Thirty years of resistance: Zig-zag through the plant immune system
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition recepto...
Saved in:
Published in | The Plant cell Vol. 34; no. 5; pp. 1447 - 1478 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
26.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1093/plcell/koac041 |
Cover
Abstract | Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research. |
---|---|
AbstractList | Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research. A review of major research advances in plant immunity during the last three decades and individual characterized immune receptors, their immune signaling pathways, and interactions between immune systems Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research. Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research. |
Author | Jones, Jonathan D G Ding, Pingtao Ngou, Bruno Pok Man |
Author_xml | – sequence: 1 givenname: Bruno Pok Man orcidid: 0000-0002-0760-1058 surname: Ngou fullname: Ngou, Bruno Pok Man organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK, RIKEN Center for Sustainable Resource Science, Yokohama, Japan – sequence: 2 givenname: Pingtao orcidid: 0000-0002-3535-6053 surname: Ding fullname: Ding, Pingtao organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands – sequence: 3 givenname: Jonathan D G orcidid: 0000-0002-4953-261X surname: Jones fullname: Jones, Jonathan D G organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35167697$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFLHDEUxkNRqmu99ihz9DJuMskkEw8FWWotCF4slF5CNvNmN3UmmSYZy_jXd5ZdrQriIbzAe7_v-_hmaM95Bwh9JviMYEnnfWugbed3XhvMyAd0SEpa5IWsfu5Nf8xwznhJDtAsxt8YYyKI_IgOaEm44FIcosXt2oY0ZiPoEDPfZAGijUk7A-fZL7vKH_QqS-vgh9V6mpD1rXYps103OMjiGBN0n9B-o9sIx7t5hH5cfr1dXOXXN9--Ly6uc8NKnnJBCGNlXQmsK8lrhllNC8qWFWlqUWOql6VgpCIlN3VDteEAlQSzBClqwEbQIzTf6g6u1-Nf3baqD7bTYVQEq00daluH2tUxEV-2RD8sO6gNuBT0f8prq15unF2rlb9XErNqepPA6U4g-D8DxKQ6GzcW2oEfoip4IWnFSblJd_Lc68nksevp4Gx7YIKPMUDzfnr2CjA26WT9Jqtt38L-AcQsqBs |
CitedBy_id | crossref_primary_10_1093_plcell_koad266 crossref_primary_10_1094_PHYTOFR_11_23_0149_SC crossref_primary_10_3389_fpls_2024_1374194 crossref_primary_10_1111_nph_18672 crossref_primary_10_1360_TB_2023_0788 crossref_primary_10_3390_ijms231912003 crossref_primary_10_1111_tpj_16647 crossref_primary_10_3389_fmicb_2022_984832 crossref_primary_10_1093_plcell_koad262 crossref_primary_10_1016_j_tplants_2024_03_004 crossref_primary_10_1038_s41576_024_00793_z crossref_primary_10_1016_j_stress_2024_100676 crossref_primary_10_1128_jvi_00507_24 crossref_primary_10_1080_07060661_2024_2340483 crossref_primary_10_1038_s41477_024_01779_9 crossref_primary_10_1126_science_abq8180 crossref_primary_10_1016_j_pbi_2023_102430 crossref_primary_10_1016_j_pbi_2022_102276 crossref_primary_10_1007_s12298_024_01452_7 crossref_primary_10_1111_nph_19755 crossref_primary_10_3390_plants14050758 crossref_primary_10_1093_plphys_kiad263 crossref_primary_10_1038_s41477_025_01918_w crossref_primary_10_1093_plcell_koac060 crossref_primary_10_1094_PHYTO_08_22_0292_KD crossref_primary_10_1093_plcell_koac063 crossref_primary_10_1016_j_tplants_2024_03_012 crossref_primary_10_3390_plants13182546 crossref_primary_10_3390_ijms23126758 crossref_primary_10_1016_j_stress_2024_100567 crossref_primary_10_1111_pce_14560 crossref_primary_10_1016_j_celrep_2024_114179 crossref_primary_10_1042_EBC20220067 crossref_primary_10_1111_pbi_14536 crossref_primary_10_1111_jeb_14170 crossref_primary_10_1038_s41598_022_21973_z crossref_primary_10_1094_MPMI_09_22_0192_R crossref_primary_10_3390_agronomy15010153 crossref_primary_10_1016_j_xplc_2025_101261 crossref_primary_10_1186_s42483_024_00265_6 crossref_primary_10_1186_s40529_024_00441_z crossref_primary_10_3389_fpls_2023_1176048 crossref_primary_10_3389_fmicb_2022_999183 crossref_primary_10_1111_tpj_16639 crossref_primary_10_14348_molcells_2023_0127 crossref_primary_10_1094_MPMI_02_23_0018_R crossref_primary_10_1094_MPMI_10_23_0153_R crossref_primary_10_1016_j_micres_2025_128088 crossref_primary_10_1094_MPMI_09_23_0142_FI crossref_primary_10_1111_nph_20318 crossref_primary_10_3390_genes15091200 crossref_primary_10_1094_PHYTO_11_23_0436_R crossref_primary_10_1016_j_cj_2024_12_013 crossref_primary_10_1042_EBC20210087 crossref_primary_10_1016_j_pbi_2022_102334 crossref_primary_10_1111_tpj_70098 crossref_primary_10_1093_plcell_koae049 crossref_primary_10_1111_nph_19312 crossref_primary_10_1111_nph_19433 crossref_primary_10_1042_EBC20210090 crossref_primary_10_1093_jxb_erac403 crossref_primary_10_1016_j_pmpp_2025_102585 crossref_primary_10_1038_s41477_024_01811_y crossref_primary_10_1038_s43016_024_01044_4 crossref_primary_10_1111_pce_14757 crossref_primary_10_7717_peerj_17323 crossref_primary_10_3390_ijms24043803 crossref_primary_10_3389_fmicb_2023_1162613 crossref_primary_10_1080_07388551_2024_2370341 crossref_primary_10_1016_j_eng_2023_05_016 crossref_primary_10_1042_EBC20210097 crossref_primary_10_1016_j_jclepro_2025_144827 crossref_primary_10_1007_s44372_024_00035_w crossref_primary_10_1038_s41477_023_01486_x crossref_primary_10_1038_s41467_023_41807_4 crossref_primary_10_1111_nph_18457 crossref_primary_10_3389_fpls_2023_1111322 crossref_primary_10_3390_agriculture14081289 crossref_primary_10_1016_j_ijbiomac_2024_135138 crossref_primary_10_3390_ijms24032800 crossref_primary_10_3390_plants13233275 crossref_primary_10_3390_ijms26052087 crossref_primary_10_1093_hr_uhae077 crossref_primary_10_1007_s00122_024_04641_w crossref_primary_10_1093_hr_uhae078 crossref_primary_10_1042_EBC20210063 crossref_primary_10_3390_agronomy14030489 crossref_primary_10_1093_plphys_kiae255 crossref_primary_10_1038_s42003_024_06763_9 crossref_primary_10_1186_s42483_022_00153_x crossref_primary_10_15252_embj_2022111519 crossref_primary_10_1146_annurev_biophys_092922_073050 crossref_primary_10_1093_plphys_kiae490 crossref_primary_10_1094_MPMI_06_23_0083_R crossref_primary_10_1093_plcell_koae020 crossref_primary_10_1094_PHYTO_09_23_0338_R crossref_primary_10_1007_s44297_023_00003_y crossref_primary_10_1016_j_mocell_2024_100094 crossref_primary_10_1002_moda_70001 crossref_primary_10_1111_mpp_13373 crossref_primary_10_1016_j_coi_2024_102457 crossref_primary_10_1093_pcp_pcad092 crossref_primary_10_1016_j_ncrops_2024_100014 crossref_primary_10_1111_tpj_16919 crossref_primary_10_1111_mpp_70054 crossref_primary_10_1002_pld3_410 crossref_primary_10_1016_j_postharvbio_2023_112738 crossref_primary_10_1016_j_pbi_2023_102396 crossref_primary_10_1016_j_tibs_2023_06_002 crossref_primary_10_1016_j_xplc_2023_100676 crossref_primary_10_1016_j_pbi_2023_102398 crossref_primary_10_1038_s41477_022_01260_5 crossref_primary_10_1016_j_cell_2024_03_045 crossref_primary_10_1111_mpp_13262 crossref_primary_10_1016_j_ncrops_2024_100022 crossref_primary_10_1016_j_scib_2024_12_007 crossref_primary_10_3389_fpls_2022_1001427 crossref_primary_10_3390_ijms252313106 crossref_primary_10_1016_j_pbi_2023_102369 crossref_primary_10_1093_plcell_koae179 crossref_primary_10_1007_s42994_023_00099_4 crossref_primary_10_3390_v15102000 crossref_primary_10_1002_advs_202307051 crossref_primary_10_1111_mpp_13239 crossref_primary_10_3390_ijms24043189 crossref_primary_10_3390_microorganisms10051048 crossref_primary_10_3389_fpls_2022_917493 crossref_primary_10_1111_mpp_70077 crossref_primary_10_1007_s10658_023_02774_0 crossref_primary_10_1007_s11427_024_2708_0 crossref_primary_10_1038_s41586_024_08383_z crossref_primary_10_1016_j_pbi_2023_102372 crossref_primary_10_1111_mpp_13363 crossref_primary_10_1360_SSC_2023_0251 crossref_primary_10_3389_fpls_2023_1143689 crossref_primary_10_1093_pcp_pcae091 crossref_primary_10_1111_mpp_70063 crossref_primary_10_1016_j_pbi_2023_102384 crossref_primary_10_1016_j_xplc_2023_100640 crossref_primary_10_1016_j_colsurfb_2024_113933 crossref_primary_10_1016_j_xplc_2023_100645 crossref_primary_10_1093_aob_mcae020 crossref_primary_10_1038_s41477_024_01901_x crossref_primary_10_3390_plants12152794 crossref_primary_10_1111_mpp_70005 crossref_primary_10_1111_mpp_70008 crossref_primary_10_3389_fpls_2023_1130782 crossref_primary_10_1111_brv_12928 crossref_primary_10_1007_s00705_023_05776_9 crossref_primary_10_12677_br_2025_142012 crossref_primary_10_1080_27694127_2024_2395731 crossref_primary_10_1111_mpp_13290 crossref_primary_10_1016_j_pbi_2024_102631 crossref_primary_10_1111_nph_20021 crossref_primary_10_1111_nph_20264 crossref_primary_10_1038_s41477_024_01891_w crossref_primary_10_1126_science_adr2138 crossref_primary_10_1016_j_tim_2023_09_007 crossref_primary_10_1094_MPMI_10_23_0154_FI crossref_primary_10_1038_s41564_023_01502_y crossref_primary_10_1002_pld3_565 crossref_primary_10_1007_s00122_023_04513_9 crossref_primary_10_1016_j_plantsci_2024_112179 crossref_primary_10_1016_j_pbi_2023_102481 crossref_primary_10_1016_j_pbi_2023_102363 crossref_primary_10_1016_j_pbi_2023_102485 crossref_primary_10_1016_j_tcsw_2024_100124 crossref_primary_10_1186_s42483_024_00278_1 crossref_primary_10_3389_fmicb_2023_1103418 crossref_primary_10_3390_plants14020294 crossref_primary_10_3389_fpls_2024_1490466 crossref_primary_10_3390_molecules28247961 crossref_primary_10_1016_j_pbi_2024_102524 crossref_primary_10_1371_journal_pone_0290884 crossref_primary_10_1016_j_scienta_2023_112549 crossref_primary_10_1186_s42483_024_00232_1 crossref_primary_10_1111_nph_19148 crossref_primary_10_1093_plcell_koae096 crossref_primary_10_3390_agronomy12071637 crossref_primary_10_5010_JPB_2023_50_027_215 crossref_primary_10_1016_j_jia_2023_06_014 crossref_primary_10_1186_s12870_023_04685_y crossref_primary_10_1111_ppl_14504 crossref_primary_10_1094_PHYTO_01_24_0037_R crossref_primary_10_1038_s41418_022_01060_6 crossref_primary_10_1016_j_pbi_2023_102450 crossref_primary_10_1016_j_celrep_2024_114910 crossref_primary_10_1007_s11103_023_01409_6 crossref_primary_10_1016_j_fmre_2023_10_026 crossref_primary_10_1111_ppa_14043 crossref_primary_10_1016_j_xplc_2023_100607 crossref_primary_10_1111_mpp_13283 crossref_primary_10_1038_s41467_024_51249_1 crossref_primary_10_1111_nph_20364 crossref_primary_10_1111_nph_19131 crossref_primary_10_1111_mpp_70019 crossref_primary_10_1038_s41594_024_01440_1 crossref_primary_10_1126_science_abo0001 crossref_primary_10_3389_fpls_2024_1338062 crossref_primary_10_1007_s13313_024_01007_0 crossref_primary_10_1016_j_sbi_2024_102977 crossref_primary_10_1016_j_heliyon_2024_e34871 crossref_primary_10_1093_ismejo_wrae121 crossref_primary_10_1111_mpp_13280 crossref_primary_10_1094_PHYTOFR_06_24_0071_SC crossref_primary_10_1186_s42483_024_00279_0 crossref_primary_10_1093_jxb_erad268 crossref_primary_10_1111_tpj_16088 crossref_primary_10_15252_embj_2022111484 crossref_primary_10_1093_jxb_erae359 crossref_primary_10_1111_mpp_13415 crossref_primary_10_1128_aem_00661_23 crossref_primary_10_1007_s44297_024_00027_y crossref_primary_10_1016_j_semcdb_2023_03_013 crossref_primary_10_1126_science_abq3297 crossref_primary_10_1016_j_ijbiomac_2024_130072 crossref_primary_10_3389_fpls_2022_992544 crossref_primary_10_1186_s12870_022_03679_6 crossref_primary_10_1111_pce_15086 crossref_primary_10_1016_j_molp_2023_12_005 crossref_primary_10_3390_metabo13090997 crossref_primary_10_1111_jipb_13892 crossref_primary_10_3389_fpls_2025_1552926 crossref_primary_10_3390_ijms25052937 crossref_primary_10_1094_PHYTO_04_24_0125_R crossref_primary_10_1073_pnas_2210406120 crossref_primary_10_1111_nph_19073 crossref_primary_10_1111_nph_19194 crossref_primary_10_1186_s12284_024_00704_0 crossref_primary_10_1038_s41467_024_46290_z crossref_primary_10_1083_jcb_202307066 crossref_primary_10_1111_mpp_13301 crossref_primary_10_1016_j_tplants_2025_01_001 crossref_primary_10_1186_s42483_023_00176_y crossref_primary_10_1111_ppl_14259 crossref_primary_10_1128_mbio_03665_24 crossref_primary_10_3390_plants13162242 crossref_primary_10_3390_pathogens12111306 crossref_primary_10_1016_j_pmpp_2023_102027 crossref_primary_10_1093_g3journal_jkae191 crossref_primary_10_3390_plants13243476 crossref_primary_10_1094_MPMI_05_23_0073_HH crossref_primary_10_1038_s41467_024_47497_w crossref_primary_10_1111_tpj_17034 crossref_primary_10_3390_ijms241713625 crossref_primary_10_15252_embr_202357495 crossref_primary_10_1016_j_chom_2024_01_011 crossref_primary_10_1186_s42483_023_00186_w crossref_primary_10_1038_s44318_024_00278_z crossref_primary_10_1007_s13562_024_00873_5 crossref_primary_10_1094_PHYTO_04_23_0147_KC crossref_primary_10_48130_VR_2023_0029 crossref_primary_10_3389_fmicb_2023_1275032 crossref_primary_10_1016_j_pmpp_2024_102539 crossref_primary_10_1038_s41598_023_39695_1 crossref_primary_10_1038_s41467_024_47364_8 crossref_primary_10_1126_science_adk3468 crossref_primary_10_3389_fmicb_2024_1487022 crossref_primary_10_1093_jxb_erad156 crossref_primary_10_3389_fpls_2024_1383018 crossref_primary_10_1016_j_sajb_2025_02_018 crossref_primary_10_3390_ijms232112974 crossref_primary_10_3390_plants13131737 crossref_primary_10_1111_tpj_17049 crossref_primary_10_1094_MPMI_09_23_0122_FI crossref_primary_10_1111_nph_18085 crossref_primary_10_1002_bies_202400150 crossref_primary_10_1007_s40858_023_00560_1 crossref_primary_10_1016_j_molp_2022_10_008 crossref_primary_10_1093_gbe_evae113 crossref_primary_10_3389_fpls_2023_1201805 crossref_primary_10_1016_j_plantsci_2024_112314 crossref_primary_10_1016_j_pmpp_2023_102004 crossref_primary_10_1002_csc2_21413 crossref_primary_10_1111_pbi_14039 crossref_primary_10_1016_j_isci_2024_108817 crossref_primary_10_1146_annurev_phyto_121423_042014 crossref_primary_10_1042_BCJ20220372 crossref_primary_10_1016_j_pmpp_2022_101944 crossref_primary_10_3390_plants13162176 crossref_primary_10_1111_ppa_13905 crossref_primary_10_1093_jxb_erad191 crossref_primary_10_1016_j_ijbiomac_2025_140466 crossref_primary_10_1111_pbi_14161 crossref_primary_10_1111_mpp_13463 crossref_primary_10_1111_jipb_13727 crossref_primary_10_3390_plants13091274 crossref_primary_10_1146_annurev_phyto_021622_110443 crossref_primary_10_1093_jxb_erae140 crossref_primary_10_3389_fmicb_2022_941991 crossref_primary_10_3389_fpls_2024_1392149 crossref_primary_10_1038_s41477_024_01641_y crossref_primary_10_1093_jxb_erad175 crossref_primary_10_1002_advs_202412223 crossref_primary_10_1007_s11103_022_01286_5 crossref_primary_10_3390_agronomy14081693 crossref_primary_10_1016_j_chom_2023_08_019 crossref_primary_10_3389_fpls_2022_1007288 crossref_primary_10_1007_s00425_024_04355_9 crossref_primary_10_1016_j_chom_2023_08_015 crossref_primary_10_1016_j_xplc_2024_100888 crossref_primary_10_1111_ppl_14456 crossref_primary_10_1128_jvi_00168_21 crossref_primary_10_1186_s42483_023_00218_5 crossref_primary_10_1016_j_hpj_2023_02_008 crossref_primary_10_3390_plants13050636 crossref_primary_10_3389_fmicb_2023_1252039 crossref_primary_10_1016_j_molp_2022_11_011 crossref_primary_10_1073_pnas_2319499121 crossref_primary_10_15252_embj_2023113499 crossref_primary_10_1093_jxb_erae297 crossref_primary_10_3390_plants14030355 crossref_primary_10_1186_s12870_024_05454_1 crossref_primary_10_1111_pce_15025 crossref_primary_10_1111_ppa_13803 crossref_primary_10_1016_j_plantsci_2024_112224 crossref_primary_10_1111_jipb_13876 crossref_primary_10_1038_s44319_024_00122_9 crossref_primary_10_1094_MPMI_06_23_0081_HH crossref_primary_10_3390_microorganisms12071323 crossref_primary_10_3390_ijms232315436 crossref_primary_10_1007_s10265_024_01546_z crossref_primary_10_3390_ijms241814310 crossref_primary_10_3390_ijms251810011 crossref_primary_10_1016_j_molp_2025_01_009 crossref_primary_10_1007_s42161_025_01885_3 crossref_primary_10_1016_j_ijbiomac_2025_142519 crossref_primary_10_1002_advs_202416846 crossref_primary_10_3389_frym_2024_1468660 crossref_primary_10_1016_j_gene_2024_148260 crossref_primary_10_1007_s11240_024_02746_0 crossref_primary_10_1016_j_molp_2024_04_003 crossref_primary_10_1146_annurev_micro_032421_121423 crossref_primary_10_1016_j_ijbiomac_2024_134821 crossref_primary_10_1007_s11540_024_09779_0 crossref_primary_10_1094_MPMI_06_22_0132_CR crossref_primary_10_1094_MPMI_12_23_0212_CR crossref_primary_10_1038_s41467_023_44408_3 crossref_primary_10_3390_ijms24087417 crossref_primary_10_1094_PHYTOFR_01_23_0005_R crossref_primary_10_3390_antiox13121553 crossref_primary_10_1093_plphys_kiae401 crossref_primary_10_1016_j_bbrc_2024_149871 crossref_primary_10_1016_j_pmpp_2025_102664 crossref_primary_10_1094_MPMI_10_23_0169_FI crossref_primary_10_1186_s12864_023_09713_7 crossref_primary_10_1080_10643389_2023_2267939 crossref_primary_10_1021_acs_jafc_3c07006 crossref_primary_10_1016_j_tplants_2024_05_004 