Development and validation of a code-based algorithm using in-hospital medical records to identify patients with pulmonary arterial hypertension in a French healthcare database

Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be u...

Full description

Saved in:
Bibliographic Details
Published inERJ open research Vol. 10; no. 4; pp. 109 - 2024
Main Authors Jambon-Barbara, Clément, Hlavaty, Alex, Bernardeau, Claire, Bouvaist, Hélène, Chaumais, Marie-Camille, Humbert, Marc, Montani, David, Cracowski, Jean-Luc, Khouri, Charles
Format Journal Article
LanguageEnglish
Published England European Respiratory Society 01.07.2024
Subjects
Online AccessGet full text
ISSN2312-0541
2312-0541
DOI10.1183/23120541.00109-2024

Cover

Abstract Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database "Système National des Données de Santé (SNDS)". We developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm, using in-hospital ICD-10 (10th revision of the International Statistical Classification of Diseases) codes, right heart catheterisation procedure and PAH-specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Second, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients. In the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 1 January 2010 and 30 June 2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6%, respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries. Overall, we propose a new PAH identification algorithm developed and adapted to the French specificities that can be used in future studies using the French healthcare database.
AbstractList Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database "Système National des Données de Santé (SNDS)". We developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm, using in-hospital ICD-10 (10th revision of the International Statistical Classification of Diseases) codes, right heart catheterisation procedure and PAH-specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Second, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients. In the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 1 January 2010 and 30 June 2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6%, respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries. Overall, we propose a new PAH identification algorithm developed and adapted to the French specificities that can be used in future studies using the French healthcare database.
Introduction Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database “Système National des Données de Santé (SNDS)”. Methods We developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm, using in-hospital ICD-10 (10th revision of the International Statistical Classification of Diseases) codes, right heart catheterisation procedure and PAH-specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Second, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients. Results In the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 1 January 2010 and 30 June 2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6%, respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries. Conclusion Overall, we propose a new PAH identification algorithm developed and adapted to the French specificities that can be used in future studies using the French healthcare database.
Development and validation of an algorithm allowing identification of PAH patients in a French healthcare database https://bit.ly/3VXGt74
Introduction Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database (SNDS). Methods We developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm (Gillmeyer et al . algorithm), using in hospital ICD-10 codes, right heart catheterisation procedure and PAH specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Secondly, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients. Results In the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 01/01/2010 and 30/06/2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6% respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries. Conclusion Overall, we propose a new PAH identification algorithm developed and adapted to the French specificities, that can be used in future studies using the French healthcare database.
Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database "Système National des Données de Santé (SNDS)".IntroductionPulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy comes from cohorts, registries and clinical trials. We therefore aimed to develop and validate a new PAH identification algorithm that can be used in the French healthcare database "Système National des Données de Santé (SNDS)".We developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm, using in-hospital ICD-10 (10th revision of the International Statistical Classification of Diseases) codes, right heart catheterisation procedure and PAH-specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Second, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients.MethodsWe developed and validated the algorithm using the Grenoble Alpes University Hospital medical charts. We first identified PAH patients following a previously validated algorithm, using in-hospital ICD-10 (10th revision of the International Statistical Classification of Diseases) codes, right heart catheterisation procedure and PAH-specific treatment dispensing. Then, we refined the latter with the exclusion of chronic thromboembolic pulmonary hypertension procedures and treatment, the main misclassification factor. Second, we validated this algorithm using a gold standard review of in-hospital medical charts and calculated sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy. Finally, we applied this algorithm in the French healthcare database and described the characteristics of the identified patients.In the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 1 January 2010 and 30 June 2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6%, respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries.ResultsIn the Grenoble University Hospital, we identified 252 unique patients meeting all the algorithm's criteria between 1 January 2010 and 30 June 2022, and reviewed all medical records. The sensitivity, specificity, PPV, NPV and accuracy were 91.0%, 74.3%, 67.9%, 93.3% and 80.6%, respectively. Application of this algorithm to the SNDS yielded the identification of 9931 patients with consistent characteristics compared to PAH registries.Overall, we propose a new PAH identification algorithm developed and adapted to the French specificities that can be used in future studies using the French healthcare database.ConclusionOverall, we propose a new PAH identification algorithm developed and adapted to the French specificities that can be used in future studies using the French healthcare database.
