A Stable Bayesian Vector Network Analyzer Calibration Algorithm

A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of very high-impedance devices such as carbon nanotube transistors and can be applied to all types of VNA calibration. It was found that, for high-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 57; no. 4; pp. 869 - 880
Main Authors Hoffmann, J., Leuchtmann, P., Ruefenacht, J., Vahldieck, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2009.2015096

Cover

Abstract A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of very high-impedance devices such as carbon nanotube transistors and can be applied to all types of VNA calibration. It was found that, for high-impedance devices, the new algorithm yields up to four times more accurate results. The focus of this study is on the accuracy and robustness of the algorithm. A statistical error model of calibration, which includes errors in the calibration standards and errors in the VNA, is converted into a formula for calibration by Bayes' theorem. The numerical implementation of this formula makes use of nonlinear optimization techniques and Monte Carlo integration. The resulting new algorithm is compared against various other algorithms. Benchmarking shows that the presented calibration algorithm is robust and more accurate than all other tested algorithms in all tested calibration scenarios.
AbstractList A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of very high-impedance devices such as carbon nanotube transistors and can be applied to all types of VNA calibration. It was found that, for high-impedance devices, the new algorithm yields up to four times more accurate results. The focus of this study is on the accuracy and robustness of the algorithm. A statistical error model of calibration, which includes errors in the calibration standards and errors in the VNA, is converted into a formula for calibration by Bayes' theorem. The numerical implementation of this formula makes use of nonlinear optimization techniques and Monte Carlo integration. The resulting new algorithm is compared against various other algorithms. Benchmarking shows that the presented calibration algorithm is robust and more accurate than all other tested algorithms in all tested calibration scenarios.
A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of very high-impedance devices such as carbon nanotube transistors and can be applied to all types of VNA calibration. It was found that, for high-impedance devices, the new algorithm yields up to four times more accurate results. The focus of this study is on the accuracy and robustness of the algorithm. A statistical error model of calibration, which includes errors in the calibration standards and errors in the VNA, is converted into a formula for calibration by Bayesa theorem. The numerical implementation of this formula makes use of nonlinear optimization techniques and Monte Carlo integration. The resulting new algorithm is compared against various other algorithms. Benchmarking shows that the presented calibration algorithm is robust and more accurate than all other tested algorithms in all tested calibration scenarios.
A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of very high-impedance devices such as carbon nanotube transistors and can be applied to all types of VNA calibration. It was found that, for high-impedance devices, the new algorithm yields up to four times more accurate results. The focus of this study is on the accuracy and robustness of the algorithm. A statistical error model of calibration, which includes errors in the calibration standards and errors in the VNA, is converted into a formula for calibration by BayesE14 theorem. The numerical implementation of this formula makes use of nonlinear optimization techniques and Monte Carlo integration. The resulting new algorithm is compared against various other algorithms. Benchmarking shows that the presented calibration algorithm is robust and more accurate than all other tested algorithms in all tested calibration scenarios.
Author Hoffmann, J.
Vahldieck, R.
Leuchtmann, P.
Ruefenacht, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Hoffmann
  fullname: Hoffmann, J.
  organization: Lab. for Electromagn. Fields & Microwave Electron., ETH Zurich, Zurich
– sequence: 2
  givenname: P.
  surname: Leuchtmann
  fullname: Leuchtmann, P.
  organization: Lab. for Electromagn. Fields & Microwave Electron., ETH Zurich, Zurich
– sequence: 3
  givenname: J.
  surname: Ruefenacht
  fullname: Ruefenacht, J.
  organization: Fed. Office of Metrol. METAS, Bern-Wabern
– sequence: 4
  givenname: R.
  surname: Vahldieck
  fullname: Vahldieck, R.
  organization: Lab. for Electromagn. Fields & Microwave Electron., ETH Zurich, Zurich
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21353622$$DView record in Pascal Francis
BookMark eNp9kU1PGzEQhq0KpIbQH1D1sqpExWVhvF6v7RNKI74kaA9Ne7W8u7Ng6qzBdoTCr6_TRBw4cPHI0vPOaOY5IHujH5GQzxROKAV1urhdLE4qAJUfykE1H8iEci5K1QjYIxMAKktVS_hIDmJ8yN-ag5yQs1nxK5nWYfHdrDFaMxZ_sEs-FD8wPfvwt5iNxq1fMBRz42wbTLJ-LGbuzgeb7peHZH8wLuKnXZ2S3xfni_lVefPz8no-uym7mjep7FU18F6puh1Uz42oW9lWrJNcqBZqLgbFh17m0huQjFVswLZlgBVlrDfI2JR82_Z9DP5phTHppY0dOmdG9KuoWc0ZQNNk8PhdkDaCVlIIBRn9-gZ98KuQ141a8kZRRvP4KTnaQSZ2xg3BjJ2N-jHYpQlrnQnOmqrKHN1yXfAxBhxeEQp6o0hvFOmNIr1TlDPiTaaz6f-BUzDWvZv8sk1aRHydlPVSpTj7BwKRnmI
CODEN IETMAB
CitedBy_id crossref_primary_10_1109_TMTT_2013_2272380
crossref_primary_10_1088_1681_7575_aaa21c
crossref_primary_10_1177_0020294021989740
crossref_primary_10_1109_TIM_2023_3246502
crossref_primary_10_1109_TMTT_2013_2279774
crossref_primary_10_1109_TIM_2012_2202165
crossref_primary_10_1109_TMTT_2017_2750150
Cites_doi 10.1109/TMTT.2005.854225
10.1109/22.85388
10.1109/ARFTGF.2002.1218696
10.1109/TMTT.1979.1129778
10.1109/TMTT.2003.819211
10.1109/MWSYM.2003.1210494
10.1109/TIM.2005.843521
10.1109/TMTT.1980.1130270
10.1109/22.41055
10.1109/TMTT.1974.1128212
10.1007/978-0-387-40065-5_15
10.1002/cta.396
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
8FD
L7M
F28
FR3
DOI 10.1109/TMTT.2009.2015096
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Engineering Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1557-9670
EndPage 880
ExternalDocumentID 2291915021
21353622
10_1109_TMTT_2009_2015096
4801995
Genre orig-research
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
IQODW
RIG
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c456t-d92f5d994bf9d5a74b8b23c8579b0457f95fd87f9da083323febb30e2133dae33
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Sat Sep 27 22:12:30 EDT 2025
Sat Sep 27 23:09:37 EDT 2025
Mon Jun 30 10:20:22 EDT 2025
Mon Jul 21 09:17:23 EDT 2025
Wed Oct 01 02:41:09 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Aug 26 16:47:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Network analyzer
vector network analyzer (VNA)
Error analysis
Error estimation
Carbon nanotubes
Implementation
Optimization
Nanoelectronics
Accuracy
Monte Carlo methods
Bayes network
Robustness
Monte Carlo method
Nanotube devices
Benchmarking
Transistor
Nonlinear problems
Calibration
Vector method
Algorithm
estimation
Statistical model
Numerical simulation
Bayes methods
High impedance
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-d92f5d994bf9d5a74b8b23c8579b0457f95fd87f9da083323febb30e2133dae33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 856913121
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_34530066
proquest_miscellaneous_1671287790
crossref_primary_10_1109_TMTT_2009_2015096
ieee_primary_4801995
pascalfrancis_primary_21353622
crossref_citationtrail_10_1109_TMTT_2009_2015096
proquest_journals_856913121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References rasch (ref10) 1995
ref12
robert (ref17) 2004
ref2
nocedal (ref15) 2006
ref1
ref16
ref18
samko (ref19) 1993
ref8
ref7
ref9
rasch (ref14) 1995
ref4
(ref11) 2006
ref3
ref6
(ref13) 2006
ref5
References_xml – start-page: 9
  year: 1993
  ident: ref19
  publication-title: Fractional Integrals and Derivatives
– year: 2006
  ident: ref11
  publication-title: -parameter design
– ident: ref12
  doi: 10.1109/TMTT.2005.854225
– ident: ref6
  doi: 10.1109/22.85388
– start-page: 6
  year: 2006
  ident: ref15
  publication-title: Numerical Optimization
– ident: ref7
  doi: 10.1109/ARFTGF.2002.1218696
– ident: ref2
  doi: 10.1109/TMTT.1979.1129778
– start-page: 47
  year: 2004
  ident: ref17
  publication-title: Monte Carlo Statistical Methods
– ident: ref9
  doi: 10.1109/TMTT.2003.819211
– ident: ref8
  doi: 10.1109/MWSYM.2003.1210494
– ident: ref18
  doi: 10.1109/TIM.2005.843521
– ident: ref4
  doi: 10.1109/TMTT.1980.1130270
– ident: ref5
  doi: 10.1109/22.41055
– start-page: 177
  year: 1995
  ident: ref10
  publication-title: Mathematische Statistik Eine Einfhrung fr Studenten der Mathematik Statistik und Naturwissenschaften
– year: 2006
  ident: ref13
  publication-title: Network analyzer calibration employing reciprocity of a device
– ident: ref3
  doi: 10.1109/TMTT.1974.1128212
– ident: ref16
  doi: 10.1007/978-0-387-40065-5_15
– start-page: 267
  year: 1995
  ident: ref14
  publication-title: Mathematische Statistik Eine Einfhrung fr Studenten der Mathematik Statistik und Naturwissenschaften
– ident: ref1
  doi: 10.1002/cta.396
SSID ssj0014508
Score 1.9952048
Snippet A new overdetermined vector network analyzer (VNA) calibration algorithm is presented. The new algorithm shows significant advantages in the measurement of...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 869
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Bayesian methods
Calibration
Carbon nanotubes
Computer errors
Devices
Electronics
error analysis
Errors
estimation
Exact sciences and technology
Impedance
Instruments
Mathematical models
Measurement standards
Molecular electronics, nanoelectronics
Monte Carlo methods
Networks
Robustness
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Testing
vector network analyzer (VNA)
Title A Stable Bayesian Vector Network Analyzer Calibration Algorithm
URI https://ieeexplore.ieee.org/document/4801995
https://www.proquest.com/docview/856913121
https://www.proquest.com/docview/1671287790
https://www.proquest.com/docview/34530066
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014508
  issn: 0018-9480
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0GEQjESJ0S2iR3H9gktiKpC2p62qLfIjzFULLtoN3ugvx5Pko3KU5wSyZPInvFjxjPzDcBLaWqnfKzyMgbMK-l17rRRuY_RBF1IawPlDs_O67OL6sOlvNyD12MuDCJ2wWc4odfOlx9WfktXZScEdWKM3Id9pes-V2v0GFSyGHbdtIAT4eDBLAtzMp_N5z0yJSf7nvD5b5xBXVEVCom0m8SV2Jez-G1n7o6b07sw23W0jzL5Mtm2buKvf8Fw_N-R3IM7g97Jpv1EuQ97uHwAt2-gER7CmylLqqdbIHtrvyMlV7KP3Z0-O-9jxVmHYHKNa0YZXa6fO2y6-LRaX7Wfvz6Ei9P383dn-VBfIfdJbWrzYHiUwZjKJblIqyqnHRdeS2Vc0vRUNDIGnR7BJkVNcBHROVEgT3ZtsCjEIzhYrpb4GJhCwVH62sQ6VMkIcjb9kQpvYiITWmVQ7Dje-AF8nGpgLJrOCClMQ0KimpimGYSUwavxk2898sa_iA-JySPhwN8Mjn8S69jOqdxHzXkGRzs5N8Pi3TRa1qYUJS8zeDG2plVHrhS7xNV205S1Sgc7YTVm8PwvNKKSgjS6J3_u2xHc2nmmivIpHLTrLT5LCk7rjruZ_QPFB_br
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUUGiNxAmRbeJHEp_QgqgW6O4pRb1FdjwuiGUX7WYP9NfjSbJReYpTInkS2TN-zHhmvgF4rnRm89rLOPUOY6nqIraFzuPae-2KRBnjKHd4Ossm5_L9hbrYgZdDLgwitsFnOKLX1pfvlvWGrspOCOpEa3UDbioppeqytQafgVRJv--GJRxIex9mmuiTclqWHTYlJwufEPqvnUJtWRUKijTrwBffFbT4bW9uD5zTuzDddrWLM_ky2jR2VF_9guL4v2O5B3d6zZONu6lyH3Zw8QD2ruER7sOrMQvKp50je22-I6VXso_trT6bddHirMUwucIVo5wu280eNp5fLlefm09fH8L56dvyzSTuKyzEdVCcmthp7pXTWtogGWVyaQvLRV2oXNug6-VeK--K8HAmqGqCC4_WigR5sGydQSEewe5iucADYDkKjqrOtM-cDGaQNeGPVHoTA5ko8giSLceruocfpyoY86o1QxJdkZCoKqaueiFF8GL45FuHvfEv4n1i8kDY8zeCo5_EOrRzKviRcR7B4VbOVb9811WhMp2KlKcRPBtaw7ojZ4pZ4HKzrtIsD0c7oTVGcPwXGiGVIJ3u8Z_7dgy3JuX0rDp7N_twCLe3fqokfQK7zWqDT4O609ijdpb_ANZd-jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stable+Bayesian+Vector+Network+Analyzer+Calibration+Algorithm&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Hoffmann%2C+J.&rft.au=Leuchtmann%2C+P.&rft.au=Ruefenacht%2C+J.&rft.au=Vahldieck%2C+R.&rft.date=2009-04-01&rft.pub=IEEE&rft.issn=0018-9480&rft.volume=57&rft.issue=4&rft.spage=869&rft.epage=880&rft_id=info:doi/10.1109%2FTMTT.2009.2015096&rft.externalDocID=4801995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon