Thirty years of resistance: Zig-zag through the plant immune system

Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition recepto...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 34; no. 5; pp. 1447 - 1478
Main Authors Ngou, Bruno Pok Man, Ding, Pingtao, Jones, Jonathan D G
Format Journal Article
LanguageEnglish
Published England Oxford University Press 26.04.2022
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1093/plcell/koac041

Cover

Abstract Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
AbstractList Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research. A review of major research advances in plant immunity during the last three decades and individual characterized immune receptors, their immune signaling pathways, and interactions between immune systems
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Author Jones, Jonathan D G
Ding, Pingtao
Ngou, Bruno Pok Man
Author_xml – sequence: 1
  givenname: Bruno Pok Man
  orcidid: 0000-0002-0760-1058
  surname: Ngou
  fullname: Ngou, Bruno Pok Man
  organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
– sequence: 2
  givenname: Pingtao
  orcidid: 0000-0002-3535-6053
  surname: Ding
  fullname: Ding, Pingtao
  organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
– sequence: 3
  givenname: Jonathan D G
  orcidid: 0000-0002-4953-261X
  surname: Jones
  fullname: Jones, Jonathan D G
  organization: The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35167697$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFLHDEUxkNRqmu99ihz9DJuMskkEw8FWWotCF4slF5CNvNmN3UmmSYZy_jXd5ZdrQriIbzAe7_v-_hmaM95Bwh9JviMYEnnfWugbed3XhvMyAd0SEpa5IWsfu5Nf8xwznhJDtAsxt8YYyKI_IgOaEm44FIcosXt2oY0ZiPoEDPfZAGijUk7A-fZL7vKH_QqS-vgh9V6mpD1rXYps103OMjiGBN0n9B-o9sIx7t5hH5cfr1dXOXXN9--Ly6uc8NKnnJBCGNlXQmsK8lrhllNC8qWFWlqUWOql6VgpCIlN3VDteEAlQSzBClqwEbQIzTf6g6u1-Nf3baqD7bTYVQEq00daluH2tUxEV-2RD8sO6gNuBT0f8prq15unF2rlb9XErNqepPA6U4g-D8DxKQ6GzcW2oEfoip4IWnFSblJd_Lc68nksevp4Gx7YIKPMUDzfnr2CjA26WT9Jqtt38L-AcQsqBs
CitedBy_id crossref_primary_10_1093_plcell_koad266
crossref_primary_10_1094_PHYTOFR_11_23_0149_SC
crossref_primary_10_3389_fpls_2024_1374194
crossref_primary_10_1111_nph_18672
crossref_primary_10_1360_TB_2023_0788
crossref_primary_10_3390_ijms231912003
crossref_primary_10_1111_tpj_16647
crossref_primary_10_3389_fmicb_2022_984832
crossref_primary_10_1093_plcell_koad262
crossref_primary_10_1016_j_tplants_2024_03_004
crossref_primary_10_1038_s41576_024_00793_z
crossref_primary_10_1016_j_stress_2024_100676
crossref_primary_10_1128_jvi_00507_24
crossref_primary_10_1080_07060661_2024_2340483
crossref_primary_10_1038_s41477_024_01779_9
crossref_primary_10_1126_science_abq8180
crossref_primary_10_1016_j_pbi_2023_102430
crossref_primary_10_1016_j_pbi_2022_102276
crossref_primary_10_1007_s12298_024_01452_7
crossref_primary_10_1111_nph_19755
crossref_primary_10_3390_plants14050758
crossref_primary_10_1093_plphys_kiad263
crossref_primary_10_1038_s41477_025_01918_w
crossref_primary_10_1093_plcell_koac060
crossref_primary_10_1094_PHYTO_08_22_0292_KD
crossref_primary_10_1093_plcell_koac063
crossref_primary_10_1016_j_tplants_2024_03_012
crossref_primary_10_3390_plants13182546
crossref_primary_10_3390_ijms23126758
crossref_primary_10_1016_j_stress_2024_100567
crossref_primary_10_1111_pce_14560
crossref_primary_10_1016_j_celrep_2024_114179
crossref_primary_10_1042_EBC20220067
crossref_primary_10_1111_pbi_14536
crossref_primary_10_1111_jeb_14170
crossref_primary_10_1038_s41598_022_21973_z
crossref_primary_10_1094_MPMI_09_22_0192_R
crossref_primary_10_3390_agronomy15010153
crossref_primary_10_1016_j_xplc_2025_101261
crossref_primary_10_1186_s42483_024_00265_6
crossref_primary_10_1186_s40529_024_00441_z
crossref_primary_10_3389_fpls_2023_1176048
crossref_primary_10_3389_fmicb_2022_999183
crossref_primary_10_1111_tpj_16639
crossref_primary_10_14348_molcells_2023_0127
crossref_primary_10_1094_MPMI_02_23_0018_R
crossref_primary_10_1094_MPMI_10_23_0153_R
crossref_primary_10_1016_j_micres_2025_128088
crossref_primary_10_1094_MPMI_09_23_0142_FI
crossref_primary_10_1111_nph_20318
crossref_primary_10_3390_genes15091200
crossref_primary_10_1094_PHYTO_11_23_0436_R
crossref_primary_10_1016_j_cj_2024_12_013
crossref_primary_10_1042_EBC20210087
crossref_primary_10_1016_j_pbi_2022_102334
crossref_primary_10_1111_tpj_70098
crossref_primary_10_1093_plcell_koae049
crossref_primary_10_1111_nph_19312
crossref_primary_10_1111_nph_19433
crossref_primary_10_1042_EBC20210090
crossref_primary_10_1093_jxb_erac403
crossref_primary_10_1016_j_pmpp_2025_102585
crossref_primary_10_1038_s41477_024_01811_y
crossref_primary_10_1038_s43016_024_01044_4
crossref_primary_10_1111_pce_14757
crossref_primary_10_7717_peerj_17323
crossref_primary_10_3390_ijms24043803
crossref_primary_10_3389_fmicb_2023_1162613
crossref_primary_10_1080_07388551_2024_2370341
crossref_primary_10_1016_j_eng_2023_05_016
crossref_primary_10_1042_EBC20210097
crossref_primary_10_1016_j_jclepro_2025_144827
crossref_primary_10_1007_s44372_024_00035_w
crossref_primary_10_1038_s41477_023_01486_x
crossref_primary_10_1038_s41467_023_41807_4
crossref_primary_10_1111_nph_18457
crossref_primary_10_3389_fpls_2023_1111322
crossref_primary_10_3390_agriculture14081289
crossref_primary_10_1016_j_ijbiomac_2024_135138
crossref_primary_10_3390_ijms24032800
crossref_primary_10_3390_plants13233275
crossref_primary_10_3390_ijms26052087
crossref_primary_10_1093_hr_uhae077
crossref_primary_10_1007_s00122_024_04641_w
crossref_primary_10_1093_hr_uhae078
crossref_primary_10_1042_EBC20210063
crossref_primary_10_3390_agronomy14030489
crossref_primary_10_1093_plphys_kiae255
crossref_primary_10_1038_s42003_024_06763_9
crossref_primary_10_1186_s42483_022_00153_x
crossref_primary_10_15252_embj_2022111519
crossref_primary_10_1146_annurev_biophys_092922_073050
crossref_primary_10_1093_plphys_kiae490
crossref_primary_10_1094_MPMI_06_23_0083_R
crossref_primary_10_1093_plcell_koae020
crossref_primary_10_1094_PHYTO_09_23_0338_R
crossref_primary_10_1007_s44297_023_00003_y
crossref_primary_10_1016_j_mocell_2024_100094
crossref_primary_10_1002_moda_70001
crossref_primary_10_1111_mpp_13373
crossref_primary_10_1016_j_coi_2024_102457
crossref_primary_10_1093_pcp_pcad092
crossref_primary_10_1016_j_ncrops_2024_100014
crossref_primary_10_1111_tpj_16919
crossref_primary_10_1111_mpp_70054
crossref_primary_10_1002_pld3_410
crossref_primary_10_1016_j_postharvbio_2023_112738
crossref_primary_10_1016_j_pbi_2023_102396
crossref_primary_10_1016_j_tibs_2023_06_002
crossref_primary_10_1016_j_xplc_2023_100676
crossref_primary_10_1016_j_pbi_2023_102398
crossref_primary_10_1038_s41477_022_01260_5
crossref_primary_10_1016_j_cell_2024_03_045
crossref_primary_10_1111_mpp_13262
crossref_primary_10_1016_j_ncrops_2024_100022
crossref_primary_10_1016_j_scib_2024_12_007
crossref_primary_10_3389_fpls_2022_1001427
crossref_primary_10_3390_ijms252313106
crossref_primary_10_1016_j_pbi_2023_102369
crossref_primary_10_1093_plcell_koae179
crossref_primary_10_1007_s42994_023_00099_4
crossref_primary_10_3390_v15102000
crossref_primary_10_1002_advs_202307051
crossref_primary_10_1111_mpp_13239
crossref_primary_10_3390_ijms24043189
crossref_primary_10_3390_microorganisms10051048
crossref_primary_10_3389_fpls_2022_917493
crossref_primary_10_1111_mpp_70077
crossref_primary_10_1007_s10658_023_02774_0
crossref_primary_10_1007_s11427_024_2708_0
crossref_primary_10_1038_s41586_024_08383_z
crossref_primary_10_1016_j_pbi_2023_102372
crossref_primary_10_1111_mpp_13363
crossref_primary_10_1360_SSC_2023_0251
crossref_primary_10_3389_fpls_2023_1143689
crossref_primary_10_1093_pcp_pcae091
crossref_primary_10_1111_mpp_70063
crossref_primary_10_1016_j_pbi_2023_102384
crossref_primary_10_1016_j_xplc_2023_100640
crossref_primary_10_1016_j_colsurfb_2024_113933
crossref_primary_10_1016_j_xplc_2023_100645
crossref_primary_10_1093_aob_mcae020
crossref_primary_10_1038_s41477_024_01901_x
crossref_primary_10_3390_plants12152794
crossref_primary_10_1111_mpp_70005
crossref_primary_10_1111_mpp_70008
crossref_primary_10_3389_fpls_2023_1130782
crossref_primary_10_1111_brv_12928
crossref_primary_10_1007_s00705_023_05776_9
crossref_primary_10_12677_br_2025_142012
crossref_primary_10_1080_27694127_2024_2395731
crossref_primary_10_1111_mpp_13290
crossref_primary_10_1016_j_pbi_2024_102631
crossref_primary_10_1111_nph_20021
crossref_primary_10_1111_nph_20264
crossref_primary_10_1038_s41477_024_01891_w
crossref_primary_10_1126_science_adr2138
crossref_primary_10_1016_j_tim_2023_09_007
crossref_primary_10_1094_MPMI_10_23_0154_FI
crossref_primary_10_1038_s41564_023_01502_y
crossref_primary_10_1002_pld3_565
crossref_primary_10_1007_s00122_023_04513_9
crossref_primary_10_1016_j_plantsci_2024_112179
crossref_primary_10_1016_j_pbi_2023_102481
crossref_primary_10_1016_j_pbi_2023_102363
crossref_primary_10_1016_j_pbi_2023_102485
crossref_primary_10_1016_j_tcsw_2024_100124
crossref_primary_10_1186_s42483_024_00278_1
crossref_primary_10_3389_fmicb_2023_1103418
crossref_primary_10_3390_plants14020294
crossref_primary_10_3389_fpls_2024_1490466
crossref_primary_10_3390_molecules28247961
crossref_primary_10_1016_j_pbi_2024_102524
crossref_primary_10_1371_journal_pone_0290884
crossref_primary_10_1016_j_scienta_2023_112549
crossref_primary_10_1186_s42483_024_00232_1
crossref_primary_10_1111_nph_19148
crossref_primary_10_1093_plcell_koae096
crossref_primary_10_3390_agronomy12071637
crossref_primary_10_5010_JPB_2023_50_027_215
crossref_primary_10_1016_j_jia_2023_06_014
crossref_primary_10_1186_s12870_023_04685_y
crossref_primary_10_1111_ppl_14504
crossref_primary_10_1094_PHYTO_01_24_0037_R
crossref_primary_10_1038_s41418_022_01060_6
crossref_primary_10_1016_j_pbi_2023_102450
crossref_primary_10_1016_j_celrep_2024_114910
crossref_primary_10_1007_s11103_023_01409_6
crossref_primary_10_1016_j_fmre_2023_10_026
crossref_primary_10_1111_ppa_14043
crossref_primary_10_1016_j_xplc_2023_100607
crossref_primary_10_1111_mpp_13283
crossref_primary_10_1038_s41467_024_51249_1
crossref_primary_10_1111_nph_20364
crossref_primary_10_1111_nph_19131
crossref_primary_10_1111_mpp_70019
crossref_primary_10_1038_s41594_024_01440_1
crossref_primary_10_1126_science_abo0001
crossref_primary_10_3389_fpls_2024_1338062
crossref_primary_10_1007_s13313_024_01007_0
crossref_primary_10_1016_j_sbi_2024_102977
crossref_primary_10_1016_j_heliyon_2024_e34871
crossref_primary_10_1093_ismejo_wrae121
crossref_primary_10_1111_mpp_13280
crossref_primary_10_1094_PHYTOFR_06_24_0071_SC
crossref_primary_10_1186_s42483_024_00279_0
crossref_primary_10_1093_jxb_erad268
crossref_primary_10_1111_tpj_16088
crossref_primary_10_15252_embj_2022111484
crossref_primary_10_1093_jxb_erae359
crossref_primary_10_1111_mpp_13415
crossref_primary_10_1128_aem_00661_23
crossref_primary_10_1007_s44297_024_00027_y
crossref_primary_10_1016_j_semcdb_2023_03_013
crossref_primary_10_1126_science_abq3297
crossref_primary_10_1016_j_ijbiomac_2024_130072
crossref_primary_10_3389_fpls_2022_992544
crossref_primary_10_1186_s12870_022_03679_6
crossref_primary_10_1111_pce_15086
crossref_primary_10_1016_j_molp_2023_12_005
crossref_primary_10_3390_metabo13090997
crossref_primary_10_1111_jipb_13892
crossref_primary_10_3389_fpls_2025_1552926
crossref_primary_10_3390_ijms25052937
crossref_primary_10_1094_PHYTO_04_24_0125_R
crossref_primary_10_1073_pnas_2210406120
crossref_primary_10_1111_nph_19073
crossref_primary_10_1111_nph_19194
crossref_primary_10_1186_s12284_024_00704_0
crossref_primary_10_1038_s41467_024_46290_z
crossref_primary_10_1083_jcb_202307066
crossref_primary_10_1111_mpp_13301
crossref_primary_10_1016_j_tplants_2025_01_001
crossref_primary_10_1186_s42483_023_00176_y
crossref_primary_10_1111_ppl_14259
crossref_primary_10_1128_mbio_03665_24
crossref_primary_10_3390_plants13162242
crossref_primary_10_3390_pathogens12111306
crossref_primary_10_1016_j_pmpp_2023_102027
crossref_primary_10_1093_g3journal_jkae191
crossref_primary_10_3390_plants13243476
crossref_primary_10_1094_MPMI_05_23_0073_HH
crossref_primary_10_1038_s41467_024_47497_w
crossref_primary_10_1111_tpj_17034
crossref_primary_10_3390_ijms241713625
crossref_primary_10_15252_embr_202357495
crossref_primary_10_1016_j_chom_2024_01_011
crossref_primary_10_1186_s42483_023_00186_w
crossref_primary_10_1038_s44318_024_00278_z
crossref_primary_10_1007_s13562_024_00873_5
crossref_primary_10_1094_PHYTO_04_23_0147_KC
crossref_primary_10_48130_VR_2023_0029
crossref_primary_10_3389_fmicb_2023_1275032
crossref_primary_10_1016_j_pmpp_2024_102539
crossref_primary_10_1038_s41598_023_39695_1
crossref_primary_10_1038_s41467_024_47364_8
crossref_primary_10_1126_science_adk3468
crossref_primary_10_3389_fmicb_2024_1487022
crossref_primary_10_1093_jxb_erad156
crossref_primary_10_3389_fpls_2024_1383018
crossref_primary_10_1016_j_sajb_2025_02_018
crossref_primary_10_3390_ijms232112974
crossref_primary_10_3390_plants13131737
crossref_primary_10_1111_tpj_17049
crossref_primary_10_1094_MPMI_09_23_0122_FI
crossref_primary_10_1111_nph_18085
crossref_primary_10_1002_bies_202400150
crossref_primary_10_1007_s40858_023_00560_1
crossref_primary_10_1016_j_molp_2022_10_008
crossref_primary_10_1093_gbe_evae113
crossref_primary_10_3389_fpls_2023_1201805
crossref_primary_10_1016_j_plantsci_2024_112314
crossref_primary_10_1016_j_pmpp_2023_102004
crossref_primary_10_1002_csc2_21413
crossref_primary_10_1111_pbi_14039
crossref_primary_10_1016_j_isci_2024_108817
crossref_primary_10_1146_annurev_phyto_121423_042014
crossref_primary_10_1042_BCJ20220372
crossref_primary_10_1016_j_pmpp_2022_101944
crossref_primary_10_3390_plants13162176
crossref_primary_10_1111_ppa_13905
crossref_primary_10_1093_jxb_erad191
crossref_primary_10_1016_j_ijbiomac_2025_140466
crossref_primary_10_1111_pbi_14161
crossref_primary_10_1111_mpp_13463
crossref_primary_10_1111_jipb_13727
crossref_primary_10_3390_plants13091274
crossref_primary_10_1146_annurev_phyto_021622_110443
crossref_primary_10_1093_jxb_erae140
crossref_primary_10_3389_fmicb_2022_941991
crossref_primary_10_3389_fpls_2024_1392149
crossref_primary_10_1038_s41477_024_01641_y
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_1002_advs_202412223
crossref_primary_10_1007_s11103_022_01286_5
crossref_primary_10_3390_agronomy14081693
crossref_primary_10_1016_j_chom_2023_08_019
crossref_primary_10_3389_fpls_2022_1007288
crossref_primary_10_1007_s00425_024_04355_9
crossref_primary_10_1016_j_chom_2023_08_015
crossref_primary_10_1016_j_xplc_2024_100888
crossref_primary_10_1111_ppl_14456
crossref_primary_10_1128_jvi_00168_21
crossref_primary_10_1186_s42483_023_00218_5
crossref_primary_10_1016_j_hpj_2023_02_008
crossref_primary_10_3390_plants13050636
crossref_primary_10_3389_fmicb_2023_1252039
crossref_primary_10_1016_j_molp_2022_11_011
crossref_primary_10_1073_pnas_2319499121
crossref_primary_10_15252_embj_2023113499
crossref_primary_10_1093_jxb_erae297
crossref_primary_10_3390_plants14030355
crossref_primary_10_1186_s12870_024_05454_1
crossref_primary_10_1111_pce_15025
crossref_primary_10_1111_ppa_13803
crossref_primary_10_1016_j_plantsci_2024_112224
crossref_primary_10_1111_jipb_13876
crossref_primary_10_1038_s44319_024_00122_9
crossref_primary_10_1094_MPMI_06_23_0081_HH
crossref_primary_10_3390_microorganisms12071323
crossref_primary_10_3390_ijms232315436
crossref_primary_10_1007_s10265_024_01546_z
crossref_primary_10_3390_ijms241814310
crossref_primary_10_3390_ijms251810011
crossref_primary_10_1016_j_molp_2025_01_009
crossref_primary_10_1007_s42161_025_01885_3
crossref_primary_10_1016_j_ijbiomac_2025_142519
crossref_primary_10_1002_advs_202416846
crossref_primary_10_3389_frym_2024_1468660
crossref_primary_10_1016_j_gene_2024_148260
crossref_primary_10_1007_s11240_024_02746_0
crossref_primary_10_1016_j_molp_2024_04_003
crossref_primary_10_1146_annurev_micro_032421_121423
crossref_primary_10_1016_j_ijbiomac_2024_134821
crossref_primary_10_1007_s11540_024_09779_0
crossref_primary_10_1094_MPMI_06_22_0132_CR
crossref_primary_10_1094_MPMI_12_23_0212_CR
crossref_primary_10_1038_s41467_023_44408_3
crossref_primary_10_3390_ijms24087417
crossref_primary_10_1094_PHYTOFR_01_23_0005_R
crossref_primary_10_3390_antiox13121553
crossref_primary_10_1093_plphys_kiae401
crossref_primary_10_1016_j_bbrc_2024_149871
crossref_primary_10_1016_j_pmpp_2025_102664