Author Chaumais, Marie-Camille
Khouri, Charles
Hlavaty, Alex
Bouvaist, Hélène
Humbert, Marc
Bernardeau, Claire
Montani, David
Cracowski, Jean-Luc
Jambon-Barbara, Clément
AuthorAffiliation 4 INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
1 Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
7 Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
9 Grenoble Alpes University Hospital, Clinical Pharmacology Department INSERM CIC1406, Grenoble, France
2 Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, Grenoble, France
5 Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Pharmacy, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
8 AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, DMU 5 Thorinno, Le Kremlin-Bicêtre, France
6 Faculty of Pharmacy, Université Paris-Saclay, Saclay, France
3 Cardiology Unit, Grenoble Alpes University Hospital, Grenoble, France
AuthorAffiliation_xml – name: 9 Grenoble Alpes University Hospital, Clinical Pharmacology Department INSERM CIC1406, Grenoble, France
– name: 2 Univ. Grenoble Alpes, HP2 Laboratory, Inserm U1300, Grenoble, France
– name: 7 Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
– name: 3 Cardiology Unit, Grenoble Alpes University Hospital, Grenoble, France
– name: 6 Faculty of Pharmacy, Université Paris-Saclay, Saclay, France
– name: 1 Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
– name: 4 INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
– name: 5 Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Pharmacy, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
– name: 8 AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, DMU 5 Thorinno, Le Kremlin-Bicêtre, France
Author_xml – sequence: 1
  givenname: Clément
  orcidid: 0000-0002-6619-4130
  surname: Jambon-Barbara
  fullname: Jambon-Barbara, Clément
– sequence: 2
  givenname: Alex
  surname: Hlavaty
  fullname: Hlavaty, Alex
– sequence: 3
  givenname: Claire
  surname: Bernardeau
  fullname: Bernardeau, Claire
– sequence: 4
  givenname: Hélène
  surname: Bouvaist
  fullname: Bouvaist, Hélène
– sequence: 5
  givenname: Marie-Camille
  orcidid: 0000-0002-1217-8442
  surname: Chaumais
  fullname: Chaumais, Marie-Camille
– sequence: 6
  givenname: Marc
  orcidid: 0000-0003-0703-2892
  surname: Humbert
  fullname: Humbert, Marc
– sequence: 7
  givenname: David
  orcidid: 0000-0002-9358-6922
  surname: Montani
  fullname: Montani, David
– sequence: 8
  givenname: Jean-Luc
  surname: Cracowski
  fullname: Cracowski, Jean-Luc
– sequence: 9
  givenname: Charles
  orcidid: 0000-0002-8427-8573
  surname: Khouri
  fullname: Khouri, Charles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39135662$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04618768$$DView record in HAL
BookMark eNqNksFu1DAQhiNUREvpEyAhH-GQYseO45xQVSittBIXOFuO7WxcOXawk632rXhEJt22ajlx8mjyzzf_zORtcRRisEXxnuBzQgT9XFFS4ZqRc4wJbssKV-xVcbJmyzV99Cw-Ls5yvsUgrCvBOH9THNOW0Jrz6qT489XurI_TaMOMVDBop7wzanYxoNgjhXQ0tuxUtgYpv43JzcOIluzCFrlQDjFPblYejdY4DW-yOiaT0RyRM8B0_R5NgIMwozsoRtPixxhU2iOVZpscFA37yUIc8trVBeh6lWzQAxqs8vOgVbIIPKnVxrvida98tmcP72nx6-rbz8vrcvPj-83lxabUrOZz2bWtrTGrKlL3HTZtgzlpRFX3QlChGtyKnnLdYi4UbrmyljSKcdK1velgl4yeFjcHronqVk7JjWBZRuXkfSKmrQT_TnsrmWgaI4TQNSdMUyGw0QxTYqC9qiwGFjuwljCp_Z3y_glIsFzvKR_vKe_vKdd7QtmXQ9m0dLBfDTtMyr_w8vJLcIPcxh0QKQzbVkD4dCAM_9RdX2zkmsMws2i42BHQfnzoluLvxeZZji5r670KNi5ZUgxA3rBagPTDc2NP5MffCgT0INAp5pxs_1_z_gVGuuD-
Cites_doi 10.1183/13993003.01913-2018
10.1164/rccm.202112-2761OC
10.1002/pds.2321
10.1136/ard-2022-222824
10.1183/16000617.0050-2019
10.1016/j.respe.2017.05.004
10.1016/j.jacc.2013.10.036
10.1038/nrcardio.2017.84
