A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce infere...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 106; no. 496; pp. 1331 - 1344 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
American Statistical Association
01.12.2011
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1198/jasa.2011.ap10425 |
Cover
| Abstract | In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study. |
|---|---|
| AbstractList | In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study. In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study. [PUBLICATION ABSTRACT] |
| Author | Li, Fan Schwartz, Scott L. Mealli, Fabrizia |
| Author_xml | – sequence: 1 givenname: Scott L. surname: Schwartz fullname: Schwartz, Scott L. – sequence: 2 givenname: Fan surname: Li fullname: Li, Fan – sequence: 3 givenname: Fabrizia surname: Mealli fullname: Mealli, Fabrizia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25425038$$DView record in Pascal Francis |
| BookMark | eNp9kU-LFDEQxYOs4OzqB_AgNILgpcdUujNJjuOw6sKCgn_wFmrSFczQnW6TzGG_vRlmRNiDdanL71U93rtmV3GOxNhL4GsAo98dMONacIA1LsB7IZ-wFchOtUL1P6_YisNGtNBL84xd53zgdZTWK_Zl27zHB8oBY_OVprBgwolKCq7ZLkua0f1qytzcxUJpoiFgoeYHpoD7kXITYrPDY8axAp4SRUfP2VOPY6YXl33Dvn-4_bb71N5__ni32963rpeb0iqAQYCQ3jlnlOaD1GLwyJ0C7oz2vie98XLfKckdSc1x75Tfo-mMAeOH7oa9Pd-tJn8fKRc7hexoHDHSfMwWahZaQterir5-hB7mY4rVnTUCQCmzMRV6c4EwOxx9wuhCtksKE6YHK2TNlHe6curMuTTnnMhbFwqWMMeSMIz1rz0VYk-F2FMh9lJIVcIj5d_j_9O8OmsOuczpn5tOdEb20P0BJcSanQ |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1111_rssa_12595 crossref_primary_10_1177_17407745211056875 crossref_primary_10_1080_00949655_2019_1574793 crossref_primary_10_1214_18_AOAS1196 crossref_primary_10_1080_00031305_2019_1647876 crossref_primary_10_1097_EDE_0000000000000187 crossref_primary_10_1111_rssa_12073 crossref_primary_10_1214_20_STS810 crossref_primary_10_1214_15_AOAS881 crossref_primary_10_1002_sim_9742 crossref_primary_10_1002_sim_4472 crossref_primary_10_1111_rssc_12552 crossref_primary_10_1002_wics_1583 crossref_primary_10_1177_0163278713512124 crossref_primary_10_1080_01621459_2019_1623039 crossref_primary_10_1002_sim_6291 crossref_primary_10_1080_19345747_2020_1823538 crossref_primary_10_1007_s00184_024_00976_y crossref_primary_10_1080_00031305_2015_1111260 crossref_primary_10_1186_s13063_021_05163_2 crossref_primary_10_1080_01621459_2013_835656 crossref_primary_10_1111_rssb_12538 crossref_primary_10_1177_09622802231181223 crossref_primary_10_1093_jrsssa_qnad010 crossref_primary_10_1111_rssa_12547 crossref_primary_10_1214_21_AOAS1586 crossref_primary_10_1093_biostatistics_kxt051 crossref_primary_10_1214_19_AOAS1260 crossref_primary_10_1214_24_BA1425 crossref_primary_10_2139_ssrn_4863206 crossref_primary_10_1177_0962280214539655 crossref_primary_10_1111_biom_12575 crossref_primary_10_1111_biom_13565 crossref_primary_10_1002_sim_7430 crossref_primary_10_1002_sim_7572 crossref_primary_10_1111_rssc_12265 crossref_primary_10_1002_sim_8761 crossref_primary_10_1111_rssb_12191 crossref_primary_10_1111_rssb_12135 crossref_primary_10_1214_13_AOAS674 crossref_primary_10_1093_biostatistics_kxaa040 crossref_primary_10_1093_ije_dyw193 crossref_primary_10_1002_bimj_70041 crossref_primary_10_1080_01621459_2015_1125788 crossref_primary_10_1093_biomtc_ujaf024 |
| Cites_doi | 10.1080/03610919408813196 10.2307/2291069 10.1093/biomet/87.2.371 10.3102/1076998607307475 10.1111/j.1541-0420.2006.00684.x 10.1037/h0037350 10.1198/016214507000000347 10.1198/jasa.2011.ap09094 10.1097/00001648-199203000-00013 10.2307/2287653 10.2307/2291223 10.2307/2289707 10.1214/aos/1034276631 10.1080/03610910601096262 10.1111/j.0006-341X.2002.00021.x 10.1111/j.1541-0420.2008.01108.x 10.1093/biomet/asm086 10.2307/2289457 10.1007/s10654-009-9327-x 10.1214/ss/1177012032 10.1093/biomet/70.1.41 10.1214/aos/1176344064 10.1214/088342306000000114 10.1214/aos/1176342752 10.2307/2291629 10.2307/2981697 10.2307/2289776 10.1198/016214501750332758 |
| ContentType | Journal Article |
| Copyright | 2011 The American Statistical Association 2015 INIST-CNRS Copyright American Statistical Association Dec 2011 |
| Copyright_xml | – notice: 2011 The American Statistical Association – notice: 2015 INIST-CNRS – notice: Copyright American Statistical Association Dec 2011 |
| DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
| DOI | 10.1198/jasa.2011.ap10425 |
| DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-274X |
| EndPage | 1344 |
| ExternalDocumentID | 2584633661 25425038 10_1198_jasa_2011_ap10425 23239541 |
| Genre | Feature |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UQL UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAYXX ABEFU ABJCF ABUWG ACAGQ ACGEE ACTCW ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS PUEGO Q2X QCRFL RNS S0X SJN TAQ TASJS TFMCV TOXWX UB9 UKHRP VH1 VOH WHG YXB YYP ZCG ZGI ZXP IQODW 8BJ ABUFD FQK JBE K9. |
| ID | FETCH-LOGICAL-c456t-711d2125fccc9780d582dfa0c710c98ff4e86f5b3750ce580abc7fba939919fd3 |
| ISSN | 0162-1459 |
| IngestDate | Sat Sep 27 20:44:47 EDT 2025 Mon Oct 06 18:06:06 EDT 2025 Wed Apr 02 08:12:30 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Oct 01 03:57:29 EDT 2025 Thu May 29 08:44:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 496 |
| Keywords | Biometrics Compliance Cluster analysis (statistics) Mixture model Principal stratification Non parametric estimation Cardiovascular disease Parametric model Multivariate analysis Information loss Parametric method Medical science Cohort study Clinical trial Posterior distribution Bayes estimation Mixed distribution Bayesian nonparametrics Discriminant analysis Dirichlet process Statistical estimation Gibbs sampling Joint distribution Semiparametric method Statistical method Randomized design |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c456t-711d2125fccc9780d582dfa0c710c98ff4e86f5b3750ce580abc7fba939919fd3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 921177969 |
| PQPubID | 41715 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1011851347 proquest_journals_921177969 pascalfrancis_primary_25425038 crossref_citationtrail_10_1198_jasa_2011_ap10425 crossref_primary_10_1198_jasa_2011_ap10425 jstor_primary_23239541 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-01 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2011 |
| Publisher | American Statistical Association Taylor & Francis Ltd |
| Publisher_xml | – name: American Statistical Association – name: Taylor & Francis Ltd |
| References | p_29 p_23 p_24 Pearl J. (p_18) 2001 p_26 p_21 p_22 p_16 p_17 p_2 p_1 p_19 p_4 p_12 p_3 p_13 p_6 p_14 p_5 p_15 p_8 p_7 p_9 Walker S. (p_31) 2007; 36 Rubin D. (p_25) 1990; 5 Rosenbaum P. (p_20) 1984; 147 p_30 p_10 p_11 Sethurman J. (p_28) 1994; 4 |
| References_xml | – ident: p_15 doi: 10.1080/03610919408813196 – ident: p_5 doi: 10.2307/2291069 – ident: p_11 doi: 10.1093/biomet/87.2.371 – ident: p_13 doi: 10.3102/1076998607307475 – ident: p_16 doi: 10.1111/j.1541-0420.2006.00684.x – ident: p_22 doi: 10.1037/h0037350 – ident: p_12 doi: 10.1198/016214507000000347 – ident: p_2 doi: 10.1198/jasa.2011.ap09094 – ident: p_19 doi: 10.1097/00001648-199203000-00013 – ident: p_24 doi: 10.2307/2287653 – volume: 4 start-page: 639 year: 1994 ident: p_28 publication-title: Statistica Sinica – ident: p_4 doi: 10.2307/2291223 – ident: p_3 doi: 10.2307/2289707 – ident: p_9 doi: 10.1214/aos/1034276631 – start-page: 411 year: 2001 ident: p_18 publication-title: Proceedings of the 17th Conference on Uncertainy in Artificial Intelligence, San Francisco, CA: Morgan Kaufmann, pp. – volume: 36 start-page: 45 year: 2007 ident: p_31 publication-title: Communications in Statistics doi: 10.1080/03610910601096262 – ident: p_7 doi: 10.1111/j.0006-341X.2002.00021.x – ident: p_29 doi: 10.1111/j.1541-0420.2008.01108.x – ident: p_17 doi: 10.1093/biomet/asm086 – ident: p_30 doi: 10.2307/2289457 – ident: p_14 doi: 10.1007/s10654-009-9327-x – volume: 5 start-page: 472 year: 1990 ident: p_25 publication-title: Statistical Science doi: 10.1214/ss/1177012032 – ident: p_21 doi: 10.1093/biomet/70.1.41 – ident: p_23 doi: 10.1214/aos/1176344064 – ident: p_26 doi: 10.1214/088342306000000114 – ident: p_6 doi: 10.1214/aos/1176342752 – ident: p_1 doi: 10.2307/2291629 – volume: 147 start-page: 656 year: 1984 ident: p_20 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.2307/2981697 – ident: p_8 doi: 10.2307/2289776 – ident: p_10 doi: 10.1198/016214501750332758 |
| SSID | ssj0000788 |
| Score | 2.282535 |
| Snippet | In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a... |
| SourceID | proquest pascalfrancis crossref jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1331 |
| SubjectTerms | Applications Applications and Case Studies Bayesian analysis Bayesian method Body mass index Cardiovascular disease Cardiovascular diseases Causal inference Clinical outcomes Clinical research Clinical trials Clustering Cohort analysis Comparative analysis Distribution Estimation methods Exact sciences and technology Framing General topics Inference Intermediate variables Manifolds and cell complexes Mathematics Medical sciences Medical statistics Medical treatment Medication adherence Modeling Multivariate analysis Nonparametric models Parametric models Patient compliance Physical activity Placebos Probability and statistics Sampling Sciences and techniques of general use Statistics Stratification Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Treatment needs Variables |
| Title | A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference |
| URI | https://www.jstor.org/stable/23239541 https://www.proquest.com/docview/921177969 https://www.proquest.com/docview/1011851347 |
| Volume | 106 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY69sLLtBtagCFP2tNQWC7OxY8dGkLTQJOAqW-Rr1olSBFJNcEP2O_eseM46QrT2EvUuo7l9Ds557N9Lgi9jzkrmaJ5yGJJQlJoEnJZ5KECigT2RMqEm62Bk9P8-IJ8mWWzyeTXyGtp2fIDcXdvXMn_oAptgKuJkn0Esn5QaIDPgC9cAWG4_hPG0_1P7FbZMMgzdTU3abyvTIUsYcilD5Wym342QqRV-99hbWyipawb7CFbNjbXhgv6e4CpjqJPbL3f1iZ3vgdbe6Dz4yfM1G5Ln9m8D18PvNOP9Rw4GuTxBFjqpWvkN_O7ORtvQhgvOO_Q4fYl8ySMiUvurXpdWoSw6J2tKNsoH0kVoWPlGffBW8p97TJDrit5WtriAg3rUrCy69ionsGi9af4fxg6735oFz60rMwQlRmickM8QU8TsA6mBEganQ4WvbD1S_1DutNxGOLj2ixW-E3n4mr8bVkDsOiuVsqa2bdc5vw5euagxdNOol6giapfok2PbPMKfZviXrTwqmjhXrRwu8Bj0cJetPC8xp1oYS9ar9HF0efzw-PQFd8IBXDqNiziWAKtybQQwmSpklmZSM0iAZRU0FJrospcZzwFyilUVkaMi0JzRoHxxlTLdAtt1ItavUFYaZqylClGKCGkIJxkIpWwkKaFiKgUAYr6v6wSLjO9KZByWT0IVIA--Fuuu7Qsf-u8ZXHwPWEVkdKMxAHaWwFm6JDBbVFaBminR6py731T0cQ4OtCcBuid_xWUsjlpY7VaLBvjNwk82ERpbz9mojtoc3i5dtFGe7NUb4HztnzPCuRvjxCrvA |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Semiparametric+Approach+to+Intermediate+Variables+in+Causal+Inference&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Schwartz%2C+Scott+L.&rft.au=Li%2C+Fan&rft.au=Mealli%2C+Fabrizia&rft.date=2011-12-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=106&rft.issue=496&rft.spage=1331&rft.epage=1344&rft_id=info:doi/10.1198%2Fjasa.2011.ap10425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1198_jasa_2011_ap10425 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |