Efficient path tracking methods
Path tracking is the fundamental computational tool in homotopy continuation and is therefore key in most algorithms in the emerging field of numerical algebraic geometry. Though the basic notions of predictor-corrector methods have been known for years, there is still much to be considered, particu...
Saved in:
| Published in | Numerical algorithms Vol. 58; no. 4; pp. 451 - 459 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.12.2011
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1017-1398 1572-9265 |
| DOI | 10.1007/s11075-011-9463-8 |
Cover
| Summary: | Path tracking is the fundamental computational tool in homotopy continuation and is therefore key in most algorithms in the emerging field of numerical algebraic geometry. Though the basic notions of predictor-corrector methods have been known for years, there is still much to be considered, particularly in the specialized algebraic setting of solving polynomial systems. In this article, the effects of the choice of predictor method on the performance of a tracker is analyzed, and details for using Runge-Kutta methods in conjunction with adaptive precision are provided. These methods have been implemented in the Bertini software package, and several examples are described. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-011-9463-8 |