A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference

In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce infere...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 106; no. 496; pp. 1331 - 1344
Main Authors Schwartz, Scott L., Li, Fan, Mealli, Fabrizia
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Statistical Association 01.12.2011
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/jasa.2011.ap10425

Cover

Abstract In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study.
AbstractList In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study.
In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a framework to deal with such variables within the potential outcome approach to causal inference. Continuous intermediate variables introduce inferential challenges to PS analysis. Existing methods either dichotomize the intermediate variable, or assume a fully parametric model for the joint distribution of the potential intermediate variables. However, the former is subject to information loss and arbitrary choice of the cutoff point and the latter is often inadequate to represent complex distributional and clustering features. We propose a Bayesian semiparametric approach that consists of a flexible parametric model for the potential outcomes and a Bayesian nonparametric model for the potential intermediate outcomes using a Dirichlet process mixture (DPM) model. The DPM approach provides flexibility in modeling the possibly complex joint distribution of the potential intermediate outcomes and offers better interpretability of results through its clustering feature. Gibbs sampling based posterior inference is developed. We illustrate the method by two applications: one concerning partial compliance in a randomized clinical trial, and one concerning the causal mechanism between physical activity, body mass index, and cardiovascular disease in the observational Swedish National March Cohort study. [PUBLICATION ABSTRACT]
Author Li, Fan
Schwartz, Scott L.
Mealli, Fabrizia
Author_xml – sequence: 1
  givenname: Scott L.
  surname: Schwartz
  fullname: Schwartz, Scott L.
– sequence: 2
  givenname: Fan
  surname: Li
  fullname: Li, Fan
– sequence: 3
  givenname: Fabrizia
  surname: Mealli
  fullname: Mealli, Fabrizia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25425038$$DView record in Pascal Francis
BookMark eNp9kU-LFDEQxYOs4OzqB_AgNILgpcdUujNJjuOw6sKCgn_wFmrSFczQnW6TzGG_vRlmRNiDdanL71U93rtmV3GOxNhL4GsAo98dMONacIA1LsB7IZ-wFchOtUL1P6_YisNGtNBL84xd53zgdZTWK_Zl27zHB8oBY_OVprBgwolKCq7ZLkua0f1qytzcxUJpoiFgoeYHpoD7kXITYrPDY8axAp4SRUfP2VOPY6YXl33Dvn-4_bb71N5__ni32963rpeb0iqAQYCQ3jlnlOaD1GLwyJ0C7oz2vie98XLfKckdSc1x75Tfo-mMAeOH7oa9Pd-tJn8fKRc7hexoHDHSfMwWahZaQterir5-hB7mY4rVnTUCQCmzMRV6c4EwOxx9wuhCtksKE6YHK2TNlHe6curMuTTnnMhbFwqWMMeSMIz1rz0VYk-F2FMh9lJIVcIj5d_j_9O8OmsOuczpn5tOdEb20P0BJcSanQ
CODEN JSTNAL
CitedBy_id crossref_primary_10_1111_rssa_12595
crossref_primary_10_1177_17407745211056875
crossref_primary_10_1080_00949655_2019_1574793
crossref_primary_10_1214_18_AOAS1196
crossref_primary_10_1080_00031305_2019_1647876
crossref_primary_10_1097_EDE_0000000000000187
crossref_primary_10_1111_rssa_12073
crossref_primary_10_1214_20_STS810
crossref_primary_10_1214_15_AOAS881
crossref_primary_10_1002_sim_9742
crossref_primary_10_1002_sim_4472
crossref_primary_10_1111_rssc_12552
crossref_primary_10_1002_wics_1583
crossref_primary_10_1177_0163278713512124
crossref_primary_10_1080_01621459_2019_1623039
crossref_primary_10_1002_sim_6291
crossref_primary_10_1080_19345747_2020_1823538
crossref_primary_10_1007_s00184_024_00976_y
crossref_primary_10_1080_00031305_2015_1111260
crossref_primary_10_1186_s13063_021_05163_2
crossref_primary_10_1080_01621459_2013_835656
crossref_primary_10_1111_rssb_12538
crossref_primary_10_1177_09622802231181223
crossref_primary_10_1093_jrsssa_qnad010
crossref_primary_10_1111_rssa_12547
crossref_primary_10_1214_21_AOAS1586
crossref_primary_10_1093_biostatistics_kxt051
crossref_primary_10_1214_19_AOAS1260
crossref_primary_10_1214_24_BA1425
crossref_primary_10_2139_ssrn_4863206
crossref_primary_10_1177_0962280214539655
crossref_primary_10_1111_biom_12575
crossref_primary_10_1111_biom_13565
crossref_primary_10_1002_sim_7430
crossref_primary_10_1002_sim_7572
crossref_primary_10_1111_rssc_12265
crossref_primary_10_1002_sim_8761
crossref_primary_10_1111_rssb_12191
crossref_primary_10_1111_rssb_12135
crossref_primary_10_1214_13_AOAS674
crossref_primary_10_1093_biostatistics_kxaa040
crossref_primary_10_1093_ije_dyw193
crossref_primary_10_1002_bimj_70041
crossref_primary_10_1080_01621459_2015_1125788
crossref_primary_10_1093_biomtc_ujaf024
Cites_doi 10.1080/03610919408813196
10.2307/2291069
10.1093/biomet/87.2.371
10.3102/1076998607307475
10.1111/j.1541-0420.2006.00684.x
10.1037/h0037350
10.1198/016214507000000347
10.1198/jasa.2011.ap09094
10.1097/00001648-199203000-00013
10.2307/2287653
10.2307/2291223
10.2307/2289707
10.1214/aos/1034276631
10.1080/03610910601096262
10.1111/j.0006-341X.2002.00021.x
10.1111/j.1541-0420.2008.01108.x
10.1093/biomet/asm086
10.2307/2289457
10.1007/s10654-009-9327-x
10.1214/ss/1177012032
10.1093/biomet/70.1.41
10.1214/aos/1176344064
10.1214/088342306000000114
10.1214/aos/1176342752
10.2307/2291629
10.2307/2981697
10.2307/2289776
10.1198/016214501750332758
ContentType Journal Article
Copyright 2011 The American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Dec 2011
Copyright_xml – notice: 2011 The American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2011
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2011.ap10425
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1344
ExternalDocumentID 2584633661
25425038
10_1198_jasa_2011_ap10425
23239541
Genre Feature
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PUEGO
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
IQODW
8BJ
ABUFD
FQK
JBE
K9.
ID FETCH-LOGICAL-c456t-711d2125fccc9780d582dfa0c710c98ff4e86f5b3750ce580abc7fba939919fd3
ISSN 0162-1459
IngestDate Sat Sep 27 20:44:47 EDT 2025
Mon Oct 06 18:06:06 EDT 2025
Wed Apr 02 08:12:30 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Oct 01 03:57:29 EDT 2025
Thu May 29 08:44:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 496
Keywords Biometrics
Compliance
Cluster analysis (statistics)
Mixture model
Principal stratification
Non parametric estimation
Cardiovascular disease
Parametric model
Multivariate analysis
Information loss
Parametric method
Medical science
Cohort study
Clinical trial
Posterior distribution
Bayes estimation
Mixed distribution
Bayesian nonparametrics
Discriminant analysis
Dirichlet process
Statistical estimation
Gibbs sampling
Joint distribution
Semiparametric method
Statistical method
Randomized design
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-711d2125fccc9780d582dfa0c710c98ff4e86f5b3750ce580abc7fba939919fd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 921177969
PQPubID 41715
PageCount 14
ParticipantIDs proquest_miscellaneous_1011851347
proquest_journals_921177969
pascalfrancis_primary_25425038
crossref_citationtrail_10_1198_jasa_2011_ap10425
crossref_primary_10_1198_jasa_2011_ap10425
jstor_primary_23239541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2011
Publisher American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: American Statistical Association
– name: Taylor & Francis Ltd
References p_29
p_23
p_24
Pearl J. (p_18) 2001
p_26
p_21
p_22
p_16
p_17
p_2
p_1
p_19
p_4
p_12
p_3
p_13
p_6
p_14
p_5
p_15
p_8
p_7
p_9
Walker S. (p_31) 2007; 36
Rubin D. (p_25) 1990; 5
Rosenbaum P. (p_20) 1984; 147
p_30
p_10
p_11
Sethurman J. (p_28) 1994; 4
References_xml – ident: p_15
  doi: 10.1080/03610919408813196
– ident: p_5
  doi: 10.2307/2291069
– ident: p_11
  doi: 10.1093/biomet/87.2.371
– ident: p_13
  doi: 10.3102/1076998607307475
– ident: p_16
  doi: 10.1111/j.1541-0420.2006.00684.x
– ident: p_22
  doi: 10.1037/h0037350
– ident: p_12
  doi: 10.1198/016214507000000347
– ident: p_2
  doi: 10.1198/jasa.2011.ap09094
– ident: p_19
  doi: 10.1097/00001648-199203000-00013
– ident: p_24
  doi: 10.2307/2287653
– volume: 4
  start-page: 639
  year: 1994
  ident: p_28
  publication-title: Statistica Sinica
– ident: p_4
  doi: 10.2307/2291223
– ident: p_3
  doi: 10.2307/2289707
– ident: p_9
  doi: 10.1214/aos/1034276631
– start-page: 411
  year: 2001
  ident: p_18
  publication-title: Proceedings of the 17th Conference on Uncertainy in Artificial Intelligence, San Francisco, CA: Morgan Kaufmann, pp.