crossref_primary_10_1094_MPMI_10_23_0169_FI
crossref_primary_10_1186_s12864_023_09713_7
crossref_primary_10_1080_10643389_2023_2267939
crossref_primary_10_1021_acs_jafc_3c07006
crossref_primary_10_1016_j_tplants_2024_05_004
crossref_primary_10_3390_jof11010080
crossref_primary_10_1093_hr_uhad116
crossref_primary_10_1016_j_xplc_2024_101135
crossref_primary_10_1093_plphys_kiad306
crossref_primary_10_1093_plphys_kiae514
crossref_primary_10_3389_fpls_2024_1368467
crossref_primary_10_1007_s11104_023_06130_3
crossref_primary_10_3390_plants13152022
crossref_primary_10_3389_fpls_2022_1064589
crossref_primary_10_1016_j_chom_2023_10_010
crossref_primary_10_3390_plants12234036
crossref_primary_10_1016_j_jgg_2024_02_005
crossref_primary_10_1093_hr_uhac255
crossref_primary_10_1098_rsob_230387
crossref_primary_10_1002_1873_3468_14356
crossref_primary_10_1007_s11105_024_01493_y
crossref_primary_10_1016_j_chom_2023_10_017
crossref_primary_10_1093_plphys_kiae626
crossref_primary_10_3389_fpls_2022_1020772
crossref_primary_10_7124_FEEO_v30_1464
crossref_primary_10_1016_j_pmpp_2023_102083
crossref_primary_10_3389_fpls_2022_1090947
crossref_primary_10_3390_ijms241613003
crossref_primary_10_1093_treephys_tpad151
crossref_primary_10_1038_s41467_024_48943_5
crossref_primary_10_1093_pcp_pcac116
crossref_primary_10_3390_ijms252312951
crossref_primary_10_1093_jxb_erae433
crossref_primary_10_1111_tpj_16323
crossref_primary_10_1093_hr_uhad163
crossref_primary_10_1016_j_celrep_2022_111939
crossref_primary_10_1094_PDIS_10_23_2033_FE
crossref_primary_10_1111_pce_14477
crossref_primary_10_1007_s10142_023_01133_w
crossref_primary_10_1016_j_cell_2024_07_013
crossref_primary_10_5423_PPJ_RW_01_2024_0001
crossref_primary_10_3389_fmicb_2023_1122947
crossref_primary_10_3390_ijms232314525
crossref_primary_10_1111_pbi_14206
crossref_primary_10_1371_journal_ppat_1012799
crossref_primary_10_1111_ppl_14052
crossref_primary_10_3390_plants13111523
crossref_primary_10_1126_science_adg5261
crossref_primary_10_3389_fpls_2022_920281
crossref_primary_10_1007_s42994_025_00198_4
crossref_primary_10_1007_s12275_024_00114_3
crossref_primary_10_1093_jxb_erad450
crossref_primary_10_1002_bies_202400171
crossref_primary_10_3390_life13020268
crossref_primary_10_1111_pbi_14332
crossref_primary_10_1016_j_nantod_2023_102045
crossref_primary_10_1016_j_tplants_2024_04_006
crossref_primary_10_1093_plphys_kiae555
crossref_primary_10_3389_fpls_2022_1087525
crossref_primary_10_1038_s44319_023_00023_3
crossref_primary_10_1093_jxb_erad126
crossref_primary_10_1038_s41467_023_40171_7
crossref_primary_10_3390_pathogens12010066
crossref_primary_10_3389_fmicb_2023_1201444
crossref_primary_10_1038_s41467_023_39208_8
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_1093_jxb_erad362
crossref_primary_10_1126_sciadv_adg3861
crossref_primary_10_1002_tpg2_20487
crossref_primary_10_1093_plphys_kiac366
crossref_primary_10_1093_plcell_koac109
crossref_primary_10_3389_fpls_2023_1127833
crossref_primary_10_1007_s11103_022_01329_x
crossref_primary_10_1016_j_gloplacha_2023_104286
crossref_primary_10_3389_fpls_2022_932288
crossref_primary_10_1021_acs_jafc_4c07212
crossref_primary_10_1111_tpj_70018
crossref_primary_10_3390_ijms232113589
crossref_primary_10_1016_j_scienta_2024_113361
crossref_primary_10_1038_s41579_023_00999_8
crossref_primary_10_1126_sciadv_adr2594
crossref_primary_10_1016_j_jgg_2022_06_003
crossref_primary_10_1016_j_ijbiomac_2025_140978
crossref_primary_10_3389_fpls_2022_968562
crossref_primary_10_1093_hr_uhad256
crossref_primary_10_1111_pce_14585
crossref_primary_10_1016_j_envexpbot_2025_106084
crossref_primary_10_1093_plcell_koad329
crossref_primary_10_3390_ijms24098215
crossref_primary_10_48130_mpb_0024_0011
Cites_doi 10.1105/tpc.18.00547
10.1073/pnas.1005225107
10.1038/cr.2017.123
10.1126/science.aal2541
10.1105/tpc.105.033910
10.1094/MPMI-05-20-0131-SC
10.1111/nph.12043
10.1371/journal.ppat.1004331
10.1126/science.1126088
10.1046/j.1365-313X.1999.00426.x
10.1073/pnas.1203458110
10.1186/s12915-016-0228-7
10.1038/s41586-021-03316-6
10.1016/j.chom.2012.01.015
10.1126/science.aax1911
10.1007/BF00037266
10.1016/j.chom.2020.03.008
10.1046/j.1365-313X.1995.8060933.x
10.1073/pnas.0802157105
10.1126/science.1174754
10.1038/s41467-018-07469-3
10.1094/MPMI-06-12-0156-R
10.1016/j.molcel.2014.02.021
10.1126/science.291.5501.118
10.1371/journal.pgen.1008571
10.1073/pnas.1318817111
10.1111/pbi.13629
10.1016/j.molcel.2017.12.026
10.1111/pbi.13042
10.1111/tpj.15214
10.1038/nature06109
10.1046/j.1365-313X.2003.01937.x
10.1016/j.chom.2015.08.004
10.1038/ncomms7338
10.1126/sciadv.1500245
10.1111/nph.15659
10.1073/pnas.1003347107
10.1371/journal.pbio.3001136
10.1111/j.1462-5822.2012.01779.x
10.1073/pnas.0909705107
10.1093/jxb/erab373
10.1007/978-94-017-2679-5_2
10.1126/science.7638602
10.1534/genetics.108.095034
10.1105/tpc.108.060194
10.1073/pnas.0502425102
10.1111/j.1365-313X.2008.03716.x
10.1105/tpc.111.084301
10.15252/embj.201488698
10.1105/tpc.106.044016
10.1105/tpc.114.131938
10.1093/plphys/kiab011
10.1073/pnas.1818275116
10.1038/s41587-020-00770-x
10.1111/j.1365-2958.2004.04288.x
10.1094/MPMI-12-12-0289-R
10.1139/g97-087
10.1111/tpj.14810
10.1016/j.tplants.2013.08.005
10.1094/MPMI-18-1215
10.1038/s41477-021-00854-9
10.1186/s12870-019-2154-7
10.1093/plphys/kiab023
10.1094/PDIS-05-19-1066-RE
10.1016/j.pbi.2009.03.001
10.1038/nature14171
10.1016/j.xplc.2019.100016
10.1371/journal.ppat.1007900
10.1186/s12860-021-00344-y
10.1111/mpp.12983
10.1126/science.8091210
10.1104/pp.113.227108
10.1371/journal.ppat.1000061
10.1111/nph.13802
10.1016/S1097-2765(00)80265-8
10.1371/journal.ppat.1004602
10.1073/pnas.1302154110
10.1016/j.chom.2009.05.019
10.1105/tpc.110.075358
10.1111/nph.15523
10.1111/nph.13310
10.1038/s41586-020-2210-3
10.7554/eLife.03766
10.1073/pnas.0604815103
10.1038/s41467-018-03010-8
10.1016/j.cell.2006.02.047
10.7554/eLife.25474
10.1111/nph.15411
10.1126/science.278.5345.1963
10.1105/tpc.109.068247
10.1094/MPMI-21-1-0007
10.1016/j.cell.2015.04.025
10.7554/eLife.13568
10.1111/pbi.13017
10.1007/s11427-011-4154-1
10.1111/nph.13355
10.1007/s00705-008-0032-y
10.1038/nplants.2016.185
10.1038/nplants.2015.34
10.1038/s41586-021-03987-1
10.3389/fpls.2012.00169
10.1371/journal.ppat.1005811
10.1016/j.tplants.2016.08.014
10.1073/pnas.1113726108
10.15252/embj.201694248
10.1104/pp.16.00336
10.1126/science.270.5243.1804
10.1111/nph.14943
10.1016/j.molcel.2014.03.028
10.1111/nph.15665
10.1016/j.pbi.2019.04.007
10.1146/annurev-arplant-080620-104948
10.1038/nplants.2016.128
10.1093/emboj/19.15.4004
10.1093/plcell/koab069
10.1038/35081161
10.1371/journal.pgen.1004015
10.1007/BF00022331
10.1094/MPMI-12-17-0328-R
10.3390/ijms19010008
10.1126/science.aar7486
10.1111/tpj.14654
10.1016/j.molp.2021.08.001
10.1046/j.1365-313X.1999.00265.x
10.1093/genetics/141.4.1597
10.1104/pp.105.062406
10.1126/science.aao4810
10.1105/tpc.020040
10.7554/eLife.34902
10.1038/s41586-021-03315-7
10.1094/MPMI.1998.11.12.1155
10.1016/j.chom.2016.09.007
10.1105/tpc.105.039198
10.1146/annurev-phyto-080614-120106
10.1016/j.cell.2021.05.035
10.1099/vir.0.80017-0
10.1105/tpc.022475
10.1371/journal.pgen.1008313
10.1186/s13059-016-0955-7
10.1139/g06-088
10.1073/pnas.1205448109
10.1016/j.chom.2014.02.009
10.1016/j.chom.2008.05.017
10.1038/415977a
10.1094/MPMI-22-4-0411
10.1038/nbt.1613
10.1105/tpc.112.102475
10.1046/j.1365-313X.1998.00136.x
10.1073/pnas.1220015110
10.1016/S0092-8674(03)00040-0
10.1105/tpc.107.056978
10.1111/j.1365-313X.2004.02047.x
10.1073/pnas.1511847113
10.1126/science.aau1279
10.1038/s41577-019-0165-0
10.1094/MPMI-07-18-0202-FI
10.1038/s41467-021-23614-x
10.1126/science.1204903
10.1016/j.chom.2007.03.006
10.1073/pnas.1614862113
10.1126/science.abg7917
10.1038/s41467-021-27288-3
10.1104/pp.113.230698
10.1016/j.cell.2021.05.003
10.1073/pnas.95.17.9750
10.1104/pp.109.139238
10.1007/s00122-005-2050-4
10.1073/pnas.2001185117
10.1016/S0092-8674(03)00036-9
10.1371/journal.pgen.1002502
10.1073/pnas.92.2.622
10.1038/s41477-018-0106-0
10.1006/viro.1995.1282
10.1146/annurev-phyto-082712-102314
10.1016/j.chom.2010.03.007
10.1126/science.7973631
10.1126/science.abd9993
10.1101/gr.078766.108
10.1038/s41586-019-1413-y
10.1105/tpc.17.00981
10.1073/pnas.98.2.741
10.1126/sciadv.1600822
10.1371/journal.pbio.2004122
10.1016/j.chom.2013.11.006
10.1094/MPMI.2004.17.7.771
10.1105/tpc.113.110833
10.1073/pnas.1915339117
10.1371/journal.ppat.1003313
10.1007/s00122-016-2740-0
10.1016/0092-8674(94)90283-6
10.1038/nplants.2017.115
10.1104/pp.103.036749
10.1105/tpc.113.117010
10.1111/nph.12347
10.1093/pcp/pcv063
10.1371/journal.pone.0098067
10.1105/tpc.105.037234
10.1111/j.1365-313X.2009.03838.x
10.3389/fpls.2014.00606
10.1038/ncomms10159
10.1038/s41586-019-1409-7
10.1111/mpp.12987
10.1094/MPMI-06-10-0127
10.3389/fpls.2014.00168
10.1105/tpc.12.5.803
10.15252/embr.201642704
10.1094/MPMI-22-6-0630
10.1016/j.cub.2005.04.053
10.1105/tpc.10.6.1021
10.1038/s41467-017-02340-3
10.3389/fpls.2019.00623
10.1046/j.1365-313x.2000.00804.x
10.1016/S0092-8674(00)81290-8
10.1111/1574-6968.12058
10.1104/pp.110.156240
10.1111/nph.15497
10.7554/eLife.44471
10.1073/pnas.0914408107
10.1038/nature10962
10.1104/pp.107.108720
10.1038/nature25184
10.1007/s00299-007-0304-0
10.1186/s12870-020-2285-x
10.1105/tpc.18.00297
10.1111/mpp.12142
10.1371/journal.ppat.1006284
10.1105/tpc.107.050880
10.1186/s12870-019-1817-8
10.1111/j.1365-313X.2012.05110.x
10.1105/tpc.016725
10.1094/MPMI-07-10-0149
10.1016/j.chom.2016.01.005
10.1038/srep11642
10.1094/MPMI.1997.10.1.13
10.1126/science.1248849
10.1007/s13562-010-0026-1
10.1016/j.molp.2019.11.001
10.1016/j.cell.2015.04.024
10.1371/journal.ppat.1000970
10.7554/eLife.49956
10.1016/j.tplants.2021.08.012
10.1126/science.aav5870
10.1016/j.cub.2008.10.063
10.1126/science.aax1771
10.1105/tpc.110.075697
10.15252/embj.2020104915
10.1093/mp/ssu049
10.1094/MPMI-12-10-0278
10.1111/nph.13584
10.1105/tpc.104.026609
10.1105/tpc.20.00499
10.1105/tpc.111.095380
10.1038/s41467-020-15601-5
10.1104/pp.18.00185
10.1371/journal.pone.0119639
10.1073/pnas.1702041114
10.1038/s41477-018-0216-8
10.4067/S0718-58392019000100124
10.1038/nplants.2015.140
10.1371/journal.ppat.1003123
10.1038/s41477-021-00874-5
10.1016/j.pbi.2017.04.012
10.1104/pp.110.156109
10.1007/s001220050638
10.1111/nph.17122
10.1371/journal.pone.0104840
10.1094/MPMI-19-1420
10.1038/nature05999
10.1073/pnas.1612947113
10.1038/s41467-021-20932-y
10.1111/j.1365-313X.2007.03027.x
10.1126/science.1069288
10.1126/science.aat2623
10.1016/j.mib.2015.10.006
10.1371/journal.ppat.1004491
10.1016/0092-8674(94)90282-8
10.1126/science.aax4079
10.1016/j.cub.2007.12.020
10.1093/jxb/erz571
10.1104/pp.15.00659
10.1094/MPMI-08-20-0229-CR
10.1126/science.276.5321.2054
10.1016/j.chom.2017.03.005
10.1073/pnas.84.17.6074
10.1071/FP08320
10.1038/s41586-021-03829-0
10.1111/j.1365-313X.2012.04906.x
10.1073/pnas.0711215105
10.1105/tpc.106.040998
10.1094/MPMI-06-13-0179-R
10.1126/science.1085671
10.1104/pp.126.1.97
10.1073/pnas.2033934100
10.1016/S0968-0004(98)01311-5
10.1073/pnas.1000675107
10.1126/science.1067554
10.1146/annurev-arplant-042817-040540
10.1371/journal.pgen.1002159
10.1105/tpc.109.068874
10.1016/j.molp.2014.12.022
10.1126/science.1247357
10.1111/mpp.12016
10.1094/MPMI-11-10-0276
10.1046/j.1365-313X.1997.11061187.x
10.1104/pp.112.201699
10.1073/pnas.1112862108
10.1073/pnas.1119623109
10.1371/journal.pbio.3000783
10.1186/s12864-016-3011-9
10.1016/j.pbi.2020.04.006
10.1371/journal.pone.0002875
10.1111/tpj.15082
10.1007/s44154-021-00009-y
10.1073/pnas.152330599
10.1371/journal.pgen.1002046
10.1105/tpc.106.043307
10.1126/science.1243825
10.1094/MPMI-23-1-0049
10.1111/j.1365-313X.2009.03949.x
10.1038/367384a0
10.1111/tpj.13212
10.1016/j.tplants.2019.04.009
10.1371/journal.ppat.1001111
10.1094/MPMI-08-17-0203-FI
10.1371/journal.ppat.1003127
10.1038/nature14611
10.3389/fphys.2016.00402
10.1038/s41586-018-0471-x
10.1105/tpc.10.8.1307
10.1016/j.cell.2006.03.037
10.1105/tpc.19.00631
10.1111/nph.13944
10.1073/pnas.1109921108
10.1038/s41467-020-19147-4
10.1073/pnas.1706795114
10.1105/tpc.19.00118
10.1073/pnas.012452499
10.1111/j.1365-2958.2004.04177.x
10.1073/pnas.96.6.3292
10.1046/j.1365-313X.2001.01292.x
10.1111/tpj.13715
10.1016/j.chom.2018.03.010
10.1038/s41586-020-2032-3
10.1094/MPMI-22-5-0589
10.7554/eLife.44474
10.1073/pnas.0705147104
10.1111/j.1364-3703.2012.00801.x
10.1007/s11032-011-9638-y
10.1038/nature08794
10.1146/annurev.arplant.59.032607.092906
10.1093/pcp/pcy243
10.1111/nph.13348
10.1126/science.abe3069
10.1038/s41586-020-2702-1
10.1105/tpc.104.024141
10.1073/pnas.0603729103
10.1073/pnas.0912139106
10.1371/journal.ppat.1004809
10.1146/annurev-arplant-042916-040957
10.1105/tpc.10.11.1915
10.1038/s41477-018-0172-3
10.1105/tpc.107.056754
10.1111/mpp.12912
10.1111/tpj.15284
10.1038/nature05286
10.3389/fpls.2020.00463
10.1105/tpc.105.036574
10.1105/tpc.104.026013
10.1111/tpj.12381
10.1073/pnas.95.13.7433
10.1126/science.aao7294
10.1094/MPMI.1998.11.6.498
10.1104/pp.111.176230
10.1126/science.1359642
10.1007/s00122-006-0481-1
10.1016/j.molp.2019.10.016
10.1038/s41586-020-2655-4
10.1093/emboj/20.19.5400
10.1094/MPMI-18-0158
10.1186/1756-0500-2-197
10.1073/pnas.1807297116
10.1105/tpc.110.082602
10.1111/jipb.12529
10.1126/science.aav5868
10.1146/annurev-phyto-072910-095326
10.1111/mpp.12607
10.1016/j.chom.2014.10.007
10.1038/s41467-019-10274-1
10.1371/journal.ppat.1008933
10.1093/pcp/pcv087
10.1105/tpc.19.00903
10.1371/journal.pone.0110158
10.3389/fpls.2012.00088
10.1016/j.simyco.2018.01.002
10.1073/pnas.95.4.1663
10.1104/pp.103.021964
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists.
The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/plcell/koac041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1478
ExternalDocumentID 10.1093/plcell/koac041
PMC9048904
35167697
10_1093_plcell_koac041
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R012172/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M011216/1
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2FS
2WC
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADVEK
AEEJZ
AENEX
AFAZZ
AFFZL
AFGWE
AFRAH
AHGBF
AHMBA
AICQM
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CITATION
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
JBS
JLS
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
~KM
AGORE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
2AX
2~F
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
ABBHK
ABIME
ABPIB
ABUWG
ABXSQ
ABZEO
ACFRR
ACHIC
ACVCV
ACZBC
ADTOC
ADULT
ADXHL
ADYHW
AEUPB
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AGUYK
AHXOZ
AJDVS
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
D1J
DWQXO
EJD
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
NU-
P0-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
S0X
SA0
TCN
UBC
UKHRP
UKR
UNPAY
WHG
XOL
Y6R
ZCG
ZCN
ID FETCH-LOGICAL-c456t-711445d870a896d404d3234b81fd7d03ab57418156cdf3ac6ee89ecbe97de0c73
IEDL.DBID UNPAY
ISSN 1040-4651
1532-298X
IngestDate Wed Aug 20 00:13:35 EDT 2025
Tue Sep 30 16:53:29 EDT 2025
Sat Sep 27 19:26:51 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Wed Oct 01 04:30:38 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-711445d870a896d404d3234b81fd7d03ab57418156cdf3ac6ee89ecbe97de0c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Senior author
ORCID 0000-0002-0760-1058
0000-0002-3535-6053
0000-0002-4953-261X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/plcell/article-pdf/34/5/1447/43463248/koac041.pdf
PMID 35167697
PQID 2629386157
PQPubID 23479
PageCount 32
ParticipantIDs unpaywall_primary_10_1093_plcell_koac041
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9048904
proquest_miscellaneous_2629386157
pubmed_primary_35167697
crossref_primary_10_1093_plcell_koac041
crossref_citationtrail_10_1093_plcell_koac041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-26
PublicationDateYYYYMMDD 2022-04-26
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Plomion (2022042815130039400_koac041-B268) 2018; 4
Xu (2022042815130039400_koac041-B399) 2012; 70
Saito (2022042815130039400_koac041-B292) 1987; 84
Kohorn (2022042815130039400_koac041-B160) 2012; 3
Brock (2022042815130039400_koac041-B40) 2010; 153
Dixon (2022042815130039400_koac041-B72) 1996; 84
Petre (2022042815130039400_koac041-B265) 2021; 33
Mitre (2022042815130039400_koac041-B233) 2021; 19