10.1016/j.chest.2018.11.004
10.1016/j.chest.2020.12.010
10.1016/j.ijcard.2022.12.016
10.1002/pul2.12333
10.1177/2045894020977300
10.1093/bjd/ljad248
10.1183/13993003.00879-2022
10.1164/rccm.201709-1821ST
10.2307/2529310
10.1093/eurheartj/ehac237
10.1002/pds.4233
10.1016/j.lanepe.2021.100158
10.1164/rccm.200510-1668OC
10.1161/JAHA.120.016648
10.1016/S0167-5273(11)70492-2
10.1177/2045894020961713
10.1016/j.therap.2023.01.009
10.1513/AnnalsATS.201810-672CME
ContentType Journal Article
Copyright Copyright ©The authors 2024.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright ©The authors 2024 2024
Copyright_xml – notice: Copyright ©The authors 2024.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright ©The authors 2024 2024
DBID AAYXX
CITATION
NPM
7X8
1XC
5PM
ADTOC
UNPAY
DOA
DOI 10.1183/23120541.00109-2024
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate PAH identification in French healthcare database
EISSN 2312-0541
EndPage 2024
ExternalDocumentID oai_doaj_org_article_4877d888c5614c3880dc4031d422a2e0
10.1183/23120541.00109-2024
PMC11317892
oai:HAL:hal-04618768v1
39135662
10_1183_23120541_00109_2024
Genre Journal Article
GroupedDBID 53G
5VS
AAYXX
ACEMG
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BTFSW
CITATION
EBS
EJD
GROUPED_DOAJ
H13
HYE
IPNFZ
KQ8
M~E
OK1
R0Z
RHI
RIG
RPM
TER
AIPOO
NPM
RHF
7X8
1XC
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c456t-b99e5042215fb0d970617825f8838a7098f36c9068a096aee17a461b9fdb02443
IEDL.DBID DOA
ISSN 2312-0541
IngestDate Fri Oct 03 12:39:46 EDT 2025
Sun Oct 26 04:02:05 EDT 2025
Tue Sep 30 17:08:19 EDT 2025
Tue Oct 14 20:53:41 EDT 2025
Thu Sep 04 15:40:26 EDT 2025
Thu Jan 02 22:34:03 EST 2025
Wed Oct 01 06:51:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright ©The authors 2024.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-b99e5042215fb0d970617825f8838a7098f36c9068a096aee17a461b9fdb02443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1217-8442
0000-0002-8427-8573
0000-0002-6619-4130
0000-0002-9358-6922
0000-0003-0703-2892
OpenAccessLink https://doaj.org/article/4877d888c5614c3880dc4031d422a2e0
PMID 39135662
PQID 3092367458
PQPubID 23479
PageCount 1916
ParticipantIDs doaj_primary_oai_doaj_org_article_4877d888c5614c3880dc4031d422a2e0
unpaywall_primary_10_1183_23120541_00109_2024
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11317892
hal_primary_oai_HAL_hal_04618768v1
proquest_miscellaneous_3092367458
pubmed_primary_39135662
crossref_primary_10_1183_23120541_00109_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle ERJ open research
PublicationTitleAlternate ERJ Open Res
PublicationYear 2024
Publisher European Respiratory Society
Publisher_xml – name: European Respiratory Society
References Leber (2024101712241073000_10.4.00109-2024.2) 2021; 11
Semenzato (2024101712241073000_10.4.00109-2024.18) 2021; 8
de Germay (2024101712241073000_10.4.00109-2024.11) 2023; 78
2024101712241073000_10.4.00109-2024.14
2024101712241073000_10.4.00109-2024.12
2024101712241073000_10.4.00109-2024.9
Tuppin (2024101712241073000_10.4.00109-2024.10) 2017; 65
2024101712241073000_10.4.00109-2024.17
2024101712241073000_10.4.00109-2024.16
Ong (2024101712241073000_10.4.00109-2024.28) 2020; 9
2024101712241073000_10.4.00109-2024.19
Didden (2024101712241073000_10.4.00109-2024.24) 2024; 14
2024101712241073000_10.4.00109-2024.3
Humbert (2024101712241073000_10.4.00109-2024.5) 2022; 43
Carnahan (2024101712241073000_10.4.00109-2024.15) 2012; 21
2024101712241073000_10.4.00109-2024.1
2024101712241073000_10.4.00109-2024.20
2024101712241073000_10.4.00109-2024.23
2024101712241073000_10.4.00109-2024.22
2024101712241073000_10.4.00109-2024.27
Montani (2024101712241073000_10.4.00109-2024.13) 2022; 206
Gillmeyer (2024101712241073000_10.4.00109-2024.6) 2019; 155
Sprecher (2024101712241073000_10.4.00109-2024.25) 2020; 10
Marcombes (2024101712241073000_10.4.00109-2024.21) 2023; 189
Kogan (2024101712241073000_10.4.00109-2024.26) 2023; 374
Talwar (2024101712241073000_10.4.00109-2024.4) 2017; 196
Mathai (2024101712241073000_10.4.00109-2024.7) 2019; 16
Gillmeyer (2024101712241073000_10.4.00109-2024.8) 2021; 159
References_xml – ident: 2024101712241073000_10.4.00109-2024.3
  doi: 10.1183/13993003.01913-2018
– volume: 206
  start-page: 573
  year: 2022
  ident: 2024101712241073000_10.4.00109-2024.13
  article-title: COVID-19 in patients with pulmonary hypertension: a national prospective cohort study
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.202112-2761OC
– volume: 21
  start-page: 82
  issue: Suppl. 1
  year: 2012
  ident: 2024101712241073000_10.4.00109-2024.15
  article-title: Mini-Sentinel's systematic reviews of validated methods for identifying health outcomes using administrative and claims data: methods and lessons learned
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2321
– ident: 2024101712241073000_10.4.00109-2024.17
– ident: 2024101712241073000_10.4.00109-2024.20
  doi: 10.1136/ard-2022-222824
– ident: 2024101712241073000_10.4.00109-2024.19
– ident: 2024101712241073000_10.4.00109-2024.27
  doi: 10.1183/16000617.0050-2019
– volume: 65
  start-page: S149
  year: 2017
  ident: 2024101712241073000_10.4.00109-2024.10
  article-title: Value of a national administrative database to guide public decisions: from the système national d'information interrégimes de l'Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France
  publication-title: Rev Dépidémiologie Santé Publique
  doi: 10.1016/j.respe.2017.05.004
– ident: 2024101712241073000_10.4.00109-2024.23
  doi: 10.1016/j.jacc.2013.10.036
– ident: 2024101712241073000_10.4.00109-2024.16
  doi: 10.1038/nrcardio.2017.84
– volume: 155
  start-page: 680
  year: 2019
  ident: 2024101712241073000_10.4.00109-2024.6
  article-title: Accuracy of algorithms to identify pulmonary arterial hypertension in administrative data: a systematic review
  publication-title: Chest
  doi: 10.1016/j.chest.2018.11.004
– volume: 159
  start-page: 1986
  year: 2021
  ident: 2024101712241073000_10.4.00109-2024.8
  article-title: Development and validation of algorithms to identify pulmonary arterial hypertension in administrative data
  publication-title: Chest
  doi: 10.1016/j.chest.2020.12.010
– volume: 374
  start-page: 95
  year: 2023
  ident: 2024101712241073000_10.4.00109-2024.26
  article-title: A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2022.12.016
– volume: 14
  start-page: e12333
  year: 2024
  ident: 2024101712241073000_10.4.00109-2024.24
  article-title: Clinical evaluation of code-based algorithms to identify patients with pulmonary arterial hypertension in healthcare databases
  publication-title: Pulm Circ
  doi: 10.1002/pul2.12333
– volume: 11
  start-page: 2045894020977300
  year: 2021
  ident: 2024101712241073000_10.4.00109-2024.2
  article-title: Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review
  publication-title: Pulm Circ
  doi: 10.1177/2045894020977300
– volume: 189
  start-page: 561
  year: 2023
  ident: 2024101712241073000_10.4.00109-2024.21
  article-title: Persistence of second-line biologics in psoriasis after first-line biologic failure: a nationwide cohort study from the French health insurance database (SNDS)
  publication-title: Br J Dermatol
  doi: 10.1093/bjd/ljad248
– ident: 2024101712241073000_10.4.00109-2024.1
  doi: 10.1183/13993003.00879-2022
– volume: 196
  start-page: e32
  year: 2017
  ident: 2024101712241073000_10.4.00109-2024.4
  article-title: Health disparities in patients with pulmonary arterial hypertension: a blueprint for action. An Official American Thoracic Society Statement
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201709-1821ST
– ident: 2024101712241073000_10.4.00109-2024.14
  doi: 10.2307/2529310
– volume: 43
  start-page: 3618
  year: 2022
  ident: 2024101712241073000_10.4.00109-2024.5
  article-title: 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehac237
– ident: 2024101712241073000_10.4.00109-2024.9
  doi: 10.1002/pds.4233
– volume: 8
  start-page: 100158
  year: 2021
  ident: 2024101712241073000_10.4.00109-2024.18
  article-title: Chronic diseases, health conditions and risk of COVID-19-related hospitalization and in-hospital mortality during the first wave of the epidemic in France: a cohort study of 66 million people
  publication-title: Lancet Reg Health Eur
  doi: 10.1016/j.lanepe.2021.100158
– ident: 2024101712241073000_10.4.00109-2024.12
  doi: 10.1164/rccm.200510-1668OC
– volume: 9
  start-page: e016648
  year: 2020
  ident: 2024101712241073000_10.4.00109-2024.28
  article-title: Claims-based algorithms for identifying patients with pulmonary hypertension: a comparison of decision rules and machine-learning approaches
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.120.016648
– ident: 2024101712241073000_10.4.00109-2024.22
  doi: 10.1016/S0167-5273(11)70492-2
– volume: 10
  start-page: 1
  year: 2020
  ident: 2024101712241073000_10.4.00109-2024.25
  article-title: Evaluation of code-based algorithms to identify pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension patients in large administrative databases
  publication-title: Pulm Circ
  doi: 10.1177/2045894020961713
– volume: 78
  start-page: S0040-5957(23)00026-4
  year: 2023
  ident: 2024101712241073000_10.4.00109-2024.11
  article-title: Performing pharmacoepidemiological studies using the French health insurance data warehouse (SNDS): how to translate guidelines into practice
  publication-title: Therapie
  doi: 10.1016/j.therap.2023.01.009
– volume: 16
  start-page: 797
  year: 2019
  ident: 2024101712241073000_10.4.00109-2024.7
  article-title: Identifying patients with pulmonary arterial hypertension using administrative claims algorithms
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201810-672CME
SSID ssj0001528466
Score 2.267761
Snippet Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and treatment efficacy...
Introduction Pulmonary arterial hypertension (PAH) is a rare and severe disease for which most of the evidence about prognostic factors, evolution and...
Development and validation of an algorithm allowing identification of PAH patients in a French healthcare database https://bit.ly/3VXGt74
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 109
SubjectTerms Life Sciences
Original s
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagK8FeeMOGlwbEkZQ8nMQ-FkRVIXbFgUrLKXKceBPRTao2AZVfxU9kxkmrlhXScqqUOnGcGWe-ib_5zNgbTysMwnnoas1Dl5s4cGWUKDcRPMvDyChulZhOz-LZnH86j84HnW2qhdlfv0dve4fwI0BU4Y_tGg7aNOA32VEcIfAesaP52ZfJN7t9HBEMsNmgK_SPMw9ij5Xox4hSEgHyKrq8SpK83dVLtfmpFou9CDS925d2r61wIRFPvo-7NhvrX3_JOl5zcPfYnQGJwqR3nfvsRlE_YLdOh7X2h-z3Hp8IVJ0D-mTV78AEjQEFVA3vUhTMQS0umlXVlpdAPPoLqGq3HDYkgct-KQj6z0FraBuobHWw2cCg6roG-hwMy26Bk0KtNmCJpjgzoMQ0eWVJ9thrVWOvUypPLKHc8daASK50G4_YfPrx64eZO-zv4GqEba2bSVlEpEHmRybzcpkQnMKM1QgRCpV4Upgw1tKLhcJESxWFnyge-5k0eYaPioeP2ahu6uKEQZzkhcgSrTzjc4OYKUuEjHVoYonpdiYc9nZr-XTZy3ikNv0RYbq1QmqtkJIVHPaevGPXlDS47QG0XjpM6RRTvSQXQmgSU9UkqpNrju_IHEekgsJz2Gv0rYNrzCafUzpGKvcYhsQP32Gvtq6X4sSm1RpVF023TkNPkroej_Dmn_SuuLtWiKNCHB44TBw46UFnh__UVWnFw30fEaOQeKq78-frPJKn_9n-GTumn57Z_JyN2lVXvED81mYvh3n7Bz1eOeI
  priority: 102
  providerName: Unpaywall
Title Development and validation of a code-based algorithm using in-hospital medical records to identify patients with pulmonary arterial hypertension in a French healthcare database
URI https://www.ncbi.nlm.nih.gov/pubmed/39135662
https://www.proquest.com/docview/3092367458
https://hal.science/hal-04618768
https://pubmed.ncbi.nlm.nih.gov/PMC11317892
https://doi.org/10.1183/23120541.00109-2024
https://doaj.org/article/4877d888c5614c3880dc4031d422a2e0
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2312-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528466
  issn: 2312-0541
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2312-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528466
  issn: 2312-0541
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2312-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528466
  issn: 2312-0541
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2312-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001528466
  issn: 2312-0541
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQIAEbxJvwGF0QS8Lk4Tj2siCqCjEjFlQaVpbjxJNInaTqA9S_4hO510mrRrOABds0tRPfk9xz4-Njxt5F1mASLtPQWp6G3IkkVFluwlzyokwzZ7h3Yjq_ELM5_3KZXR5t9UWasN4euB-4MyTUeYllmiXLSkvWJaXliMSSJ4lJKl-tR1IdFVP9-mB87Qox2AwhbM-QxyRIT-IPfjIIwZHwUSryjv2YYGrSQ94kmzc1k3e37dLsfpnF4ighTR-w-wOThEl_Bw_Zrap9xO6cD3Plj9nvIz0QmLYExFTT76AEnQMDtJo9pCxWgllcdatmU18D6eCvoGnDethQBK77qRzoP-esYdNB41f3uh0MrqxroM-5sNwuENRmtQMvFEVkQ41l7sqL5LHXpsVep7S8sIb6oDsDEqnSZTxh8-nn759m4bA_Q2iRdm3CQqkqIw-xOHNFVKqc6BBWnE7KVJo8UtKlwqpISIOFkqmqODdcxIVyZYHDz9On7KTt2uo5A5GXlSxyayIXc4ecp8ilEjZ1QmG5XMiAvd-HSi97Gw7tyxeZ6n1ktY-spsgG7COF83AqeWj7A4gsPSBL_w1ZAXuLYBi1MZt81XSMXOoxjcifccDe7LGi8cGk2RbTVt12rdNIkTsez_Din_XYObSV4l0hj04CJkeoGnU2_qVtam_-HcfI-KTCv4YHAP7LkLz4H0Pykt2jtnq58it2slltq9dIyjbFqX_-Ttnt-cW3yY8_4MsymQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagK8FeeMOGlwbEkZQ8nMQ-FkRVIXbFgUrLKXKceBPRTao2AZVfxU9kxkmrlhXScqqUOnGcGWe-ib_5zNgbTysMwnnoas1Dl5s4cGWUKDcRPMvDyChulZhOz-LZnH86j84HnW2qhdlfv0dve4fwI0BU4Y_tGg7aNOA32VEcIfAesaP52ZfJN7t9HBEMsNmgK_SPMw9ij5Xox4hSEgHyKrq8SpK83dVLtfmpFou9CDS925d2r61wIRFPvo-7NhvrX3_JOl5zcPfYnQGJwqR3nfvsRlE_YLdOh7X2h-z3Hp8IVJ0D-mTV78AEjQEFVA3vUhTMQS0umlXVlpdAPPoLqGq3HDYkgct-KQj6z0FraBuobHWw2cCg6roG-hwMy26Bk0KtNmCJpjgzoMQ0eWVJ9thrVWOvUypPLKHc8daASK50G4_YfPrx64eZO-zv4GqEba2bSVlEpEHmRybzcpkQnMKM1QgRCpV4Upgw1tKLhcJESxWFnyge-5k0eYaPioeP2ahu6uKEQZzkhcgSrTzjc4OYKUuEjHVoYonpdiYc9nZr-XTZy3ikNv0RYbq1QmqtkJIVHPaevGPXlDS47QG0XjpM6RRTvSQXQmgSU9UkqpNrju_IHEekgsJz2Gv0rYNrzCafUzpGKvcYhsQP32Gvtq6X4sSm1RpVF023TkNPkroej_Dmn_SuuLtWiKNCHB44TBw46UFnh__UVWnFw30fEaOQeKq78-frPJKn_9n-GTumn57Z_JyN2lVXvED81mYvh3n7Bz1eOeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+code-based+algorithm+using+in-hospital+medical+records+to+identify+patients+with+pulmonary+arterial+hypertension+in+a+French+healthcare+database&rft.jtitle=ERJ+open+research&rft.au=Jambon-Barbara%2C+Cl%C3%A9ment&rft.au=Hlavaty%2C+Alex&rft.au=Bernardeau%2C+Claire&rft.au=Bouvaist%2C+H%C3%A9l%C3%A8ne&rft.date=2024-07-01&rft.issn=2312-0541&rft.eissn=2312-0541&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1183%2F23120541.00109-2024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-0541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-0541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-0541&client=summon