– volume: 36
  start-page: 45
  year: 2007
  ident: p_31
  publication-title: Communications in Statistics
  doi: 10.1080/03610910601096262
– ident: p_7
  doi: 10.1111/j.0006-341X.2002.00021.x
– ident: p_29
  doi: 10.1111/j.1541-0420.2008.01108.x
– ident: p_17
  doi: 10.1093/biomet/asm086
– ident: p_30
  doi: 10.2307/2289457
– ident: p_14
  doi: 10.1007/s10654-009-9327-x
– volume: 5
  start-page: 472
  year: 1990
  ident: p_25
  publication-title: Statistical Science
  doi: 10.1214/ss/1177012032
– ident: p_21
  doi: 10.1093/biomet/70.1.41
– ident: p_23
  doi: 10.1214/aos/1176344064
– ident: p_26
  doi: 10.1214/088342306000000114
– ident: p_6
  doi: 10.1214/aos/1176342752
– ident: p_1
  doi: 10.2307/2291629
– volume: 147
  start-page: 656
  year: 1984
  ident: p_20
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.2307/2981697
– ident: p_8
  doi: 10.2307/2289776
– ident: p_10
  doi: 10.1198/016214501750332758
SSID ssj0000788
Score 2.282535
Snippet In causal inference studies, treatment comparisons often need to be adjusted for confounded post-treatment variables. Principal stratification (PS) is a...
SourceID proquest
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1331
SubjectTerms Applications
Applications and Case Studies
Bayesian analysis
Bayesian method
Body mass index
Cardiovascular disease
Cardiovascular diseases
Causal inference
Clinical outcomes
Clinical research
Clinical trials
Clustering
Cohort analysis
Comparative analysis
Distribution
Estimation methods
Exact sciences and technology
Framing
General topics
Inference
Intermediate variables
Manifolds and cell complexes
Mathematics
Medical sciences
Medical statistics
Medical treatment
Medication adherence
Modeling
Multivariate analysis
Nonparametric models
Parametric models
Patient compliance
Physical activity
Placebos
Probability and statistics
Sampling
Sciences and techniques of general use
Statistics
Stratification
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Treatment needs
Variables
Title A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
URI https://www.jstor.org/stable/23239541
https://www.proquest.com/docview/921177969
https://www.proquest.com/docview/1011851347
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY69sLLtBtagCFP2tNQWC7OxY8dGkLTQJOAqW-Rr1olSBFJNcEP2O_eseM46QrT2EvUuo7l9Ds557N9Lgi9jzkrmaJ5yGJJQlJoEnJZ5KECigT2RMqEm62Bk9P8-IJ8mWWzyeTXyGtp2fIDcXdvXMn_oAptgKuJkn0Esn5QaIDPgC9cAWG4_hPG0_1P7FbZMMgzdTU3abyvTIUsYcilD5Wym342QqRV-99hbWyipawb7CFbNjbXhgv6e4CpjqJPbL3f1iZ3vgdbe6Dz4yfM1G5Ln9m8D18PvNOP9Rw4GuTxBFjqpWvkN_O7ORtvQhgvOO_Q4fYl8ySMiUvurXpdWoSw6J2tKNsoH0kVoWPlGffBW8p97TJDrit5WtriAg3rUrCy69ionsGi9af4fxg6735oFz60rMwQlRmickM8QU8TsA6mBEganQ4WvbD1S_1DutNxGOLj2ixW-E3n4mr8bVkDsOiuVsqa2bdc5vw5euagxdNOol6giapfok2PbPMKfZviXrTwqmjhXrRwu8Bj0cJetPC8xp1oYS9ar9HF0efzw-PQFd8IBXDqNiziWAKtybQQwmSpklmZSM0iAZRU0FJrospcZzwFyilUVkaMi0JzRoHxxlTLdAtt1ItavUFYaZqylClGKCGkIJxkIpWwkKaFiKgUAYr6v6wSLjO9KZByWT0IVIA--Fuuu7Qsf-u8ZXHwPWEVkdKMxAHaWwFm6JDBbVFaBminR6py731T0cQ4OtCcBuid_xWUsjlpY7VaLBvjNwk82ERpbz9mojtoc3i5dtFGe7NUb4HztnzPCuRvjxCrvA
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Semiparametric+Approach+to+Intermediate+Variables+in+Causal+Inference&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Schwartz%2C+Scott+L.&rft.au=Li%2C+Fan&rft.au=Mealli%2C+Fabrizia&rft.date=2011-12-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=106&rft.issue=496&rft.spage=1331&rft.epage=1344&rft_id=info:doi/10.1198%2Fjasa.2011.ap10425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1198_jasa_2011_ap10425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon