.2024.111447_b0060) 2018; 287
Jensen (10.1016/j.ejrad.2024.111447_b0155) 2021; 7
Tunali (10.1016/j.ejrad.2024.111447_b0185) 2019; 129
Lennartz (10.1016/j.ejrad.2024.111447_b0090) 2022; 32
Berenguer (10.1016/j.ejrad.2024.111447_b0085) 2018; 288
Wu (10.1016/j.ejrad.2024.111447_b0040) 2020; 297
10.1016/j.ejrad.2024.111447_b0140
Wu (10.1016/j.ejrad.2024.111447_b0175) 2016; 6
Meyer (10.1016/j.ejrad.2024.111447_b0080) 2019; 293
Zhang (10.1016/j.ejrad.2024.111447_b0055) 2020; 10
Cozzi (10.1016/j.ejrad.2024.111447_b0170) 2022; 127
Trebeschi (10.1016/j.ejrad.2024.111447_b0195) 2019; 30
References_xml – volume: 293
  start-page: 583
  year: 2019
  end-page: 591
  ident: b0080
  article-title: Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings
  publication-title: Radiology.
– volume: 32
  start-page: 1959
  year: 2022
  end-page: 1970
  ident: b0090
  article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types
  publication-title: Eur. Radiol.
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: b0020
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 11
  start-page: 842
  year: 2021
  ident: b0205
  article-title: Making radiomics more reproducible across scanner and imaging protocol Variations: a review of Harmonization methods
  publication-title: J. Pers. Med.
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  ident: b0030
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur. J. Cancer.
– volume: 288
  start-page: 407
  year: 2018
  end-page: 415
  ident: b0085
  article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters
  publication-title: Radiology.
– volume: 30
  start-page: 2334
  year: 2020
  end-page: 2345
  ident: b0045
  article-title: Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection
  publication-title: Eur. Radiol.
– volume: 105
  start-page: S74
  year: 2019
  ident: b0190
  article-title: A validated radiomics T-cell score predicts response to multi-site SBRT combined with pembrolizumab
  publication-title: Int. J. Radiat. Oncol.
– reference: RStudio Team, RStudio: Integrated Development Environment for R, (2020). http://www.rstudio.com/.
– volume: 10
  start-page: 11707
  year: 2020
  end-page: 11718
  ident: b0055
  article-title: Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer
  publication-title: Theranostics.
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: b0010
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology.
– volume: 291
  start-page: 53
  year: 2019
  end-page: 59
  ident: b0210
  article-title: Validation of a method to compensate multicenter effects affecting CT radiomics
  publication-title: Radiology.
– volume: 287
  start-page: 833
  year: 2018
  end-page: 843
  ident: b0060
  article-title: MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy
  publication-title: Radiology.
– reference: A. Zwanenburg, M. Vallières, M.A. Abdalah, H.J.W.L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Götz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K.H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R.J.H.M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Löck, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology. 295 (2020) 328–338. Doi: 10.1148/radiol.2020191145.
– volume: 2
  start-page: 430
  year: 2016
  end-page: 437
  ident: b0120
  article-title: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features
  publication-title: Tomogr. Ann Arbor Mich.
– volume: 9
  start-page: 1303
  year: 2019
  end-page: 1322
  ident: b0025
  article-title: The applications of radiomics in Precision diagnosis and treatment of oncology: opportunities and challenges
  publication-title: Theranostics.
– volume: 32
  start-page: 5480
  year: 2022
  end-page: 5490
  ident: b0095
  article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT
  publication-title: Eur. Radiol.
– volume: 52
  start-page: 369
  year: 2011
  end-page: 378
  ident: b0115
  article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
  publication-title: J. Nucl. Med. off. Publ. Soc. Nucl. Med.
– reference: R Core Team, R Foundation for Statistical Computing, R: A language and environment for statistical computing, (2021). https://www.R-project.org/.
– volume: 11
  year: 2021
  ident: b0165
  article-title: Reproducibility and repeatability of CBCT-derived radiomics features
  publication-title: Front. Oncol.