Ma (2022042815130039400_koac041-B217) 2020; 581
Liebrand (2022042815130039400_koac041-B191) 2013; 110
Wen (2022042815130039400_koac041-B378) 2013; 26
Allan (2022042815130039400_koac041-B7) 2001; 126
Postma (2022042815130039400_koac041-B269) 2016; 210
Ma (2022042815130039400_koac041-B220) 2012; 109
Niehl (2022042815130039400_koac041-B252) 2016; 211
Li (2022042815130039400_koac041-B184) 2020; 21
Zhao (2022042815130039400_koac041-B423) 2016; 113
Barragan (2022042815130039400_koac041-B21) 2019; 15
Lagudah (2022042815130039400_koac041-B169) 1997; 40
Torres (2022042815130039400_koac041-B344) 2002; 99
Sun (2022042815130039400_koac041-B324) 2020; 13
Pel (2022042815130039400_koac041-B262) 2010
Wu (2022042815130039400_koac041-B384) 2004; 16
Couto (2022042815130039400_koac041-B62) 2016; 12
Jones (2022042815130039400_koac041-B144) 2003
Zou (2022042815130039400_koac041-B428) 2018; 30
Azevedo (2022042815130039400_koac041-B16) 2002; 295
Torres (2022042815130039400_koac041-B345) 1998; 14
Van der Biezen (2022042815130039400_koac041-B351) 1998; 23
Yamada (2022042815130039400_koac041-B401) 2016; 35
Carter (2022042815130039400_koac041-B45) 2019; 32
Chen (2022042815130039400_koac041-B56) 2007; 26
Xiao (2022042815130039400_koac041-B396) 2001; 291
Bastedo (2022042815130039400_koac041-B22) 2019; 15
Chen (2022042815130039400_koac041-B55) 2017; 358
Rhodes (2022042815130039400_koac041-B282) 2021
Jia (2022042815130039400_koac041-B138) 2000; 19
Liu (2022042815130039400_koac041-B202) 2021; 14
Hind (2022042815130039400_koac041-B122) 2016; 2
Cao (2022042815130039400_koac041-B44) 2014; 3
Derkacheva (2022042815130039400_koac041-B67) 2020
Li (2022042815130039400_koac041-B179) 2011; 24
Joosten (2022042815130039400_koac041-B145) 1994; 367
Holton (2022042815130039400_koac041-B125) 2015; 11
Domazakis (2022042815130039400_koac041-B75) 2020
Zhang (2022042815130039400_koac041-B413) 2010; 7
Zhang (2022042815130039400_koac041-B417) 2007; 145
Gouhier-Darimont (2022042815130039400_koac041-B107) 2019; 10
Dangl (2022042815130039400_koac041-B63) 2001; 411
Luna (2022042815130039400_koac041-B212) 2011; 24
Su (2022042815130039400_koac041-B323) 2018; 16
Triplett (2022042815130039400_koac041-B346) 2016; 87
Wang (2022042815130039400_koac041-B366) 2017; 6
Lin (2022042815130039400_koac041-B194) 2013; 110
Jung (2022042815130039400_koac041-B146) 2020; 32
Ballvora (2022042815130039400_koac041-B20) 2002; 30
Xiang (2022042815130039400_koac041-B395) 2008; 18
Grant (2022042815130039400_koac041-B109) 1995; 269
Willmann (2022042815130039400_koac041-B382) 2011; 108
Schulze (2022042815130039400_koac041-B304) 2021
Ngou (2022042815130039400_koac041-B248) 2020; 71
Tameling (2022042815130039400_koac041-B332) 2007; 19
Parker (2022042815130039400_koac041-B257) 1996; 8
Lüdke (2022042815130039400_koac041-B210) 2021; 105
Vleeshouwers (2022042815130039400_koac041-B356) 2008; 3
Liu (2022042815130039400_koac041-B200) 2019; 8
Sweat (2022042815130039400_koac041-B329) 2008; 21
Claverie (2022042815130039400_koac041-B60) 2011; 156
Zhao (2022042815130039400_koac041-B422) 2004; 17
Piazza (2022042815130039400_koac041-B266) 2021
Mucyn (2022042815130039400_koac041-B238) 2006; 18
Kawaharada (2022042815130039400_koac041-B154) 2015; 523
Yu (2022042815130039400_koac041-B407) 2021
Lal (2022042815130039400_koac041-B171) 2018; 23
Thomas (2022042815130039400_koac041-B335) 1997; 9
Wang (2022042815130039400_koac041-B367) 2015; 18
Li (2022042815130039400_koac041-B188) 2010; 153
Sarris (2022042815130039400_koac041-B295) 2016; 14
Lee (2022042815130039400_koac041-B177) 2020; 11
Duxbury (2022042815130039400_koac041-B81) 2020; 117
Hegenauer (2022042815130039400_koac041-B121) 2020; 11
Grech-Baran (2022042815130039400_koac041-B110) 2021
Navathe (2022042815130039400_koac041-B245) 2020; 104
Rhodes (2022042815130039400_koac041-B283) 2021; 12
Wu (2022042815130039400_koac041-B388) 2015; 206
Wang (2022042815130039400_koac041-B372) 2018; 4
Park (2022042815130039400_koac041-B256) 2005; 111
Schultink (2022042815130039400_koac041-B303) 2017; 92
Adachi (2022042815130039400_koac041-B2) 2019; 50
Mott (2022042815130039400_koac041-B237) 2016; 17
Ma (2022042815130039400_koac041-B215) 2017; 27
Voigt (2022042815130039400_koac041-B359) 2014; 5
Jones (2022042815130039400_koac041-B142) 1994; 266
Lolle (2022042815130039400_koac041-B205) 2017; 21
Whitham (2022042815130039400_koac041-B380) 1994; 78
Zeng (2022042815130039400_koac041-B410) 2011; 54
Wan (2022042815130039400_koac041-B362) 2012; 160
Chen (2022042815130039400_koac041-B57) 2016; 7
Dixon (2022042815130039400_koac041-B71) 1998; 10
Schornack (2022042815130039400_koac041-B300) 2004; 37
Wu (2022042815130039400_koac041-B392) 2021
Grant (2022042815130039400_koac041-B108) 2000; 23
Feehan (2022042815130039400_koac041-B89) 2020; 56
Gao (2022042815130039400_koac041-B97) 2013; 9
Wan (2022042815130039400_koac041-B364) 2019; 365
Jones (2022042815130039400_koac041-B143) 2006; 444
Tsuda (2022042815130039400_koac041-B348) 2013; 9
Liu (2022042815130039400_koac041-B199) 2004; 16
Axtell (2022042815130039400_koac041-B15) 2003; 112
Catanzariti (2022042815130039400_koac041-B48) 2010; 23
Huot (2022042815130039400_koac041-B133) 2014; 7
Albrecht (2022042815130039400_koac041-B6) 2012; 109
Boutrot (2022042815130039400_koac041-B37) 2010; 107
Grubb (2022042815130039400_koac041-B113) 2021; 185
Du (2022042815130039400_koac041-B78) 2015; 207
Romeis (2022042815130039400_koac041-B286) 1999; 11
Wang (2022042815130039400_koac041-B370) 2019; 364
Ngou (2022042815130039400_koac041-B251) 2021; 27
Read (2022042815130039400_koac041-B277) 2020; 33
Bendahmane (2022042815130039400_koac041-B23) 1995; 8
Cao (2022042815130039400_koac041-B43) 2013; 9
Rowland (2022042815130039400_koac041-B290) 2005; 17
Piedras (2022042815130039400_koac041-B267) 1998; 11
Bailey (2022042815130039400_koac041-B19) 2011; 24
Lu (2022042815130039400_koac041-B207) 2011; 332
Peart (2022042815130039400_koac041-B259) 2005; 15
Kadota (2022042815130039400_koac041-B149) 2014; 54
Roux (2022042815130039400_koac041-B289) 2011; 23
Sobczak (2022042815130039400_koac041-B316) 2005; 18
van der Burgh (2022042815130039400_koac041-B352) 2019; 24
Hohmann (2022042815130039400_koac041-B123) 2017; 68
Li (2022042815130039400_koac041-B185) 2009; 22
Du (2022042815130039400_koac041-B77) 2009; 106
Mestre (2022042815130039400_koac041-B230) 2006; 18
Song (2022042815130039400_koac041-B319) 1995; 270
Gronnier (2022042815130039400_koac041-B111) 2020
Le Roux (2022042815130039400_koac041-B176) 2015; 161
Wang (2022042815130039400_koac041-B374) 2018; 30
Yoon (2022042815130039400_koac041-B405) 2020; 102
Wu (2022042815130039400_koac041-B389) 2017; 31
Castel (2022042815130039400_koac041-B47) 2019
Guo (2022042815130039400_koac041-B115) 2020; 27
Ngou (2022042815130039400_koac041-B247) 2021; 592
Saur (2022042815130039400_koac041-B297) 2019; 8
van der Hoorn (2022042815130039400_koac041-B353) 2008; 20
Mazo-Molina (2022042815130039400_koac041-B227) 2020; 103
Hou (2022042815130039400_koac041-B128) 2021; 1
Miya (2022042815130039400_koac041-B234) 2007; 104
Ma (2022042815130039400_koac041-B216) 2020; 370
Perraki (2022042815130039400_koac041-B264) 2018; 561
Meng (2022042815130039400_koac041-B229) 2013; 51
Wan (2022042815130039400_koac041-B363) 2008; 20
Brutus (2022042815130039400_koac041-B42) 2010; 107
Zhang (2022042815130039400_koac041-B414) 2014; 164
Xiao (2022042815130039400_koac041-B397) 2019; 572
Asai (2022042815130039400_koac041-B9) 2018; 9
Duggan (2022042815130039400_koac041-B80) 2021
Tian (2022042815130039400_koac041-B340) 2020
Saucet (2022042815130039400_koac041-B296) 2015; 6
Bi (2022042815130039400_koac041-B28) 2018; 30
de Ronde (2022042815130039400_koac041-B65) 2013; 14
Wu (2022042815130039400_koac041-B390) 2020; 117
Ashikawa (2022042815130039400_koac041-B13) 2012; 30
Hall (2022042815130039400_koac041-B116) 1980; 29
Johal (2022042815130039400_koac041-B140) 1992; 258
Xing (2022042815130039400_koac041-B398) 2007; 449
Wang (2022042815130039400_koac041-B373) 2010; 22
Feng (2022042815130039400_koac041-B91) 2012; 485
Liang (2022042815130039400_koac041-B189) 2018; 69
Falk (2022042815130039400_koac041-B86) 1999; 96
Kadota (2022042815130039400_koac041-B148) 2015; 56
Takahashi (2022042815130039400_koac041-B331) 2003; 100
Rep (2022042815130039400_koac041-B281) 2004; 53
Jo (2022042815130039400_koac041-B139) 2013
Göhre (2022042815130039400_koac041-B102) 2008; 18
Adachi (2022042815130039400_koac041-B1) 2019; 8
Song (2022042815130039400_koac041-B318) 2013; 26
Li (2022042815130039400_koac041-B181) 2019; 19
Schwessinger (2022042815130039400_koac041-B305) 2015; 11
Bos (2022042815130039400_koac041-B33) 2010; 107
Lin (2022042815130039400_koac041-B196) 2020; 21
Warmerdam (2022042815130039400_koac041-B376) 2020; 20
Horsefield (2022042815130039400_koac041-B126) 2019; 365
Yuan (2022042815130039400_koac041-B409) 2021; 592
Witek (2022042815130039400_koac041-B383) 2021; 7
Nagy (2022042815130039400_koac041-B240) 2008; 18
Huang (2022042815130039400_koac041-B132) 2016; 19
Mukhtar (2022042815130039400_koac041-B239) 2013; 18
Ashfield (2022042815130039400_koac041-B12) 2004; 16
Kim (2022042815130039400_koac041-B158) 2009; 150
Ntoukakis (2022042815130039400_koac041-B253) 2013; 9
Baggs (2022042815130039400_koac041-B18) 2020; 32
Luu (2022042815130039400_koac041-B214) 2019; 116
Zhang (2022042815130039400_koac041-B420) 2012; 11
Kamoun (2022042815130039400_koac041-B151) 1997; 10
Segonzac (2022042815130039400_koac041-B307) 2014; 33
Ngou (2022042815130039400_koac041-B249) 2021; 184
Dodds (2022042815130039400_koac041-B74) 2004; 16
Ashfield (2022042815130039400_koac041-B11) 1995; 141
Mackey (2022042815130039400_koac041-B223) 2003; 112
Luo (2022042815130039400_koac041-B213) 2021; 39
Xu (2022042815130039400_koac041-B400) 2011; 7
Kadota (2022042815130039400_koac041-B147) 2019; 221
Mendy (2022042815130039400_koac041-B228) 2017; 13
Hohmann (20220428
References_xml – year: 2020
  ident: 2022042815130039400_koac041-B111
  article-title: FERONIA regulates FLS2 plasma membrane nanoscale dynamics to modulate plant immune signaling
  publication-title: BioRxiv
– volume: 30
  start-page: 2480
  year: 2018
  ident: 2022042815130039400_koac041-B374
  article-title: A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00547
– volume: 107
  start-page: 18220
  year: 2010
  ident: 2022042815130039400_koac041-B418
  article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1005225107
– volume: 27
  start-page: 1521
  year: 2017
  ident: 2022042815130039400_koac041-B215
  article-title: Structural basis for BIR1-mediated negative regulation of plant immunity
  publication-title: Cell Res
  doi: 10.1038/cr.2017.123
– volume: 355
  start-page: 287
  year: 2017
  ident: 2022042815130039400_koac041-B321
  article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling
  publication-title: Science
  doi: 10.1126/science.aal2541
– volume: 17
  start-page: 2601
  year: 2005
  ident: 2022042815130039400_koac041-B93
  article-title: Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033910
– volume: 7
  start-page: 1195
  year: 1995
  ident: 2022042815130039400_koac041-B175
  article-title: The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N
  publication-title: Plant Cell
– volume: 33
  start-page: 1189
  year: 2020
  ident: 2022042815130039400_koac041-B277
  article-title: Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing xanthomonas effector Tal2h
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-05-20-0131-SC
– volume: 197
  start-page: 595
  year: 2013
  ident: 2022042815130039400_koac041-B174
  article-title: The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1
  publication-title: New Phytol
  doi: 10.1111/nph.12043
– volume: 10
  start-page: e1004331
  year: 2014
  ident: 2022042815130039400_koac041-B129
  article-title: The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004331
– volume: 312
  start-page: 436
  year: 2006
  ident: 2022042815130039400_koac041-B243
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
  doi: 10.1126/science.1126088
– year: 2021
  ident: 2022042815130039400_koac041-B87
  article-title: Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1
  publication-title: BioRxiv doi: 10.1101/2021.03.04.433884
– year: 2021
  ident: 2022042815130039400_koac041-B80
  article-title: ) Dynamic accumulation of a helper NLR at the plant-pathogen interface underpins pathogen recognition
  publication-title: BioRxiv
– volume: 18
  start-page: 67
  year: 1999
  ident: 2022042815130039400_koac041-B84
  article-title: The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00426.x
– volume: 110
  start-page: 9166
  year: 2013
  ident: 2022042815130039400_koac041-B88
  article-title: LYM2-dependent chitin perception limits molecular flux via plasmodesmata
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1203458110
– volume: 14
  start-page: 8
  year: 2016
  ident: 2022042815130039400_koac041-B295
  article-title: Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens
  publication-title: BMC Biol
  doi: 10.1186/s12915-016-0228-7
– volume: 592
  start-page: 1
  year: 2021
  ident: 2022042815130039400_koac041-B409
  article-title: Pattern-recognition receptors are required for NLR-mediated plant immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03316-6
– volume: 11
  start-page: 253
  year: 2012
  ident: 2022042815130039400_koac041-B420
  article-title: Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.015
– volume: 365
  start-page: 793
  year: 2019
  ident: 2022042815130039400_koac041-B126
  article-title: NAD+ cleavage activity by animal and plant TIR domains in cell death pathways
  publication-title: Science
  doi: 10.1126/science.aax1911
– volume: 29
  start-page: 189
  year: 1980
  ident: 2022042815130039400_koac041-B116
  article-title: Resistance at the TM-2 locus in the tomato to tomato mosaic virus
  publication-title: Euphytica
  doi: 10.1007/BF00037266
– volume: 27
  start-page: 769
  year: 2020
  ident: 2022042815130039400_koac041-B115
  article-title: Phosphorylation-regulated activation of the Arabidopsis RRS1-R/RPS4 immune receptor complex reveals two distinct effector recognition mechanisms
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.03.008
– volume: 8
  start-page: 933
  year: 1995
  ident: 2022042815130039400_koac041-B23
  article-title: The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1995.8060933.x
– volume: 105
  start-page: 6475
  year: 2008
  ident: 2022042815130039400_koac041-B83
  article-title: Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0802157105
– volume: 325
  start-page: 1094
  year: 2009
  ident: 2022042815130039400_koac041-B180
  article-title: Gene-for-gene resistance in Striga-cowpea associations
  publication-title: Science
  doi: 10.1126/science.1174754
– volume: 9
  start-page: 5192
  year: 2018
  ident: 2022042815130039400_koac041-B9
  article-title: A downy mildew effector evades recognition by polymorphism of expression and subcellular localization
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07469-3
– volume: 26
  start-page: 203
  year: 2013
  ident: 2022042815130039400_koac041-B378
  article-title: The HC-Pro and P3 cistrons of an avirulent Soybean mosaic virus are recognized by different resistance genes at the complex Rsv1 locus
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-06-12-0156-R
– volume: 54
  start-page: 43
  year: 2014
  ident: 2022042815130039400_koac041-B149
  article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.02.021
– volume: 291
  start-page: 118
  year: 2001
  ident: 2022042815130039400_koac041-B396
  article-title: Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8
  publication-title: Science
  doi: 10.1126/science.291.5501.118
– volume: 16
  start-page: e1008571
  year: 2020
  ident: 2022042815130039400_koac041-B278
  article-title: Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008571
– volume: 111
  start-page: 3632
  year: 2014
  ident: 2022042815130039400_koac041-B193
  article-title: Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1318817111
– volume: 19
  start-page: 1294
  year: 2021
  ident: 2022042815130039400_koac041-B233
  article-title: The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13629
– volume: 69
  start-page: 493
  year: 2018
  ident: 2022042815130039400_koac041-B368
  article-title: A regulatory module controlling homeostasis of a plant immune kinase
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.12.026
– volume: 17
  start-page: 1119
  year: 2019
  ident: 2022042815130039400_koac041-B100
  article-title: Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13042
– volume: 106
  start-page: 993
  year: 2021
  ident: 2022042815130039400_koac041-B224
  article-title: Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2
  publication-title: Plant J
  doi: 10.1111/tpj.15214
– volume: 449
  start-page: 243
  year: 2007
  ident: 2022042815130039400_koac041-B398
  article-title: The structural basis for activation of plant immunity by bacterial effector protein AvrPto
  publication-title: Nature
  doi: 10.1038/nature06109
– volume: 37
  start-page: 46
  year: 2004
  ident: 2022042815130039400_koac041-B300
  article-title: The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01937.x
– year: 2021
  ident: 2022042815130039400_koac041-B392
  article-title: N-terminally truncated helper NLR NRG1C antagonizes immunity mediated by its full-length neighbors NRG1A and NRG1B
  publication-title: BioRxiv doi: 10.1101/2021.01.27.428547
– year: 2022
  ident: 2022042815130039400_koac041-B250
  article-title: Concerted expansion and contraction of immune receptor gene repertoires in plant genomes
  publication-title: BioRxiv doi: 10.1101/2022.01.01.474684
– volume: 18
  start-page: 285
  year: 2015
  ident: 2022042815130039400_koac041-B367
  article-title: The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.08.004
– volume: 6
  start-page: 6338
  year: 2015
  ident: 2022042815130039400_koac041-B296
  article-title: Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4
  publication-title: Nat Commun
  doi: 10.1038/ncomms7338
– volume: 1
  start-page: e1500245
  year: 2015
  ident: 2022042815130039400_koac041-B270
  article-title: The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1500245
– volume: 222
  start-page: 966
  year: 2019
  ident: 2022042815130039400_koac041-B46
  article-title: Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1
  publication-title: New Phytol
  doi: 10.1111/nph.15659
– volume: 107
  start-page: 14502
  year: 2010
  ident: 2022042815130039400_koac041-B37
  article-title: Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1003347107
– volume: 19
  start-page: e3001136
  year: 2021
  ident: 2022042815130039400_koac041-B66
  article-title: Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3001136
– year: 2021
  ident: 2022042815130039400_koac041-B195
  article-title: Rpi-amr3 confers resistance to multiple Phytophthora species by recognizing a conserved RXLR effector
  publication-title: BioRxiv
– volume: 14
  start-page: 1071
  year: 2012
  ident: 2022042815130039400_koac041-B69
  article-title: Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2012.01779.x
– volume: 107
  start-page: 496
  year: 2010
  ident: 2022042815130039400_koac041-B208
  article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0909705107
– volume: 72
  start-page: 7927
  year: 2020
  ident: 2022042815130039400_koac041-B70
  article-title: Chromatin accessibility landscapes activated by cell surface and intracellular immune receptors
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erab373
– start-page: 10
  volume-title: Plant Biotechnology 2002 and Beyond
  year: 2003
  ident: 2022042815130039400_koac041-B144
  doi: 10.1007/978-94-017-2679-5_2
– volume: 269
  start-page: 843
  year: 1995
  ident: 2022042815130039400_koac041-B109
  article-title: Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance
  publication-title: Science
  doi: 10.1126/science.7638602
– volume: 180
  start-page: 2267
  year: 2008
  ident: 2022042815130039400_koac041-B14
  article-title: Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance
  publication-title: Genetics
  doi: 10.1534/genetics.108.095034
– volume: 20
  start-page: 2009
  year: 2008
  ident: 2022042815130039400_koac041-B353
  article-title: From Guard to Decoy: a new model for perception of plant pathogen effectors
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.060194
– volume: 102
  start-page: 12990
  year: 2005
  ident: 2022042815130039400_koac041-B186
  article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0502425102
– volume: 57
  start-page: 645
  year: 2009
  ident: 2022042815130039400_koac041-B156
  article-title: The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03716.x
– volume: 23
  start-page: 2440
  year: 2011
  ident: 2022042815130039400_koac041-B289
  article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084301
– volume: 33
  start-page: 2069
  year: 2014
  ident: 2022042815130039400_koac041-B307
  article-title: Negative control of BAK1 by protein phosphatase 2A during plant innate immunity
  publication-title: EMBO J
  doi: 10.15252/embj.201488698
– volume: 18
  start-page: 2792
  year: 2006
  ident: 2022042815130039400_koac041-B238
  article-title: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.044016
– volume: 26
  start-page: 4171
  year: 2014
  ident: 2022042815130039400_koac041-B334
  article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.131938
– volume: 185
  start-page: 1943
  year: 2021
  ident: 2022042815130039400_koac041-B219
  article-title: Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab011
– volume: 116
  start-page: 8525
  year: 2019
  ident: 2022042815130039400_koac041-B214
  article-title: Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1818275116
– volume: 39
  year: 2021
  ident: 2022042815130039400_koac041-B213
  article-title: A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat
  publication-title: Nat. Biotechnol
  doi: 10.1038/s41587-020-00770-x
– volume: 54
  start-page: 533
  year: 2004
  ident: 2022042815130039400_koac041-B379
  article-title: Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04288.x
– volume: 26
  start-page: 711
  year: 2013
  ident: 2022042815130039400_koac041-B318
  article-title: Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-12-12-0289-R
– volume: 40
  start-page: 659
  year: 1997
  ident: 2022042815130039400_koac041-B169
  article-title: Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat
  publication-title: Genome
  doi: 10.1139/g97-087
– volume: 103
  start-page: 1433
  year: 2020
  ident: 2022042815130039400_koac041-B227
  article-title: Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species
  publication-title: Plant J
  doi: 10.1111/tpj.14810
– volume: 18
  start-page: 469
  year: 2013
  ident: 2022042815130039400_koac041-B239
  article-title: Engineering NLR immune receptors for broad-spectrum disease resistance
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2013.08.005
– volume: 18
  start-page: 1215
  year: 2005
  ident: 2022042815130039400_koac041-B301
  article-title: Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4- but not in pepper Bs3-mediated perception
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-18-1215
– volume: 7
  start-page: 198
  year: 2021
  ident: 2022042815130039400_koac041-B383
  article-title: A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector
  publication-title: Nat Plants
  doi: 10.1038/s41477-021-00854-9
– volume: 19
  start-page: 532
  year: 2019
  ident: 2022042815130039400_koac041-B260
  article-title: Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-019-2154-7
– volume: 185
  start-page: 1483
  year: 2021
  ident: 2022042815130039400_koac041-B113
  article-title: Large-scale identification of ubiquitination sites on membrane-associated proteins in Arabidopsis thaliana seedlings
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab023
– volume: 104
  start-page: 71
  year: 2020
  ident: 2022042815130039400_koac041-B245
  article-title: ToxA-Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse gene-for-gene relationship
  publication-title: Plant Dis
  doi: 10.1094/PDIS-05-19-1066-RE
– year: 2021
  ident: 2022042815130039400_koac041-B110
  article-title: The Rysto immune receptor recognizes a broadly conserved feature of potyviral coat proteins
  publication-title: BioRxiv
– volume: 12
  start-page: 427
  year: 2009
  ident: 2022042815130039400_koac041-B211
  article-title: STANDing strong, resistance proteins instigators of plant defence
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2009.03.001
– volume: 520
  start-page: 679
  year: 2015
  ident: 2022042815130039400_koac041-B427
  article-title: NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism
  publication-title: Nature
  doi: 10.1038/nature14171
– volume: 1
  start-page: 100016
  year: 2020
  ident: 2022042815130039400_koac041-B355
  article-title: Plant nlrs: the whistleblowers of plant immunity
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2019.100016
– volume: 15
  start-page: e1007900
  year: 2019
  ident: 2022042815130039400_koac041-B22
  article-title: Perturbations of the ZED1 pseudokinase activate plant immunity
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007900
– volume: 22
  start-page: 9
  year: 2021
  ident: 2022042815130039400_koac041-B429
  article-title: Identification and characterization of the LRR repeats in plant LRR-RLKs
  publication-title: BMC Mol and Cell Biol
  doi: 10.1186/s12860-021-00344-y
– volume: 21
  start-page: 1513
  year: 2020
  ident: 2022042815130039400_koac041-B166
  article-title: Structural specificity in plant-filamentous pathogen interactions
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12983
– volume: 265
  start-page: 1856
  year: 1994
  ident: 2022042815130039400_koac041-B24
  article-title: RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes
  publication-title: Science
  doi: 10.1126/science.8091210
– volume: 163
  start-page: 1741
  year: 2013
  ident: 2022042815130039400_koac041-B347
  article-title: The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.227108
– volume: 4
  start-page: e1000061
  year: 2008
  ident: 2022042815130039400_koac041-B130
  article-title: Suppression of plant resistance gene-based immunity by a fungal effector
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000061
– volume: 210
  start-page: 627
  year: 2016
  ident: 2022042815130039400_koac041-B269
  article-title: Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity
  publication-title: New Phytol
  doi: 10.1111/nph.13802
– volume: 5
  start-page: 1003
  year: 2000
  ident: 2022042815130039400_koac041-B103
  article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80265-8
– volume: 11
  start-page: e1004602
  year: 2015
  ident: 2022042815130039400_koac041-B125
  article-title: The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004602
– volume: 110
  start-page: 12114
  year: 2013
  ident: 2022042815130039400_koac041-B194
  article-title: Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1302154110
– volume: 6
  start-page: 34
  year: 2009
  ident: 2022042815130039400_koac041-B96
  article-title: Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.05.019
– volume: 22
  start-page: 2444
  year: 2010
  ident: 2022042815130039400_koac041-B163
  article-title: Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075358
– year: 2021
  ident: 2022042815130039400_koac041-B393
  article-title: ) TIR signaling promotes the interactions between EDS1/PAD4 and ADR1-L1 and oligomerization of ADR1-L1
  publication-title: BioRxiv doi: 10.1101/2021.05.23.445317
– volume: 221
  start-page: 2160
  year: 2019
  ident: 2022042815130039400_koac041-B147
  article-title: Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants
  publication-title: New Phytol
  doi: 10.1111/nph.15523
– volume: 206
  start-page: 1463
  year: 2015
  ident: 2022042815130039400_koac041-B388
  article-title: Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice
  publication-title: New Phytol
  doi: 10.1111/nph.13310
– volume: 581
  start-page: 199
  year: 2020
  ident: 2022042815130039400_koac041-B217
  article-title: Ligand-induced monoubiquitination of BIK1 regulates plant immunity
  publication-title: Nature
  doi: 10.1038/s41586-020-2210-3
– volume: 3
  year: 2014
  ident: 2022042815130039400_koac041-B44
  article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1
  publication-title: Elife
  doi: 10.7554/eLife.03766
– year: 2019
  ident: 2022042815130039400_koac041-B322
  article-title: A receptor for herbivore-associated molecular patterns mediates plant immunity
  publication-title: BioRxiv doi: 10.1101/679803
– volume: 103
  start-page: 11856
  year: 2006
  ident: 2022042815130039400_koac041-B308
  article-title: A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0604815103
– volume: 9
  start-page: 594
  year: 2018
  ident: 2022042815130039400_koac041-B375
  article-title: Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03010-8
– volume: 125
  start-page: 563
  year: 2006
  ident: 2022042815130039400_koac041-B120
  article-title: Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.047
– volume: 6
  start-page: e25474
  year: 2017
  ident: 2022042815130039400_koac041-B366
  article-title: ) A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana
  publication-title: eLife
  doi: 10.7554/eLife.25474
– volume: 221
  start-page: 1001
  year: 2019
  ident: 2022042815130039400_koac041-B302
  article-title: Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4
  publication-title: New Phytol
  doi: 10.1111/nph.15411
– volume: 278
  start-page: 1963
  year: 1997
  ident: 2022042815130039400_koac041-B50
  article-title: NDR1, a pathogen-induced component required for Arabidopsis disease resistance
  publication-title: Science
  doi: 10.1126/science.278.5345.1963
– volume: 21
  start-page: 2928
  year: 2009
  ident: 2022042815130039400_koac041-B254
  article-title: In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068247
– volume: 21
  start-page: 7
  year: 2008
  ident: 2022042815130039400_koac041-B329
  article-title: Characterization of natural and induced variation in the LOV1 gene, a CC-NB-LRR gene conferring victorin sensitivity and disease susceptibility in Arabidopsis
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-21-1-0007
– volume: 161
  start-page: 1074
  year: 2015
  ident: 2022042815130039400_koac041-B176
  article-title: A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.025
– volume: 5
  start-page: e13568
  year: 2016
  ident: 2022042815130039400_koac041-B190
  article-title: Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor
  publication-title: eLife
  doi: 10.7554/eLife.13568
– volume: 17
  start-page: 812
  year: 2019
  ident: 2022042815130039400_koac041-B41
  article-title: The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13017
– volume: 54
  start-page: 372
  year: 2011
  ident: 2022042815130039400_koac041-B410
  article-title: Characterization and fine mapping of the rice blast resistance gene Pia
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-011-4154-1
– volume: 207
  start-page: 735
  year: 2015
  ident: 2022042815130039400_koac041-B78
  article-title: Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1
  publication-title: New Phytol
  doi: 10.1111/nph.13355
– volume: 153
  start-page: 645
  year: 2008
  ident: 2022042815130039400_koac041-B226
  article-title: The coat protein gene of tobamovirus P 0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants
  publication-title: Arch Virol
  doi: 10.1007/s00705-008-0032-y
– volume: 2
  start-page: 16185
  year: 2016
  ident: 2022042815130039400_koac041-B371
  article-title: The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein
  publication-title: Nat Plants
  doi: 10.1038/nplants.2016.185
– volume: 1
  start-page: 15034
  year: 2015
  ident: 2022042815130039400_koac041-B552
  article-title: Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato
  publication-title: Nat Plants
  doi: 10.1038/nplants.2015.34
– volume: 598
  start-page: 500
  year: 2021
  ident: 2022042815130039400_koac041-B341
  article-title: Activation of TIR signalling boosts pattern-triggered immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03987-1
– volume: 3
  year: 2012
  ident: 2022042815130039400_koac041-B276
  article-title: MAP kinase cascades in arabidopsis innate immunity
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2012.00169
– volume: 12
  start-page: e1005811
  year: 2016
  ident: 2022042815130039400_koac041-B62
  article-title: The arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005811
– volume: 21
  start-page: 1017
  year: 2016
  ident: 2022042815130039400_koac041-B218
  article-title: SERKing coreceptors for receptors
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2016.08.014
– volume: 108
  start-page: 16463
  year: 2011
  ident: 2022042815130039400_koac041-B32
  article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1113726108
– volume: 35
  start-page: 2468
  year: 2016
  ident: 2022042815130039400_koac041-B401
  article-title: The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation
  publication-title: EMBO J
  doi: 10.15252/embj.201694248
– volume: 171
  start-page: 2223
  year: 2016
  ident: 2022042815130039400_koac041-B85
  article-title: Bacterial AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases, MPK4 and MPK11
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.00336
– volume: 270
  start-page: 1804
  year: 1995
  ident: 2022042815130039400_koac041-B319
  article-title: A receptor kinase-like protein encoded by the rice disease resistance gene
  publication-title: Xa21. Science
  doi: 10.1126/science.270.5243.1804
– year: 2019
  ident: 2022042815130039400_koac041-B47
  article-title: An rpw8 quadruple mutant of Arabidopsis Col-0 is partially compromised in bacterial and fungal resistance
  publication-title: BioRxiv doi: 10.1101/839308
– volume: 217
  start-page: 1667
  year: 2018
  ident: 2022042815130039400_koac041-B135
  article-title: A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana
  publication-title: New Phytol
  doi: 10.1111/nph.14943
– volume: 54
  start-page: 263
  year: 2014
  ident: 2022042815130039400_koac041-B221
  article-title: Plant PRRs and the activation of innate immune signaling
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.028
– volume: 222
  start-page: 938
  year: 2019
  ident: 2022042815130039400_koac041-B391
  article-title: Differential regulation of TNL-mediated immune signaling by redundant helper CNLs
  publication-title: New Phytol
  doi: 10.1111/nph.15665
– volume: 50
  start-page: 121
  year: 2019
  ident: 2022042815130039400_koac041-B2
  article-title: NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2019.04.007
– volume: 72
  start-page: 155
  year: 2021
  ident: 2022042815130039400_koac041-B82
  article-title: A comparative overview of the intracellular guardians of plants and animals: nlrs in innate immunity and beyond
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-080620-104948
– year: 2021
  ident: 2022042815130039400_koac041-B304
  article-title: The TIR-NBS-LRR protein CSA1 is required for autoimmune cell death in Arabidopsis pattern recognition co-receptor bak1 and bir3 mutants
  publication-title: BioRxiv
– volume: 2
  start-page: 16128
  year: 2016
  ident: 2022042815130039400_koac041-B122
  article-title: Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system
  publication-title: Nat Plants
  doi: 10.1038/nplants.2016.128
– volume: 19
  start-page: 4004
  year: 2000
  ident: 2022042815130039400_koac041-B138
  article-title: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
  publication-title: EMBO J
  doi: 10.1093/emboj/19.15.4004
– volume: 33
  start-page: 1447
  year: 2021
  ident: 2022042815130039400_koac041-B265
  article-title: Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab069
– volume: 411
  start-page: 826
  year: 2001
  ident: 2022042815130039400_koac041-B63
  article-title: Plant pathogens and integrated defence responses to infection
  publication-title: Nature
  doi: 10.1038/35081161
– volume: 9
  start-page: e1004015
  year: 2013
  ident: 2022042815130039400_koac041-B348
  article-title: Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004015
– volume: 15
  start-page: 258
  year: 1966
  ident: 2022042815130039400_koac041-B263
  article-title: Resistance in tomato to tobacco mosaic virus
  publication-title: Euphytica
  doi: 10.1007/BF00022331
– volume: 31
  start-page: 1069
  year: 2018
  ident: 2022042815130039400_koac041-B206
  article-title: Genetic analysis of victorin sensitivity and identification of a causal nucleotide-binding site leucine-rich repeat gene in Phaseolus vulgaris
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-12-17-0328-R
– volume: 19
  year: 2017
  ident: 2022042815130039400_koac041-B178
  article-title: Receptor-like kinase LYK9 in Pisum sativum L. Is the CERK1-like receptor that controls both plant immunity and AM symbiosis development
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19010008
– volume: 363
  year: 2019
  ident: 2022042815130039400_koac041-B118
  article-title: Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides
  publication-title: Science
  doi: 10.1126/science.aar7486
– volume: 102
  start-page: 688
  year: 2020
  ident: 2022042815130039400_koac041-B405
  article-title: Rpa1 mediates an immune response to avrRpm1Psa and confers resistance against Pseudomonas syringae pv. actinidiae
  publication-title: Plant J
  doi: 10.1111/tpj.14654
– volume: 14
  start-page: 2015
  year: 2021
  ident: 2022042815130039400_koac041-B202
  article-title: An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.08.001
– volume: 18
  start-page: 265
  year: 1999
  ident: 2022042815130039400_koac041-B90
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00265.x
– volume: 141
  start-page: 1597
  year: 1995
  ident: 2022042815130039400_koac041-B11
  article-title: Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus
  publication-title: Genetics
  doi: 10.1093/genetics/141.4.1597
– volume: 139
  start-page: 885
  year: 2005
  ident: 2022042815130039400_koac041-B320
  article-title: Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.062406
– volume: 9
  start-page: 2209
  year: 1997
  ident: 2022042815130039400_koac041-B335
  article-title: Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9
  publication-title: Plant Cell
– volume: 358
  start-page: 1607
  year: 2017
  ident: 2022042815130039400_koac041-B55
  article-title: Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat
  publication-title: Science
  doi: 10.1126/science.aao4810
– volume: 16
  start-page: 755
  year: 2004
  ident: 2022042815130039400_koac041-B74
  article-title: The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.020040
– volume: 7
  year: 2018
  ident: 2022042815130039400_koac041-B273
  article-title: The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity
  publication-title: eLife
  doi: 10.7554/eLife.34902
– volume: 592
  start-page: 110
  year: 2021
  ident: 2022042815130039400_koac041-B247
  article-title: Mutual potentiation of plant immunity by cell-surface and intracellular receptors
  publication-title: Nature
  doi: 10.1038/s41586-021-03315-7
– volume: 11
  start-page: 1155
  year: 1998
  ident: 2022042815130039400_koac041-B267
  article-title: Rapid, Cf-9 - and Avr9-dependent production of active oxygen species in tobacco suspension cultures
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.1998.11.12.1155
– year: 2021
  ident: 2022042815130039400_koac041-B407
  article-title: TIR domains of plant immune receptors are 2’,3'-cAMP/cGMP synthetases mediating cell death
  publication-title: BioRxiv
– volume: 20
  start-page: 504
  year: 2016
  ident: 2022042815130039400_koac041-B182
  article-title: Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.007
– volume: 18
  start-page: 1084
  year: 2006
  ident: 2022042815130039400_koac041-B404
  article-title: The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039198
– volume: 55
  start-page: 257
  year: 2017
  ident: 2022042815130039400_koac041-B36
  article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080614-120106
– volume: 64
  start-page: 114
  year: 2010
  ident: 2022042815130039400_koac041-B117
  article-title: Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis
  publication-title: Plant J
– volume: 184
  start-page: 3358
  year: 2021
  ident: 2022042815130039400_koac041-B249
  article-title: Channeling plant immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.035
– volume: 85
  start-page: 2077
  year: 2004
  ident: 2022042815130039400_koac041-B101
  article-title: The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.80017-0
– volume: 16
  start-page: 1604
  year: 2004
  ident: 2022042815130039400_koac041-B287
  article-title: The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato
  publication-title: Plant Cell
  doi: 10.1105/tpc.022475
– volume: 15
  start-page: e1008313
  year: 2019
  ident: 2022042815130039400_koac041-B21
  article-title: RPW8/HR repeats control NLR activation in Arabidopsis thaliana
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008313
– volume: 17
  start-page: 98
  year: 2016
  ident: 2022042815130039400_koac041-B237
  article-title: Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0955-7
– volume: 49
  start-page: 1265
  year: 2006
  ident: 2022042815130039400_koac041-B203
  article-title: The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
  publication-title: Genome
  doi: 10.1139/g06-088
– volume: 109
  start-page: 19852
  year: 2012
  ident: 2022042815130039400_koac041-B220
  article-title: Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1205448109
– volume: 15
  start-page: 329
  year: 2014
  ident: 2022042815130039400_koac041-B183
  article-title: The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.02.009
– volume: 4
  start-page: 17
  year: 2008
  ident: 2022042815130039400_koac041-B309
  article-title: Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.05.017
– volume: 415
  start-page: 977
  year: 2002
  ident: 2022042815130039400_koac041-B10
  article-title: MAP kinase signalling cascade in Arabidopsis innate immunity
  publication-title: Nature
  doi: 10.1038/415977a
– volume: 22
  start-page: 411
  year: 2009
  ident: 2022042815130039400_koac041-B185
  article-title: The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-22-4-0411
– volume: 28
  start-page: 365
  year: 2010
  ident: 2022042815130039400_koac041-B167
  article-title: Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1613
– volume: 24
  start-page: 3406
  year: 2012
  ident: 2022042815130039400_koac041-B197
  article-title: Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.102475
– year: 2021
  ident: 2022042815130039400_koac041-B282
  article-title: Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3
  publication-title: BioRxiv
– volume: 14
  start-page: 365
  year: 1998
  ident: 2022042815130039400_koac041-B345
  article-title: Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox)
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1998.00136.x
– volume: 110
  start-page: 10010
  year: 2013
  ident: 2022042815130039400_koac041-B191
  article-title: Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1220015110
– volume: 112
  start-page: 379
  year: 2003
  ident: 2022042815130039400_koac041-B223
  article-title: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00040-0
– volume: 20
  start-page: 697
  year: 2008
  ident: 2022042815130039400_koac041-B350
  article-title: The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056978
– volume: 38
  start-page: 285
  year: 2004
  ident: 2022042815130039400_koac041-B255
  article-title: Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02047.x
– volume: 113
  start-page: 3389
  year: 2016
  ident: 2022042815130039400_koac041-B298
  article-title: NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1511847113
– volume: 364
  start-page: 178
  year: 2019
  ident: 2022042815130039400_koac041-B165
  article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants
  publication-title: Science
  doi: 10.1126/science.aau1279
– volume: 19
  start-page: 477
  year: 2019
  ident: 2022042815130039400_koac041-B328
  article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0165-0
– volume: 32
  start-page: 550
  year: 2019
  ident: 2022042815130039400_koac041-B45
  article-title: Convergent evolution of effector protease recognition by arabidopsis and barley
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-07-18-0202-FI
– volume: 12
  start-page: 3335
  year: 2021
  ident: 2022042815130039400_koac041-B326
  article-title: Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23614-x
– volume: 332
  start-page: 1439
  year: 2011
  ident: 2022042815130039400_koac041-B207
  article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity
  publication-title: Science
  doi: 10.1126/science.1204903
– volume: 1
  start-page: 175
  year: 2007
  ident: 2022042815130039400_koac041-B412
  article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.03.006
– volume: 113
  start-page: 12850
  year: 2016
  ident: 2022042815130039400_koac041-B423
  article-title: Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1614862113
– volume: 373
  start-page: 420
  year: 2021
  ident: 2022042815130039400_koac041-B136
  article-title: Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels
  publication-title: Science
  doi: 10.1126/science.abg7917
– volume: 12
  start-page: 6915
  year: 2021
  ident: 2022042815130039400_koac041-B26
  article-title: The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27288-3
– volume: 164
  start-page: 352
  year: 2014
  ident: 2022042815130039400_koac041-B414
  article-title: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.230698
– volume: 184
  year: 2021
  ident: 2022042815130039400_koac041-B27
  article-title: The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.003
– year: 2018
  ident: 2022042815130039400_koac041-B39
  article-title: NRG1-mediated recognition of HopQ1 reveals a link between PAMP and Effector-triggered Immunity
  publication-title: BioRxiv doi: 10.1101/293050
– volume: 95
  start-page: 9750
  year: 1998
  ident: 2022042815130039400_koac041-B288
  article-title: The nematode resistance gene Mi of tomato confers resistance against the potato aphid
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.17.9750
– volume: 150
  start-page: 1723
  year: 2009
  ident: 2022042815130039400_koac041-B158
  article-title: Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.139238
– year: 2020
  ident: 2022042815130039400_koac041-B75
  article-title: ELR is a true pattern recognition receptor that associates with elicitins from diverse Phytophthora species
  publication-title: BioRxiv doi: 10.1101/2020.09.21.305813
– volume: 111
  start-page: 591
  year: 2005
  ident: 2022042815130039400_koac041-B256
  article-title: Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-2050-4
– volume: 117
  start-page: 18832
  year: 2020
  ident: 2022042815130039400_koac041-B81
  article-title: Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2001185117
– volume: 112
  start-page: 369
  year: 2003
  ident: 2022042815130039400_koac041-B15
  article-title: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00036-9
– volume: 8
  start-page: e1002502
  year: 2012
  ident: 2022042815130039400_koac041-B105
  article-title: Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002502
– volume: 92
  start-page: 622
  year: 1995
  ident: 2022042815130039400_koac041-B150
  article-title: An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.2.622
– volume: 4
  start-page: 152
  year: 2018
  ident: 2022042815130039400_koac041-B372
  article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0106-0
– volume: 209
  start-page: 498
  year: 1995
  ident: 2022042815130039400_koac041-B25
  article-title: The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein
  publication-title: Virology
  doi: 10.1006/viro.1995.1282
– volume: 51
  start-page: 245
  year: 2013
  ident: 2022042815130039400_koac041-B229
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-082712-102314
– volume: 7
  start-page: 290
  year: 2010
  ident: 2022042815130039400_koac041-B413
  article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.03.007
– volume: 266
  start-page: 789
  year: 1994
  ident: 2022042815130039400_koac041-B142
  article-title: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging
  publication-title: Science
  doi: 10.1126/science.7973631
– volume: 370
  start-page: eabd9993
  year: 2020
  ident: 2022042815130039400_koac041-B225
  article-title: Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ
  publication-title: Science
  doi: 10.1126/science.abd9993
– volume: 18
  start-page: 1918
  year: 2008
  ident: 2022042815130039400_koac041-B240
  article-title: Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster
  publication-title: Genome Res
  doi: 10.1101/gr.078766.108
– volume: 572
  start-page: 131
  year: 2019
  ident: 2022042815130039400_koac041-B342
  article-title: A calmodulin-gated calcium channel links pathogen patterns to plant immunity
  publication-title: Nature
  doi: 10.1038/s41586-019-1413-y
– volume: 30
  start-page: 1543
  year: 2018
  ident: 2022042815130039400_koac041-B28
  article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00981
– volume: 98
  start-page: 741
  year: 2001
  ident: 2022042815130039400_koac041-B430
  article-title: Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.741
– volume: 2
  start-page: e1600822
  year: 2016
  ident: 2022042815130039400_koac041-B311
  article-title: The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1600822
– volume: 16
  start-page: e2004122
  year: 2018
  ident: 2022042815130039400_koac041-B323
  article-title: Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2004122
– volume: 14
  start-page: 619
  year: 2013
  ident: 2022042815130039400_koac041-B361
  article-title: Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.11.006
– volume: 17
  start-page: 771
  year: 2004
  ident: 2022042815130039400_koac041-B422
  article-title: The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.2004.17.7.771
– volume: 25
  start-page: 2330
  year: 2013
  ident: 2022042815130039400_koac041-B137
  article-title: The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.110833
– volume: 117
  start-page: 27044
  year: 2020
  ident: 2022042815130039400_koac041-B390
  article-title: Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1915339117
– volume: 9
  start-page: e1003313
  year: 2013
  ident: 2022042815130039400_koac041-B43
  article-title: Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003313
– volume: 129
  start-page: 1785
  year: 2016
  ident: 2022042815130039400_koac041-B360
  article-title: The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2740-0
– volume: 78
  start-page: 1101
  year: 1994
  ident: 2022042815130039400_koac041-B380
  article-title: The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90283-6
– volume: 3
  start-page: 17115
  year: 2017
  ident: 2022042815130039400_koac041-B421
  article-title: Mechanism of host substrate acetylation by a YopJ family effector
  publication-title: Nat Plants
  doi: 10.1038/nplants.2017.115
– volume: 135
  start-page: 1113
  year: 2004
  ident: 2022042815130039400_koac041-B244
  article-title: The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.036749
– volume: 25
  start-page: 4227
  year: 2013
  ident: 2022042815130039400_koac041-B416
  article-title: Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117010
– volume: 200
  start-page: 158
  year: 2013
  ident: 2022042815130039400_koac041-B127
  article-title: Nucleocytoplasmic partitioning of tobacco N receptor is modulated by SGT1
  publication-title: New Phytol
  doi: 10.1111/nph.12347
– volume: 56
  start-page: 1472
  year: 2015
  ident: 2022042815130039400_koac041-B148
  article-title: Regulation of the NADPH oxidase RBOHD during plant immunity
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcv063
– volume: 9
  start-page: e98067
  year: 2014
  ident: 2022042815130039400_koac041-B411
  article-title: Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098067
– volume: 18
  start-page: 491
  year: 2006
  ident: 2022042815130039400_koac041-B230
  article-title: Elicitor-mediated oligomerization of the tobacco N disease resistance protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.037234
– volume: 58
  start-page: 970
  year: 2009
  ident: 2022042815130039400_koac041-B131
  article-title: The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03838.x
– volume: 5
  start-page: 606
  year: 2014
  ident: 2022042815130039400_koac041-B51
  article-title: A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00606
– volume: 6
  start-page: 10159
  year: 2015
  ident: 2022042815130039400_koac041-B325
  article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity
  publication-title: Nat Commun
  doi: 10.1038/ncomms10159
– year: 2021
  ident: 2022042815130039400_koac041-B266
  article-title: The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple
  publication-title: BioRxiv
– volume: 572
  start-page: 270
  year: 2019
  ident: 2022042815130039400_koac041-B397
  article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex
  publication-title: Nature
  doi: 10.1038/s41586-019-1409-7
– volume: 21
  start-page: 1502
  year: 2020
  ident: 2022042815130039400_koac041-B196
  article-title: Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq)
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12987
– volume: 24
  start-page: 108
  year: 2011
  ident: 2022042815130039400_koac041-B343
  article-title: Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-06-10-0127
– volume: 5
  start-page: 168
  year: 2014
  ident: 2022042815130039400_koac041-B359
  article-title: Callose-mediated resistance to pathogenic intruders in plant defense-related papillae
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00168
– volume: 12
  start-page: 803
  year: 2000
  ident: 2022042815130039400_koac041-B285
  article-title: Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.5.803
– volume: 18
  start-page: 292
  year: 2017
  ident: 2022042815130039400_koac041-B419
  article-title: The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3
  publication-title: EMBO Rep
  doi: 10.15252/embr.201642704
– volume: 22
  start-page: 630
  year: 2009
  ident: 2022042815130039400_koac041-B204
  article-title: Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-22-6-0630
– volume: 15
  start-page: 968
  year: 2005
  ident: 2022042815130039400_koac041-B259
  article-title: NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.04.053
– volume: 10
  start-page: 1021
  year: 1998
  ident: 2022042815130039400_koac041-B425
  article-title: PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.6.1021
– volume: 8
  start-page: 2265
  year: 2017
  ident: 2022042815130039400_koac041-B54
  article-title: Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02340-3
– volume: 10
  year: 2019
  ident: 2022042815130039400_koac041-B107
  article-title: The Arabidopsis lectin receptor kinase LecRK-I.8 is involved in insect egg perception
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00623
– volume: 23
  start-page: 441
  year: 2000
  ident: 2022042815130039400_koac041-B108
  article-title: The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00804.x
– volume: 84
  start-page: 451
  year: 1996
  ident: 2022042815130039400_koac041-B72
  article-title: The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81290-8
– volume: 339
  start-page: 102
  year: 2013
  ident: 2022042815130039400_koac041-B317
  article-title: Homologous recombination causes the spontaneous deletion of AVR-Pia in Magnaporthe oryzae
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/1574-6968.12058
– volume: 153
  start-page: 1425
  year: 2010
  ident: 2022042815130039400_koac041-B188
  article-title: Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.156240
– volume: 221
  start-page: 2080
  year: 2019
  ident: 2022042815130039400_koac041-B365
  article-title: Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences
  publication-title: New Phytol
  doi: 10.1111/nph.15497
– volume: 8
  start-page: e44471
  year: 2019
  ident: 2022042815130039400_koac041-B297
  article-title: Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism
  publication-title: eLife
  doi: 10.7554/eLife.44471
– volume: 107
  start-page: 9909
  year: 2010
  ident: 2022042815130039400_koac041-B33
  article-title: Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914408107
– volume: 485
  start-page: 114
  year: 2012
  ident: 2022042815130039400_koac041-B91
  article-title: A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases
  publication-title: Nature
  doi: 10.1038/nature10962
– volume: 145
  start-page: 1577
  year: 2007
  ident: 2022042815130039400_koac041-B417
  article-title: Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.108720
– volume: 553
  start-page: 342
  year: 2018
  ident: 2022042815130039400_koac041-B315
  article-title: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases
  publication-title: Nature
  doi: 10.1038/nature25184
– volume: 26
  start-page: 895
  year: 2007
  ident: 2022042815130039400_koac041-B56
  article-title: CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-007-0304-0
– volume: 20
  start-page: 73
  year: 2020
  ident: 2022042815130039400_koac041-B376
  article-title: The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-020-2285-x
– volume: 30
  start-page: 2779
  year: 2018
  ident: 2022042815130039400_koac041-B428
  article-title: Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00297
– volume: 15
  start-page: 802
  year: 2014
  ident: 2022042815130039400_koac041-B261
  article-title: The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12142
– volume: 13
  start-page: e1006284
  year: 2017
  ident: 2022042815130039400_koac041-B228
  article-title: Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006284
– volume: 42
  start-page: 637
  year: 2019
  ident: 2022042815130039400_koac041-B358
  article-title: Pi5 and pii paired nlrs are functionally exchangeable and confer similar disease resistance specificity
  publication-title: Mol Cells
– volume: 19
  start-page: 1682
  year: 2007
  ident: 2022042815130039400_koac041-B332
  article-title: Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050880
– volume: 19
  start-page: 204
  year: 2019
  ident: 2022042815130039400_koac041-B181
  article-title: Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-019-1817-8
– volume: 72
  start-page: 894
  year: 2012
  ident: 2022042815130039400_koac041-B152
  article-title: Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05110.x
– volume: 16
  start-page: 309
  year: 2004
  ident: 2022042815130039400_koac041-B12
  article-title: Convergent evolution of disease resistance gene specificity in two flowering plant families
  publication-title: Plant Cell
  doi: 10.1105/tpc.016725
– volume: 24
  start-page: 183
  year: 2011
  ident: 2022042815130039400_koac041-B212
  article-title: Callose deposition: a multifaceted plant defense response
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-07-10-0149
– volume: 19
  start-page: 204
  year: 2016
  ident: 2022042815130039400_koac041-B132
  article-title: Plant TRAF proteins regulate NLR immune receptor turnover
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.01.005
– volume: 5
  start-page: 11642
  year: 2015
  ident: 2022042815130039400_koac041-B415
  article-title: Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib
  publication-title: Sci Rep
  doi: 10.1038/srep11642
– volume: 10
  start-page: 13
  year: 1997
  ident: 2022042815130039400_koac041-B151
  article-title: A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato
  publication-title: Mol. Plant Microbe Interact
  doi: 10.1094/MPMI.1997.10.1.13
– volume: 343
  start-page: 1509
  year: 2014
  ident: 2022042815130039400_koac041-B222
  article-title: A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
  publication-title: Science
  doi: 10.1126/science.1248849
– volume: 20
  start-page: 55
  year: 2011
  ident: 2022042815130039400_koac041-B274
  article-title: Functional complementation of rice blast resistance gene Pi-k h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae
  publication-title: J Plant Biochem Biotechnol
  doi: 10.1007/s13562-010-0026-1
– volume: 13
  start-page: 157
  year: 2020
  ident: 2022042815130039400_koac041-B159
  article-title: Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.11.001
– volume: 161
  start-page: 1089
  year: 2015
  ident: 2022042815130039400_koac041-B294
  article-title: A plant immune receptor detects pathogen effectors that target WRKY transcription factors
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.024
– volume: 6
  start-page: e1000970
  year: 2010
  ident: 2022042815130039400_koac041-B99
  article-title: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000970
– volume: 8
  year: 2019
  ident: 2022042815130039400_koac041-B1
  article-title: An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species
  publication-title: eLife
  doi: 10.7554/eLife.49956
– volume: 27
  start-page: 255
  year: 2021
  ident: 2022042815130039400_koac041-B251
  article-title: Plant immune networks
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2021.08.012
– year: 2020
  ident: 2022042815130039400_koac041-B271
  article-title: Arabidopsis cell surface LRR immune receptor signaling through the EDS1-PAD4-ADR1 node
  publication-title: BioRxiv
– volume: 364
  start-page: eaav5870
  year: 2019
  ident: 2022042815130039400_koac041-B369
  article-title: Reconstitution and structure of a plant NLR resistosome conferring immunity
  publication-title: Science
  doi: 10.1126/science.aav5870
– volume: 18
  start-page: 1824
  year: 2008
  ident: 2022042815130039400_koac041-B102
  article-title: Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.10.063
– volume: 365
  start-page: 799
  year: 2019
  ident: 2022042815130039400_koac041-B364
  article-title: TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death
  publication-title: Science
  doi: 10.1126/science.aax1771
– volume: 22
  start-page: 2033
  year: 2010
  ident: 2022042815130039400_koac041-B373
  article-title: A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.075697
– volume: 39
  start-page: e104915
  year: 2020
  ident: 2022042815130039400_koac041-B394
  article-title: Plant E3 ligases SNIPER1 and SNIPER2 broadly regulate the homeostasis of sensor NLR immune receptors
  publication-title: EMBO J
  doi: 10.15252/embj.2020104915
– volume: 7
  start-page: 1267
  year: 2014
  ident: 2022042815130039400_koac041-B133
  article-title: Growth-defense tradeoffs in plants: a balancing act to optimize fitness
  publication-title: Mol Plant
  doi: 10.1093/mp/ssu049
– volume: 24
  start-page: 827
  year: 2011
  ident: 2022042815130039400_koac041-B19
  article-title: Molecular cloning of ATR5(Emoy2) from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-12-10-0278
– volume: 209
  start-page: 307
  year: 2016
  ident: 2022042815130039400_koac041-B299
  article-title: Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon
  publication-title: New Phytol
  doi: 10.1111/nph.13584
– volume: 16
  start-page: 3386
  year: 2004
  ident: 2022042815130039400_koac041-B199
  article-title: Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026609
– year: 2020
  ident: 2022042815130039400_koac041-B67
  article-title: The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 homeostasis and is targeted by a bacterial type-III effector
  publication-title: BioRxiv doi: 10.1101/2020.10.25.354514
– volume: 32
  start-page: 4002
  year: 2020
  ident: 2022042815130039400_koac041-B201
  article-title: Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00499
– volume: 24
  start-page: 859
  year: 2012
  ident: 2022042815130039400_koac041-B314
  article-title: A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.095380
– volume: 11
  start-page: 1838
  year: 2020
  ident: 2022042815130039400_koac041-B177
  article-title: Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15601-5
– volume: 177
  start-page: 82
  year: 2018
  ident: 2022042815130039400_koac041-B98
  article-title: Out of water: the origin and early diversification of plant R-genes
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00185
– volume: 10
  start-page: e0119639
  year: 2015
  ident: 2022042815130039400_koac041-B157
  article-title: RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119639
– volume: 114
  start-page: 8113
  year: 2017
  ident: 2022042815130039400_koac041-B385
  article-title: NLR network mediates immunity to diverse plant pathogens
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1702041114
– volume: 4