crossref_primary_10_3390_jof11010080 crossref_primary_10_1093_hr_uhad116 crossref_primary_10_1016_j_xplc_2024_101135 crossref_primary_10_1093_plphys_kiad306 crossref_primary_10_1093_plphys_kiae514 crossref_primary_10_3389_fpls_2024_1368467 crossref_primary_10_1007_s11104_023_06130_3 crossref_primary_10_3390_plants13152022 crossref_primary_10_3389_fpls_2022_1064589 crossref_primary_10_1016_j_chom_2023_10_010 crossref_primary_10_3390_plants12234036 crossref_primary_10_1016_j_jgg_2024_02_005 crossref_primary_10_1093_hr_uhac255 crossref_primary_10_1098_rsob_230387 crossref_primary_10_1002_1873_3468_14356 crossref_primary_10_1007_s11105_024_01493_y crossref_primary_10_1016_j_chom_2023_10_017 crossref_primary_10_1093_plphys_kiae626 crossref_primary_10_3389_fpls_2022_1020772 crossref_primary_10_7124_FEEO_v30_1464 crossref_primary_10_1016_j_pmpp_2023_102083 crossref_primary_10_3389_fpls_2022_1090947 crossref_primary_10_3390_ijms241613003 crossref_primary_10_1093_treephys_tpad151 crossref_primary_10_1038_s41467_024_48943_5 crossref_primary_10_1093_pcp_pcac116 crossref_primary_10_3390_ijms252312951 crossref_primary_10_1093_jxb_erae433 crossref_primary_10_1111_tpj_16323 crossref_primary_10_1093_hr_uhad163 crossref_primary_10_1016_j_celrep_2022_111939 crossref_primary_10_1094_PDIS_10_23_2033_FE crossref_primary_10_1111_pce_14477 crossref_primary_10_1007_s10142_023_01133_w crossref_primary_10_1016_j_cell_2024_07_013 crossref_primary_10_5423_PPJ_RW_01_2024_0001 crossref_primary_10_3389_fmicb_2023_1122947 crossref_primary_10_3390_ijms232314525 crossref_primary_10_1111_pbi_14206 crossref_primary_10_1371_journal_ppat_1012799 crossref_primary_10_1111_ppl_14052 crossref_primary_10_3390_plants13111523 crossref_primary_10_1126_science_adg5261 crossref_primary_10_3389_fpls_2022_920281 crossref_primary_10_1007_s42994_025_00198_4 crossref_primary_10_1007_s12275_024_00114_3 crossref_primary_10_1093_jxb_erad450 crossref_primary_10_1002_bies_202400171 crossref_primary_10_3390_life13020268 crossref_primary_10_1111_pbi_14332 crossref_primary_10_1016_j_nantod_2023_102045 crossref_primary_10_1016_j_tplants_2024_04_006 crossref_primary_10_1093_plphys_kiae555 crossref_primary_10_3389_fpls_2022_1087525 crossref_primary_10_1038_s44319_023_00023_3 crossref_primary_10_1093_jxb_erad126 crossref_primary_10_1038_s41467_023_40171_7 crossref_primary_10_3390_pathogens12010066 crossref_primary_10_3389_fmicb_2023_1201444 crossref_primary_10_1038_s41467_023_39208_8 crossref_primary_10_1016_j_molp_2023_11_011 crossref_primary_10_1093_jxb_erad362 crossref_primary_10_1126_sciadv_adg3861 crossref_primary_10_1002_tpg2_20487 crossref_primary_10_1093_plphys_kiac366 crossref_primary_10_1093_plcell_koac109 crossref_primary_10_3389_fpls_2023_1127833 crossref_primary_10_1007_s11103_022_01329_x crossref_primary_10_1016_j_gloplacha_2023_104286 crossref_primary_10_3389_fpls_2022_932288 crossref_primary_10_1021_acs_jafc_4c07212 crossref_primary_10_1111_tpj_70018 crossref_primary_10_3390_ijms232113589 crossref_primary_10_1016_j_scienta_2024_113361 crossref_primary_10_1038_s41579_023_00999_8 crossref_primary_10_1126_sciadv_adr2594 crossref_primary_10_1016_j_jgg_2022_06_003 crossref_primary_10_1016_j_ijbiomac_2025_140978 crossref_primary_10_3389_fpls_2022_968562 crossref_primary_10_1093_hr_uhad256 crossref_primary_10_1111_pce_14585 crossref_primary_10_1016_j_envexpbot_2025_106084 crossref_primary_10_1093_plcell_koad329 crossref_primary_10_3390_ijms24098215 crossref_primary_10_48130_mpb_0024_0011 |
Cites_doi | 10.1105/tpc.18.00547 10.1073/pnas.1005225107 10.1038/cr.2017.123 10.1126/science.aal2541 10.1105/tpc.105.033910 10.1094/MPMI-05-20-0131-SC 10.1111/nph.12043 10.1371/journal.ppat.1004331 10.1126/science.1126088 10.1046/j.1365-313X.1999.00426.x 10.1073/pnas.1203458110 10.1186/s12915-016-0228-7 10.1038/s41586-021-03316-6 10.1016/j.chom.2012.01.015 10.1126/science.aax1911 10.1007/BF00037266 10.1016/j.chom.2020.03.008 10.1046/j.1365-313X.1995.8060933.x 10.1073/pnas.0802157105 10.1126/science.1174754 10.1038/s41467-018-07469-3 10.1094/MPMI-06-12-0156-R 10.1016/j.molcel.2014.02.021 10.1126/science.291.5501.118 10.1371/journal.pgen.1008571 10.1073/pnas.1318817111 10.1111/pbi.13629 10.1016/j.molcel.2017.12.026 10.1111/pbi.13042 10.1111/tpj.15214 10.1038/nature06109 10.1046/j.1365-313X.2003.01937.x 10.1016/j.chom.2015.08.004 10.1038/ncomms7338 10.1126/sciadv.1500245 10.1111/nph.15659 10.1073/pnas.1003347107 10.1371/journal.pbio.3001136 10.1111/j.1462-5822.2012.01779.x 10.1073/pnas.0909705107 10.1093/jxb/erab373 10.1007/978-94-017-2679-5_2 10.1126/science.7638602 10.1534/genetics.108.095034 10.1105/tpc.108.060194 10.1073/pnas.0502425102 10.1111/j.1365-313X.2008.03716.x 10.1105/tpc.111.084301 10.15252/embj.201488698 10.1105/tpc.106.044016 10.1105/tpc.114.131938 10.1093/plphys/kiab011 10.1073/pnas.1818275116 10.1038/s41587-020-00770-x 10.1111/j.1365-2958.2004.04288.x 10.1094/MPMI-12-12-0289-R 10.1139/g97-087 10.1111/tpj.14810 10.1016/j.tplants.2013.08.005 10.1094/MPMI-18-1215 10.1038/s41477-021-00854-9 10.1186/s12870-019-2154-7 10.1093/plphys/kiab023 10.1094/PDIS-05-19-1066-RE 10.1016/j.pbi.2009.03.001 10.1038/nature14171 10.1016/j.xplc.2019.100016 10.1371/journal.ppat.1007900 10.1186/s12860-021-00344-y 10.1111/mpp.12983 10.1126/science.8091210 10.1104/pp.113.227108 10.1371/journal.ppat.1000061 10.1111/nph.13802 10.1016/S1097-2765(00)80265-8 10.1371/journal.ppat.1004602 10.1073/pnas.1302154110 10.1016/j.chom.2009.05.019 10.1105/tpc.110.075358 10.1111/nph.15523 10.1111/nph.13310 10.1038/s41586-020-2210-3 10.7554/eLife.03766 10.1073/pnas.0604815103 10.1038/s41467-018-03010-8 10.1016/j.cell.2006.02.047 10.7554/eLife.25474 10.1111/nph.15411 10.1126/science.278.5345.1963 10.1105/tpc.109.068247 10.1094/MPMI-21-1-0007 10.1016/j.cell.2015.04.025 10.7554/eLife.13568 10.1111/pbi.13017 10.1007/s11427-011-4154-1 10.1111/nph.13355 10.1007/s00705-008-0032-y 10.1038/nplants.2016.185 10.1038/nplants.2015.34 10.1038/s41586-021-03987-1 10.3389/fpls.2012.00169 10.1371/journal.ppat.1005811 10.1016/j.tplants.2016.08.014 10.1073/pnas.1113726108 10.15252/embj.201694248 10.1104/pp.16.00336 10.1126/science.270.5243.1804 10.1111/nph.14943 10.1016/j.molcel.2014.03.028 10.1111/nph.15665 10.1016/j.pbi.2019.04.007 10.1146/annurev-arplant-080620-104948 10.1038/nplants.2016.128 10.1093/emboj/19.15.4004 10.1093/plcell/koab069 10.1038/35081161 10.1371/journal.pgen.1004015 10.1007/BF00022331 10.1094/MPMI-12-17-0328-R 10.3390/ijms19010008 10.1126/science.aar7486 10.1111/tpj.14654 10.1016/j.molp.2021.08.001 10.1046/j.1365-313X.1999.00265.x 10.1093/genetics/141.4.1597 10.1104/pp.105.062406 10.1126/science.aao4810 10.1105/tpc.020040 10.7554/eLife.34902 10.1038/s41586-021-03315-7 10.1094/MPMI.1998.11.12.1155 10.1016/j.chom.2016.09.007 10.1105/tpc.105.039198 10.1146/annurev-phyto-080614-120106 10.1016/j.cell.2021.05.035 10.1099/vir.0.80017-0 10.1105/tpc.022475 10.1371/journal.pgen.1008313 10.1186/s13059-016-0955-7 10.1139/g06-088 10.1073/pnas.1205448109 10.1016/j.chom.2014.02.009 10.1016/j.chom.2008.05.017 10.1038/415977a 10.1094/MPMI-22-4-0411 10.1038/nbt.1613 10.1105/tpc.112.102475 10.1046/j.1365-313X.1998.00136.x 10.1073/pnas.1220015110 10.1016/S0092-8674(03)00040-0 10.1105/tpc.107.056978 10.1111/j.1365-313X.2004.02047.x 10.1073/pnas.1511847113 10.1126/science.aau1279 10.1038/s41577-019-0165-0 10.1094/MPMI-07-18-0202-FI 10.1038/s41467-021-23614-x 10.1126/science.1204903 10.1016/j.chom.2007.03.006 10.1073/pnas.1614862113 10.1126/science.abg7917 10.1038/s41467-021-27288-3 10.1104/pp.113.230698 10.1016/j.cell.2021.05.003 10.1073/pnas.95.17.9750 10.1104/pp.109.139238 10.1007/s00122-005-2050-4 10.1073/pnas.2001185117 10.1016/S0092-8674(03)00036-9 10.1371/journal.pgen.1002502 10.1073/pnas.92.2.622 10.1038/s41477-018-0106-0 10.1006/viro.1995.1282 10.1146/annurev-phyto-082712-102314 10.1016/j.chom.2010.03.007 10.1126/science.7973631 10.1126/science.abd9993 10.1101/gr.078766.108 10.1038/s41586-019-1413-y 10.1105/tpc.17.00981 10.1073/pnas.98.2.741 10.1126/sciadv.1600822 10.1371/journal.pbio.2004122 10.1016/j.chom.2013.11.006 10.1094/MPMI.2004.17.7.771 10.1105/tpc.113.110833 10.1073/pnas.1915339117 10.1371/journal.ppat.1003313 10.1007/s00122-016-2740-0 10.1016/0092-8674(94)90283-6 10.1038/nplants.2017.115 10.1104/pp.103.036749 10.1105/tpc.113.117010 10.1111/nph.12347 10.1093/pcp/pcv063 10.1371/journal.pone.0098067 10.1105/tpc.105.037234 10.1111/j.1365-313X.2009.03838.x 10.3389/fpls.2014.00606 10.1038/ncomms10159 10.1038/s41586-019-1409-7 10.1111/mpp.12987 10.1094/MPMI-06-10-0127 10.3389/fpls.2014.00168 10.1105/tpc.12.5.803 10.15252/embr.201642704 10.1094/MPMI-22-6-0630 10.1016/j.cub.2005.04.053 10.1105/tpc.10.6.1021 10.1038/s41467-017-02340-3 10.3389/fpls.2019.00623 10.1046/j.1365-313x.2000.00804.x 10.1016/S0092-8674(00)81290-8 10.1111/1574-6968.12058 10.1104/pp.110.156240 10.1111/nph.15497 10.7554/eLife.44471 10.1073/pnas.0914408107 10.1038/nature10962 10.1104/pp.107.108720 10.1038/nature25184 10.1007/s00299-007-0304-0 10.1186/s12870-020-2285-x 10.1105/tpc.18.00297 10.1111/mpp.12142 10.1371/journal.ppat.1006284 10.1105/tpc.107.050880 10.1186/s12870-019-1817-8 10.1111/j.1365-313X.2012.05110.x 10.1105/tpc.016725 10.1094/MPMI-07-10-0149 10.1016/j.chom.2016.01.005 10.1038/srep11642 10.1094/MPMI.1997.10.1.13 10.1126/science.1248849 10.1007/s13562-010-0026-1 10.1016/j.molp.2019.11.001 10.1016/j.cell.2015.04.024 10.1371/journal.ppat.1000970 10.7554/eLife.49956 10.1016/j.tplants.2021.08.012 10.1126/science.aav5870 10.1016/j.cub.2008.10.063 10.1126/science.aax1771 10.1105/tpc.110.075697 10.15252/embj.2020104915 10.1093/mp/ssu049 10.1094/MPMI-12-10-0278 10.1111/nph.13584 10.1105/tpc.104.026609 10.1105/tpc.20.00499 10.1105/tpc.111.095380 10.1038/s41467-020-15601-5 10.1104/pp.18.00185 10.1371/journal.pone.0119639 10.1073/pnas.1702041114 10.1038/s41477-018-0216-8 10.4067/S0718-58392019000100124 10.1038/nplants.2015.140 10.1371/journal.ppat.1003123 10.1038/s41477-021-00874-5 10.1016/j.pbi.2017.04.012 10.1104/pp.110.156109 10.1007/s001220050638 10.1111/nph.17122 10.1371/journal.pone.0104840 10.1094/MPMI-19-1420 10.1038/nature05999 10.1073/pnas.1612947113 10.1038/s41467-021-20932-y 10.1111/j.1365-313X.2007.03027.x 10.1126/science.1069288 10.1126/science.aat2623 10.1016/j.mib.2015.10.006 10.1371/journal.ppat.1004491 10.1016/0092-8674(94)90282-8 10.1126/science.aax4079 10.1016/j.cub.2007.12.020 10.1093/jxb/erz571 10.1104/pp.15.00659 10.1094/MPMI-08-20-0229-CR 10.1126/science.276.5321.2054 10.1016/j.chom.2017.03.005 10.1073/pnas.84.17.6074 10.1071/FP08320 10.1038/s41586-021-03829-0 10.1111/j.1365-313X.2012.04906.x 10.1073/pnas.0711215105 10.1105/tpc.106.040998 10.1094/MPMI-06-13-0179-R 10.1126/science.1085671 10.1104/pp.126.1.97 10.1073/pnas.2033934100 10.1016/S0968-0004(98)01311-5 10.1073/pnas.1000675107 10.1126/science.1067554 10.1146/annurev-arplant-042817-040540 10.1371/journal.pgen.1002159 10.1105/tpc.109.068874 10.1016/j.molp.2014.12.022 10.1126/science.1247357 10.1111/mpp.12016 10.1094/MPMI-11-10-0276 10.1046/j.1365-313X.1997.11061187.x 10.1104/pp.112.201699 10.1073/pnas.1112862108 10.1073/pnas.1119623109 10.1371/journal.pbio.3000783 10.1186/s12864-016-3011-9 10.1016/j.pbi.2020.04.006 10.1371/journal.pone.0002875 10.1111/tpj.15082 10.1007/s44154-021-00009-y 10.1073/pnas.152330599 10.1371/journal.pgen.1002046 10.1105/tpc.106.043307 10.1126/science.1243825 10.1094/MPMI-23-1-0049 10.1111/j.1365-313X.2009.03949.x 10.1038/367384a0 10.1111/tpj.13212 10.1016/j.tplants.2019.04.009 10.1371/journal.ppat.1001111 10.1094/MPMI-08-17-0203-FI 10.1371/journal.ppat.1003127 10.1038/nature14611 10.3389/fphys.2016.00402 10.1038/s41586-018-0471-x 10.1105/tpc.10.8.1307 10.1016/j.cell.2006.03.037 10.1105/tpc.19.00631 10.1111/nph.13944 10.1073/pnas.1109921108 10.1038/s41467-020-19147-4 10.1073/pnas.1706795114 10.1105/tpc.19.00118 10.1073/pnas.012452499 10.1111/j.1365-2958.2004.04177.x 10.1073/pnas.96.6.3292 10.1046/j.1365-313X.2001.01292.x 10.1111/tpj.13715 10.1016/j.chom.2018.03.010 10.1038/s41586-020-2032-3 10.1094/MPMI-22-5-0589 10.7554/eLife.44474 10.1073/pnas.0705147104 10.1111/j.1364-3703.2012.00801.x 10.1007/s11032-011-9638-y 10.1038/nature08794 10.1146/annurev.arplant.59.032607.092906 10.1093/pcp/pcy243 10.1111/nph.13348 10.1126/science.abe3069 10.1038/s41586-020-2702-1 10.1105/tpc.104.024141 10.1073/pnas.0603729103 10.1073/pnas.0912139106 10.1371/journal.ppat.1004809 10.1146/annurev-arplant-042916-040957 10.1105/tpc.10.11.1915 10.1038/s41477-018-0172-3 10.1105/tpc.107.056754 10.1111/mpp.12912 10.1111/tpj.15284 10.1038/nature05286 10.3389/fpls.2020.00463 10.1105/tpc.105.036574 10.1105/tpc.104.026013 10.1111/tpj.12381 10.1073/pnas.95.13.7433 10.1126/science.aao7294 10.1094/MPMI.1998.11.6.498 10.1104/pp.111.176230 10.1126/science.1359642 10.1007/s00122-006-0481-1 10.1016/j.molp.2019.10.016 10.1038/s41586-020-2655-4 10.1093/emboj/20.19.5400 10.1094/MPMI-18-0158 10.1186/1756-0500-2-197 10.1073/pnas.1807297116 10.1105/tpc.110.082602 10.1111/jipb.12529 10.1126/science.aav5868 10.1146/annurev-phyto-072910-095326 10.1111/mpp.12607 10.1016/j.chom.2014.10.007 10.1038/s41467-019-10274-1 10.1371/journal.ppat.1008933 10.1093/pcp/pcv087 10.1105/tpc.19.00903 10.1371/journal.pone.0110158 10.3389/fpls.2012.00088 10.1016/j.simyco.2018.01.002 10.1073/pnas.95.4.1663 10.1104/pp.103.021964 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1093/plcell/koac041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1478 |
ExternalDocumentID | 10.1093/plcell/koac041 PMC9048904 35167697 10_1093_plcell_koac041 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R012172/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M011216/1 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2FS 2WC 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYXX ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXVV ABXZS ACBTR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADGKP ADIPN ADIYS ADQBN ADVEK AEEJZ AENEX AFAZZ AFFZL AFGWE AFRAH AHGBF AHMBA AICQM AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CITATION CS3 DATOO DIK DU5 E3Z EBS ECGQY F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 JBS JLS JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ~KM AGORE ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 2AX 2~F 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ ABBHK ABIME ABPIB ABUWG ABXSQ ABZEO ACFRR ACHIC ACVCV ACZBC ADTOC ADULT ADXHL ADYHW AEUPB AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AGUYK AHXOZ AJDVS ANFBD APJGH AQDSO AQVQM AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU D1J DWQXO EJD FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM LK8 M0K M1P M2P M2Q M7P MVM NEJ NU- P0- PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO S0X SA0 TCN UBC UKHRP UKR UNPAY WHG XOL Y6R ZCG ZCN |
ID | FETCH-LOGICAL-c456t-711445d870a896d404d3234b81fd7d03ab57418156cdf3ac6ee89ecbe97de0c73 |
IEDL.DBID | UNPAY |
ISSN | 1040-4651 1532-298X |
IngestDate | Wed Aug 20 00:13:35 EDT 2025 Tue Sep 30 16:53:29 EDT 2025 Sat Sep 27 19:26:51 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Wed Oct 01 04:30:38 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-711445d870a896d404d3234b81fd7d03ab57418156cdf3ac6ee89ecbe97de0c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Senior author |
ORCID | 0000-0002-0760-1058 0000-0002-3535-6053 0000-0002-4953-261X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/plcell/article-pdf/34/5/1447/43463248/koac041.pdf |
PMID | 35167697 |
PQID | 2629386157 |
PQPubID | 23479 |
PageCount | 32 |
ParticipantIDs | unpaywall_primary_10_1093_plcell_koac041 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9048904 proquest_miscellaneous_2629386157 pubmed_primary_35167697 crossref_primary_10_1093_plcell_koac041 crossref_citationtrail_10_1093_plcell_koac041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-26 |
PublicationDateYYYYMMDD | 2022-04-26 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Plomion (2022042815130039400_koac041-B268) 2018; 4 Xu (2022042815130039400_koac041-B399) 2012; 70 Saito (2022042815130039400_koac041-B292) 1987; 84 Kohorn (2022042815130039400_koac041-B160) 2012; 3 Brock (2022042815130039400_koac041-B40) 2010; 153 Dixon (2022042815130039400_koac041-B72) 1996; 84 Petre (2022042815130039400_koac041-B265) 2021; 33 Mitre (2022042815130039400_koac041-B233) 2021; 19 Ma (2022042815130039400_koac041-B217) 2020; 581 Liebrand (2022042815130039400_koac041-B191) 2013; 110 Wen (2022042815130039400_koac041-B378) 2013; 26 Allan (2022042815130039400_koac041-B7) 2001; 126 Postma (2022042815130039400_koac041-B269) 2016; 210 Ma (2022042815130039400_koac041-B220) 2012; 109 Niehl (2022042815130039400_koac041-B252) 2016; 211 Li (2022042815130039400_koac041-B184) 2020; 21 Zhao (2022042815130039400_koac041-B423) 2016; 113 Barragan (2022042815130039400_koac041-B21) 2019; 15 Lagudah (2022042815130039400_koac041-B169) 1997; 40 Torres (2022042815130039400_koac041-B344) 2002; 99 Sun (2022042815130039400_koac041-B324) 2020; 13 Pel (2022042815130039400_koac041-B262) 2010 Wu (2022042815130039400_koac041-B384) 2004; 16 Couto (2022042815130039400_koac041-B62) 2016; 12 Jones (2022042815130039400_koac041-B144) 2003 Zou (2022042815130039400_koac041-B428) 2018; 30 Azevedo (2022042815130039400_koac041-B16) 2002; 295 Torres (2022042815130039400_koac041-B345) 1998; 14 Van der Biezen (2022042815130039400_koac041-B351) 1998; 23 Yamada (2022042815130039400_koac041-B401) 2016; 35 Carter (2022042815130039400_koac041-B45) 2019; 32 Chen (2022042815130039400_koac041-B56) 2007; 26 Xiao (2022042815130039400_koac041-B396) 2001; 291 Bastedo (2022042815130039400_koac041-B22) 2019; 15 Chen (2022042815130039400_koac041-B55) 2017; 358 Rhodes (2022042815130039400_koac041-B282) 2021 Jia (2022042815130039400_koac041-B138) 2000; 19 Liu (2022042815130039400_koac041-B202) 2021; 14 Hind (2022042815130039400_koac041-B122) 2016; 2 Cao (2022042815130039400_koac041-B44) 2014; 3 Derkacheva (2022042815130039400_koac041-B67) 2020 Li (2022042815130039400_koac041-B179) 2011; 24 Joosten (2022042815130039400_koac041-B145) 1994; 367 Holton (2022042815130039400_koac041-B125) 2015; 11 Domazakis (2022042815130039400_koac041-B75) 2020 Zhang (2022042815130039400_koac041-B413) 2010; 7 Zhang (2022042815130039400_koac041-B417) 2007; 145 Gouhier-Darimont (2022042815130039400_koac041-B107) 2019; 10 Dangl (2022042815130039400_koac041-B63) 2001; 411 Luna (2022042815130039400_koac041-B212) 2011; 24 Su (2022042815130039400_koac041-B323) 2018; 16 Triplett (2022042815130039400_koac041-B346) 2016; 87 Wang (2022042815130039400_koac041-B366) 2017; 6 Lin (2022042815130039400_koac041-B194) 2013; 110 Jung (2022042815130039400_koac041-B146) 2020; 32 Ballvora (2022042815130039400_koac041-B20) 2002; 30 Xiang (2022042815130039400_koac041-B395) 2008; 18 Grant (2022042815130039400_koac041-B109) 1995; 269 Willmann (2022042815130039400_koac041-B382) 2011; 108 Schulze (2022042815130039400_koac041-B304) 2021 Ngou (2022042815130039400_koac041-B248) 2020; 71 Tameling (2022042815130039400_koac041-B332) 2007; 19 Parker (2022042815130039400_koac041-B257) 1996; 8 Lüdke (2022042815130039400_koac041-B210) 2021; 105 Vleeshouwers (2022042815130039400_koac041-B356) 2008; 3 Liu (2022042815130039400_koac041-B200) 2019; 8 Sweat (2022042815130039400_koac041-B329) 2008; 21 Claverie (2022042815130039400_koac041-B60) 2011; 156 Zhao (2022042815130039400_koac041-B422) 2004; 17 Piazza (2022042815130039400_koac041-B266) 2021 Mucyn (2022042815130039400_koac041-B238) 2006; 18 Kawaharada (2022042815130039400_koac041-B154) 2015; 523 Yu (2022042815130039400_koac041-B407) 2021 Lal (2022042815130039400_koac041-B171) 2018; 23 Thomas (2022042815130039400_koac041-B335) 1997; 9 Wang (2022042815130039400_koac041-B367) 2015; 18 Li (2022042815130039400_koac041-B188) 2010; 153 Sarris (2022042815130039400_koac041-B295) 2016; 14 Lee (2022042815130039400_koac041-B177) 2020; 11 Duxbury (2022042815130039400_koac041-B81) 2020; 117 Hegenauer (2022042815130039400_koac041-B121) 2020; 11 Grech-Baran (2022042815130039400_koac041-B110) 2021 Navathe (2022042815130039400_koac041-B245) 2020; 104 Rhodes (2022042815130039400_koac041-B283) 2021; 12 Wu (2022042815130039400_koac041-B388) 2015; 206 Wang (2022042815130039400_koac041-B372) 2018; 4 Park (2022042815130039400_koac041-B256) 2005; 111 Schultink (2022042815130039400_koac041-B303) 2017; 92 Adachi (2022042815130039400_koac041-B2) 2019; 50 Mott (2022042815130039400_koac041-B237) 2016; 17 Ma (2022042815130039400_koac041-B215) 2017; 27 Voigt (2022042815130039400_koac041-B359) 2014; 5 Jones (2022042815130039400_koac041-B142) 1994; 266 Lolle (2022042815130039400_koac041-B205) 2017; 21 Whitham (2022042815130039400_koac041-B380) 1994; 78 Zeng (2022042815130039400_koac041-B410) 2011; 54 Wan (2022042815130039400_koac041-B362) 2012; 160 Chen (2022042815130039400_koac041-B57) 2016; 7 Dixon (2022042815130039400_koac041-B71) 1998; 10 Schornack (2022042815130039400_koac041-B300) 2004; 37 Wu (2022042815130039400_koac041-B392) 2021 Grant (2022042815130039400_koac041-B108) 2000; 23 Feehan (2022042815130039400_koac041-B89) 2020; 56 Gao (2022042815130039400_koac041-B97) 2013; 9 Wan (2022042815130039400_koac041-B364) 2019; 365 Jones (2022042815130039400_koac041-B143) 2006; 444 Tsuda (2022042815130039400_koac041-B348) 2013; 9 Liu (2022042815130039400_koac041-B199) 2004; 16 Axtell (2022042815130039400_koac041-B15) 2003; 112 Catanzariti (2022042815130039400_koac041-B48) 2010; 23 Huot (2022042815130039400_koac041-B133) 2014; 7 Albrecht (2022042815130039400_koac041-B6) 2012; 109 Boutrot (2022042815130039400_koac041-B37) 2010; 107 Grubb (2022042815130039400_koac041-B113) 2021; 185 Du (2022042815130039400_koac041-B78) 2015; 207 Romeis (2022042815130039400_koac041-B286) 1999; 11 Wang (2022042815130039400_koac041-B370) 2019; 364 Ngou (2022042815130039400_koac041-B251) 2021; 27 Read (2022042815130039400_koac041-B277) 2020; 33 Bendahmane (2022042815130039400_koac041-B23) 1995; 8 Cao (2022042815130039400_koac041-B43) 2013; 9 Rowland (2022042815130039400_koac041-B290) 2005; 17 Piedras (2022042815130039400_koac041-B267) 1998; 11 Bailey (2022042815130039400_koac041-B19) 2011; 24 Lu (2022042815130039400_koac041-B207) 2011; 332 Peart (2022042815130039400_koac041-B259) 2005; 15 Kadota (2022042815130039400_koac041-B149) 2014; 54 Roux (2022042815130039400_koac041-B289) 2011; 23 Sobczak (2022042815130039400_koac041-B316) 2005; 18 van der Burgh (2022042815130039400_koac041-B352) 2019; 24 Hohmann (2022042815130039400_koac041-B123) 2017; 68 Li (2022042815130039400_koac041-B185) 2009; 22 Du (2022042815130039400_koac041-B77) 2009; 106 Mestre (2022042815130039400_koac041-B230) 2006; 18 Song (2022042815130039400_koac041-B319) 1995; 270 Gronnier (2022042815130039400_koac041-B111) 2020 Le Roux (2022042815130039400_koac041-B176) 2015; 161 Wang (2022042815130039400_koac041-B374) 2018; 30 Yoon (2022042815130039400_koac041-B405) 2020; 102 Wu (2022042815130039400_koac041-B389) 2017; 31 Castel (2022042815130039400_koac041-B47) 2019 Guo (2022042815130039400_koac041-B115) 2020; 27 Ngou (2022042815130039400_koac041-B247) 2021; 592 Saur (2022042815130039400_koac041-B297) 2019; 8 van der Hoorn (2022042815130039400_koac041-B353) 2008; 20 Mazo-Molina (2022042815130039400_koac041-B227) 2020; 103 Hou (2022042815130039400_koac041-B128) 2021; 1 Miya (2022042815130039400_koac041-B234) 2007; 104 Ma (2022042815130039400_koac041-B216) 2020; 370 Perraki (2022042815130039400_koac041-B264) 2018; 561 Meng (2022042815130039400_koac041-B229) 2013; 51 Wan (2022042815130039400_koac041-B363) 2008; 20 Brutus (2022042815130039400_koac041-B42) 2010; 107 Zhang (2022042815130039400_koac041-B414) 2014; 164 Xiao (2022042815130039400_koac041-B397) 2019; 572 Asai (2022042815130039400_koac041-B9) 2018; 9 Duggan (2022042815130039400_koac041-B80) 2021 Tian (2022042815130039400_koac041-B340) 2020 Saucet (2022042815130039400_koac041-B296) 2015; 6 Bi (2022042815130039400_koac041-B28) 2018; 30 de Ronde (2022042815130039400_koac041-B65) 2013; 14 Wu (2022042815130039400_koac041-B390) 2020; 117 Ashikawa (2022042815130039400_koac041-B13) 2012; 30 Hall (2022042815130039400_koac041-B116) 1980; 29 Johal (2022042815130039400_koac041-B140) 1992; 258 Xing (2022042815130039400_koac041-B398) 2007; 449 Wang (2022042815130039400_koac041-B373) 2010; 22 Feng (2022042815130039400_koac041-B91) 2012; 485 Liang (2022042815130039400_koac041-B189) 2018; 69 Falk (2022042815130039400_koac041-B86) 1999; 96 Kadota (2022042815130039400_koac041-B148) 2015; 56 Takahashi (2022042815130039400_koac041-B331) 2003; 100 Rep (2022042815130039400_koac041-B281) 2004; 53 Jo (2022042815130039400_koac041-B139) 2013 Göhre (2022042815130039400_koac041-B102) 2008; 18 Adachi (2022042815130039400_koac041-B1) 2019; 8 Song (2022042815130039400_koac041-B318) 2013; 26 Li (2022042815130039400_koac041-B181) 2019; 19 Schwessinger (2022042815130039400_koac041-B305) 2015; 11 Bos (2022042815130039400_koac041-B33) 2010; 107 Lin (2022042815130039400_koac041-B196) 2020; 21 Warmerdam (2022042815130039400_koac041-B376) 2020; 20 Horsefield (2022042815130039400_koac041-B126) 2019; 365 Yuan (2022042815130039400_koac041-B409) 2021; 592 Witek (2022042815130039400_koac041-B383) 2021; 7 Nagy (2022042815130039400_koac041-B240) 2008; 18 Huang (2022042815130039400_koac041-B132) 2016; 19 Mukhtar (2022042815130039400_koac041-B239) 2013; 18 Ashfield (2022042815130039400_koac041-B12) 2004; 16 Kim (2022042815130039400_koac041-B158) 2009; 150 Ntoukakis (2022042815130039400_koac041-B253) 2013; 9 Baggs (2022042815130039400_koac041-B18) 2020; 32 Luu (2022042815130039400_koac041-B214) 2019; 116 Zhang (2022042815130039400_koac041-B420) 2012; 11 Kamoun (2022042815130039400_koac041-B151) 1997; 10 Segonzac (2022042815130039400_koac041-B307) 2014; 33 Ngou (2022042815130039400_koac041-B249) 2021; 184 Dodds (2022042815130039400_koac041-B74) 2004; 16 Ashfield (2022042815130039400_koac041-B11) 1995; 141 Mackey (2022042815130039400_koac041-B223) 2003; 112 Luo (2022042815130039400_koac041-B213) 2021; 39 Xu (2022042815130039400_koac041-B400) 2011; 7 Kadota (2022042815130039400_koac041-B147) 2019; 221 Mendy (2022042815130039400_koac041-B228) 2017; 13 Hohmann (20220428 |
References_xml | – year: 2020 ident: 2022042815130039400_koac041-B111 article-title: FERONIA regulates FLS2 plasma membrane nanoscale dynamics to modulate plant immune signaling publication-title: BioRxiv – volume: 30 start-page: 2480 year: 2018 ident: 2022042815130039400_koac041-B374 article-title: A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance publication-title: Plant Cell doi: 10.1105/tpc.18.00547 – volume: 107 start-page: 18220 year: 2010 ident: 2022042815130039400_koac041-B418 article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1005225107 – volume: 27 start-page: 1521 year: 2017 ident: 2022042815130039400_koac041-B215 article-title: Structural basis for BIR1-mediated negative regulation of plant immunity publication-title: Cell Res doi: 10.1038/cr.2017.123 – volume: 355 start-page: 287 year: 2017 ident: 2022042815130039400_koac041-B321 article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling publication-title: Science doi: 10.1126/science.aal2541 – volume: 17 start-page: 2601 year: 2005 ident: 2022042815130039400_koac041-B93 article-title: Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity publication-title: Plant Cell doi: 10.1105/tpc.105.033910 – volume: 7 start-page: 1195 year: 1995 ident: 2022042815130039400_koac041-B175 article-title: The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N publication-title: Plant Cell – volume: 33 start-page: 1189 year: 2020 ident: 2022042815130039400_koac041-B277 article-title: Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing xanthomonas effector Tal2h publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-05-20-0131-SC – volume: 197 start-page: 595 year: 2013 ident: 2022042815130039400_koac041-B174 article-title: The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1 publication-title: New Phytol doi: 10.1111/nph.12043 – volume: 10 start-page: e1004331 year: 2014 ident: 2022042815130039400_koac041-B129 article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004331 – volume: 312 start-page: 436 year: 2006 ident: 2022042815130039400_koac041-B243 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science doi: 10.1126/science.1126088 – year: 2021 ident: 2022042815130039400_koac041-B87 article-title: Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1 publication-title: BioRxiv doi: 10.1101/2021.03.04.433884 – year: 2021 ident: 2022042815130039400_koac041-B80 article-title: ) Dynamic accumulation of a helper NLR at the plant-pathogen interface underpins pathogen recognition publication-title: BioRxiv – volume: 18 start-page: 67 year: 1999 ident: 2022042815130039400_koac041-B84 article-title: The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00426.x – volume: 110 start-page: 9166 year: 2013 ident: 2022042815130039400_koac041-B88 article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1203458110 – volume: 14 start-page: 8 year: 2016 ident: 2022042815130039400_koac041-B295 article-title: Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens publication-title: BMC Biol doi: 10.1186/s12915-016-0228-7 – volume: 592 start-page: 1 year: 2021 ident: 2022042815130039400_koac041-B409 article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity publication-title: Nature doi: 10.1038/s41586-021-03316-6 – volume: 11 start-page: 253 year: 2012 ident: 2022042815130039400_koac041-B420 article-title: Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.015 – volume: 365 start-page: 793 year: 2019 ident: 2022042815130039400_koac041-B126 article-title: NAD+ cleavage activity by animal and plant TIR domains in cell death pathways publication-title: Science doi: 10.1126/science.aax1911 – volume: 29 start-page: 189 year: 1980 ident: 2022042815130039400_koac041-B116 article-title: Resistance at the TM-2 locus in the tomato to tomato mosaic virus publication-title: Euphytica doi: 10.1007/BF00037266 – volume: 27 start-page: 769 year: 2020 ident: 2022042815130039400_koac041-B115 article-title: Phosphorylation-regulated activation of the Arabidopsis RRS1-R/RPS4 immune receptor complex reveals two distinct effector recognition mechanisms publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.03.008 – volume: 8 start-page: 933 year: 1995 ident: 2022042815130039400_koac041-B23 article-title: The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato publication-title: Plant J doi: 10.1046/j.1365-313X.1995.8060933.x – volume: 105 start-page: 6475 year: 2008 ident: 2022042815130039400_koac041-B83 article-title: Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0802157105 – volume: 325 start-page: 1094 year: 2009 ident: 2022042815130039400_koac041-B180 article-title: Gene-for-gene resistance in Striga-cowpea associations publication-title: Science doi: 10.1126/science.1174754 – volume: 9 start-page: 5192 year: 2018 ident: 2022042815130039400_koac041-B9 article-title: A downy mildew effector evades recognition by polymorphism of expression and subcellular localization publication-title: Nat Commun doi: 10.1038/s41467-018-07469-3 – volume: 26 start-page: 203 year: 2013 ident: 2022042815130039400_koac041-B378 article-title: The HC-Pro and P3 cistrons of an avirulent Soybean mosaic virus are recognized by different resistance genes at the complex Rsv1 locus publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-06-12-0156-R – volume: 54 start-page: 43 year: 2014 ident: 2022042815130039400_koac041-B149 article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity publication-title: Mol Cell doi: 10.1016/j.molcel.2014.02.021 – volume: 291 start-page: 118 year: 2001 ident: 2022042815130039400_koac041-B396 article-title: Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8 publication-title: Science doi: 10.1126/science.291.5501.118 – volume: 16 start-page: e1008571 year: 2020 ident: 2022042815130039400_koac041-B278 article-title: Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008571 – volume: 111 start-page: 3632 year: 2014 ident: 2022042815130039400_koac041-B193 article-title: Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1318817111 – volume: 19 start-page: 1294 year: 2021 ident: 2022042815130039400_koac041-B233 article-title: The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange publication-title: Plant Biotechnol J doi: 10.1111/pbi.13629 – volume: 69 start-page: 493 year: 2018 ident: 2022042815130039400_koac041-B368 article-title: A regulatory module controlling homeostasis of a plant immune kinase publication-title: Mol Cell doi: 10.1016/j.molcel.2017.12.026 – volume: 17 start-page: 1119 year: 2019 ident: 2022042815130039400_koac041-B100 article-title: Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races publication-title: Plant Biotechnol J doi: 10.1111/pbi.13042 – volume: 106 start-page: 993 year: 2021 ident: 2022042815130039400_koac041-B224 article-title: Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2 publication-title: Plant J doi: 10.1111/tpj.15214 – volume: 