– volume: 13
  start-page: 4710
  year: 2021
  ident: b0200
  article-title: Virtual monoenergetic images of dual-energy CT-impact on repeatability
  publication-title: Reproducibility, and Classification in Radiomics, Cancers.
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: b0110
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
– volume: 1990
  start-page: 441
  year: 2012
  end-page: 446
  ident: b0005
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer Oxf. Engl.
– volume: 44
  start-page: 54
  year: 2015
  end-page: 61
  ident: b0160
  article-title: Preliminary investigation into sources of uncertainty in quantitative imaging features
  publication-title: Comput. Med. Imaging Graph.
– volume: 6
  start-page: 71
  year: 2016
  ident: b0175
  article-title: Exploratory study to identify radiomics classifiers for lung cancer histology
  publication-title: Front. Oncol.
– volume: 30
  start-page: 52
  year: 2010
  end-page: 60
  ident: b0035
  article-title: Modified RECIST (mRECIST) assessment for hepatocellular carcinoma
  publication-title: Semin. Liver Dis.
– volume: 2
  start-page: 361
  year: 2016
  end-page: 365
  ident: b0105
  article-title: Test-retest data for radiomics feature stability analysis: generalizable or study-specific?
  publication-title: Tomogr. Ann Arbor Mich.
– reference: A. et mult. al. Signorell, DescTools: Tools for Descriptive Statistics, (2022). https://cran.r-project.org/package=DescTools.
– volume: 7
  start-page: 238
  year: 2021
  end-page: 252
  ident: b0155
  article-title: Stability of radiomic features across different region of interest sizes—A CT and MR phantom study
  publication-title: Tomography.
– volume: 11
  start-page: 91
  year: 2020
  ident: b0150
  article-title: Radiomics in medical imaging—“how-to” guide and critical reflection
  publication-title: Insights Imaging.
– volume: 127
  start-page: 609
  year: 2022
  end-page: 615
  ident: b0170
  article-title: Radiomics in pulmonary neuroendocrine tumours (NETs)
  publication-title: Radiol. Med. (torino)
– volume: 7
  start-page: 71440
  year: 2016
  end-page: 71446
  ident: b0100
  article-title: Reproducibility with repeat CT in radiomics study for rectal cancer
  publication-title: Oncotarget.
– volume: 8
  start-page: e001429
  year: 2020
  ident: b0050
  article-title: Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells
  publication-title: J. Immunother Cancer.
– volume: 31
  start-page: 1
  year: 2021
  end-page: 4
  ident: b0065
  article-title: A decade of radiomics research: are images really data or just patterns in the noise?
  publication-title: Eur. Radiol.
– volume: 102
  start-page: 1143
  year: 2018
  end-page: 1158
  ident: b0145
  article-title: Repeatability and reproducibility of radiomic features: a systematic review
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 5
  start-page: 4006
  year: 2014
  ident: b0015
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
– volume: 297
  start-page: E282
  year: 2020
  end-page: E
  ident: b0040
  article-title: Diagnosis of invasive lung Adenocarcinoma based on chest CT radiomic features of Part-solid Pulmonary nodules: a multicenter study
  publication-title: Radiology.
– volume: 12
  year: 2022
  ident: b0180
  article-title: CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy
  publication-title: Front. Oncol.
– volume: 44
  start-page: 1050
  year: 2017
  end-page: 1062
  ident: b0075
  article-title: Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels
  publication-title: Med. Phys.
– volume: 6
  start-page: 23428
  year: 2016
  ident: b0125
  article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging
  publication-title: Sci. Rep.
– volume: 30
  start-page: 998
  year: 2019
  end-page: 1004
  ident: b0195
  article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
  publication-title: Ann. Oncol. off. J. Eur. Soc. Med. Oncol.
– volume: 129
  start-page: 75
  year: 2019
  end-page: 79
  ident: b0185
  article-title: Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report
  publication-title: Lung Cancer.
– volume: 288
  start-page: 407
  year: 2018
  ident: 10.1016/j.ejrad.2024.111447_b0085
  article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters
  publication-title: Radiology.
  doi: 10.1148/radiol.2018172361
– volume: 2
  start-page: 430
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0120
  article-title: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features
  publication-title: Tomogr. Ann Arbor Mich.
– volume: 12
  year: 2022
  ident: 10.1016/j.ejrad.2024.111447_b0180
  article-title: CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.937277
– volume: 1990
  start-page: 441
  issue: 48
  year: 2012
  ident: 10.1016/j.ejrad.2024.111447_b0005
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer Oxf. Engl.
  doi: 10.1016/j.ejca.2011.11.036
– volume: 32
  start-page: 5480
  year: 2022
  ident: 10.1016/j.ejrad.2024.111447_b0095
  article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08628-3
– volume: 291
  start-page: 53
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0210
  article-title: Validation of a method to compensate multicenter effects affecting CT radiomics
  publication-title: Radiology.
  doi: 10.1148/radiol.2019182023
– volume: 278
  start-page: 563
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0010
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology.
  doi: 10.1148/radiol.2015151169
– ident: 10.1016/j.ejrad.2024.111447_b0140
– volume: 11
  start-page: 91
  year: 2020
  ident: 10.1016/j.ejrad.2024.111447_b0150
  article-title: Radiomics in medical imaging—“how-to” guide and critical reflection
  publication-title: Insights Imaging.
  doi: 10.1186/s13244-020-00887-2
– volume: 297
  start-page: E282
  year: 2020
  ident: 10.1016/j.ejrad.2024.111447_b0040
  article-title: Diagnosis of invasive lung Adenocarcinoma based on chest CT radiomic features of Part-solid Pulmonary nodules: a multicenter study
  publication-title: Radiology.
  doi: 10.1148/radiol.2020209019
– volume: 293
  start-page: 583
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0080
  article-title: Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings
  publication-title: Radiology.
  doi: 10.1148/radiol.2019190928
– volume: 52
  start-page: 369
  year: 2011
  ident: 10.1016/j.ejrad.2024.111447_b0115
  article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
  publication-title: J. Nucl. Med. off. Publ. Soc. Nucl. Med.
– volume: 13
  start-page: 4710
  year: 2021
  ident: 10.1016/j.ejrad.2024.111447_b0200
  article-title: Virtual monoenergetic images of dual-energy CT-impact on repeatability
  publication-title: Reproducibility, and Classification in Radiomics, Cancers.
– volume: 44
  start-page: 54
  year: 2015
  ident: 10.1016/j.ejrad.2024.111447_b0160
  article-title: Preliminary investigation into sources of uncertainty in quantitative imaging features
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2015.04.006
– volume: 30
  start-page: 52
  year: 2010
  ident: 10.1016/j.ejrad.2024.111447_b0035
  article-title: Modified RECIST (mRECIST) assessment for hepatocellular carcinoma
  publication-title: Semin. Liver Dis.
  doi: 10.1055/s-0030-1247132
– volume: 45
  start-page: 228
  year: 2009
  ident: 10.1016/j.ejrad.2024.111447_b0030
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur. J. Cancer.
  doi: 10.1016/j.ejca.2008.10.026
– volume: 11
  start-page: 842
  year: 2021
  ident: 10.1016/j.ejrad.2024.111447_b0205
  article-title: Making radiomics more reproducible across scanner and imaging protocol Variations: a review of Harmonization methods
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm11090842
– volume: 77
  start-page: e104
  year: 2017
  ident: 10.1016/j.ejrad.2024.111447_b0110
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: 10.1016/j.ejrad.2024.111447_b0130
– volume: 2
  start-page: 361
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0105
  article-title: Test-retest data for radiomics feature stability analysis: generalizable or study-specific?
  publication-title: Tomogr. Ann Arbor Mich.
– volume: 6
  start-page: 23428
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0125
  article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep23428
– volume: 102
  start-page: 1143
  year: 2018
  ident: 10.1016/j.ejrad.2024.111447_b0145
  article-title: Repeatability and reproducibility of radiomic features: a systematic review
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2018.05.053
– ident: 10.1016/j.ejrad.2024.111447_b0070
  doi: 10.1148/radiol.2020191145
– volume: 14
  start-page: 749
  year: 2017
  ident: 10.1016/j.ejrad.2024.111447_b0020
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.141
– volume: 287
  start-page: 833
  year: 2018
  ident: 10.1016/j.ejrad.2024.111447_b0060
  article-title: MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy
  publication-title: Radiology.
  doi: 10.1148/radiol.2018172300
– volume: 31
  start-page: 1
  year: 2021
  ident: 10.1016/j.ejrad.2024.111447_b0065
  article-title: A decade of radiomics research: are images really data or just patterns in the noise?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07108-w
– volume: 30
  start-page: 2334
  year: 2020
  ident: 10.1016/j.ejrad.2024.111447_b0045
  article-title: Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06495-z
– volume: 105
  start-page: S74
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0190
  article-title: A validated radiomics T-cell score predicts response to multi-site SBRT combined with pembrolizumab
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/j.ijrobp.2019.06.530
– volume: 5
  start-page: 4006
  year: 2014
  ident: 10.1016/j.ejrad.2024.111447_b0015
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: 7
  start-page: 71440
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0100
  article-title: Reproducibility with repeat CT in radiomics study for rectal cancer
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.12199
– volume: 8
  start-page: e001429
  year: 2020
  ident: 10.1016/j.ejrad.2024.111447_b0050
  article-title: Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells
  publication-title: J. Immunother Cancer.
  doi: 10.1136/jitc-2020-001429
– volume: 32
  start-page: 1959
  year: 2022
  ident: 10.1016/j.ejrad.2024.111447_b0090
  article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08249-2
– volume: 6
  start-page: 71
  year: 2016
  ident: 10.1016/j.ejrad.2024.111447_b0175
  article-title: Exploratory study to identify radiomics classifiers for lung cancer histology
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00071
– volume: 11
  year: 2021
  ident: 10.1016/j.ejrad.2024.111447_b0165
  article-title: Reproducibility and repeatability of CBCT-derived radiomics features
  publication-title: Front. Oncol.
– volume: 30
  start-page: 998
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0195
  article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
  publication-title: Ann. Oncol. off. J. Eur. Soc. Med. Oncol.
  doi: 10.1093/annonc/mdz108
– volume: 129
  start-page: 75
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0185
  article-title: Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report
  publication-title: Lung Cancer.
  doi: 10.1016/j.lungcan.2019.01.010
– ident: 10.1016/j.ejrad.2024.111447_b0135
– volume: 44
  start-page: 1050
  year: 2017
  ident: 10.1016/j.ejrad.2024.111447_b0075
  article-title: Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels
  publication-title: Med. Phys.
  doi: 10.1002/mp.12123
– volume: 127
  start-page: 609
  year: 2022
  ident: 10.1016/j.ejrad.2024.111447_b0170
  article-title: Radiomics in pulmonary neuroendocrine tumours (NETs)
  publication-title: Radiol. Med. (torino)
  doi: 10.1007/s11547-022-01494-5
– volume: 9
  start-page: 1303
  year: 2019
  ident: 10.1016/j.ejrad.2024.111447_b0025
  article-title: The applications of radiomics in Precision diagnosis and treatment of oncology: opportunities and challenges
  publication-title: Theranostics.
  doi: 10.7150/thno.30309
– volume: 10
  start-page: 11707
  year: 2020
  ident: 10.1016/j.ejrad.2024.111447_b0055
  article-title: Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer
  publication-title: Theranostics.
  doi: 10.7150/thno.50565
– volume: 7
  start-page: 238
  year: 2021
  ident: 10.1016/j.ejrad.2024.111447_b0155
  article-title: Stability of radiomic features across different region of interest sizes—A CT and MR phantom study
  publication-title: Tomography.
  doi: 10.3390/tomography7020022
SSID ssj0005492
Score 2.4275718
Snippet Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111447
SubjectTerms Computed Tomography
Dual-energy CT
Radiomics
Reproducibility
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaKHPY4DN3abWm7QQN6rJZYViz7OAQtigHZYWuB3ARJlrEEqR3kgTaXXvrHS8p20GFDNuzmhwhIIv2JssiPAKcIjBYhgDKWo5xTSWNuXF9xR-xjTkgXhTpko2_J5bX8Oh6M92DY5sJQWGWD_TWmB7RunvSa2ezNJ5Pej74iDadjioJEr4IYP6VUVMXg8_2TMA8ZCiNTY06tW-ahEOPlpwtDdKFCEnRIqrHy59Xpd-_zJTxfl3OzuTWz2ZMV6WIfXjWuJPtS9_Y17PnyDTwbNYflB_DwvbLr5YqwjFUFwz5MKAWZFT6QeS7ZpGR1GuSGGZtXobwXo4j00v3c3BgSamhXl4z-17KFn6Osz5m_M9Q62CyrSkYJXXxm0H2vL33IKGTDq0O4vji_Gl7ypuYCd-hKrbgfqKyIvMjRM4nRmShS64UXtjD4JraR9GlhcUctMpfYaGARo-LUCaESlzgl8vgtdMqq9O-B9V2R4YYps0VmpfJpmiirVJ5HNh0oIWwXRDvX2jWE5FQXY6bbyLOpDgrSpCBdK6gLZ1uhec3Hsbu5bJWo21RTBEeN68VusWQr9os1_l3wU2spGr9TOnwxpa_WSx0HLn8hU9mFd7UJbQcQE6lgP866wLc29S-jO_rfbh7DC7qrQ95OoLNarP0HdK5W9mP4eh4B4YohHQ
  priority: 102
  providerName: Elsevier
Title Robustness of radiomic features in healthy abdominal parenchyma of patients with repeated examinations on dual-layer dual-energy CT
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0720048X24001633
https://dx.doi.org/10.1016/j.ejrad.2024.111447
https://www.ncbi.nlm.nih.gov/pubmed/38677039
https://www.proquest.com/docview/3047942484
https://doi.org/10.1016/j.ejrad.2024.111447
UnpaywallVersion publishedVersion
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7727
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005492
  issn: 0720-048X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7727
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005492
  issn: 0720-048X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7727
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005492
  issn: 0720-048X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1872-7727
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005492
  issn: 0720-048X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7727
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005492
  issn: 0720-048X
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrcTjwPtRHpWROJKqcZzYOVYrVgW0FUJbqZwi23HELiWpmkRQDlz443jspOK5LLdE8USyPZ58juf7BuCZDYzKhgBkLId5gCWNA6mnPNCoPqYp06GrQ3a8SOZL9moVrzqdbeTC_HR-7_KwzNlWoqQnZbi8GeMHMExiC7wHMFwu3szeOaFNikmKYoXbK8EdZuS9xtCf3_K379DvOPMaXGnLjdx9kuv1D9-eoxue1F07yUJMOfkwaRs10V9-EXS8YLduwvUOg5KZd5pbcMmUt-HycXfKfge-va1UWzcYBElVEPuGU-Quk8I4FdCanJbE8yd3RKq8cnXBCKayl_r97qNEo06vtSb4o5dszcbampyYzxJbO2cnVUmQCRaspcX9_tI4KiI5PLkLy6MXJ4fzoCvWEGiLwZrAxDwtQkNzC2kii0IKoQw1VBXSPolUyIwolN2K01QnKoyVDW6R0JTyRCea0zy6B4OyKs0DIFNdpHanlaoiVYwbIRKuOM_zUImYU6pGQPupy3SnZI4FNdZZn7J2lrnhzXB4Mz-8I3i-N9p4IY_zm7PeJ7Keo2qjamYn8nyzZG_WQRgPTf5t-LR3vMwucDy1kaWp2jqLXBEAygQbwX3vkfsORKhGOI3SEQR7F71I7x7-Z_tHcBXvfIrcYxg029Y8sWCsUWM4mHwNxzCcvXw9X4y7JfkdRiYvRA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti8TCYcVzKcvDSBwxbRwnTo6oYlVguwfoSr1ZtuOIrrpJ1YegFy78cWacpFoEWhC3KPFItmf8eRzPfAPwCoHRIgRQxnJUcCppzI0bKO6IfcwJ6aJQh2x8lo7O5YdpMt2DYZcLQ2GVLfY3mB7Qun3Tb2ezv5jN-p8HijScTSkKEr2K-AbclIlQdAJ78_1KnIcMlZGpNafmHfVQCPLyF0tDfKFCEnZIKrLy5-3pd_fzDhxsqoXZfjXz-ZUt6eQuHLa-JHvbdPce7PnqPtwat7flD-DHp9puVmsCM1aXDPswoxxkVvrA5rlis4o1eZBbZmxRh_pejELSK_dle2lIqOVdXTH6YcuWfoGyvmD-m6HWwWhZXTHK6OJzg_578-hDSiEbTh7C-cm7yXDE26IL3KEvteY-UXkZeVGgaxKjN1Fm1gsvbGnwS2wj6bPS4pFa5C61UWIRpOLMCaFSlzolivgR7Fd15R8DG7gyxxNTbsvcSuWzLFVWqaKIbJYoIWwPRDfX2rWM5FQYY6670LMLHRSkSUG6UVAPXu-EFg0hx_XNZadE3eWaIjpq3DCuF0t3Yr-Y498FX3aWonGh0u2LqXy9Wek4kPkLmckeHDUmtBtATKyCgzjvAd_Z1L-M7sn_dvMFHIwm41N9-v7s4zHcpi9N_NtT2F8vN_4Zelpr-zyspJ9wWCRA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDfRxaNP39hFU6LEOa1m25GMIDSGQUEoWNichyTJNsrWXtU27vfaPVyPZS9s0j95srDFIGo0_WfN9A_DeBUbtQgAyluMiwpLGkTITHhlUHzOUmdjXITs6zg6m7HCWznqdbeTC_HF-7_Ow7PlSoaQnZbi8GeN3YDNLHfAeweb0-NPuqRfapJikKGa4vRLcY0Y-aAz9-y1XfYcu48wHcK-rFmr1Tc3nv3179h8FUnfjJQsx5eRip2v1jvnxl6DjLbu1BQ97DEp2g9M8hg1bPYG7R_0p-1P4-bnWXdNiECR1SdwbzpC7TErrVUAbclaRwJ9cEaWL2tcFI5jKXpkvq68KjXq91obgj16ytAtnawtivyts7Z2d1BVBJlg0Vw73h0vrqYhk7-QZTPc_nuwdRH2xhsg4DNZGNuV5GVtaOEiTOBRSCm2ppbpU7kmiY2ZFqd1WnOYm03GqXXBLhKGUZyYznBbJcxhVdWVfApmYMnc7rVyXuWbcCpFxzXlRxFqknFI9BjpMnTS9kjkW1JjLIWXtXPrhlTi8MgzvGD6sjRZByOP65mzwCTlwVF1UlW4irzfL1mY9hAnQ5GbDd4PjSbfA8dRGVbbuGpn4IgCUCTaGF8Ej1x1IUI1wkuRjiNYuepvevfrP9q_hPt6FFLk3MGqXnX3rwFirt_tF-AvHjCy4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+of+radiomic+features+in+healthy+abdominal+parenchyma+of+patients+with+repeated+examinations+on+dual-layer+dual-energy+CT&rft.jtitle=European+journal+of+radiology&rft.au=Sch%C3%B6neck%2C+Mirjam&rft.au=Lennartz%2C+Simon&rft.au=Zopfs%2C+David&rft.au=Sonnabend%2C+Kristina&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=0720-048X&rft.volume=175&rft_id=info:doi/10.1016%2Fj.ejrad.2024.111447&rft.externalDocID=S0720048X24001633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0720-048X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0720-048X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0720-048X&client=summon