  start-page: 699
  year: 2018
  ident: 2022042815130039400_koac041-B76
  article-title: Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0216-8
– volume: 79
  start-page: 124
  year: 2019
  ident: 2022042815130039400_koac041-B246
  article-title: Tomato genotype resistance to whitefly mediated by allelochemicals and Mi gene
  publication-title: Chilean J Agric Res
  doi: 10.4067/S0718-58392019000100124
– volume: 1
  start-page: 15140
  year: 2015
  ident: 2022042815130039400_koac041-B5
  article-title: An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity
  publication-title: Nat Plants
  doi: 10.1038/nplants.2015.140
– volume: 9
  start-page: e1003123
  year: 2013
  ident: 2022042815130039400_koac041-B253
  article-title: The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003123
– volume: 7
  start-page: 579
  year: 2021
  ident: 2022042815130039400_koac041-B30
  article-title: The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity
  publication-title: Nat Plants
  doi: 10.1038/s41477-021-00874-5
– volume: 38
  start-page: 59
  year: 2017
  ident: 2022042815130039400_koac041-B17
  article-title: NLR diversity, helpers and integrated domains: making sense of the NLR IDentity
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2017.04.012
– volume: 153
  start-page: 1098
  year: 2010
  ident: 2022042815130039400_koac041-B40
  article-title: The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.156109
– year: 2020
  ident: 2022042815130039400_koac041-B106
  article-title: The phagocytosis oxidase/Bem1p (PB1) domain-containing protein PB1CP negatively regulates the NADPH oxidase RBOHD in plant immunity
  publication-title: BioRxiv
– volume: 95
  start-page: 874
  year: 1997
  ident: 2022042815130039400_koac041-B354
  article-title: Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220050638
– volume: 229
  start-page: 3453
  year: 2021
  ident: 2022042815130039400_koac041-B61
  article-title: The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor
  publication-title: New Phytol
  doi: 10.1111/nph.17122
– volume: 9
  start-page: e104840
  year: 2014
  ident: 2022042815130039400_koac041-B68
  article-title: The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104840
– volume: 8
  year: 2017
  ident: 2022042815130039400_koac041-B79
  article-title: New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms
  publication-title: Front Plant Sci
– volume: 19
  start-page: 1420
  year: 2006
  ident: 2022042815130039400_koac041-B349
  article-title: Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-19-1420
– volume: 448
  start-page: 497
  year: 2007
  ident: 2022042815130039400_koac041-B59
  article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
  doi: 10.1038/nature05999
– year: 2010
  ident: 2022042815130039400_koac041-B262
– volume: 113
  start-page: E6486
  year: 2016
  ident: 2022042815130039400_koac041-B209
  article-title: Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1612947113
– volume: 12
  start-page: 705
  year: 2021
  ident: 2022042815130039400_koac041-B283
  article-title: Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-20932-y
– volume: 50
  start-page: 14
  year: 2007
  ident: 2022042815130039400_koac041-B95
  article-title: An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03027.x
– volume: 296
  start-page: 744
  year: 2002
  ident: 2022042815130039400_koac041-B164
  article-title: A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis
  publication-title: Science
  doi: 10.1126/science.1069288
– volume: 360
  start-page: 1300
  year: 2018
  ident: 2022042815130039400_koac041-B386
  article-title: Receptor networks underpin plant immunity
  publication-title: Science
  doi: 10.1126/science.aat2623
– volume: 29
  start-page: 49
  year: 2016
  ident: 2022042815130039400_koac041-B155
  article-title: Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2015.10.006
– volume: 10
  start-page: e1004491
  year: 2014
  ident: 2022042815130039400_koac041-B31
  article-title: A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004491
– volume: 78
  start-page: 1089
  year: 1994
  ident: 2022042815130039400_koac041-B232
  article-title: The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90282-8
– volume: 367
  start-page: 763
  year: 2020
  ident: 2022042815130039400_koac041-B168
  article-title: The pan-genome effector-triggered immunity landscape of a host-pathogen interaction
  publication-title: Science
  doi: 10.1126/science.aax4079
– volume: 18
  start-page: 74
  year: 2008
  ident: 2022042815130039400_koac041-B395
  article-title: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.12.020
– volume: 71
  start-page: 2186
  year: 2020
  ident: 2022042815130039400_koac041-B248
  article-title: Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz571
– volume: 169
  start-page: 299
  year: 2015
  ident: 2022042815130039400_koac041-B114
  article-title: Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00659
– volume: 33
  start-page: 1354
  year: 2020
  ident: 2022042815130039400_koac041-B119
  article-title: What are the top 10 unanswered questions in molecular plant-microbe interactions?
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-08-20-0229-CR
– volume: 276
  start-page: 2054
  year: 1997
  ident: 2022042815130039400_koac041-B192
  article-title: Receptor-mediated activation of a MAP kinase in pathogen defense of plants
  publication-title: Science
  doi: 10.1126/science.276.5321.2054
– volume: 21
  start-page: 518
  year: 2017
  ident: 2022042815130039400_koac041-B205
  article-title: Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.03.005
– volume: 84
  start-page: 6074
  year: 1987
  ident: 2022042815130039400_koac041-B292
  article-title: Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.17.6074
– volume: 36
  start-page: 395
  year: 2009
  ident: 2022042815130039400_koac041-B73
  article-title: Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust
  publication-title: Funct Plant Biol
  doi: 10.1071/FP08320
– volume: 598
  start-page: 495
  year: 2021
  ident: 2022042815130039400_koac041-B272
  article-title: The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03829-0
– volume: 70
  start-page: 916
  year: 2012
  ident: 2022042815130039400_koac041-B399
  article-title: The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.04906.x
– volume: 105
  start-page: 1091
  year: 2008
  ident: 2022042815130039400_koac041-B280
  article-title: Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0711215105
– volume: 18
  start-page: 1067
  year: 2006
  ident: 2022042815130039400_koac041-B104
  article-title: The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.040998
– year: 2020
  ident: 2022042815130039400_koac041-B162
  article-title: RefPlantNLR: a comprehensive collection of experimentally validated plant NLRs
  publication-title: BioRxiv
– volume: 26
  start-page: 1271
  year: 2013
  ident: 2022042815130039400_koac041-B161
  article-title: The immunity regulator BAK1 contributes to resistance against diverse RNA viruses
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-06-13-0179-R
– volume: 301
  start-page: 1230
  year: 2003
  ident: 2022042815130039400_koac041-B310
  article-title: Cleavage of Arabidopsis PBS1 by a bacterial type III effector
  publication-title: Science
  doi: 10.1126/science.1085671
– volume: 126
  start-page: 97
  year: 2001
  ident: 2022042815130039400_koac041-B7
  article-title: An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.1.97
– volume: 100
  start-page: 11777
  year: 2003
  ident: 2022042815130039400_koac041-B331
  article-title: HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2033934100
– volume: 23
  start-page: 454
  year: 1998
  ident: 2022042815130039400_koac041-B351
  article-title: Plant disease-resistance proteins and the gene-for-gene concept
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01311-5
– volume: 107
  start-page: 9452
  year: 2010
  ident: 2022042815130039400_koac041-B42
  article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1000675107
– volume: 295
  start-page: 2073
  year: 2002
  ident: 2022042815130039400_koac041-B16
  article-title: The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance
  publication-title: Science
  doi: 10.1126/science.1067554
– volume: 69
  start-page: 267
  year: 2018
  ident: 2022042815130039400_koac041-B189
  article-title: Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042817-040540
– volume: 7
  start-page: e1002159
  year: 2011
  ident: 2022042815130039400_koac041-B400
  article-title: Transportin-SR is required for proper splicing of resistance genes and plant immunity
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002159
– volume: 22
  start-page: 508
  year: 2010
  ident: 2022042815130039400_koac041-B402
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068874
– volume: 8
  start-page: 521
  year: 2015
  ident: 2022042815130039400_koac041-B29
  article-title: Signaling mechanisms in pattern-triggered immunity (PTI)
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.12.022
– volume: 344
  start-page: 299
  year: 2014
  ident: 2022042815130039400_koac041-B381
  article-title: Structural basis for assembly and function of a heterodimeric plant immune receptor
  publication-title: Science
  doi: 10.1126/science.1247357
– volume: 14
  start-page: 405
  year: 2013
  ident: 2022042815130039400_koac041-B65
  article-title: Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus
  publication-title: Mol. Plant Pathol
  doi: 10.1111/mpp.12016
– volume: 24
  start-page: 1132
  year: 2011
  ident: 2022042815130039400_koac041-B179
  article-title: Cloning and characterization of r3b; members of the r3 superfamily of late blight resistance genes show sequence and functional divergence
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-11-10-0276
– volume: 11
  start-page: 1187
  year: 1997
  ident: 2022042815130039400_koac041-B339
  article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1997.11061187.x
– volume: 160
  start-page: 396
  year: 2012
  ident: 2022042815130039400_koac041-B362
  article-title: LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.201699
– volume: 108
  start-page: 19824
  year: 2011
  ident: 2022042815130039400_koac041-B382
  article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1112862108
– volume: 109
  start-page: 5110
  year: 2012
  ident: 2022042815130039400_koac041-B64
  article-title: Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1119623109
– volume: 18
  start-page: e3000783
  year: 2020
  ident: 2022042815130039400_koac041-B291
  article-title: Two unequally redundant “helper” immune receptor families mediate Arabidopsis thaliana intracellular “sensor” immune receptor functions
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3000783
– volume: 17
  start-page: 667
  year: 2016
  ident: 2022042815130039400_koac041-B8
  article-title: Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3011-9
– volume: 56
  start-page: 99
  year: 2020
  ident: 2022042815130039400_koac041-B89
  article-title: Plant NLRs get by with a little help from their friends
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2020.04.006
– volume: 3
  start-page: e2875
  year: 2008
  ident: 2022042815130039400_koac041-B356
  article-title: Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002875
– volume: 105
  start-page: 994
  year: 2021
  ident: 2022042815130039400_koac041-B210
  article-title: Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1
  publication-title: Plant J
  doi: 10.1111/tpj.15082
– volume: 1
  year: 2021
  ident: 2022042815130039400_koac041-B128
  article-title: Phytocytokines function as immunological modulators of plant immunity
  publication-title: Stress Biol
  doi: 10.1007/s44154-021-00009-y
– volume: 99
  start-page: 10865
  year: 2002
  ident: 2022042815130039400_koac041-B258
  article-title: Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.152330599
– volume: 7
  start-page: e1002046
  year: 2011
  ident: 2022042815130039400_koac041-B306
  article-title: Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002046
– volume: 18
  start-page: 2402
  year: 2006
  ident: 2022042815130039400_koac041-B284
  article-title: Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.043307
– volume: 342
  start-page: 624
  year: 2013
  ident: 2022042815130039400_koac041-B327
  article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex
  publication-title: Science
  doi: 10.1126/science.1243825
– volume: 23
  start-page: 49
  year: 2010
  ident: 2022042815130039400_koac041-B48
  article-title: The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-23-1-0049
– volume: 60
  start-page: 218
  year: 2009
  ident: 2022042815130039400_koac041-B242
  article-title: RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03949.x
– volume: 367
  start-page: 384
  year: 1994
  ident: 2022042815130039400_koac041-B145
  article-title: Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene
  publication-title: Nature
  doi: 10.1038/367384a0
– volume: 87
  start-page: 472
  year: 2016
  ident: 2022042815130039400_koac041-B346
  article-title: A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola
  publication-title: Plant J
  doi: 10.1111/tpj.13212
– volume: 24
  start-page: 587
  year: 2019
  ident: 2022042815130039400_koac041-B352
  article-title: Plant immunity: thinking outside and inside the box
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2019.04.009
– year: 2018
  ident: 2022042815130039400_koac041-B124
  article-title: Mechanistic analysis of the SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signaling
  publication-title: BioRxiv
– volume: 6
  start-page: e1001111
  year: 2010
  ident: 2022042815130039400_koac041-B187
  article-title: SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001111
– volume: 31
  start-page: 75
  year: 2017
  ident: 2022042815130039400_koac041-B389
  article-title: The bacterial effector AvrPto targets the regulatory co-receptor SOBIR1 and suppresses defence signalling mediated by the receptor-like protein Cf-4
  publication-title: . Mol Plant Microbe Interact
  doi: 10.1094/MPMI-08-17-0203-FI
– volume: 9
  start-page: e1003127
  year: 2013
  ident: 2022042815130039400_koac041-B97
  article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003127
– volume: 523
  start-page: 308
  year: 2015
  ident: 2022042815130039400_koac041-B154
  article-title: Receptor-mediated exopolysaccharide perception controls bacterial infection
  publication-title: Nature
  doi: 10.1038/nature14611
– volume: 7
  year: 2016
  ident: 2022042815130039400_koac041-B57
  article-title: Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00402
– volume: 561
  start-page: 248
  year: 2018
  ident: 2022042815130039400_koac041-B264
  article-title: Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling
  publication-title: Nature
  doi: 10.1038/s41586-018-0471-x
– volume: 10
  start-page: 1307
  year: 1998
  ident: 2022042815130039400_koac041-B231
  article-title: The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.8.1307
– volume: 125
  start-page: 749
  year: 2006
  ident: 2022042815130039400_koac041-B426
  article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.037
– volume: 8
  start-page: 2033
  year: 1996
  ident: 2022042815130039400_koac041-B257
  article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes
  publication-title: Plant Cell
– volume: 32
  start-page: 1081
  year: 2020
  ident: 2022042815130039400_koac041-B146
  article-title: Pathogen-associated molecular pattern-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during the early defense response
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00631
– volume: 211
  start-page: 1008
  year: 2016
  ident: 2022042815130039400_koac041-B252
  article-title: Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants
  publication-title: New Phytol
  doi: 10.1111/nph.13944
– volume: 109
  start-page: 303
  year: 2012
  ident: 2022042815130039400_koac041-B6
  article-title: Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1109921108
– volume: 11
  start-page: 5299
  year: 2020
  ident: 2022042815130039400_koac041-B121
  article-title: The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19147-4
– volume: 114
  start-page: E8118
  year: 2017
  ident: 2022042815130039400_koac041-B38
  article-title: Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1706795114
– volume: 31
  start-page: 2430
  year: 2019
  ident: 2022042815130039400_koac041-B173
  article-title: A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00118
– volume: 99
  start-page: 517
  year: 2002
  ident: 2022042815130039400_koac041-B344
  article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.012452499
– volume: 53
  start-page: 1373
  year: 2004
  ident: 2022042815130039400_koac041-B281
  article-title: A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04177.x
– volume: 96
  start-page: 3292
  year: 1999
  ident: 2022042815130039400_koac041-B86
  article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.6.3292
– volume: 30
  start-page: 361
  year: 2002
  ident: 2022042815130039400_koac041-B20
  article-title: The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2001.01292.x
– volume: 92
  start-page: 787
  year: 2017
  ident: 2022042815130039400_koac041-B303
  article-title: Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1
  publication-title: Plant J
  doi: 10.1111/tpj.13715
– volume: 23
  start-page: 485
  year: 2018
  ident: 2022042815130039400_koac041-B171
  article-title: The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.03.010
– year: 2010
  ident: 2022042815130039400_koac041-B52
– volume: 578
  start-page: 577
  year: 2020
  ident: 2022042815130039400_koac041-B387
  article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis
  publication-title: Nature
  doi: 10.1038/s41586-020-2032-3
– volume: 22
  start-page: 589
  year: 2009
  ident: 2022042815130039400_koac041-B94
  article-title: Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-22-5-0589
– year: 2013
  ident: 2022042815130039400_koac041-B139
– volume: 8
  year: 2019
  ident: 2022042815130039400_koac041-B200
  article-title: Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure
  publication-title: eLife
  doi: 10.7554/eLife.44474
– volume: 104
  start-page: 19613
  year: 2007
  ident: 2022042815130039400_koac041-B234
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705147104
– volume: 13
  start-page: 915
  year: 2012
  ident: 2022042815130039400_koac041-B235
  article-title: Amino acids in Tobamovirus coat protein controlling pepper L(1a)' ' gene-mediated resistance
  publication-title: Mol Plant Pathol
  doi: 10.1111/j.1364-3703.2012.00801.x
– volume: 30
  start-page: 485
  year: 2012
  ident: 2022042815130039400_koac041-B13
  article-title: Characterization of the rice blast resistance gene Pik cloned from Kanto51
  publication-title: Mol Breeding
  doi: 10.1007/s11032-011-9638-y
– volume: 464
  start-page: 418
  year: 2010
  ident: 2022042815130039400_koac041-B34
  article-title: Differential innate immune signalling via Ca(2+) sensor protein kinases
  publication-title: Nature
  doi: 10.1038/nature08794
– volume: 60
  start-page: 139
  year: 2009
  ident: 2022042815130039400_koac041-B312
  article-title: The HSP90-SGT1 chaperone complex for NLR immune sensors
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092906
– volume: 60
  start-page: 778
  year: 2019
  ident: 2022042815130039400_koac041-B330
  article-title: Disruption of the MAMP-induced MEKK1-MKK1/MKK2-MPK4 pathway activates the TNL immune receptor SMN1/RPS6
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcy243
– volume: 207
  start-page: 106
  year: 2015
  ident: 2022042815130039400_koac041-B49
  article-title: The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease
  publication-title: New Phytol
  doi: 10.1111/nph.13348
– year: 2021
  ident: 2022042815130039400_koac041-B153
  article-title: Pathogen-derived 9-methyl sphingoid base is perceived by a lectin receptor kinase in Arabidopsis
  publication-title: BioRxiv
– volume: 370
  start-page: eabe3069
  year: 2020
  ident: 2022042815130039400_koac041-B216
  article-title: Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme
  publication-title: Science
  doi: 10.1126/science.abe3069
– volume: 585
  start-page: 569
  year: 2020
  ident: 2022042815130039400_koac041-B338
  article-title: The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity
  publication-title: Nature
  doi: 10.1038/s41586-020-2702-1
– volume: 16
  start-page: 2809
  year: 2004
  ident: 2022042815130039400_koac041-B384
  article-title: A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.024141
– volume: 103
  start-page: 10104
  year: 2006
  ident: 2022042815130039400_koac041-B403
  article-title: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603729103
– volume: 106
  start-page: 22163
  year: 2009
  ident: 2022042815130039400_koac041-B77
  article-title: Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0912139106
– volume: 11
  start-page: e1004809
  year: 2015
  ident: 2022042815130039400_koac041-B305
  article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004809
– volume: 68
  start-page: 109
  year: 2017
  ident: 2022042815130039400_koac041-B123
  article-title: The structural basis of ligand perception and signal activation by receptor kinases
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042916-040957
– volume: 10
  start-page: 1915
  year: 1998
  ident: 2022042815130039400_koac041-B71
  article-title: The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.11.1915
– volume: 4
  start-page: 440
  year: 2018
  ident: 2022042815130039400_koac041-B268
  article-title: Oak genome reveals facets of long lifespan
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0172-3
– volume: 20
  start-page: 471
  year: 2008
  ident: 2022042815130039400_koac041-B363
  article-title: A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056754
– volume: 21
  start-page: 502
  year: 2020
  ident: 2022042815130039400_koac041-B184
  article-title: A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12912
– volume: 107
  start-page: 182
  year: 2021
  ident: 2022042815130039400_koac041-B551
  article-title: Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain
  publication-title: Plant J
  doi: 10.1111/tpj.15284
– volume: 444
  start-page: 323
  year: 2006
  ident: 2022042815130039400_koac041-B143
  article-title: The plant immune system
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 177
  start-page: 1679
  year: 2018
  ident: 2022042815130039400_koac041-B275
  article-title: Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling
  publication-title: Plant Physiol
– volume: 11
  start-page: 463
  year: 2020
  ident: 2022042815130039400_koac041-B336
  article-title: The immune receptor Roq1 confers resistance to the bacterial pathogens xanthomonas, Pseudomonas syringae, and ralstonia in tomato
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00463
– volume: 18
  start-page: 465
  year: 2006
  ident: 2022042815130039400_koac041-B58
  article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.036574
– volume: 17
  start-page: 295
  year: 2005
  ident: 2022042815130039400_koac041-B290
  article-title: Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026013
– volume: 77
  start-page: 235
  year: 2014
  ident: 2022042815130039400_koac041-B424
  article-title: The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1
  publication-title: Plant J
  doi: 10.1111/tpj.12381
– volume: 95
  start-page: 7433
  year: 1998
  ident: 2022042815130039400_koac041-B431
  article-title: Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.13.7433
– volume: 358
  start-page: 1604
  year: 2017
  ident: 2022042815130039400_koac041-B293
  article-title: Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99
  publication-title: Science
  doi: 10.1126/science.aao7294
– volume: 11
  start-page: 498
  year: 1998
  ident: 2022042815130039400_koac041-B377
  article-title: Tm-2(2) resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.1998.11.6.498
– volume: 156
  start-page: 779
  year: 2011
  ident: 2022042815130039400_koac041-B60
  article-title: The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.176230
– year: 2021
  ident: 2022042815130039400_koac041-B3
  article-title: An atypical NLR protein modulates the NRC immune receptor network
  publication-title: BioRxiv doi: 10.1101/2021.11.15.468391
– volume: 258
  start-page: 985
  year: 1992
  ident: 2022042815130039400_koac041-B140
  article-title: Reductase activity encoded by the HM1 disease resistance gene in maize
  publication-title: Science
  doi: 10.1126/science.1359642
– volume: 114
  start-page: 961
  year: 2007
  ident: 2022042815130039400_koac041-B241
  article-title: Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0481-1
– year: 2020
  ident: 2022042815130039400_koac041-B340
  article-title: Activation of TIR signaling is required for pattern-triggered immunity
  publication-title: BioRxiv doi: 10.1101/2020.12.27.424494
– volume: 13
  start-page: 144
  year: 2020
  ident: 2022042815130039400_koac041-B324
  article-title: Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.10.016
– volume: 587
  start-page: 92
  year: 2020
  ident: 2022042815130039400_koac041-B172
  article-title: Quinone perception in plants via leucine-rich-repeat receptor-like kinases
  publication-title: Nature
  doi: 10.1038/s41586-020-2655-4
– year: 2021
  ident: 2022042815130039400_koac041-B279
  article-title: The Arabidopsis WRR4A and WRR4B paralogous NLR proteins both confer recognition of multiple Albugo candida effectors
  publication-title: BioRxiv doi: 10.1101/2021.03.29.436918
– volume: 20
  start-page: 5400
  year: 2001
  ident: 2022042815130039400_koac041-B92
  article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4
  publication-title: EMBO J
  doi: 10.1093/emboj/20.19.5400
– volume: 18
  start-page: 158
  year: 2005
  ident: 2022042815130039400_koac041-B316
  article-title: Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-18-0158
– volume: 2
  start-page: 197
  year: 2009
  ident: 2022042815130039400_koac041-B333
  article-title: TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-2-197
– volume: 116
  start-page: 496
  year: 2019
  ident: 2022042815130039400_koac041-B134
  article-title: Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1807297116
– volume: 23
  start-page: 4
  year: 2011
  ident: 2022042815130039400_koac041-B337
  article-title: Of PAMPs and effectors: the blurred PTI-ETI dichotomy
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.082602
– volume: 59
  start-page: 234
  year: 2017
  ident: 2022042815130039400_koac041-B198
  article-title: BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12529
– volume: 364
  start-page: eaav5868
  year: 2019
  ident: 2022042815130039400_koac041-B370
  article-title: Ligand-triggered allosteric ADP release primes a plant NLR complex
  publication-title: Science
  doi: 10.1126/science.aav5868
– volume: 49
  start-page: 507
  year: 2011
  ident: 2022042815130039400_koac041-B357
  article-title: Understanding and exploiting late blight resistance in the age of effectors
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-072910-095326
– volume: 19
  start-page: 1267
  year: 2018
  ident: 2022042815130039400_koac041-B170
  article-title: Transcript-level expression control of plant NLR genes
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12607
– volume: 16
  start-page: 605
  year: 2014
  ident: 2022042815130039400_koac041-B236
  article-title: The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.10.007
– volume: 10
  start-page: 2292
  year: 2019
  ident: 2022042815130039400_koac041-B35
  article-title: The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10274-1
– volume: 185
  start-page: 240
  year: 2021
  ident: 2022042815130039400_koac041-B112
  article-title: Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1
  publication-title: Plant Physiol
– volume: 11
  start-page: 273
  year: 1999
  ident: 2022042815130039400_koac041-B286
  article-title: Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses
  publication-title: Plant Cell
– volume: 16
  start-page: e1008933
  year: 2020
  ident: 2022042815130039400_koac041-B408
  article-title: A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008933
– volume: 56
  start-page: 1616
  year: 2015
  ident: 2022042815130039400_koac041-B141
  article-title: The chromatin remodeler SPLAYED negatively regulates SNC1-mediated immunity
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcv087
– volume: 32
  start-page: 2158
  year: 2020
  ident: 2022042815130039400_koac041-B18
  article-title: Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00903
– volume: 9
  start-page: e110158
  year: 2014
  ident: 2022042815130039400_koac041-B53
  article-title: Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110158
– volume: 3
  start-page: 88
  year: 2012
  ident: 2022042815130039400_koac041-B160
  article-title: The cell wall-associated kinases, WAKs, as pectin receptors
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2012.00088
– volume: 89
  start-page: 105
  year: 2018
  ident: 2022042815130039400_koac041-B4
  article-title: Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato
  publication-title: Stud Mycol
  doi: 10.1016/j.simyco.2018.01.002
– volume: 95
  start-page: 1663
  year: 1998
  ident: 2022042815130039400_koac041-B406
  article-title: Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.4.1663
– volume: 132
  start-page: 530
  year: 2003
  ident: 2022042815130039400_koac041-B313
  article-title: Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.021964
SSID ssj0001719
Score 2.7392547
SecondaryResourceType review_article
Snippet Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1447
SubjectTerms Crops, Agricultural - metabolism
Focus on Plant Biotic Interactions
Immunity, Innate - genetics
Plant Diseases - genetics
Plant Immunity - genetics
Receptors, Pattern Recognition - genetics
Receptors, Pattern Recognition - metabolism
Signal Transduction - genetics
Title Thirty years of resistance: Zig-zag through the plant immune system
URI https://www.ncbi.nlm.nih.gov/pubmed/35167697
https://www.proquest.com/docview/2629386157
https://pubmed.ncbi.nlm.nih.gov/PMC9048904
https://academic.oup.com/plcell/article-pdf/34/5/1447/43463248/koac041.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: DIK
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLVK58CgUlkdlJCS4eJONnTjhVlZUFUgVSF1p4RI5frSrjZKozQptfz3jxolYKgQHDlEOnjjxeGx_E4-_AXiTWjnVshA0LBSn3GG4QtiQxlYrwURmC3sTIHuanMz5p0W88PFP7iyM9FHhk_5IQ1O6P9iB1yNttA0YD-IAHQERcMYd3XgarGqpQo6zjrY7sJu4zaYR7M5Pvxx96-gIQuqSfnfkqRGNsnQxMDiy_h2-ku0V6hbsvB09ubeuGrn5Icvyl6Xp-AGs-kZ1ESmrybotJur6N77H_9Pqh3DfI1hy1D30CO6Yah_ufqgRZW72YW_WZ5B7DLOzi-VluyEbHE1XpLYEXXsHV9HO3pPvy3N6Lc-JTxSEd0OaEvuZLN2RFUM6juknMD_-eDY7oT5pA1WIxVoq0MHiscZpQKZZonnINYsYL9Kp1UKHTBaxI8xBt1Fpy6RKjEkzowqTCW1CtI8DGFV1ZZ4BUVqpxKVnD5XhQprMMhEnzKZCO9g4HQPtOypXntHcJdYo825nneWdGnOvpzG8HeSbjsvjj5Kv-37PUWeuSFamXl_lUYL4KEUYKMbwtLODoS4WT13AMJaILQsZBByV93ZJtby4ofTOcCLFawzvBlv6yyc-_3fRF3Avcoc2Qk6j5CWM2su1eYVQqi0OYefz1_TQj5Sfn80hpw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3BFqlcKBQKSwsyEhJcvMnGTpxwKyuqikPFoSstXCLHH-1qoyRqs0LbX8-4cSKWCpUDhygHT5x4PLbfxOM3AO9TK6daFoKGheKUOwxXCBvS2GolmMhsYW8DZM-S0zn_uogXPv7JnYWRPip80h9paEr3BzvweqSNtgHjQRygIyACzrijG0-DVS1VyHHW0fYh7CRus2kEO_Ozb8ffOzqCkLqk3x15akSjLF0MDI6sf4evZHuFugM770ZP7q6rRm5-yrL8bWk62YNV36guImU1WbfFRN38wff4f1r9FJ54BEuOu4eewQNT7cOjzzWizM0-7M76DHLPYXZ-ubxqN2SDo-ma1Jaga-_gKtrZJ_JjeUFv5AXxiYLwbkhTYj-TpTuyYkjHMf0C5idfzmen1CdtoAqxWEsFOlg81jgNyDRLNA-5ZhHjRTq1WuiQySJ2hDnoNiptmVSJMWlmVGEyoU2I9nEAo6quzCsgSiuVuPTsoTJcSJNZJuKE2VRoBxunY6B9R-XKM5q7xBpl3u2ss7xTY-71NIYPg3zTcXn8VfJd3-856swVycrU6-s8ShAfpQgDxRhednYw1MXiqQsYxhKxZSGDgKPy3i6plpe3lN4ZTqR4jeHjYEv3fOLrfxc9hMeRO7QRcholRzBqr9bmDUKptnjrx8gv248gsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thirty+years+of+resistance%3A+Zig-zag+through+the+plant+immune+system&rft.jtitle=The+Plant+cell&rft.au=Ngou%2C+Bruno+Pok+Man&rft.au=Ding%2C+Pingtao&rft.au=Jones%2C+Jonathan+D+G&rft.date=2022-04-26&rft.pub=Oxford+University+Press&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=34&rft.issue=5&rft.spage=1447&rft.epage=1478&rft_id=info:doi/10.1093%2Fplcell%2Fkoac041&rft_id=info%3Apmid%2F35167697&rft.externalDocID=PMC9048904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon