Robustness of radiomic features in healthy abdominal parenchyma of patients with repeated examinations on dual-layer dual-energy CT
Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robust...
        Saved in:
      
    
          | Published in | European journal of radiology Vol. 175; p. 111447 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Ireland
          Elsevier B.V
    
        01.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0720-048X 1872-7727 1872-7727  | 
| DOI | 10.1016/j.ejrad.2024.111447 | 
Cover
| Abstract | Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.
Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.
In total, 160 patients with 480 repeated abdominal CT examinations (range: 2–4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).
Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features. | 
    
|---|---|
| AbstractList | Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.
Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.
In total, 160 patients with 480 repeated abdominal CT examinations (range: 2–4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).
Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features. Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.OBJECTIVESRobustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In contrast to previous studies which focused on different tumors with mostly short scan-re-scan intervals, this study aimed to evaluate the robustness of radiomic features in cancer-free patients and over a clinically encountered inter-scan interval.Patients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.MATERIALS AND METHODSPatients without visible tumor burden who underwent at least two portal-venous phase dual energy CT examinations of the abdomen between May 2016 and January 2020 were included, while macroscopic tumor burden was excluded based upon follow-up imaging for all patients (≥3 months). Further, patients were excluded if no follow-up imaging was available, or if the CT protocol showed deviations between repeated examinations. Circular regions of interest were placed and proofread by two board-certified radiologists (4 years and 5 years experience) within the liver (segments 3 and 6), the psoas muscle (left and right), the pancreatic head, and the spleen to obtain radiomic features from normal-appearing organ parenchyma using PyRadiomics. Radiomic feature robustness was tested using the concordance correlation coefficient with a threshold of 0.75 considered indicative for deeming a feature robust.In total, 160 patients with 480 repeated abdominal CT examinations (range: 2-4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).RESULTSIn total, 160 patients with 480 repeated abdominal CT examinations (range: 2-4 per patient) were retrospectively included in this single-center, IRB-approved study. Considering all organs and feature categories, only 4.58 % (25/546) of all features were robust with the highest rate being found in the first order feature category (20.37 %, 22/108). Other feature categories (grey level co-occurrence matrix, grey level dependence matrix, grey level run length matrix, grey level size zone matrix, and neighborhood gray-tone difference matrix) yielded an overall low percentage of robust features (range: 0.00 %-1.19 %). A subgroup analysis revealed the reconstructed field of view and the X-ray tube current as determinants of feature robustness (significant differences in subgroups for all organs, p < 0.001) as well as the size of the region of interest (no significant difference for the pancreatic head with p = 0.135, significant difference with p < 0.001 for all other organs).Radiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.CONCLUSIONRadiomic feature robustness obtained from cancer-free subjects with repeated examinations using a consistent protocol and CT scanner was limited, with first order features yielding the highest proportion of robust features.  | 
    
| ArticleNumber | 111447 | 
    
| Author | Hentschke, Clemens Lennartz, Simon Persigehl, Thorsten Schöneck, Mirjam Sonnabend, Kristina Große Hokamp, Nils Lourenco Caldeira, Liliana Graffe, Josefine Zopfs, David Rinneburger, Miriam Wawer Matos Reimer, Robert Baeßler, Bettina  | 
    
| Author_xml | – sequence: 1 givenname: Mirjam orcidid: 0000-0002-1630-4012 surname: Schöneck fullname: Schöneck, Mirjam email: Mirjam.schoeneck@uk-koeln.de organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 2 givenname: Simon surname: Lennartz fullname: Lennartz, Simon organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 3 givenname: David surname: Zopfs fullname: Zopfs, David organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 4 givenname: Kristina surname: Sonnabend fullname: Sonnabend, Kristina organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 5 givenname: Robert surname: Wawer Matos Reimer fullname: Wawer Matos Reimer, Robert organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 6 givenname: Miriam surname: Rinneburger fullname: Rinneburger, Miriam organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 7 givenname: Josefine surname: Graffe fullname: Graffe, Josefine organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 8 givenname: Thorsten surname: Persigehl fullname: Persigehl, Thorsten organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 9 givenname: Clemens surname: Hentschke fullname: Hentschke, Clemens organization: Mint Medical GmbH, Burgstraße 61, 69121 Heidelberg, Germany – sequence: 10 givenname: Bettina surname: Baeßler fullname: Baeßler, Bettina organization: University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Oberdürrbacher Straße 6, 97080 Würzburg, Germany – sequence: 11 givenname: Liliana surname: Lourenco Caldeira fullname: Lourenco Caldeira, Liliana organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany – sequence: 12 givenname: Nils surname: Große Hokamp fullname: Große Hokamp, Nils organization: University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937 Cologne, Germany  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38677039$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU2L1TAUhoOMOHdGf4EgWbrpNUnTJkVcyMUvGBBkBHchTU-9uaZpTdIZu_aPmzsdXczmukrgvM_L4TkX6MyPHhB6TsmWElq_OmzhEHS3ZYTxLaWUc_EIbagUrBCCiTO0IYKRgnD57RxdxHgghFS8YU_QeSlrIUjZbNDvL2M7x-QhRjz2OPfZcbAG96DTHCBi6_EetEv7Beu2yzOvHZ50AG_2y6CP0KSTBZ8ivrVpjwNMmYUOwy99TCc7-tztcTdrVzi9QFi_4CF8X_Du-il63GsX4dn9e4m-vn93vftYXH3-8Gn39qowvKpTAZVoegqsqytZVqTpZQsMWNvrPClbykH2bd0Q1pi6pVUrpSilYUzUpjaCdeUl4mvv7Ce93Grn1BTsoMOiKFFHp-qg7pyqo1O1Os3YyxWbwvhzhpjUYKMB57SHcY6qJFw0nHHJc_TFfXRuB-j-1f_1nQPNGjBhjDFAr4xNd4pS0Nad2KN8wP7f9m9WCrLZGwtBRZOvZaCzAUxS3WhP8K8f8MZZb412P2A5Sf8Bv63S6g | 
    
| CitedBy_id | crossref_primary_10_1007_s11547_024_01878_9 crossref_primary_10_1007_s11547_024_01904_w  | 
    
| Cites_doi | 10.1148/radiol.2018172361 10.3389/fonc.2022.937277 10.1016/j.ejca.2011.11.036 10.1007/s00330-022-08628-3 10.1148/radiol.2019182023 10.1148/radiol.2015151169 10.1186/s13244-020-00887-2 10.1148/radiol.2020209019 10.1148/radiol.2019190928 10.1016/j.compmedimag.2015.04.006 10.1055/s-0030-1247132 10.1016/j.ejca.2008.10.026 10.3390/jpm11090842 10.1158/0008-5472.CAN-17-0339 10.1038/srep23428 10.1016/j.ijrobp.2018.05.053 10.1148/radiol.2020191145 10.1038/nrclinonc.2017.141 10.1148/radiol.2018172300 10.1007/s00330-020-07108-w 10.1007/s00330-019-06495-z 10.1016/j.ijrobp.2019.06.530 10.1038/ncomms5006 10.18632/oncotarget.12199 10.1136/jitc-2020-001429 10.1007/s00330-021-08249-2 10.3389/fonc.2016.00071 10.1093/annonc/mdz108 10.1016/j.lungcan.2019.01.010 10.1002/mp.12123 10.1007/s11547-022-01494-5 10.7150/thno.30309 10.7150/thno.50565 10.3390/tomography7020022  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.  | 
    
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ejrad.2024.111447 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1872-7727 | 
    
| ExternalDocumentID | 10.1016/j.ejrad.2024.111447 38677039 10_1016_j_ejrad_2024_111447 S0720048X24001633  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29G 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SPCBC SSH SSZ T5K UV1 WUQ Z5R ZGI ~G- ~HD 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW RIG AAYXX CITATION AGCQF NPM 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c456t-e579f1e2d6583509f8be2e2bfae573b14e8fb69029c6b15b88738c2276c6c72d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0720-048X 1872-7727  | 
    
| IngestDate | Tue Aug 19 16:40:38 EDT 2025 Sun Sep 28 07:06:56 EDT 2025 Mon Aug 11 07:11:11 EDT 2025 Wed Oct 01 03:49:35 EDT 2025 Thu Apr 24 23:13:30 EDT 2025 Sat Oct 19 15:55:00 EDT 2024 Tue Oct 14 19:31:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Dual-energy CT Computed Tomography Reproducibility Radiomics  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c456t-e579f1e2d6583509f8be2e2bfae573b14e8fb69029c6b15b88738c2276c6c72d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-1630-4012 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ejrad.2024.111447 | 
    
| PMID | 38677039 | 
    
| PQID | 3047942484 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ejrad_2024_111447 proquest_miscellaneous_3047942484 pubmed_primary_38677039 crossref_citationtrail_10_1016_j_ejrad_2024_111447 crossref_primary_10_1016_j_ejrad_2024_111447 elsevier_sciencedirect_doi_10_1016_j_ejrad_2024_111447 elsevier_clinicalkey_doi_10_1016_j_ejrad_2024_111447  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-06-01 | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Ireland | 
    
| PublicationPlace_xml | – name: Ireland | 
    
| PublicationTitle | European journal of radiology | 
    
| PublicationTitleAlternate | Eur J Radiol | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | A. Zwanenburg, M. Vallières, M.A. Abdalah, H.J.W.L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Götz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K.H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R.J.H.M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Löck, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology. 295 (2020) 328–338. Doi: 10.1148/radiol.2020191145. Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (b0005) 2012; 1990 RStudio Team, RStudio: Integrated Development Environment for R, (2020). http://www.rstudio.com/. Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford, Dancey, Arbuck, Gwyther, Mooney, Rubinstein, Shankar, Dodd, Kaplan, Lacombe, Verweij (b0030) 2009; 45 Lencioni, Llovet (b0035) 2010; 30 Cozzi, Bicci, Cavigli, Danti, Bettarini, Tortoli, Mazzoni, Busoni, Pradella, Miele (b0170) 2022; 127 Liu, Wang, Dong, Wei, Fang, Zhou, Sun, Li, Li, Wang, Tian (b0025) 2019; 9 Zhang, Liang, Gensheimer, Guo, Zhu, Yu, Diehn, Loo, Li, Wu (b0055) 2020; 10 A. et mult. al. Signorell, DescTools: Tools for Descriptive Statistics, (2022). https://cran.r-project.org/package=DescTools. Trebeschi, Drago, Birkbak, Kurilova, Cǎlin, Delli Pizzi, Lalezari, Lambregts, Rohaan, Parmar, Rozeman, Hartemink, Swanton, Haanen, Blank, Smit, Beets-Tan, Aerts (b0195) 2019; 30 Chen, Zhong, Wang, Shi, Lu, Li, Feng, Xia, Chang, Fan, Chen, Zhu, Yan, Yao, Zhang (b0095) 2022; 32 Euler, Laqua, Cester, Lohaus, Sartoretti, Pinto Dos Santos, Alkadhi, Baessler (b0200) 2021; 13 Baessler, Nestler, Pinto Dos Santos, Paffenholz, Zeuch, Pfister, Maintz, Heidenreich (b0045) 2020; 30 Orlhac, Frouin, Nioche, Ayache, Buvat (b0210) 2019; 291 Korpics, Bhave, Redler, Pitroda, Luke, Chmura (b0190) 2019; 105 Wu, Woodruff, Shen, Refaee, Sanduleanu, Ibrahim, Leijenaar, Wang, Xiong, Bian, Wu, Lambin (b0040) 2020; 297 Lennartz, O’Shea, Parakh, Persigehl, Baessler, Kambadakone (b0090) 2022; 32 Wang, Zhou, Wang, Zhang, Ma, Liu, Kong, Yue, Xu, Nie (b0165) 2021; 11 Gillies, Kinahan, Hricak (b0010) 2016; 278 Pinto Dos Santos, Dietzel, Baessler (b0065) 2021; 31 van Timmeren, Leijenaar, van Elmpt, Wang, Zhang, Dekker, Lambin (b0105) 2016; 2 Berenguer, del Rosario Pastor-Juan, Canales-Vázquez, Castro-García, Villas, Mansilla Legorburo, Sabater (b0085) 2018; 288 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (b0015) 2014; 5 Jensen, Kim, Elgeti, Steffen, Hamm, Nagel (b0155) 2021; 7 Tunali, Gray, Qi, Abdalah, Jeong, Guvenis, Gillies, Schabath (b0185) 2019; 129 R Core Team, R Foundation for Statistical Computing, R: A language and environment for statistical computing, (2021). https://www.R-project.org/. Mali, Ibrahim, Woodruff, Andrearczyk, Müller, Primakov, Salahuddin, Chatterjee, Lambin (b0205) 2021; 11 Meyer, Ronald, Vernuccio, Nelson, Ramirez-Giraldo, Solomon, Patel, Samei, Marin (b0080) 2019; 293 Wu, Parmar, Grossmann, Quackenbush, Lambin, Bussink, Mak, Aerts (b0175) 2016; 6 Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren, Sanduleanu, Larue, Even, Jochems, van Wijk, Woodruff, van Soest, Lustberg, Roelofs, van Elmpt, Dekker, Mottaghy, Wildberger, Walsh (b0020) 2017; 14 Traverso, Wee, Dekker, Gillies (b0145) 2018; 102 Horvat, Veeraraghavan, Khan, Blazic, Zheng, Capanu, Sala, Garcia-Aguilar, Gollub, Petkovska (b0060) 2018; 287 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (b0110) 2017; 77 van Timmeren, Cester, Tanadini-Lang, Alkadhi, Baessler (b0150) 2020; 11 Sun, Sundahl, Hecht, Putz, Lancia, Rouyar, Milic, Carré, Battistella, Alvarez Andres, Niyoteka, Romano, Louvel, Durand-Labrunie, Bockel, Bahleda, Robert, Boutros, Vakalopoulou, Paragios, Frey, Soria, Massard, Ferté, Fietkau, Ost, Gaipl, Deutsch (b0050) 2020; 8 Hu, Wang, Zhong, Zhou, Shen, Hu, Zhang (b0100) 2016; 7 Lin, Wu, Song, Tang (b0180) 2022; 12 Zhao, Tan, Tsai, Qi, Xie, Lu, Schwartz (b0125) 2016; 6 Shafiq-ul-Hassan, Zhang, Latifi, Ullah, Hunt, Balagurunathan, Abdalah, Schabath, Goldgof, Mackin, Court, Gillies, Moros (b0075) 2017; 44 Fave, Cook, Frederick, Zhang, Yang, Fried, Stingo, Court (b0160) 2015; 44 Kalpathy-Cramer, Mamomov, Zhao, Lu, Cherezov, Napel, Echegaray, Rubin, McNitt-Gray, Lo, Sieren, Uthoff, Dilger, Driscoll, Yeung, Hadjiiski, Cha, Balagurunathan, Gillies, Goldgof (b0120) 2016; 2 Tixier, Le Rest, Hatt, Albarghach, Pradier, Metges, Corcos, Visvikis (b0115) 2011; 52 Zhao (10.1016/j.ejrad.2024.111447_b0125) 2016; 6 Euler (10.1016/j.ejrad.2024.111447_b0200) 2021; 13 Lambin (10.1016/j.ejrad.2024.111447_b0005) 2012; 1990 Chen (10.1016/j.ejrad.2024.111447_b0095) 2022; 32 Lambin (10.1016/j.ejrad.2024.111447_b0020) 2017; 14 Liu (10.1016/j.ejrad.2024.111447_b0025) 2019; 9 Sun (10.1016/j.ejrad.2024.111447_b0050) 2020; 8 Orlhac (10.1016/j.ejrad.2024.111447_b0210) 2019; 291 Lencioni (10.1016/j.ejrad.2024.111447_b0035) 2010; 30 Mali (10.1016/j.ejrad.2024.111447_b0205) 2021; 11 10.1016/j.ejrad.2024.111447_b0070 Hu (10.1016/j.ejrad.2024.111447_b0100) 2016; 7 10.1016/j.ejrad.2024.111447_b0130 Traverso (10.1016/j.ejrad.2024.111447_b0145) 2018; 102 van Timmeren (10.1016/j.ejrad.2024.111447_b0150) 2020; 11 Pinto Dos Santos (10.1016/j.ejrad.2024.111447_b0065) 2021; 31 Baessler (10.1016/j.ejrad.2024.111447_b0045) 2020; 30 Wang (10.1016/j.ejrad.2024.111447_b0165) 2021; 11 Shafiq-ul-Hassan (10.1016/j.ejrad.2024.111447_b0075) 2017; 44 van Griethuysen (10.1016/j.ejrad.2024.111447_b0110) 2017; 77 10.1016/j.ejrad.2024.111447_b0135 Korpics (10.1016/j.ejrad.2024.111447_b0190) 2019; 105 Lin (10.1016/j.ejrad.2024.111447_b0180) 2022; 12 van Timmeren (10.1016/j.ejrad.2024.111447_b0105) 2016; 2 Gillies (10.1016/j.ejrad.2024.111447_b0010) 2016; 278 Aerts (10.1016/j.ejrad.2024.111447_b0015) 2014; 5 Fave (10.1016/j.ejrad.2024.111447_b0160) 2015; 44 Eisenhauer (10.1016/j.ejrad.2024.111447_b0030) 2009; 45 Kalpathy-Cramer (10.1016/j.ejrad.2024.111447_b0120) 2016; 2 Tixier (10.1016/j.ejrad.2024.111447_b0115) 2011; 52 Horvat (10.1016/j.ejrad.2024.111447_b0060) 2018; 287 Jensen (10.1016/j.ejrad.2024.111447_b0155) 2021; 7 Tunali (10.1016/j.ejrad.2024.111447_b0185) 2019; 129 Lennartz (10.1016/j.ejrad.2024.111447_b0090) 2022; 32 Berenguer (10.1016/j.ejrad.2024.111447_b0085) 2018; 288 Wu (10.1016/j.ejrad.2024.111447_b0040) 2020; 297 10.1016/j.ejrad.2024.111447_b0140 Wu (10.1016/j.ejrad.2024.111447_b0175) 2016; 6 Meyer (10.1016/j.ejrad.2024.111447_b0080) 2019; 293 Zhang (10.1016/j.ejrad.2024.111447_b0055) 2020; 10 Cozzi (10.1016/j.ejrad.2024.111447_b0170) 2022; 127 Trebeschi (10.1016/j.ejrad.2024.111447_b0195) 2019; 30  | 
    
| References_xml | – volume: 293 start-page: 583 year: 2019 end-page: 591 ident: b0080 article-title: Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings publication-title: Radiology. – volume: 32 start-page: 1959 year: 2022 end-page: 1970 ident: b0090 article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types publication-title: Eur. Radiol. – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: b0020 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. – volume: 11 start-page: 842 year: 2021 ident: b0205 article-title: Making radiomics more reproducible across scanner and imaging protocol Variations: a review of Harmonization methods publication-title: J. Pers. Med. – volume: 45 start-page: 228 year: 2009 end-page: 247 ident: b0030 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur. J. Cancer. – volume: 288 start-page: 407 year: 2018 end-page: 415 ident: b0085 article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters publication-title: Radiology. – volume: 30 start-page: 2334 year: 2020 end-page: 2345 ident: b0045 article-title: Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection publication-title: Eur. Radiol. – volume: 105 start-page: S74 year: 2019 ident: b0190 article-title: A validated radiomics T-cell score predicts response to multi-site SBRT combined with pembrolizumab publication-title: Int. J. Radiat. Oncol. – reference: RStudio Team, RStudio: Integrated Development Environment for R, (2020). http://www.rstudio.com/. – volume: 10 start-page: 11707 year: 2020 end-page: 11718 ident: b0055 article-title: Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer publication-title: Theranostics. – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: b0010 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology. – volume: 291 start-page: 53 year: 2019 end-page: 59 ident: b0210 article-title: Validation of a method to compensate multicenter effects affecting CT radiomics publication-title: Radiology. – volume: 287 start-page: 833 year: 2018 end-page: 843 ident: b0060 article-title: MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy publication-title: Radiology. – reference: A. Zwanenburg, M. Vallières, M.A. Abdalah, H.J.W.L. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.-C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Götz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K.H. Maier-Hein, O. Morin, H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R.J.H.M. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Löck, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology. 295 (2020) 328–338. Doi: 10.1148/radiol.2020191145. – volume: 2 start-page: 430 year: 2016 end-page: 437 ident: b0120 article-title: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features publication-title: Tomogr. Ann Arbor Mich. – volume: 9 start-page: 1303 year: 2019 end-page: 1322 ident: b0025 article-title: The applications of radiomics in Precision diagnosis and treatment of oncology: opportunities and challenges publication-title: Theranostics. – volume: 32 start-page: 5480 year: 2022 end-page: 5490 ident: b0095 article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT publication-title: Eur. Radiol. – volume: 52 start-page: 369 year: 2011 end-page: 378 ident: b0115 article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer publication-title: J. Nucl. Med. off. Publ. Soc. Nucl. Med. – reference: R Core Team, R Foundation for Statistical Computing, R: A language and environment for statistical computing, (2021). https://www.R-project.org/. – volume: 11 year: 2021 ident: b0165 article-title: Reproducibility and repeatability of CBCT-derived radiomics features publication-title: Front. Oncol. – volume: 13 start-page: 4710 year: 2021 ident: b0200 article-title: Virtual monoenergetic images of dual-energy CT-impact on repeatability publication-title: Reproducibility, and Classification in Radiomics, Cancers. – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: b0110 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. – volume: 1990 start-page: 441 year: 2012 end-page: 446 ident: b0005 article-title: Radiomics: Extracting more information from medical images using advanced feature analysis publication-title: Eur. J. Cancer Oxf. Engl. – volume: 44 start-page: 54 year: 2015 end-page: 61 ident: b0160 article-title: Preliminary investigation into sources of uncertainty in quantitative imaging features publication-title: Comput. Med. Imaging Graph. – volume: 6 start-page: 71 year: 2016 ident: b0175 article-title: Exploratory study to identify radiomics classifiers for lung cancer histology publication-title: Front. Oncol. – volume: 30 start-page: 52 year: 2010 end-page: 60 ident: b0035 article-title: Modified RECIST (mRECIST) assessment for hepatocellular carcinoma publication-title: Semin. Liver Dis. – volume: 2 start-page: 361 year: 2016 end-page: 365 ident: b0105 article-title: Test-retest data for radiomics feature stability analysis: generalizable or study-specific? publication-title: Tomogr. Ann Arbor Mich. – reference: A. et mult. al. Signorell, DescTools: Tools for Descriptive Statistics, (2022). https://cran.r-project.org/package=DescTools. – volume: 7 start-page: 238 year: 2021 end-page: 252 ident: b0155 article-title: Stability of radiomic features across different region of interest sizes—A CT and MR phantom study publication-title: Tomography. – volume: 11 start-page: 91 year: 2020 ident: b0150 article-title: Radiomics in medical imaging—“how-to” guide and critical reflection publication-title: Insights Imaging. – volume: 127 start-page: 609 year: 2022 end-page: 615 ident: b0170 article-title: Radiomics in pulmonary neuroendocrine tumours (NETs) publication-title: Radiol. Med. (torino) – volume: 7 start-page: 71440 year: 2016 end-page: 71446 ident: b0100 article-title: Reproducibility with repeat CT in radiomics study for rectal cancer publication-title: Oncotarget. – volume: 8 start-page: e001429 year: 2020 ident: b0050 article-title: Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells publication-title: J. Immunother Cancer. – volume: 31 start-page: 1 year: 2021 end-page: 4 ident: b0065 article-title: A decade of radiomics research: are images really data or just patterns in the noise? publication-title: Eur. Radiol. – volume: 102 start-page: 1143 year: 2018 end-page: 1158 ident: b0145 article-title: Repeatability and reproducibility of radiomic features: a systematic review publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 5 start-page: 4006 year: 2014 ident: b0015 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. – volume: 297 start-page: E282 year: 2020 end-page: E ident: b0040 article-title: Diagnosis of invasive lung Adenocarcinoma based on chest CT radiomic features of Part-solid Pulmonary nodules: a multicenter study publication-title: Radiology. – volume: 12 year: 2022 ident: b0180 article-title: CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy publication-title: Front. Oncol. – volume: 44 start-page: 1050 year: 2017 end-page: 1062 ident: b0075 article-title: Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels publication-title: Med. Phys. – volume: 6 start-page: 23428 year: 2016 ident: b0125 article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging publication-title: Sci. Rep. – volume: 30 start-page: 998 year: 2019 end-page: 1004 ident: b0195 article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers publication-title: Ann. Oncol. off. J. Eur. Soc. Med. Oncol. – volume: 129 start-page: 75 year: 2019 end-page: 79 ident: b0185 article-title: Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report publication-title: Lung Cancer. – volume: 288 start-page: 407 year: 2018 ident: 10.1016/j.ejrad.2024.111447_b0085 article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters publication-title: Radiology. doi: 10.1148/radiol.2018172361 – volume: 2 start-page: 430 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0120 article-title: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features publication-title: Tomogr. Ann Arbor Mich. – volume: 12 year: 2022 ident: 10.1016/j.ejrad.2024.111447_b0180 article-title: CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy publication-title: Front. Oncol. doi: 10.3389/fonc.2022.937277 – volume: 1990 start-page: 441 issue: 48 year: 2012 ident: 10.1016/j.ejrad.2024.111447_b0005 article-title: Radiomics: Extracting more information from medical images using advanced feature analysis publication-title: Eur. J. Cancer Oxf. Engl. doi: 10.1016/j.ejca.2011.11.036 – volume: 32 start-page: 5480 year: 2022 ident: 10.1016/j.ejrad.2024.111447_b0095 article-title: Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT publication-title: Eur. Radiol. doi: 10.1007/s00330-022-08628-3 – volume: 291 start-page: 53 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0210 article-title: Validation of a method to compensate multicenter effects affecting CT radiomics publication-title: Radiology. doi: 10.1148/radiol.2019182023 – volume: 278 start-page: 563 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0010 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology. doi: 10.1148/radiol.2015151169 – ident: 10.1016/j.ejrad.2024.111447_b0140 – volume: 11 start-page: 91 year: 2020 ident: 10.1016/j.ejrad.2024.111447_b0150 article-title: Radiomics in medical imaging—“how-to” guide and critical reflection publication-title: Insights Imaging. doi: 10.1186/s13244-020-00887-2 – volume: 297 start-page: E282 year: 2020 ident: 10.1016/j.ejrad.2024.111447_b0040 article-title: Diagnosis of invasive lung Adenocarcinoma based on chest CT radiomic features of Part-solid Pulmonary nodules: a multicenter study publication-title: Radiology. doi: 10.1148/radiol.2020209019 – volume: 293 start-page: 583 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0080 article-title: Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings publication-title: Radiology. doi: 10.1148/radiol.2019190928 – volume: 52 start-page: 369 year: 2011 ident: 10.1016/j.ejrad.2024.111447_b0115 article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer publication-title: J. Nucl. Med. off. Publ. Soc. Nucl. Med. – volume: 13 start-page: 4710 year: 2021 ident: 10.1016/j.ejrad.2024.111447_b0200 article-title: Virtual monoenergetic images of dual-energy CT-impact on repeatability publication-title: Reproducibility, and Classification in Radiomics, Cancers. – volume: 44 start-page: 54 year: 2015 ident: 10.1016/j.ejrad.2024.111447_b0160 article-title: Preliminary investigation into sources of uncertainty in quantitative imaging features publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2015.04.006 – volume: 30 start-page: 52 year: 2010 ident: 10.1016/j.ejrad.2024.111447_b0035 article-title: Modified RECIST (mRECIST) assessment for hepatocellular carcinoma publication-title: Semin. Liver Dis. doi: 10.1055/s-0030-1247132 – volume: 45 start-page: 228 year: 2009 ident: 10.1016/j.ejrad.2024.111447_b0030 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur. J. Cancer. doi: 10.1016/j.ejca.2008.10.026 – volume: 11 start-page: 842 year: 2021 ident: 10.1016/j.ejrad.2024.111447_b0205 article-title: Making radiomics more reproducible across scanner and imaging protocol Variations: a review of Harmonization methods publication-title: J. Pers. Med. doi: 10.3390/jpm11090842 – volume: 77 start-page: e104 year: 2017 ident: 10.1016/j.ejrad.2024.111447_b0110 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – ident: 10.1016/j.ejrad.2024.111447_b0130 – volume: 2 start-page: 361 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0105 article-title: Test-retest data for radiomics feature stability analysis: generalizable or study-specific? publication-title: Tomogr. Ann Arbor Mich. – volume: 6 start-page: 23428 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0125 article-title: Reproducibility of radiomics for deciphering tumor phenotype with imaging publication-title: Sci. Rep. doi: 10.1038/srep23428 – volume: 102 start-page: 1143 year: 2018 ident: 10.1016/j.ejrad.2024.111447_b0145 article-title: Repeatability and reproducibility of radiomic features: a systematic review publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2018.05.053 – ident: 10.1016/j.ejrad.2024.111447_b0070 doi: 10.1148/radiol.2020191145 – volume: 14 start-page: 749 year: 2017 ident: 10.1016/j.ejrad.2024.111447_b0020 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.141 – volume: 287 start-page: 833 year: 2018 ident: 10.1016/j.ejrad.2024.111447_b0060 article-title: MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy publication-title: Radiology. doi: 10.1148/radiol.2018172300 – volume: 31 start-page: 1 year: 2021 ident: 10.1016/j.ejrad.2024.111447_b0065 article-title: A decade of radiomics research: are images really data or just patterns in the noise? publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07108-w – volume: 30 start-page: 2334 year: 2020 ident: 10.1016/j.ejrad.2024.111447_b0045 article-title: Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06495-z – volume: 105 start-page: S74 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0190 article-title: A validated radiomics T-cell score predicts response to multi-site SBRT combined with pembrolizumab publication-title: Int. J. Radiat. Oncol. doi: 10.1016/j.ijrobp.2019.06.530 – volume: 5 start-page: 4006 year: 2014 ident: 10.1016/j.ejrad.2024.111447_b0015 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: 7 start-page: 71440 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0100 article-title: Reproducibility with repeat CT in radiomics study for rectal cancer publication-title: Oncotarget. doi: 10.18632/oncotarget.12199 – volume: 8 start-page: e001429 year: 2020 ident: 10.1016/j.ejrad.2024.111447_b0050 article-title: Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells publication-title: J. Immunother Cancer. doi: 10.1136/jitc-2020-001429 – volume: 32 start-page: 1959 year: 2022 ident: 10.1016/j.ejrad.2024.111447_b0090 article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08249-2 – volume: 6 start-page: 71 year: 2016 ident: 10.1016/j.ejrad.2024.111447_b0175 article-title: Exploratory study to identify radiomics classifiers for lung cancer histology publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00071 – volume: 11 year: 2021 ident: 10.1016/j.ejrad.2024.111447_b0165 article-title: Reproducibility and repeatability of CBCT-derived radiomics features publication-title: Front. Oncol. – volume: 30 start-page: 998 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0195 article-title: Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers publication-title: Ann. Oncol. off. J. Eur. Soc. Med. Oncol. doi: 10.1093/annonc/mdz108 – volume: 129 start-page: 75 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0185 article-title: Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report publication-title: Lung Cancer. doi: 10.1016/j.lungcan.2019.01.010 – ident: 10.1016/j.ejrad.2024.111447_b0135 – volume: 44 start-page: 1050 year: 2017 ident: 10.1016/j.ejrad.2024.111447_b0075 article-title: Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels publication-title: Med. Phys. doi: 10.1002/mp.12123 – volume: 127 start-page: 609 year: 2022 ident: 10.1016/j.ejrad.2024.111447_b0170 article-title: Radiomics in pulmonary neuroendocrine tumours (NETs) publication-title: Radiol. Med. (torino) doi: 10.1007/s11547-022-01494-5 – volume: 9 start-page: 1303 year: 2019 ident: 10.1016/j.ejrad.2024.111447_b0025 article-title: The applications of radiomics in Precision diagnosis and treatment of oncology: opportunities and challenges publication-title: Theranostics. doi: 10.7150/thno.30309 – volume: 10 start-page: 11707 year: 2020 ident: 10.1016/j.ejrad.2024.111447_b0055 article-title: Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer publication-title: Theranostics. doi: 10.7150/thno.50565 – volume: 7 start-page: 238 year: 2021 ident: 10.1016/j.ejrad.2024.111447_b0155 article-title: Stability of radiomic features across different region of interest sizes—A CT and MR phantom study publication-title: Tomography. doi: 10.3390/tomography7020022  | 
    
| SSID | ssj0005492 | 
    
| Score | 2.4275718 | 
    
| Snippet | Robustness of radiomic features in physiological tissue is an important prerequisite for quantitative analysis of tumor biology and response assessment. In... | 
    
| SourceID | unpaywall proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 111447 | 
    
| SubjectTerms | Computed Tomography Dual-energy CT Radiomics Reproducibility  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaKHPY4DN3abWm7QQN6rJZYViz7OAQtigHZYWuB3ARJlrEEqR3kgTaXXvrHS8p20GFDNuzmhwhIIv2JssiPAKcIjBYhgDKWo5xTSWNuXF9xR-xjTkgXhTpko2_J5bX8Oh6M92DY5sJQWGWD_TWmB7RunvSa2ezNJ5Pej74iDadjioJEr4IYP6VUVMXg8_2TMA8ZCiNTY06tW-ahEOPlpwtDdKFCEnRIqrHy59Xpd-_zJTxfl3OzuTWz2ZMV6WIfXjWuJPtS9_Y17PnyDTwbNYflB_DwvbLr5YqwjFUFwz5MKAWZFT6QeS7ZpGR1GuSGGZtXobwXo4j00v3c3BgSamhXl4z-17KFn6Osz5m_M9Q62CyrSkYJXXxm0H2vL33IKGTDq0O4vji_Gl7ypuYCd-hKrbgfqKyIvMjRM4nRmShS64UXtjD4JraR9GlhcUctMpfYaGARo-LUCaESlzgl8vgtdMqq9O-B9V2R4YYps0VmpfJpmiirVJ5HNh0oIWwXRDvX2jWE5FQXY6bbyLOpDgrSpCBdK6gLZ1uhec3Hsbu5bJWo21RTBEeN68VusWQr9os1_l3wU2spGr9TOnwxpa_WSx0HLn8hU9mFd7UJbQcQE6lgP866wLc29S-jO_rfbh7DC7qrQ95OoLNarP0HdK5W9mP4eh4B4YohHQ priority: 102 providerName: Elsevier  | 
    
| Title | Robustness of radiomic features in healthy abdominal parenchyma of patients with repeated examinations on dual-layer dual-energy CT | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0720048X24001633 https://dx.doi.org/10.1016/j.ejrad.2024.111447 https://www.ncbi.nlm.nih.gov/pubmed/38677039 https://www.proquest.com/docview/3047942484 https://doi.org/10.1016/j.ejrad.2024.111447  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 175 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7727 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005492 issn: 0720-048X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7727 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005492 issn: 0720-048X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7727 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005492 issn: 0720-048X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1872-7727 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005492 issn: 0720-048X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7727 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005492 issn: 0720-048X databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrcTjwPtRHpWROJKqcZzYOVYrVgW0FUJbqZwi23HELiWpmkRQDlz443jspOK5LLdE8USyPZ58juf7BuCZDYzKhgBkLId5gCWNA6mnPNCoPqYp06GrQ3a8SOZL9moVrzqdbeTC_HR-7_KwzNlWoqQnZbi8GeMHMExiC7wHMFwu3szeOaFNikmKYoXbK8EdZuS9xtCf3_K379DvOPMaXGnLjdx9kuv1D9-eoxue1F07yUJMOfkwaRs10V9-EXS8YLduwvUOg5KZd5pbcMmUt-HycXfKfge-va1UWzcYBElVEPuGU-Quk8I4FdCanJbE8yd3RKq8cnXBCKayl_r97qNEo06vtSb4o5dszcbampyYzxJbO2cnVUmQCRaspcX9_tI4KiI5PLkLy6MXJ4fzoCvWEGiLwZrAxDwtQkNzC2kii0IKoQw1VBXSPolUyIwolN2K01QnKoyVDW6R0JTyRCea0zy6B4OyKs0DIFNdpHanlaoiVYwbIRKuOM_zUImYU6pGQPupy3SnZI4FNdZZn7J2lrnhzXB4Mz-8I3i-N9p4IY_zm7PeJ7Keo2qjamYn8nyzZG_WQRgPTf5t-LR3vMwucDy1kaWp2jqLXBEAygQbwX3vkfsORKhGOI3SEQR7F71I7x7-Z_tHcBXvfIrcYxg029Y8sWCsUWM4mHwNxzCcvXw9X4y7JfkdRiYvRA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti8TCYcVzKcvDSBwxbRwnTo6oYlVguwfoSr1ZtuOIrrpJ1YegFy78cWacpFoEWhC3KPFItmf8eRzPfAPwCoHRIgRQxnJUcCppzI0bKO6IfcwJ6aJQh2x8lo7O5YdpMt2DYZcLQ2GVLfY3mB7Qun3Tb2ezv5jN-p8HijScTSkKEr2K-AbclIlQdAJ78_1KnIcMlZGpNafmHfVQCPLyF0tDfKFCEnZIKrLy5-3pd_fzDhxsqoXZfjXz-ZUt6eQuHLa-JHvbdPce7PnqPtwat7flD-DHp9puVmsCM1aXDPswoxxkVvrA5rlis4o1eZBbZmxRh_pejELSK_dle2lIqOVdXTH6YcuWfoGyvmD-m6HWwWhZXTHK6OJzg_578-hDSiEbTh7C-cm7yXDE26IL3KEvteY-UXkZeVGgaxKjN1Fm1gsvbGnwS2wj6bPS4pFa5C61UWIRpOLMCaFSlzolivgR7Fd15R8DG7gyxxNTbsvcSuWzLFVWqaKIbJYoIWwPRDfX2rWM5FQYY6670LMLHRSkSUG6UVAPXu-EFg0hx_XNZadE3eWaIjpq3DCuF0t3Yr-Y498FX3aWonGh0u2LqXy9Wek4kPkLmckeHDUmtBtATKyCgzjvAd_Z1L-M7sn_dvMFHIwm41N9-v7s4zHcpi9N_NtT2F8vN_4Zelpr-zyspJ9wWCRA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDfRxaNP39hFU6LEOa1m25GMIDSGQUEoWNichyTJNsrWXtU27vfaPVyPZS9s0j95srDFIGo0_WfN9A_DeBUbtQgAyluMiwpLGkTITHhlUHzOUmdjXITs6zg6m7HCWznqdbeTC_HF-7_Ow7PlSoaQnZbi8GeN3YDNLHfAeweb0-NPuqRfapJikKGa4vRLcY0Y-aAz9-y1XfYcu48wHcK-rFmr1Tc3nv3179h8FUnfjJQsx5eRip2v1jvnxl6DjLbu1BQ97DEp2g9M8hg1bPYG7R_0p-1P4-bnWXdNiECR1SdwbzpC7TErrVUAbclaRwJ9cEaWL2tcFI5jKXpkvq68KjXq91obgj16ytAtnawtivyts7Z2d1BVBJlg0Vw73h0vrqYhk7-QZTPc_nuwdRH2xhsg4DNZGNuV5GVtaOEiTOBRSCm2ppbpU7kmiY2ZFqd1WnOYm03GqXXBLhKGUZyYznBbJcxhVdWVfApmYMnc7rVyXuWbcCpFxzXlRxFqknFI9BjpMnTS9kjkW1JjLIWXtXPrhlTi8MgzvGD6sjRZByOP65mzwCTlwVF1UlW4irzfL1mY9hAnQ5GbDd4PjSbfA8dRGVbbuGpn4IgCUCTaGF8Ej1x1IUI1wkuRjiNYuepvevfrP9q_hPt6FFLk3MGqXnX3rwFirt_tF-AvHjCy4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+of+radiomic+features+in+healthy+abdominal+parenchyma+of+patients+with+repeated+examinations+on+dual-layer+dual-energy+CT&rft.jtitle=European+journal+of+radiology&rft.au=Sch%C3%B6neck%2C+Mirjam&rft.au=Lennartz%2C+Simon&rft.au=Zopfs%2C+David&rft.au=Sonnabend%2C+Kristina&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=0720-048X&rft.volume=175&rft_id=info:doi/10.1016%2Fj.ejrad.2024.111447&rft.externalDocID=S0720048X24001633 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0720-048X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0720-048X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0720-048X&client=summon |