449 start-page: 243 year: 2007 ident: 2022042815130039400_koac041-B398 article-title: The structural basis for activation of plant immunity by bacterial effector protein AvrPto publication-title: Nature doi: 10.1038/nature06109 – volume: 37 start-page: 46 year: 2004 ident: 2022042815130039400_koac041-B300 article-title: The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3 publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01937.x – year: 2021 ident: 2022042815130039400_koac041-B392 article-title: N-terminally truncated helper NLR NRG1C antagonizes immunity mediated by its full-length neighbors NRG1A and NRG1B publication-title: BioRxiv doi: 10.1101/2021.01.27.428547 – year: 2022 ident: 2022042815130039400_koac041-B250 article-title: Concerted expansion and contraction of immune receptor gene repertoires in plant genomes publication-title: BioRxiv doi: 10.1101/2022.01.01.474684 – volume: 18 start-page: 285 year: 2015 ident: 2022042815130039400_koac041-B367 article-title: The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.08.004 – volume: 6 start-page: 6338 year: 2015 ident: 2022042815130039400_koac041-B296 article-title: Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4 publication-title: Nat Commun doi: 10.1038/ncomms7338 – volume: 1 start-page: e1500245 year: 2015 ident: 2022042815130039400_koac041-B270 article-title: The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium publication-title: Sci Adv doi: 10.1126/sciadv.1500245 – volume: 222 start-page: 966 year: 2019 ident: 2022042815130039400_koac041-B46 article-title: Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1 publication-title: New Phytol doi: 10.1111/nph.15659 – volume: 107 start-page: 14502 year: 2010 ident: 2022042815130039400_koac041-B37 article-title: Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003347107 – volume: 19 start-page: e3001136 year: 2021 ident: 2022042815130039400_koac041-B66 article-title: Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network publication-title: PLoS Biol doi: 10.1371/journal.pbio.3001136 – year: 2021 ident: 2022042815130039400_koac041-B195 article-title: Rpi-amr3 confers resistance to multiple Phytophthora species by recognizing a conserved RXLR effector publication-title: BioRxiv – volume: 14 start-page: 1071 year: 2012 ident: 2022042815130039400_koac041-B69 article-title: Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2012.01779.x – volume: 107 start-page: 496 year: 2010 ident: 2022042815130039400_koac041-B208 article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0909705107 – volume: 72 start-page: 7927 year: 2020 ident: 2022042815130039400_koac041-B70 article-title: Chromatin accessibility landscapes activated by cell surface and intracellular immune receptors publication-title: J Exp Bot doi: 10.1093/jxb/erab373 – start-page: 10 volume-title: Plant Biotechnology 2002 and Beyond year: 2003 ident: 2022042815130039400_koac041-B144 doi: 10.1007/978-94-017-2679-5_2 – volume: 269 start-page: 843 year: 1995 ident: 2022042815130039400_koac041-B109 article-title: Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance publication-title: Science doi: 10.1126/science.7638602 – volume: 180 start-page: 2267 year: 2008 ident: 2022042815130039400_koac041-B14 article-title: Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance publication-title: Genetics doi: 10.1534/genetics.108.095034 – volume: 20 start-page: 2009 year: 2008 ident: 2022042815130039400_koac041-B353 article-title: From Guard to Decoy: a new model for perception of plant pathogen effectors publication-title: Plant Cell doi: 10.1105/tpc.108.060194 – volume: 102 start-page: 12990 year: 2005 ident: 2022042815130039400_koac041-B186 article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502425102 – volume: 57 start-page: 645 year: 2009 ident: 2022042815130039400_koac041-B156 article-title: The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03716.x – volume: 23 start-page: 2440 year: 2011 ident: 2022042815130039400_koac041-B289 article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell doi: 10.1105/tpc.111.084301 – volume: 33 start-page: 2069 year: 2014 ident: 2022042815130039400_koac041-B307 article-title: Negative control of BAK1 by protein phosphatase 2A during plant innate immunity publication-title: EMBO J doi: 10.15252/embj.201488698 – volume: 18 start-page: 2792 year: 2006 ident: 2022042815130039400_koac041-B238 article-title: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity publication-title: Plant Cell doi: 10.1105/tpc.106.044016 – volume: 26 start-page: 4171 year: 2014 ident: 2022042815130039400_koac041-B334 article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling publication-title: Plant Cell doi: 10.1105/tpc.114.131938 – volume: 185 start-page: 1943 year: 2021 ident: 2022042815130039400_koac041-B219 article-title: Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity publication-title: Plant Physiol doi: 10.1093/plphys/kiab011 – volume: 116 start-page: 8525 year: 2019 ident: 2022042815130039400_koac041-B214 article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1818275116 – volume: 39 year: 2021 ident: 2022042815130039400_koac041-B213 article-title: A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat publication-title: Nat. Biotechnol doi: 10.1038/s41587-020-00770-x – volume: 54 start-page: 533 year: 2004 ident: 2022042815130039400_koac041-B379 article-title: Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04288.x – volume: 26 start-page: 711 year: 2013 ident: 2022042815130039400_koac041-B318 article-title: Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-12-12-0289-R – volume: 40 start-page: 659 year: 1997 ident: 2022042815130039400_koac041-B169 article-title: Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat publication-title: Genome doi: 10.1139/g97-087 – volume: 103 start-page: 1433 year: 2020 ident: 2022042815130039400_koac041-B227 article-title: Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species publication-title: Plant J doi: 10.1111/tpj.14810 – volume: 18 start-page: 469 year: 2013 ident: 2022042815130039400_koac041-B239 article-title: Engineering NLR immune receptors for broad-spectrum disease resistance publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2013.08.005 – volume: 18 start-page: 1215 year: 2005 ident: 2022042815130039400_koac041-B301 article-title: Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4- but not in pepper Bs3-mediated perception publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-18-1215 – volume: 7 start-page: 198 year: 2021 ident: 2022042815130039400_koac041-B383 article-title: A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector publication-title: Nat Plants doi: 10.1038/s41477-021-00854-9 – volume: 19 start-page: 532 year: 2019 ident: 2022042815130039400_koac041-B260 article-title: Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation publication-title: BMC Plant Biol doi: 10.1186/s12870-019-2154-7 – volume: 185 start-page: 1483 year: 2021 ident: 2022042815130039400_koac041-B113 article-title: Large-scale identification of ubiquitination sites on membrane-associated proteins in Arabidopsis thaliana seedlings publication-title: Plant Physiol doi: 10.1093/plphys/kiab023 – volume: 104 start-page: 71 year: 2020 ident: 2022042815130039400_koac041-B245 article-title: ToxA-Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse gene-for-gene relationship publication-title: Plant Dis doi: 10.1094/PDIS-05-19-1066-RE – year: 2021 ident: 2022042815130039400_koac041-B110 article-title: The Rysto immune receptor recognizes a broadly conserved feature of potyviral coat proteins publication-title: BioRxiv – volume: 12 start-page: 427 year: 2009 ident: 2022042815130039400_koac041-B211 article-title: STANDing strong, resistance proteins instigators of plant defence publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.03.001 – volume: 520 start-page: 679 year: 2015 ident: 2022042815130039400_koac041-B427 article-title: NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism publication-title: Nature doi: 10.1038/nature14171 – volume: 1 start-page: 100016 year: 2020 ident: 2022042815130039400_koac041-B355 article-title: Plant nlrs: the whistleblowers of plant immunity publication-title: Plant Commun doi: 10.1016/j.xplc.2019.100016 – volume: 15 start-page: e1007900 year: 2019 ident: 2022042815130039400_koac041-B22 article-title: Perturbations of the ZED1 pseudokinase activate plant immunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007900 – volume: 22 start-page: 9 year: 2021 ident: 2022042815130039400_koac041-B429 article-title: Identification and characterization of the LRR repeats in plant LRR-RLKs publication-title: BMC Mol and Cell Biol doi: 10.1186/s12860-021-00344-y – volume: 21 start-page: 1513 year: 2020 ident: 2022042815130039400_koac041-B166 article-title: Structural specificity in plant-filamentous pathogen interactions publication-title: Mol Plant Pathol doi: 10.1111/mpp.12983 – volume: 265 start-page: 1856 year: 1994 ident: 2022042815130039400_koac041-B24 article-title: RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes publication-title: Science doi: 10.1126/science.8091210 – volume: 163 start-page: 1741 year: 2013 ident: 2022042815130039400_koac041-B347 article-title: The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity publication-title: Plant Physiol doi: 10.1104/pp.113.227108 – volume: 4 start-page: e1000061 year: 2008 ident: 2022042815130039400_koac041-B130 article-title: Suppression of plant resistance gene-based immunity by a fungal effector publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000061 – volume: 210 start-page: 627 year: 2016 ident: 2022042815130039400_koac041-B269 article-title: Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity publication-title: New Phytol doi: 10.1111/nph.13802 – volume: 5 start-page: 1003 year: 2000 ident: 2022042815130039400_koac041-B103 article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80265-8 – volume: 11 start-page: e1004602 year: 2015 ident: 2022042815130039400_koac041-B125 article-title: The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004602 – volume: 110 start-page: 12114 year: 2013 ident: 2022042815130039400_koac041-B194 article-title: Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1302154110 – volume: 6 start-page: 34 year: 2009 ident: 2022042815130039400_koac041-B96 article-title: Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.05.019 – volume: 22 start-page: 2444 year: 2010 ident: 2022042815130039400_koac041-B163 article-title: Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector publication-title: Plant Cell doi: 10.1105/tpc.110.075358 – year: 2021 ident: 2022042815130039400_koac041-B393 article-title: ) TIR signaling promotes the interactions between EDS1/PAD4 and ADR1-L1 and oligomerization of ADR1-L1 publication-title: BioRxiv doi: 10.1101/2021.05.23.445317 – volume: 221 start-page: 2160 year: 2019 ident: 2022042815130039400_koac041-B147 article-title: Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants publication-title: New Phytol doi: 10.1111/nph.15523 – volume: 206 start-page: 1463 year: 2015 ident: 2022042815130039400_koac041-B388 article-title: Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice publication-title: New Phytol doi: 10.1111/nph.13310 – volume: 581 start-page: 199 year: 2020 ident: 2022042815130039400_koac041-B217 article-title: Ligand-induced monoubiquitination of BIK1 regulates plant immunity publication-title: Nature doi: 10.1038/s41586-020-2210-3 – volume: 3 year: 2014 ident: 2022042815130039400_koac041-B44 article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1 publication-title: Elife doi: 10.7554/eLife.03766 – year: 2019 ident: 2022042815130039400_koac041-B322 article-title: A receptor for herbivore-associated molecular patterns mediates plant immunity publication-title: BioRxiv doi: 10.1101/679803 – volume: 103 start-page: 11856 year: 2006 ident: 2022042815130039400_koac041-B308 article-title: A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604815103 – volume: 9 start-page: 594 year: 2018 ident: 2022042815130039400_koac041-B375 article-title: Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection publication-title: Nat Commun doi: 10.1038/s41467-018-03010-8 – volume: 125 start-page: 563 year: 2006 ident: 2022042815130039400_koac041-B120 article-title: Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.047 – volume: 6 start-page: e25474 year: 2017 ident: 2022042815130039400_koac041-B366 article-title: ) A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana publication-title: eLife doi: 10.7554/eLife.25474 – volume: 221 start-page: 1001 year: 2019 ident: 2022042815130039400_koac041-B302 article-title: Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4 publication-title: New Phytol doi: 10.1111/nph.15411 – volume: 278 start-page: 1963 year: 1997 ident: 2022042815130039400_koac041-B50 article-title: NDR1, a pathogen-induced component required for Arabidopsis disease resistance publication-title: Science doi: 10.1126/science.278.5345.1963 – volume: 21 start-page: 2928 year: 2009 ident: 2022042815130039400_koac041-B254 article-title: In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2 publication-title: Plant Cell doi: 10.1105/tpc.109.068247 – volume: 21 start-page: 7 year: 2008 ident: 2022042815130039400_koac041-B329 article-title: Characterization of natural and induced variation in the LOV1 gene, a CC-NB-LRR gene conferring victorin sensitivity and disease susceptibility in Arabidopsis publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-21-1-0007 – volume: 161 start-page: 1074 year: 2015 ident: 2022042815130039400_koac041-B176 article-title: A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity publication-title: Cell doi: 10.1016/j.cell.2015.04.025 – volume: 5 start-page: e13568 year: 2016 ident: 2022042815130039400_koac041-B190 article-title: Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor publication-title: eLife doi: 10.7554/eLife.13568 – volume: 17 start-page: 812 year: 2019 ident: 2022042815130039400_koac041-B41 article-title: The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity publication-title: Plant Biotechnol J doi: 10.1111/pbi.13017 – volume: 54 start-page: 372 year: 2011 ident: 2022042815130039400_koac041-B410 article-title: Characterization and fine mapping of the rice blast resistance gene Pia publication-title: Sci China Life Sci doi: 10.1007/s11427-011-4154-1 – volume: 207 start-page: 735 year: 2015 ident: 2022042815130039400_koac041-B78 article-title: Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1 publication-title: New Phytol doi: 10.1111/nph.13355 – volume: 153 start-page: 645 year: 2008 ident: 2022042815130039400_koac041-B226 article-title: The coat protein gene of tobamovirus P 0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants publication-title: Arch Virol doi: 10.1007/s00705-008-0032-y – volume: 2 start-page: 16185 year: 2016 ident: 2022042815130039400_koac041-B371 article-title: The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein publication-title: Nat Plants doi: 10.1038/nplants.2016.185 – volume: 1 start-page: 15034 year: 2015 ident: 2022042815130039400_koac041-B552 article-title: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato publication-title: Nat Plants doi: 10.1038/nplants.2015.34 – volume: 598 start-page: 500 year: 2021 ident: 2022042815130039400_koac041-B341 article-title: Activation of TIR signalling boosts pattern-triggered immunity publication-title: Nature doi: 10.1038/s41586-021-03987-1 – volume: 3 year: 2012 ident: 2022042815130039400_koac041-B276 article-title: MAP kinase cascades in arabidopsis innate immunity publication-title: Front Plant Sci doi: 10.3389/fpls.2012.00169 – volume: 12 start-page: e1005811 year: 2016 ident: 2022042815130039400_koac041-B62 article-title: The arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005811 – volume: 21 start-page: 1017 year: 2016 ident: 2022042815130039400_koac041-B218 article-title: SERKing coreceptors for receptors publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.08.014 – volume: 108 start-page: 16463 year: 2011 ident: 2022042815130039400_koac041-B32 article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113726108 – volume: 35 start-page: 2468 year: 2016 ident: 2022042815130039400_koac041-B401 article-title: The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation publication-title: EMBO J doi: 10.15252/embj.201694248 – volume: 171 start-page: 2223 year: 2016 ident: 2022042815130039400_koac041-B85 article-title: Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11 publication-title: Plant Physiol doi: 10.1104/pp.16.00336 – volume: 270 start-page: 1804 year: 1995 ident: 2022042815130039400_koac041-B319 article-title: A receptor kinase-like protein encoded by the rice disease resistance gene publication-title: Xa21. Science doi: 10.1126/science.270.5243.1804 – year: 2019 ident: 2022042815130039400_koac041-B47 article-title: An rpw8 quadruple mutant of Arabidopsis Col-0 is partially compromised in bacterial and fungal resistance publication-title: BioRxiv doi: 10.1101/839308 – volume: 217 start-page: 1667 year: 2018 ident: 2022042815130039400_koac041-B135 article-title: A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana publication-title: New Phytol doi: 10.1111/nph.14943 – volume: 54 start-page: 263 year: 2014 ident: 2022042815130039400_koac041-B221 article-title: Plant PRRs and the activation of innate immune signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2014.03.028 – volume: 222 start-page: 938 year: 2019 ident: 2022042815130039400_koac041-B391 article-title: Differential regulation of TNL-mediated immune signaling by redundant helper CNLs publication-title: New Phytol doi: 10.1111/nph.15665 – volume: 50 start-page: 121 year: 2019 ident: 2022042815130039400_koac041-B2 article-title: NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2019.04.007 – volume: 72 start-page: 155 year: 2021 ident: 2022042815130039400_koac041-B82 article-title: A comparative overview of the intracellular guardians of plants and animals: nlrs in innate immunity and beyond publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-080620-104948 – year: 2021 ident: 2022042815130039400_koac041-B304 article-title: The TIR-NBS-LRR protein CSA1 is required for autoimmune cell death in Arabidopsis pattern recognition co-receptor bak1 and bir3 mutants publication-title: BioRxiv – volume: 2 start-page: 16128 year: 2016 ident: 2022042815130039400_koac041-B122 article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system publication-title: Nat Plants doi: 10.1038/nplants.2016.128 – volume: 19 start-page: 4004 year: 2000 ident: 2022042815130039400_koac041-B138 article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance publication-title: EMBO J doi: 10.1093/emboj/19.15.4004 – volume: 33 start-page: 1447 year: 2021 ident: 2022042815130039400_koac041-B265 article-title: Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process publication-title: Plant Cell doi: 10.1093/plcell/koab069 – volume: 411 start-page: 826 year: 2001 ident: 2022042815130039400_koac041-B63 article-title: Plant pathogens and integrated defence responses to infection publication-title: Nature doi: 10.1038/35081161 – volume: 9 start-page: e1004015 year: 2013 ident: 2022042815130039400_koac041-B348 article-title: Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004015 – volume: 15 start-page: 258 year: 1966 ident: 2022042815130039400_koac041-B263 article-title: Resistance in tomato to tobacco mosaic virus publication-title: Euphytica doi: 10.1007/BF00022331 – volume: 31 start-page: 1069 year: 2018 ident: 2022042815130039400_koac041-B206 article-title: Genetic analysis of victorin sensitivity and identification of a causal nucleotide-binding site leucine-rich repeat gene in Phaseolus vulgaris publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-12-17-0328-R – volume: 19 year: 2017 ident: 2022042815130039400_koac041-B178 article-title: Receptor-like kinase LYK9 in Pisum sativum L. Is the CERK1-like receptor that controls both plant immunity and AM symbiosis development publication-title: Int J Mol Sci doi: 10.3390/ijms19010008 – volume: 363 year: 2019 ident: 2022042815130039400_koac041-B118 article-title: Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides publication-title: Science doi: 10.1126/science.aar7486 – volume: 102 start-page: 688 year: 2020 ident: 2022042815130039400_koac041-B405 article-title: Rpa1 mediates an immune response to avrRpm1Psa and confers resistance against Pseudomonas syringae pv. actinidiae publication-title: Plant J doi: 10.1111/tpj.14654 – volume: 14 start-page: 2015 year: 2021 ident: 2022042815130039400_koac041-B202 article-title: An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion publication-title: Mol. Plant doi: 10.1016/j.molp.2021.08.001 – volume: 18 start-page: 265 year: 1999 ident: 2022042815130039400_koac041-B90 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00265.x – volume: 141 start-page: 1597 year: 1995 ident: 2022042815130039400_koac041-B11 article-title: Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus publication-title: Genetics doi: 10.1093/genetics/141.4.1597 – volume: 139 start-page: 885 year: 2005 ident: 2022042815130039400_koac041-B320 article-title: Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat publication-title: Plant Physiol doi: 10.1104/pp.105.062406 – volume: 9 start-page: 2209 year: 1997 ident: 2022042815130039400_koac041-B335 article-title: Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9 publication-title: Plant Cell – volume: 358 start-page: 1607 year: 2017 ident: 2022042815130039400_koac041-B55 article-title: Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat publication-title: Science doi: 10.1126/science.aao4810 – volume: 16 start-page: 755 year: 2004 ident: 2022042815130039400_koac041-B74 article-title: The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells publication-title: Plant Cell doi: 10.1105/tpc.020040 – volume: 7 year: 2018 ident: 2022042815130039400_koac041-B273 article-title: The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity publication-title: eLife doi: 10.7554/eLife.34902 – volume: 592 start-page: 110 year: 2021 ident: 2022042815130039400_koac041-B247 article-title: Mutual potentiation of plant immunity by cell-surface and intracellular receptors publication-title: Nature doi: 10.1038/s41586-021-03315-7 – volume: 11 start-page: 1155 year: 1998 ident: 2022042815130039400_koac041-B267 article-title: Rapid, Cf-9 - and Avr9-dependent production of active oxygen species in tobacco suspension cultures publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.1998.11.12.1155 – year: 2021 ident: 2022042815130039400_koac041-B407 article-title: TIR domains of plant immune receptors are 2’,3'-cAMP/cGMP synthetases mediating cell death publication-title: BioRxiv – volume: 20 start-page: 504 year: 2016 ident: 2022042815130039400_koac041-B182 article-title: Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.007 – volume: 18 start-page: 1084 year: 2006 ident: 2022042815130039400_koac041-B404 article-title: The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense publication-title: Plant Cell doi: 10.1105/tpc.105.039198 – volume: 55 start-page: 257 year: 2017 ident: 2022042815130039400_koac041-B36 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-080614-120106 – volume: 64 start-page: 114 year: 2010 ident: 2022042815130039400_koac041-B117 article-title: Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis publication-title: Plant J – volume: 184 start-page: 3358 year: 2021 ident: 2022042815130039400_koac041-B249 article-title: Channeling plant immunity publication-title: Cell doi: 10.1016/j.cell.2021.05.035 – volume: 85 start-page: 2077 year: 2004 ident: 2022042815130039400_koac041-B101 article-title: The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum publication-title: J Gen Virol doi: 10.1099/vir.0.80017-0 – volume: 16 start-page: 1604 year: 2004 ident: 2022042815130039400_koac041-B287 article-title: The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato publication-title: Plant Cell doi: 10.1105/tpc.022475 – volume: 15 start-page: e1008313 year: 2019 ident: 2022042815130039400_koac041-B21 article-title: RPW8/HR repeats control NLR activation in Arabidopsis thaliana publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008313 – volume: 17 start-page: 98 year: 2016 ident: 2022042815130039400_koac041-B237 article-title: Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation publication-title: Genome Biol doi: 10.1186/s13059-016-0955-7 – volume: 49 start-page: 1265 year: 2006 ident: 2022042815130039400_koac041-B203 article-title: The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system publication-title: Genome doi: 10.1139/g06-088 – volume: 109 start-page: 19852 year: 2012 ident: 2022042815130039400_koac041-B220 article-title: Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1205448109 – volume: 15 start-page: 329 year: 2014 ident: 2022042815130039400_koac041-B183 article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.02.009 – volume: 4 start-page: 17 year: 2008 ident: 2022042815130039400_koac041-B309 article-title: Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.05.017 – volume: 415 start-page: 977 year: 2002 ident: 2022042815130039400_koac041-B10 article-title: MAP kinase signalling cascade in Arabidopsis innate immunity publication-title: Nature doi: 10.1038/415977a – volume: 22 start-page: 411 year: 2009 ident: 2022042815130039400_koac041-B185 article-title: The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-22-4-0411 – volume: 28 start-page: 365 year: 2010 ident: 2022042815130039400_koac041-B167 article-title: Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance publication-title: Nat Biotechnol doi: 10.1038/nbt.1613 – volume: 24 start-page: 3406 year: 2012 ident: 2022042815130039400_koac041-B197 article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity publication-title: Plant Cell doi: 10.1105/tpc.112.102475 – year: 2021 ident: 2022042815130039400_koac041-B282 article-title: Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3 publication-title: BioRxiv – volume: 14 start-page: 365 year: 1998 ident: 2022042815130039400_koac041-B345 article-title: Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox) publication-title: Plant J doi: 10.1046/j.1365-313X.1998.00136.x – volume: 110 start-page: 10010 year: 2013 ident: 2022042815130039400_koac041-B191 article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1220015110 – volume: 112 start-page: 379 year: 2003 ident: 2022042815130039400_koac041-B223 article-title: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance publication-title: Cell doi: 10.1016/S0092-8674(03)00040-0 – volume: 20 start-page: 697 year: 2008 ident: 2022042815130039400_koac041-B350 article-title: The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato publication-title: Plant Cell doi: 10.1105/tpc.107.056978 – volume: 38 start-page: 285 year: 2004 ident: 2022042815130039400_koac041-B255 article-title: Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02047.x – volume: 113 start-page: 3389 year: 2016 ident: 2022042815130039400_koac041-B298 article-title: NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1511847113 – volume: 364 start-page: 178 year: 2019 ident: 2022042815130039400_koac041-B165 article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants publication-title: Science doi: 10.1126/science.aau1279 – volume: 19 start-page: 477 year: 2019 ident: 2022042815130039400_koac041-B328 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0165-0 – volume: 32 start-page: 550 year: 2019 ident: 2022042815130039400_koac041-B45 article-title: Convergent evolution of effector protease recognition by arabidopsis and barley publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-07-18-0202-FI – volume: 12 start-page: 3335 year: 2021 ident: 2022042815130039400_koac041-B326 article-title: Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity publication-title: Nat Commun doi: 10.1038/s41467-021-23614-x – volume: 332 start-page: 1439 year: 2011 ident: 2022042815130039400_koac041-B207 article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity publication-title: Science doi: 10.1126/science.1204903 – volume: 1 start-page: 175 year: 2007 ident: 2022042815130039400_koac041-B412 article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.03.006 – volume: 113 start-page: 12850 year: 2016 ident: 2022042815130039400_koac041-B423 article-title: Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1614862113 – volume: 373 start-page: 420 year: 2021 ident: 2022042815130039400_koac041-B136 article-title: Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels publication-title: Science doi: 10.1126/science.abg7917 – volume: 12 start-page: 6915 year: 2021 ident: 2022042815130039400_koac041-B26 article-title: The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics publication-title: Nat Commun doi: 10.1038/s41467-021-27288-3 – volume: 164 start-page: 352 year: 2014 ident: 2022042815130039400_koac041-B414 article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 publication-title: Plant Physiol doi: 10.1104/pp.113.230698 – volume: 184 year: 2021 ident: 2022042815130039400_koac041-B27 article-title: The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling publication-title: Cell doi: 10.1016/j.cell.2021.05.003 – year: 2018 ident: 2022042815130039400_koac041-B39 article-title: NRG1-mediated recognition of HopQ1 reveals a link between PAMP and Effector-triggered Immunity publication-title: BioRxiv doi: 10.1101/293050 – volume: 95 start-page: 9750 year: 1998 ident: 2022042815130039400_koac041-B288 article-title: The nematode resistance gene Mi of tomato confers resistance against the potato aphid publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.17.9750 – volume: 150 start-page: 1723 year: 2009 ident: 2022042815130039400_koac041-B158 article-title: Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1 publication-title: Plant Physiol doi: 10.1104/pp.109.139238 – year: 2020 ident: 2022042815130039400_koac041-B75 article-title: ELR is a true pattern recognition receptor that associates with elicitins from diverse Phytophthora species publication-title: BioRxiv doi: 10.1101/2020.09.21.305813 – volume: 111 start-page: 591 year: 2005 ident: 2022042815130039400_koac041-B256 article-title: Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato publication-title: Theor Appl Genet doi: 10.1007/s00122-005-2050-4 – volume: 117 start-page: 18832 year: 2020 ident: 2022042815130039400_koac041-B81 article-title: Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2001185117 – volume: 112 start-page: 369 year: 2003 ident: 2022042815130039400_koac041-B15 article-title: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 publication-title: Cell doi: 10.1016/S0092-8674(03)00036-9 – volume: 8 start-page: e1002502 year: 2012 ident: 2022042815130039400_koac041-B105 article-title: Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002502 – volume: 92 start-page: 622 year: 1995 ident: 2022042815130039400_koac041-B150 article-title: An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.2.622 – volume: 4 start-page: 152 year: 2018 ident: 2022042815130039400_koac041-B372 article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects publication-title: Nat Plants doi: 10.1038/s41477-018-0106-0 – volume: 209 start-page: 498 year: 1995 ident: 2022042815130039400_koac041-B25 article-title: The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein publication-title: Virology doi: 10.1006/viro.1995.1282 – volume: 51 start-page: 245 year: 2013 ident: 2022042815130039400_koac041-B229 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-082712-102314 – volume: 7 start-page: 290 year: 2010 ident: 2022042815130039400_koac041-B413 article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.03.007 – volume: 266 start-page: 789 year: 1994 ident: 2022042815130039400_koac041-B142 article-title: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging publication-title: Science doi: 10.1126/science.7973631 – volume: 370 start-page: eabd9993 year: 2020 ident: 2022042815130039400_koac041-B225 article-title: Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ publication-title: Science doi: 10.1126/science.abd9993 – volume: 18 start-page: 1918 year: 2008 ident: 2022042815130039400_koac041-B240 article-title: Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster publication-title: Genome Res doi: 10.1101/gr.078766.108 – volume: 572 start-page: 131 year: 2019 ident: 2022042815130039400_koac041-B342 article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity publication-title: Nature doi: 10.1038/s41586-019-1413-y – volume: 30 start-page: 1543 year: 2018 ident: 2022042815130039400_koac041-B28 article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.17.00981 – volume: 98 start-page: 741 year: 2001 ident: 2022042815130039400_koac041-B430 article-title: Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.741 – volume: 2 start-page: e1600822 year: 2016 ident: 2022042815130039400_koac041-B311 article-title: The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease publication-title: Sci Adv doi: 10.1126/sciadv.1600822 – volume: 16 start-page: e2004122 year: 2018 ident: 2022042815130039400_koac041-B323 article-title: Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity publication-title: PLoS Biol doi: 10.1371/journal.pbio.2004122 – volume: 14 start-page: 619 year: 2013 ident: 2022042815130039400_koac041-B361 article-title: Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.006 – volume: 17 start-page: 771 year: 2004 ident: 2022042815130039400_koac041-B422 article-title: The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2004.17.7.771 – volume: 25 start-page: 2330 year: 2013 ident: 2022042815130039400_koac041-B137 article-title: The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas publication-title: Plant Cell doi: 10.1105/tpc.113.110833 – volume: 117 start-page: 27044 year: 2020 ident: 2022042815130039400_koac041-B390 article-title: Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1915339117 – volume: 9 start-page: e1003313 year: 2013 ident: 2022042815130039400_koac041-B43 article-title: Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003313 – volume: 129 start-page: 1785 year: 2016 ident: 2022042815130039400_koac041-B360 article-title: The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2740-0 – volume: 78 start-page: 1101 year: 1994 ident: 2022042815130039400_koac041-B380 article-title: The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor publication-title: Cell doi: 10.1016/0092-8674(94)90283-6 – volume: 3 start-page: 17115 year: 2017 ident: 2022042815130039400_koac041-B421 article-title: Mechanism of host substrate acetylation by a YopJ family effector publication-title: Nat Plants doi: 10.1038/nplants.2017.115 – volume: 135 start-page: 1113 year: 2004 ident: 2022042815130039400_koac041-B244 article-title: The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis publication-title: Plant Physiol doi: 10.1104/pp.103.036749 – volume: 25 start-page: 4227 year: 2013 ident: 2022042815130039400_koac041-B416 article-title: Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi publication-title: Plant Cell doi: 10.1105/tpc.113.117010 – volume: 200 start-page: 158 year: 2013 ident: 2022042815130039400_koac041-B127 article-title: Nucleocytoplasmic partitioning of tobacco N receptor is modulated by SGT1 publication-title: New Phytol doi: 10.1111/nph.12347 – volume: 56 start-page: 1472 year: 2015 ident: 2022042815130039400_koac041-B148 article-title: Regulation of the NADPH oxidase RBOHD during plant immunity publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcv063 – volume: 9 start-page: e98067 year: 2014 ident: 2022042815130039400_koac041-B411 article-title: Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance publication-title: PLoS One doi: 10.1371/journal.pone.0098067 – volume: 18 start-page: 491 year: 2006 ident: 2022042815130039400_koac041-B230 article-title: Elicitor-mediated oligomerization of the tobacco N disease resistance protein publication-title: Plant Cell doi: 10.1105/tpc.105.037234 – volume: 58 start-page: 970 year: 2009 ident: 2022042815130039400_koac041-B131 article-title: The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03838.x – volume: 5 start-page: 606 year: 2014 ident: 2022042815130039400_koac041-B51 article-title: A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00606 – volume: 6 start-page: 10159 year: 2015 ident: 2022042815130039400_koac041-B325 article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity publication-title: Nat Commun doi: 10.1038/ncomms10159 – year: 2021 ident: 2022042815130039400_koac041-B266 article-title: The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple publication-title: BioRxiv – volume: 572 start-page: 270 year: 2019 ident: 2022042815130039400_koac041-B397 article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex publication-title: Nature doi: 10.1038/s41586-019-1409-7 – volume: 21 start-page: 1502 year: 2020 ident: 2022042815130039400_koac041-B196 article-title: Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq) publication-title: Mol Plant Pathol doi: 10.1111/mpp.12987 – volume: 24 start-page: 108 year: 2011 ident: 2022042815130039400_koac041-B343 article-title: Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-06-10-0127 – volume: 5 start-page: 168 year: 2014 ident: 2022042815130039400_koac041-B359 article-title: Callose-mediated resistance to pathogenic intruders in plant defense-related papillae publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00168 – volume: 12 start-page: 803 year: 2000 ident: 2022042815130039400_koac041-B285 article-title: Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response publication-title: Plant Cell doi: 10.1105/tpc.12.5.803 – volume: 18 start-page: 292 year: 2017 ident: 2022042815130039400_koac041-B419 article-title: The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3 publication-title: EMBO Rep doi: 10.15252/embr.201642704 – volume: 22 start-page: 630 year: 2009 ident: 2022042815130039400_koac041-B204 article-title: Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-22-6-0630 – volume: 15 start-page: 968 year: 2005 ident: 2022042815130039400_koac041-B259 article-title: NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus publication-title: Curr Biol doi: 10.1016/j.cub.2005.04.053 – volume: 10 start-page: 1021 year: 1998 ident: 2022042815130039400_koac041-B425 article-title: PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.10.6.1021 – volume: 8 start-page: 2265 year: 2017 ident: 2022042815130039400_koac041-B54 article-title: Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture publication-title: Nat Commun doi: 10.1038/s41467-017-02340-3 – volume: 10 year: 2019 ident: 2022042815130039400_koac041-B107 article-title: The Arabidopsis lectin receptor kinase LecRK-I.8 is involved in insect egg perception publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00623 – volume: 23 start-page: 441 year: 2000 ident: 2022042815130039400_koac041-B108 article-title: The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00804.x – volume: 84 start-page: 451 year: 1996 ident: 2022042815130039400_koac041-B72 article-title: The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins publication-title: Cell doi: 10.1016/S0092-8674(00)81290-8 – volume: 339 start-page: 102 year: 2013 ident: 2022042815130039400_koac041-B317 article-title: Homologous recombination causes the spontaneous deletion of AVR-Pia in Magnaporthe oryzae publication-title: FEMS Microbiol Lett doi: 10.1111/1574-6968.12058 – volume: 153 start-page: 1425 year: 2010 ident: 2022042815130039400_koac041-B188 article-title: Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain publication-title: Plant Physiol doi: 10.1104/pp.110.156240 – volume: 221 start-page: 2080 year: 2019 ident: 2022042815130039400_koac041-B365 article-title: Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences publication-title: New Phytol doi: 10.1111/nph.15497 – volume: 8 start-page: e44471 year: 2019 ident: 2022042815130039400_koac041-B297 article-title: Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism publication-title: eLife doi: 10.7554/eLife.44471 – volume: 107 start-page: 9909 year: 2010 ident: 2022042815130039400_koac041-B33 article-title: Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914408107 – volume: 485 start-page: 114 year: 2012 ident: 2022042815130039400_koac041-B91 article-title: A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases publication-title: Nature doi: 10.1038/nature10962 – volume: 145 start-page: 1577 year: 2007 ident: 2022042815130039400_koac041-B417 article-title: Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses publication-title: Plant Physiol doi: 10.1104/pp.107.108720 – volume: 553 start-page: 342 year: 2018 ident: 2022042815130039400_koac041-B315 article-title: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases publication-title: Nature doi: 10.1038/nature25184 – volume: 26 start-page: 895 year: 2007 ident: 2022042815130039400_koac041-B56 article-title: CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato publication-title: Plant Cell Rep doi: 10.1007/s00299-007-0304-0 – volume: 20 start-page: 73 year: 2020 ident: 2022042815130039400_koac041-B376 article-title: The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita publication-title: BMC Plant Biol doi: 10.1186/s12870-020-2285-x – volume: 30 start-page: 2779 year: 2018 ident: 2022042815130039400_koac041-B428 article-title: Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity publication-title: Plant Cell doi: 10.1105/tpc.18.00297 – volume: 15 start-page: 802 year: 2014 ident: 2022042815130039400_koac041-B261 article-title: The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance publication-title: Mol Plant Pathol doi: 10.1111/mpp.12142 – volume: 13 start-page: e1006284 year: 2017 ident: 2022042815130039400_koac041-B228 article-title: Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006284 – volume: 42 start-page: 637 year: 2019 ident: 2022042815130039400_koac041-B358 article-title: Pi5 and pii paired nlrs are functionally exchangeable and confer similar disease resistance specificity publication-title: Mol Cells – volume: 19 start-page: 1682 year: 2007 ident: 2022042815130039400_koac041-B332 article-title: Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X publication-title: Plant Cell doi: 10.1105/tpc.107.050880 – volume: 19 start-page: 204 year: 2019 ident: 2022042815130039400_koac041-B181 article-title: Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae publication-title: BMC Plant Biol doi: 10.1186/s12870-019-1817-8 – volume: 72 start-page: 894 year: 2012 ident: 2022042815130039400_koac041-B152 article-title: Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05110.x – volume: 16 start-page: 309 year: 2004 ident: 2022042815130039400_koac041-B12 article-title: Convergent evolution of disease resistance gene specificity in two flowering plant families publication-title: Plant Cell doi: 10.1105/tpc.016725 – volume: 24 start-page: 183 year: 2011 ident: 2022042815130039400_koac041-B212 article-title: Callose deposition: a multifaceted plant defense response publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-07-10-0149 – volume: 19 start-page: 204 year: 2016 ident: 2022042815130039400_koac041-B132 article-title: Plant TRAF proteins regulate NLR immune receptor turnover publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.005 – volume: 5 start-page: 11642 year: 2015 ident: 2022042815130039400_koac041-B415 article-title: Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib publication-title: Sci Rep doi: 10.1038/srep11642 – volume: 10 start-page: 13 year: 1997 ident: 2022042815130039400_koac041-B151 article-title: A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato publication-title: Mol. Plant Microbe Interact doi: 10.1094/MPMI.1997.10.1.13 – volume: 343 start-page: 1509 year: 2014 ident: 2022042815130039400_koac041-B222 article-title: A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation publication-title: Science doi: 10.1126/science.1248849 – volume: 20 start-page: 55 year: 2011 ident: 2022042815130039400_koac041-B274 article-title: Functional complementation of rice blast resistance gene Pi-k h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae publication-title: J Plant Biochem Biotechnol doi: 10.1007/s13562-010-0026-1 – volume: 13 start-page: 157 year: 2020 ident: 2022042815130039400_koac041-B159 article-title: Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes publication-title: Mol Plant doi: 10.1016/j.molp.2019.11.001 – volume: 161 start-page: 1089 year: 2015 ident: 2022042815130039400_koac041-B294 article-title: A plant immune receptor detects pathogen effectors that target WRKY transcription factors publication-title: Cell doi: 10.1016/j.cell.2015.04.024 – volume: 6 start-page: e1000970 year: 2010 ident: 2022042815130039400_koac041-B99 article-title: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000970 – volume: 8 year: 2019 ident: 2022042815130039400_koac041-B1 article-title: An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species publication-title: eLife doi: 10.7554/eLife.49956 – volume: 27 start-page: 255 year: 2021 ident: 2022042815130039400_koac041-B251 article-title: Plant immune networks publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2021.08.012 – year: 2020 ident: 2022042815130039400_koac041-B271 article-title: Arabidopsis cell surface LRR immune receptor signaling through the EDS1-PAD4-ADR1 node publication-title: BioRxiv – volume: 364 start-page: eaav5870 year: 2019 ident: 2022042815130039400_koac041-B369 article-title: Reconstitution and structure of a plant NLR resistosome conferring immunity publication-title: Science doi: 10.1126/science.aav5870 – volume: 18 start-page: 1824 year: 2008 ident: 2022042815130039400_koac041-B102 article-title: Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB publication-title: Curr Biol doi: 10.1016/j.cub.2008.10.063 – volume: 365 start-page: 799 year: 2019 ident: 2022042815130039400_koac041-B364 article-title: TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death publication-title: Science doi: 10.1126/science.aax1771 – volume: 22 start-page: 2033 year: 2010 ident: 2022042815130039400_koac041-B373 article-title: A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases publication-title: Plant Cell doi: 10.1105/tpc.110.075697 – volume: 39 start-page: e104915 year: 2020 ident: 2022042815130039400_koac041-B394 article-title: Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors publication-title: EMBO J doi: 10.15252/embj.2020104915 – volume: 7 start-page: 1267 year: 2014 ident: 2022042815130039400_koac041-B133 article-title: Growth-defense tradeoffs in plants: a balancing act to optimize fitness publication-title: Mol Plant doi: 10.1093/mp/ssu049 – volume: 24 start-page: 827 year: 2011 ident: 2022042815130039400_koac041-B19 article-title: Molecular cloning of ATR5(Emoy2) from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-12-10-0278 – volume: 209 start-page: 307 year: 2016 ident: 2022042815130039400_koac041-B299 article-title: Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon publication-title: New Phytol doi: 10.1111/nph.13584 – volume: 16 start-page: 3386 year: 2004 ident: 2022042815130039400_koac041-B199 article-title: Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.026609 – year: 2020 ident: 2022042815130039400_koac041-B67 article-title: The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 homeostasis and is targeted by a bacterial type-III effector publication-title: BioRxiv doi: 10.1101/2020.10.25.354514 – volume: 32 start-page: 4002 year: 2020 ident: 2022042815130039400_koac041-B201 article-title: Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity publication-title: Plant Cell doi: 10.1105/tpc.20.00499 – volume: 24 start-page: 859 year: 2012 ident: 2022042815130039400_koac041-B314 article-title: A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs publication-title: Plant Cell doi: 10.1105/tpc.111.095380 – volume: 11 start-page: 1838 year: 2020 ident: 2022042815130039400_koac041-B177 article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD publication-title: Nat Commun doi: 10.1038/s41467-020-15601-5 – volume: 177 start-page: 82 year: 2018 ident: 2022042815130039400_koac041-B98 article-title: Out of water: the origin and early diversification of plant R-genes publication-title: Plant Physiol doi: 10.1104/pp.18.00185 – volume: 10 start-page: e0119639 year: 2015 ident: 2022042815130039400_koac041-B157 article-title: RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334 publication-title: PLoS One doi: 10.1371/journal.pone.0119639 – volume: 114 start-page: 8113 year: 2017 ident: 2022042815130039400_koac041-B385 article-title: NLR network mediates immunity to diverse plant pathogens publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1702041114 – volume: 4 start-page: 699 year: 2018 ident: 2022042815130039400_koac041-B76 article-title: Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases publication-title: Nat Plants doi: 10.1038/s41477-018-0216-8 – volume: 79 start-page: 124 year: 2019 ident: 2022042815130039400_koac041-B246 article-title: Tomato genotype resistance to whitefly mediated by allelochemicals and Mi gene publication-title: Chilean J Agric Res doi: 10.4067/S0718-58392019000100124 – volume: 1 start-page: 15140 year: 2015 ident: 2022042815130039400_koac041-B5 article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity publication-title: Nat Plants doi: 10.1038/nplants.2015.140 – volume: 9 start-page: e1003123 year: 2013 ident: 2022042815130039400_koac041-B253 article-title: The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003123 – volume: 7 start-page: 579 year: 2021 ident: 2022042815130039400_koac041-B30 article-title: The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity publication-title: Nat Plants doi: 10.1038/s41477-021-00874-5 – volume: 38 start-page: 59 year: 2017 ident: 2022042815130039400_koac041-B17 article-title: NLR diversity, helpers and integrated domains: making sense of the NLR IDentity publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.04.012 – volume: 153 start-page: 1098 year: 2010 ident: 2022042815130039400_koac041-B40 article-title: The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression publication-title: Plant Physiol doi: 10.1104/pp.110.156109 – year: 2020 ident: 2022042815130039400_koac041-B106 article-title: The phagocytosis oxidase/Bem1p (PB1) domain-containing protein PB1CP negatively regulates the NADPH oxidase RBOHD in plant immunity publication-title: BioRxiv – volume: 95 start-page: 874 year: 1997 ident: 2022042815130039400_koac041-B354 article-title: Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers publication-title: Theor Appl Genet doi: 10.1007/s001220050638 – volume: 229 start-page: 3453 year: 2021 ident: 2022042815130039400_koac041-B61 article-title: The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor publication-title: New Phytol doi: 10.1111/nph.17122 – volume: 9 start-page: e104840 year: 2014 ident: 2022042815130039400_koac041-B68 article-title: The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains publication-title: PLoS One doi: 10.1371/journal.pone.0104840 – volume: 8 year: 2017 ident: 2022042815130039400_koac041-B79 article-title: New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms publication-title: Front Plant Sci – volume: 19 start-page: 1420 year: 2006 ident: 2022042815130039400_koac041-B349 article-title: Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-19-1420 – volume: 448 start-page: 497 year: 2007 ident: 2022042815130039400_koac041-B59 article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature doi: 10.1038/nature05999 – year: 2010 ident: 2022042815130039400_koac041-B262 – volume: 113 start-page: E6486 year: 2016 ident: 2022042815130039400_koac041-B209 article-title: Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1612947113 – volume: 12 start-page: 705 year: 2021 ident: 2022042815130039400_koac041-B283 article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2 publication-title: Nat Commun doi: 10.1038/s41467-021-20932-y – volume: 50 start-page: 14 year: 2007 ident: 2022042815130039400_koac041-B95 article-title: An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03027.x – volume: 296 start-page: 744 year: 2002 ident: 2022042815130039400_koac041-B164 article-title: A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis publication-title: Science doi: 10.1126/science.1069288 – volume: 360 start-page: 1300 year: 2018 ident: 2022042815130039400_koac041-B386 article-title: Receptor networks underpin plant immunity publication-title: Science doi: 10.1126/science.aat2623 – volume: 29 start-page: 49 year: 2016 ident: 2022042815130039400_koac041-B155 article-title: Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2015.10.006 – volume: 10 start-page: e1004491 year: 2014 ident: 2022042815130039400_koac041-B31 article-title: A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004491 – volume: 78 start-page: 1089 year: 1994 ident: 2022042815130039400_koac041-B232 article-title: The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats publication-title: Cell doi: 10.1016/0092-8674(94)90282-8 – volume: 367 start-page: 763 year: 2020 ident: 2022042815130039400_koac041-B168 article-title: The pan-genome effector-triggered immunity landscape of a host-pathogen interaction publication-title: Science doi: 10.1126/science.aax4079 – volume: 18 start-page: 74 year: 2008 ident: 2022042815130039400_koac041-B395 article-title: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases publication-title: Curr Biol doi: 10.1016/j.cub.2007.12.020 – volume: 71 start-page: 2186 year: 2020 ident: 2022042815130039400_koac041-B248 article-title: Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity publication-title: J Exp Bot doi: 10.1093/jxb/erz571 – volume: 169 start-page: 299 year: 2015 ident: 2022042815130039400_koac041-B114 article-title: Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae publication-title: Plant Physiol doi: 10.1104/pp.15.00659 – volume: 33 start-page: 1354 year: 2020 ident: 2022042815130039400_koac041-B119 article-title: What are the top 10 unanswered questions in molecular plant-microbe interactions? publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-08-20-0229-CR – volume: 276 start-page: 2054 year: 1997 ident: 2022042815130039400_koac041-B192 article-title: Receptor-mediated activation of a MAP kinase in pathogen defense of plants publication-title: Science doi: 10.1126/science.276.5321.2054 – volume: 21 start-page: 518 year: 2017 ident: 2022042815130039400_koac041-B205 article-title: Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.03.005 – volume: 84 start-page: 6074 year: 1987 ident: 2022042815130039400_koac041-B292 article-title: Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.17.6074 – volume: 36 start-page: 395 year: 2009 ident: 2022042815130039400_koac041-B73 article-title: Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust publication-title: Funct Plant Biol doi: 10.1071/FP08320 – volume: 598 start-page: 495 year: 2021 ident: 2022042815130039400_koac041-B272 article-title: The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity publication-title: Nature doi: 10.1038/s41586-021-03829-0 – volume: 70 start-page: 916 year: 2012 ident: 2022042815130039400_koac041-B399 article-title: The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes publication-title: Plant J doi: 10.1111/j.1365-313X.2012.04906.x – volume: 105 start-page: 1091 year: 2008 ident: 2022042815130039400_koac041-B280 article-title: Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0711215105 – volume: 18 start-page: 1067 year: 2006 ident: 2022042815130039400_koac041-B104 article-title: The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato publication-title: Plant Cell doi: 10.1105/tpc.106.040998 – year: 2020 ident: 2022042815130039400_koac041-B162 article-title: RefPlantNLR: a comprehensive collection of experimentally validated plant NLRs publication-title: BioRxiv – volume: 26 start-page: 1271 year: 2013 ident: 2022042815130039400_koac041-B161 article-title: The immunity regulator BAK1 contributes to resistance against diverse RNA viruses publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-06-13-0179-R – volume: 301 start-page: 1230 year: 2003 ident: 2022042815130039400_koac041-B310 article-title: Cleavage of Arabidopsis PBS1 by a bacterial type III effector publication-title: Science doi: 10.1126/science.1085671 – volume: 126 start-page: 97 year: 2001 ident: 2022042815130039400_koac041-B7 article-title: An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein publication-title: Plant Physiol doi: 10.1104/pp.126.1.97 – volume: 100 start-page: 11777 year: 2003 ident: 2022042815130039400_koac041-B331 article-title: HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2033934100 – volume: 23 start-page: 454 year: 1998 ident: 2022042815130039400_koac041-B351 article-title: Plant disease-resistance proteins and the gene-for-gene concept publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(98)01311-5 – volume: 107 start-page: 9452 year: 2010 ident: 2022042815130039400_koac041-B42 article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000675107 – volume: 295 start-page: 2073 year: 2002 ident: 2022042815130039400_koac041-B16 article-title: The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance publication-title: Science doi: 10.1126/science.1067554 – volume: 69 start-page: 267 year: 2018 ident: 2022042815130039400_koac041-B189 article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042817-040540 – volume: 7 start-page: e1002159 year: 2011 ident: 2022042815130039400_koac041-B400 article-title: Transportin-SR is required for proper splicing of resistance genes and plant immunity publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002159 – volume: 22 start-page: 508 year: 2010 ident: 2022042815130039400_koac041-B402 article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.068874 – volume: 8 start-page: 521 year: 2015 ident: 2022042815130039400_koac041-B29 article-title: Signaling mechanisms in pattern-triggered immunity (PTI) publication-title: Mol Plant doi: 10.1016/j.molp.2014.12.022 – volume: 344 start-page: 299 year: 2014 ident: 2022042815130039400_koac041-B381 article-title: Structural basis for assembly and function of a heterodimeric plant immune receptor publication-title: Science doi: 10.1126/science.1247357 – volume: 14 start-page: 405 year: 2013 ident: 2022042815130039400_koac041-B65 article-title: Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus publication-title: Mol. Plant Pathol doi: 10.1111/mpp.12016 – volume: 24 start-page: 1132 year: 2011 ident: 2022042815130039400_koac041-B179 article-title: Cloning and characterization of r3b; members of the r3 superfamily of late blight resistance genes show sequence and functional divergence publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-11-10-0276 – volume: 11 start-page: 1187 year: 1997 ident: 2022042815130039400_koac041-B339 article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction publication-title: Plant J doi: 10.1046/j.1365-313X.1997.11061187.x – volume: 160 start-page: 396 year: 2012 ident: 2022042815130039400_koac041-B362 article-title: LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.112.201699 – volume: 108 start-page: 19824 year: 2011 ident: 2022042815130039400_koac041-B382 article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1112862108 – volume: 109 start-page: 5110 year: 2012 ident: 2022042815130039400_koac041-B64 article-title: Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1119623109 – volume: 18 start-page: e3000783 year: 2020 ident: 2022042815130039400_koac041-B291 article-title: Two unequally redundant “helper” immune receptor families mediate Arabidopsis thaliana intracellular “sensor” immune receptor functions publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000783 – volume: 17 start-page: 667 year: 2016 ident: 2022042815130039400_koac041-B8 article-title: Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini publication-title: BMC Genomics doi: 10.1186/s12864-016-3011-9 – volume: 56 start-page: 99 year: 2020 ident: 2022042815130039400_koac041-B89 article-title: Plant NLRs get by with a little help from their friends publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2020.04.006 – volume: 3 start-page: e2875 year: 2008 ident: 2022042815130039400_koac041-B356 article-title: Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes publication-title: PLoS One doi: 10.1371/journal.pone.0002875 – volume: 105 start-page: 994 year: 2021 ident: 2022042815130039400_koac041-B210 article-title: Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1 publication-title: Plant J doi: 10.1111/tpj.15082 – volume: 1 year: 2021 ident: 2022042815130039400_koac041-B128 article-title: Phytocytokines function as immunological modulators of plant immunity publication-title: Stress Biol doi: 10.1007/s44154-021-00009-y – volume: 99 start-page: 10865 year: 2002 ident: 2022042815130039400_koac041-B258 article-title: Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.152330599 – volume: 7 start-page: e1002046 year: 2011 ident: 2022042815130039400_koac041-B306 article-title: Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002046 – volume: 18 start-page: 2402 year: 2006 ident: 2022042815130039400_koac041-B284 article-title: Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance publication-title: Plant Cell doi: 10.1105/tpc.106.043307 – volume: 342 start-page: 624 year: 2013 ident: 2022042815130039400_koac041-B327 article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex publication-title: Science doi: 10.1126/science.1243825 – volume: 23 start-page: 49 year: 2010 ident: 2022042815130039400_koac041-B48 article-title: The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-23-1-0049 – volume: 60 start-page: 218 year: 2009 ident: 2022042815130039400_koac041-B242 article-title: RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03949.x – volume: 367 start-page: 384 year: 1994 ident: 2022042815130039400_koac041-B145 article-title: Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene publication-title: Nature doi: 10.1038/367384a0 – volume: 87 start-page: 472 year: 2016 ident: 2022042815130039400_koac041-B346 article-title: A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola publication-title: Plant J doi: 10.1111/tpj.13212 – volume: 24 start-page: 587 year: 2019 ident: 2022042815130039400_koac041-B352 article-title: Plant immunity: thinking outside and inside the box publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2019.04.009 – year: 2018 ident: 2022042815130039400_koac041-B124 article-title: Mechanistic analysis of the SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signaling publication-title: BioRxiv – volume: 6 start-page: e1001111 year: 2010 ident: 2022042815130039400_koac041-B187 article-title: SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001111 – volume: 31 start-page: 75 year: 2017 ident: 2022042815130039400_koac041-B389 article-title: The bacterial effector AvrPto targets the regulatory co-receptor SOBIR1 and suppresses defence signalling mediated by the receptor-like protein Cf-4 publication-title: . Mol Plant Microbe Interact doi: 10.1094/MPMI-08-17-0203-FI – volume: 9 start-page: e1003127 year: 2013 ident: 2022042815130039400_koac041-B97 article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003127 – volume: 523 start-page: 308 year: 2015 ident: 2022042815130039400_koac041-B154 article-title: Receptor-mediated exopolysaccharide perception controls bacterial infection publication-title: Nature doi: 10.1038/nature14611 – volume: 7 year: 2016 ident: 2022042815130039400_koac041-B57 article-title: Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae publication-title: Front Physiol doi: 10.3389/fphys.2016.00402 – volume: 561 start-page: 248 year: 2018 ident: 2022042815130039400_koac041-B264 article-title: Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling publication-title: Nature doi: 10.1038/s41586-018-0471-x – volume: 10 start-page: 1307 year: 1998 ident: 2022042815130039400_koac041-B231 article-title: The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes publication-title: Plant Cell doi: 10.1105/tpc.10.8.1307 – volume: 125 start-page: 749 year: 2006 ident: 2022042815130039400_koac041-B426 article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation publication-title: Cell doi: 10.1016/j.cell.2006.03.037 – volume: 8 start-page: 2033 year: 1996 ident: 2022042815130039400_koac041-B257 article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes publication-title: Plant Cell – volume: 32 start-page: 1081 year: 2020 ident: 2022042815130039400_koac041-B146 article-title: Pathogen-associated molecular pattern-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during the early defense response publication-title: Plant Cell doi: 10.1105/tpc.19.00631 – volume: 211 start-page: 1008 year: 2016 ident: 2022042815130039400_koac041-B252 article-title: Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants publication-title: New Phytol doi: 10.1111/nph.13944 – volume: 109 start-page: 303 year: 2012 ident: 2022042815130039400_koac041-B6 article-title: Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1109921108 – volume: 11 start-page: 5299 year: 2020 ident: 2022042815130039400_koac041-B121 article-title: The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen publication-title: Nat Commun doi: 10.1038/s41467-020-19147-4 – volume: 114 start-page: E8118 year: 2017 ident: 2022042815130039400_koac041-B38 article-title: Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1706795114 – volume: 31 start-page: 2430 year: 2019 ident: 2022042815130039400_koac041-B173 article-title: A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors publication-title: Plant Cell doi: 10.1105/tpc.19.00118 – volume: 99 start-page: 517 year: 2002 ident: 2022042815130039400_koac041-B344 article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.012452499 – volume: 53 start-page: 1373 year: 2004 ident: 2022042815130039400_koac041-B281 article-title: A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04177.x – volume: 96 start-page: 3292 year: 1999 ident: 2022042815130039400_koac041-B86 article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.6.3292 – volume: 30 start-page: 361 year: 2002 ident: 2022042815130039400_koac041-B20 article-title: The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes publication-title: Plant J doi: 10.1046/j.1365-313X.2001.01292.x – volume: 92 start-page: 787 year: 2017 ident: 2022042815130039400_koac041-B303 article-title: Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1 publication-title: Plant J doi: 10.1111/tpj.13715 – volume: 23 start-page: 485 year: 2018 ident: 2022042815130039400_koac041-B171 article-title: The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.03.010 – year: 2010 ident: 2022042815130039400_koac041-B52 – volume: 578 start-page: 577 year: 2020 ident: 2022042815130039400_koac041-B387 article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis publication-title: Nature doi: 10.1038/s41586-020-2032-3 – volume: 22 start-page: 589 year: 2009 ident: 2022042815130039400_koac041-B94 article-title: Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-22-5-0589 – year: 2013 ident: 2022042815130039400_koac041-B139 – volume: 8 year: 2019 ident: 2022042815130039400_koac041-B200 article-title: Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure publication-title: eLife doi: 10.7554/eLife.44474 – volume: 104 start-page: 19613 year: 2007 ident: 2022042815130039400_koac041-B234 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0705147104 – volume: 13 start-page: 915 year: 2012 ident: 2022042815130039400_koac041-B235 article-title: Amino acids in Tobamovirus coat protein controlling pepper L(1a)' ' gene-mediated resistance publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2012.00801.x – volume: 30 start-page: 485 year: 2012 ident: 2022042815130039400_koac041-B13 article-title: Characterization of the rice blast resistance gene Pik cloned from Kanto51 publication-title: Mol Breeding doi: 10.1007/s11032-011-9638-y – volume: 464 start-page: 418 year: 2010 ident: 2022042815130039400_koac041-B34 article-title: Differential innate immune signalling via Ca(2+) sensor protein kinases publication-title: Nature doi: 10.1038/nature08794 – volume: 60 start-page: 139 year: 2009 ident: 2022042815130039400_koac041-B312 article-title: The HSP90-SGT1 chaperone complex for NLR immune sensors publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092906 – volume: 60 start-page: 778 year: 2019 ident: 2022042815130039400_koac041-B330 article-title: Disruption of the MAMP-induced MEKK1-MKK1/MKK2-MPK4 pathway activates the TNL immune receptor SMN1/RPS6 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcy243 – volume: 207 start-page: 106 year: 2015 ident: 2022042815130039400_koac041-B49 article-title: The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease publication-title: New Phytol doi: 10.1111/nph.13348 – year: 2021 ident: 2022042815130039400_koac041-B153 article-title: Pathogen-derived 9-methyl sphingoid base is perceived by a lectin receptor kinase in Arabidopsis publication-title: BioRxiv – volume: 370 start-page: eabe3069 year: 2020 ident: 2022042815130039400_koac041-B216 article-title: Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme publication-title: Science doi: 10.1126/science.abe3069 – volume: 585 start-page: 569 year: 2020 ident: 2022042815130039400_koac041-B338 article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity publication-title: Nature doi: 10.1038/s41586-020-2702-1 – volume: 16 start-page: 2809 year: 2004 ident: 2022042815130039400_koac041-B384 article-title: A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase publication-title: Plant Cell doi: 10.1105/tpc.104.024141 – volume: 103 start-page: 10104 year: 2006 ident: 2022042815130039400_koac041-B403 article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603729103 – volume: 106 start-page: 22163 year: 2009 ident: 2022042815130039400_koac041-B77 article-title: Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0912139106 – volume: 11 start-page: e1004809 year: 2015 ident: 2022042815130039400_koac041-B305 article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004809 – volume: 68 start-page: 109 year: 2017 ident: 2022042815130039400_koac041-B123 article-title: The structural basis of ligand perception and signal activation by receptor kinases publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042916-040957 – volume: 10 start-page: 1915 year: 1998 ident: 2022042815130039400_koac041-B71 article-title: The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number publication-title: Plant Cell doi: 10.1105/tpc.10.11.1915 – volume: 4 start-page: 440 year: 2018 ident: 2022042815130039400_koac041-B268 article-title: Oak genome reveals facets of long lifespan publication-title: Nat Plants doi: 10.1038/s41477-018-0172-3 – volume: 20 start-page: 471 year: 2008 ident: 2022042815130039400_koac041-B363 article-title: A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.056754 – volume: 21 start-page: 502 year: 2020 ident: 2022042815130039400_koac041-B184 article-title: A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12912 – volume: 107 start-page: 182 year: 2021 ident: 2022042815130039400_koac041-B551 article-title: Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain publication-title: Plant J doi: 10.1111/tpj.15284 – volume: 444 start-page: 323 year: 2006 ident: 2022042815130039400_koac041-B143 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 177 start-page: 1679 year: 2018 ident: 2022042815130039400_koac041-B275 article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling publication-title: Plant Physiol – volume: 11 start-page: 463 year: 2020 ident: 2022042815130039400_koac041-B336 article-title: The immune receptor Roq1 confers resistance to the bacterial pathogens xanthomonas, Pseudomonas syringae, and ralstonia in tomato publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00463 – volume: 18 start-page: 465 year: 2006 ident: 2022042815130039400_koac041-B58 article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception publication-title: Plant Cell doi: 10.1105/tpc.105.036574 – volume: 17 start-page: 295 year: 2005 ident: 2022042815130039400_koac041-B290 article-title: Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato publication-title: Plant Cell doi: 10.1105/tpc.104.026013 – volume: 77 start-page: 235 year: 2014 ident: 2022042815130039400_koac041-B424 article-title: The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1 publication-title: Plant J doi: 10.1111/tpj.12381 – volume: 95 start-page: 7433 year: 1998 ident: 2022042815130039400_koac041-B431 article-title: Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.13.7433 – volume: 358 start-page: 1604 year: 2017 ident: 2022042815130039400_koac041-B293 article-title: Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99 publication-title: Science doi: 10.1126/science.aao7294 – volume: 11 start-page: 498 year: 1998 ident: 2022042815130039400_koac041-B377 article-title: Tm-2(2) resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.1998.11.6.498 – volume: 156 start-page: 779 year: 2011 ident: 2022042815130039400_koac041-B60 article-title: The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region publication-title: Plant Physiol doi: 10.1104/pp.111.176230 – year: 2021 ident: 2022042815130039400_koac041-B3 article-title: An atypical NLR protein modulates the NRC immune receptor network publication-title: BioRxiv doi: 10.1101/2021.11.15.468391 – volume: 258 start-page: 985 year: 1992 ident: 2022042815130039400_koac041-B140 article-title: Reductase activity encoded by the HM1 disease resistance gene in maize publication-title: Science doi: 10.1126/science.1359642 – volume: 114 start-page: 961 year: 2007 ident: 2022042815130039400_koac041-B241 article-title: Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0481-1 – year: 2020 ident: 2022042815130039400_koac041-B340 article-title: Activation of TIR signaling is required for pattern-triggered immunity publication-title: BioRxiv doi: 10.1101/2020.12.27.424494 – volume: 13 start-page: 144 year: 2020 ident: 2022042815130039400_koac041-B324 article-title: Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g publication-title: Mol Plant doi: 10.1016/j.molp.2019.10.016 – volume: 587 start-page: 92 year: 2020 ident: 2022042815130039400_koac041-B172 article-title: Quinone perception in plants via leucine-rich-repeat receptor-like kinases publication-title: Nature doi: 10.1038/s41586-020-2655-4 – year: 2021 ident: 2022042815130039400_koac041-B279 article-title: The Arabidopsis WRR4A and WRR4B paralogous NLR proteins both confer recognition of multiple Albugo candida effectors publication-title: BioRxiv doi: 10.1101/2021.03.29.436918 – volume: 20 start-page: 5400 year: 2001 ident: 2022042815130039400_koac041-B92 article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 publication-title: EMBO J doi: 10.1093/emboj/20.19.5400 – volume: 18 start-page: 158 year: 2005 ident: 2022042815130039400_koac041-B316 article-title: Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-18-0158 – volume: 2 start-page: 197 year: 2009 ident: 2022042815130039400_koac041-B333 article-title: TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders publication-title: BMC Res Notes doi: 10.1186/1756-0500-2-197 – volume: 116 start-page: 496 year: 2019 ident: 2022042815130039400_koac041-B134 article-title: Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1807297116 – volume: 23 start-page: 4 year: 2011 ident: 2022042815130039400_koac041-B337 article-title: Of PAMPs and effectors: the blurred PTI-ETI dichotomy publication-title: Plant Cell doi: 10.1105/tpc.110.082602 – volume: 59 start-page: 234 year: 2017 ident: 2022042815130039400_koac041-B198 article-title: BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis publication-title: J Integr Plant Biol doi: 10.1111/jipb.12529 – volume: 364 start-page: eaav5868 year: 2019 ident: 2022042815130039400_koac041-B370 article-title: Ligand-triggered allosteric ADP release primes a plant NLR complex publication-title: Science doi: 10.1126/science.aav5868 – volume: 49 start-page: 507 year: 2011 ident: 2022042815130039400_koac041-B357 article-title: Understanding and exploiting late blight resistance in the age of effectors publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-072910-095326 – volume: 19 start-page: 1267 year: 2018 ident: 2022042815130039400_koac041-B170 article-title: Transcript-level expression control of plant NLR genes publication-title: Mol Plant Pathol doi: 10.1111/mpp.12607 – volume: 16 start-page: 605 year: 2014 ident: 2022042815130039400_koac041-B236 article-title: The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.10.007 – volume: 10 start-page: 2292 year: 2019 ident: 2022042815130039400_koac041-B35 article-title: The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat publication-title: Nat Commun doi: 10.1038/s41467-019-10274-1 – volume: 185 start-page: 240 year: 2021 ident: 2022042815130039400_koac041-B112 article-title: Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1 publication-title: Plant Physiol – volume: 11 start-page: 273 year: 1999 ident: 2022042815130039400_koac041-B286 article-title: Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses publication-title: Plant Cell – volume: 16 start-page: e1008933 year: 2020 ident: 2022042815130039400_koac041-B408 article-title: A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008933 – volume: 56 start-page: 1616 year: 2015 ident: 2022042815130039400_koac041-B141 article-title: The chromatin remodeler SPLAYED negatively regulates SNC1-mediated immunity publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcv087 – volume: 32 start-page: 2158 year: 2020 ident: 2022042815130039400_koac041-B18 article-title: Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response publication-title: Plant Cell doi: 10.1105/tpc.19.00903 – volume: 9 start-page: e110158 year: 2014 ident: 2022042815130039400_koac041-B53 article-title: Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a publication-title: PLoS One doi: 10.1371/journal.pone.0110158 – volume: 3 start-page: 88 year: 2012 ident: 2022042815130039400_koac041-B160 article-title: The cell wall-associated kinases, WAKs, as pectin receptors publication-title: Front Plant Sci doi: 10.3389/fpls.2012.00088 – volume: 89 start-page: 105 year: 2018 ident: 2022042815130039400_koac041-B4 article-title: Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato publication-title: Stud Mycol doi: 10.1016/j.simyco.2018.01.002 – volume: 95 start-page: 1663 year: 1998 ident: 2022042815130039400_koac041-B406 article-title: Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.4.1663 – volume: 132 start-page: 530 year: 2003 ident: 2022042815130039400_koac041-B313 article-title: Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.103.021964 |
SSID | ssj0001719 |
Score | 2.7392547 |
SecondaryResourceType | review_article |
Snippet | Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1447 |
SubjectTerms | Crops, Agricultural - metabolism Focus on Plant Biotic Interactions Immunity, Innate - genetics Plant Diseases - genetics Plant Immunity - genetics Receptors, Pattern Recognition - genetics Receptors, Pattern Recognition - metabolism Signal Transduction - genetics |
Title | Thirty years of resistance: Zig-zag through the plant immune system |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35167697 https://www.proquest.com/docview/2629386157 https://pubmed.ncbi.nlm.nih.gov/PMC9048904 https://academic.oup.com/plcell/article-pdf/34/5/1447/43463248/koac041.pdf |
UnpaywallVersion | publishedVersion |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: KQ8 dateStart: 19890101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: DIK dateStart: 19890101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLVK58CgUlkdlJCS4eJONnTjhVlZUFUgVSF1p4RI5frSrjZKozQptfz3jxolYKgQHDlEOnjjxeGx_E4-_AXiTWjnVshA0LBSn3GG4QtiQxlYrwURmC3sTIHuanMz5p0W88PFP7iyM9FHhk_5IQ1O6P9iB1yNttA0YD-IAHQERcMYd3XgarGqpQo6zjrY7sJu4zaYR7M5Pvxx96-gIQuqSfnfkqRGNsnQxMDiy_h2-ku0V6hbsvB09ubeuGrn5Icvyl6Xp-AGs-kZ1ESmrybotJur6N77H_9Pqh3DfI1hy1D30CO6Yah_ufqgRZW72YW_WZ5B7DLOzi-VluyEbHE1XpLYEXXsHV9HO3pPvy3N6Lc-JTxSEd0OaEvuZLN2RFUM6juknMD_-eDY7oT5pA1WIxVoq0MHiscZpQKZZonnINYsYL9Kp1UKHTBaxI8xBt1Fpy6RKjEkzowqTCW1CtI8DGFV1ZZ4BUVqpxKVnD5XhQprMMhEnzKZCO9g4HQPtOypXntHcJdYo825nneWdGnOvpzG8HeSbjsvjj5Kv-37PUWeuSFamXl_lUYL4KEUYKMbwtLODoS4WT13AMJaILQsZBByV93ZJtby4ofTOcCLFawzvBlv6yyc-_3fRF3Avcoc2Qk6j5CWM2su1eYVQqi0OYefz1_TQj5Sfn80hpw |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BFqlcKBQKSwsyEhJcvMnGTpxwKyuqikPFoSstXCLHH-1qoyRqs0LbX8-4cSKWCpUDhygHT5x4PLbfxOM3AO9TK6daFoKGheKUOwxXCBvS2GolmMhsYW8DZM-S0zn_uogXPv7JnYWRPip80h9paEr3BzvweqSNtgHjQRygIyACzrijG0-DVS1VyHHW0fYh7CRus2kEO_Ozb8ffOzqCkLqk3x15akSjLF0MDI6sf4evZHuFugM770ZP7q6rRm5-yrL8bWk62YNV36guImU1WbfFRN38wff4f1r9FJ54BEuOu4eewQNT7cOjzzWizM0-7M76DHLPYXZ-ubxqN2SDo-ma1Jaga-_gKtrZJ_JjeUFv5AXxiYLwbkhTYj-TpTuyYkjHMf0C5idfzmen1CdtoAqxWEsFOlg81jgNyDRLNA-5ZhHjRTq1WuiQySJ2hDnoNiptmVSJMWlmVGEyoU2I9nEAo6quzCsgSiuVuPTsoTJcSJNZJuKE2VRoBxunY6B9R-XKM5q7xBpl3u2ss7xTY-71NIYPg3zTcXn8VfJd3-856swVycrU6-s8ShAfpQgDxRhednYw1MXiqQsYxhKxZSGDgKPy3i6plpe3lN4ZTqR4jeHjYEv3fOLrfxc9hMeRO7QRcholRzBqr9bmDUKptnjrx8gv248gsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thirty+years+of+resistance%3A+Zig-zag+through+the+plant+immune+system&rft.jtitle=The+Plant+cell&rft.au=Ngou%2C+Bruno+Pok+Man&rft.au=Ding%2C+Pingtao&rft.au=Jones%2C+Jonathan+D+G&rft.date=2022-04-26&rft.pub=Oxford+University+Press&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=34&rft.issue=5&rft.spage=1447&rft.epage=1478&rft_id=info:doi/10.1093%2Fplcell%2Fkoac041&rft_id=info%3Apmid%2F35167697&rft.externalDocID=PMC9048904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |