Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids
Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructur...
Saved in:
Published in | Electrochimica acta Vol. 258; no. C; pp. 274 - 283 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.12.2017
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0013-4686 1873-3859 |
DOI | 10.1016/j.electacta.2017.10.198 |
Cover
Abstract | Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g−1 discharge capacity at the first cycle, 580 mA h g−1 after 40 cycles, and 350 mA h g−1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated. |
---|---|
AbstractList | Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g-1 discharge capacity at the first cycle, 580 mA h g-1 after 40 cycles, and 350 mA h g-1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated. Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g−1 discharge capacity at the first cycle, 580 mA h g−1 after 40 cycles, and 350 mA h g−1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated. Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of similar to 1800 mA h g(-1) discharge capacity at the first cycle, 580 mA h g(-1) after 40 cycles, and 350 mA h g(-1) after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated. (c) 2017 Elsevier Ltd. All rights reserved. |
Author | Liu, Yuzi Emani, Satyanarayana Ashuri, Maziar He, Qianran Shaw, Leon L. |
Author_xml | – sequence: 1 givenname: Maziar surname: Ashuri fullname: Ashuri, Maziar organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA – sequence: 2 givenname: Qianran surname: He fullname: He, Qianran organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA – sequence: 3 givenname: Yuzi surname: Liu fullname: Liu, Yuzi organization: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA – sequence: 4 givenname: Satyanarayana surname: Emani fullname: Emani, Satyanarayana organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA – sequence: 5 givenname: Leon L. surname: Shaw fullname: Shaw, Leon L. email: lshaw2@iit.edu organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA |
BackLink | https://www.osti.gov/biblio/1461345$$D View this record in Osti.gov |
BookMark | eNqNUU1r3DAUFCWBbj5-Q0Vz9kayLMk-5BBC-gGBHpKchSw9x1q8kivJCfn3kbOlh15SeCDBmxlm3pygIx88IPSFki0lVFzutjCBybrMtiZUbtdF135CG9pKVrGWd0doQwhlVSNa8RmdpLQjhEghyQYt968-j5BcwtpbPEMcQtxrbwCHAXvtQ8pxMXmJYHFykzPBXz5FPY8uAzZhP4dUfgm_uDxijfPoPDY69sHjNMI0vcuCf3IeYNV4Ds6mM3Q86CnB-Z_3FD1-u324-VHd_fr-8-b6rjINF7nimlpZy4E1rdFUatKVMYaJru2B6B4s9MJI2_CBUU41tKznddcN1hheQ8NO0deDbknhVDLFqRlLAl8OpmgjKGt4AV0cQHMMvxdIWe3CEn3xpco9ac0bItqCkgeUiSGlCIOao9vr-KooUWsRaqf-FrES5fuiW5lX_zCLD51d8DlqN_0H__rAh3KpZwdxDQKlIevimsMG96HGG7_nryU |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_2c03506 crossref_primary_10_3390_en14144223 crossref_primary_10_1149_2_0051902jes crossref_primary_10_1007_s13204_018_0863_0 crossref_primary_10_1002_celc_201902098 crossref_primary_10_1016_j_compstruct_2023_117507 crossref_primary_10_1016_j_nanoms_2019_11_004 crossref_primary_10_20964_2019_06_22 crossref_primary_10_1007_s11814_021_0813_5 crossref_primary_10_1016_j_diamond_2021_108421 crossref_primary_10_1002_chem_202000953 crossref_primary_10_1002_cssc_201903155 crossref_primary_10_1016_j_ensm_2020_11_028 crossref_primary_10_1002_cssc_202101837 crossref_primary_10_1016_j_electacta_2018_11_201 crossref_primary_10_1039_D3IM00115F crossref_primary_10_1002_smtd_202300345 crossref_primary_10_1016_j_electacta_2019_04_170 crossref_primary_10_1021_acsaem_1c03186 crossref_primary_10_1016_j_electacta_2018_11_009 crossref_primary_10_1149_1945_7111_ac91ad crossref_primary_10_1002_smll_202301744 crossref_primary_10_1016_j_ceramint_2019_10_029 crossref_primary_10_1002_chem_202100842 crossref_primary_10_1002_cey2_2 crossref_primary_10_1021_acs_energyfuels_0c02948 crossref_primary_10_1016_j_matchemphys_2018_11_066 crossref_primary_10_1080_10408436_2023_2169658 crossref_primary_10_1002_cssc_202102675 crossref_primary_10_1016_j_jelechem_2020_114738 crossref_primary_10_1007_s11581_019_03224_w crossref_primary_10_1016_j_jelechem_2023_117427 crossref_primary_10_1021_acsami_2c16978 |
Cites_doi | 10.1007/BF02644161 10.1039/C5NR05116A 10.1016/j.electacta.2016.08.059 10.1038/nnano.2007.411 10.1016/j.jpowsour.2007.06.026 10.1016/j.jpowsour.2015.02.020 10.1149/1.2402112 10.1021/nl201470j 10.1016/S0965-9773(96)00058-X 10.1021/nl3014814 10.1002/aenm.201300882 10.1146/annurev.ms.13.080183.001431 10.1007/s11467-013-0408-7 10.1039/C4CC01728E 10.1016/j.carbon.2014.01.027 10.1016/j.nanoen.2014.04.006 10.1016/j.jpowsour.2014.12.041 10.1016/j.electacta.2013.10.195 10.1038/srep02700 10.1039/C4TA04103H 10.1016/j.electacta.2012.10.008 10.1016/j.electacta.2014.08.103 10.1246/cl.2001.1186 10.1038/nnano.2012.35 10.1016/j.jpowsour.2014.05.096 10.1021/am402930b 10.1016/j.jpowsour.2005.03.112 10.1111/j.1151-2916.2002.tb00178.x 10.1039/C3TA14100D 10.1016/j.electacta.2015.02.219 10.1016/S0378-7753(02)00533-5 10.1016/j.jpowsour.2005.05.052 10.1016/j.jelechem.2014.05.031 10.1016/S0013-4686(03)00030-6 10.1149/1.1518988 10.1038/nnano.2014.6 10.1039/C4RA01871K 10.1016/j.electacta.2015.02.224 10.1039/b925696b 10.1039/C4CC09825K 10.1002/aenm.201200857 10.1016/j.jpowsour.2005.03.143 10.1002/anie.200906287 10.1016/j.jallcom.2013.10.160 10.1016/j.jpowsour.2004.05.012 10.1016/j.jpowsour.2015.01.122 10.1016/j.jpowsour.2005.12.078 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Dec 20, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Dec 20, 2017 |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1016/j.electacta.2017.10.198 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 283 |
ExternalDocumentID | 1461345 10_1016_j_electacta_2017_10_198 S0013468617323447 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH AALMO ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-c456t-5a1d727f348ca17a09a09cc3698be0abedeb6c7d45f3151ae83b5299fdcc52e43 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri May 19 00:38:11 EDT 2023 Mon Jul 14 10:03:34 EDT 2025 Wed Oct 01 05:26:02 EDT 2025 Thu Apr 24 22:56:19 EDT 2025 Fri Feb 23 02:17:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Lithium-ion battery Silicon Anode High-energy ball mill |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-5a1d727f348ca17a09a09cc3698be0abedeb6c7d45f3151ae83b5299fdcc52e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) AC02-06CH11357 National Science Foundation (NSF) |
OpenAccessLink | https://www.osti.gov/biblio/1576857 |
PQID | 2011254068 |
PQPubID | 2045485 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1461345 proquest_journals_2011254068 crossref_primary_10_1016_j_electacta_2017_10_198 crossref_citationtrail_10_1016_j_electacta_2017_10_198 elsevier_sciencedirect_doi_10_1016_j_electacta_2017_10_198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-20 |
PublicationDateYYYYMMDD | 2017-12-20 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: United States |
PublicationTitle | Electrochimica acta |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Kim, Pfleging, Kohler, Seifert, Kim, Byun, Jung, Choi, Lee (bib33) 2015; 279 Liu, Li, Pasta, Cui (bib2) 2014; 9 Yang, Shaw (bib36) 1996; 7 Zhou, Tang, Yang, Xie, Ma (bib9) 2013; 87 Dimov, Kugino, Yoshio (bib17) 2004; 136 Zhang, Hou, Wang, Li, Hu, Shao, Liu (bib27) 2014; 588 Hong, Park, Lee, Lee, Hwang, Ryu (bib38) 2013; 3 Kim, Seo, Park, Cho (bib41) 2010; 49 Yoshio, Tsumura, Dimov (bib20) 2006; 163 Obrovac, Krause (bib40) 2007; 154 Su, Wang, Guo, Li, Huang, Xiao, Gan (bib25) 2014; 116 Li, Wu, Chou, Wu (bib29) 2015; 51 Yoshio, Kugino, Dimov (bib19) 2006; 153 Yi, Zai, Dai, Gordin, Wang (bib26) 2014; 6 Shao, Shu, Wu, Lin, Li, Shui, Wang, Long, Ren (bib28) 2014; 727 Liu, Lu, Zhao, McDowell, Lee, Zhao, Cui (bib45) 2014; 9 Zhang, Gu, Kaskhedikar, Cui, Maier (bib7) 2013; 5 Froes, DeBarbadillo (bib49) 1990 Mori, Chen, Hung, Mohamed, Lin, Lin, Sung, Hu, Liu (bib22) 2015; 165 Song, Chen, Zhou, Xu, Lv, Gordin, Long, Melnyk, Wang (bib11) 2014; 2 Gilman, Benjamin (bib47) 1983; 13 Sun, Song, Zhang, Gao (bib42) 2014; 4 Zhang, Jiang, Li, Li, Li, Niu (bib24) 2015; 281 Guo, Wang, Liu, Dou (bib34) 2005; 146 Lee, Shim, Kim (bib31) 2014; 146 Ren, Yang, Shaw (bib35) 2002; 85 Yoshio, Tsumura, Dimov (bib18) 2005; 146 Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib46) 2012; 7 Yoshio, Wang, Fukuda, Umeno, Dimov, Ogumi (bib14) 2002; 149 Dimov, Fukuda, Umeno, Kugino, Yoshio (bib15) 2003; 114 Chen, Liu, Ashuri, Liu, Shaw (bib37) 2014; 2 Liang, Liu, Xu (bib3) 2014; 267 Liu, Wu, McDowell, Yao, Wang, Cui (bib8) 2012; 12 Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib43) 2008; 3 Pan, Wang, Gao, Chen, Tan, Li (bib39) 2014; 50 Benjamin, Volin (bib48) 1974; 5 Umeno, Fukuda, Wang, Dimov, Iwao, Yoshio (bib13) 2001; 30 Li, Gu, Feng, He, Zeng (bib30) 2015; 164 Dimov, Xia, Yoshio (bib21) 2007; 171 Ashuri, He, Liu, Zhang, Emani, Sawicki, Shamie, Shaw (bib6) 2016; 215 Yang, Li, Liu, Sun, Tang, Lei (bib44) 2015; 5 Ma, Ma, Wang, Wang, Shi, Song, Guo, Liu (bib23) 2014; 72 Yao, McDowell, Ryu, Wu, Liu, Hu, Nix, Cui (bib10) 2011; 11 Han, Loka, Yang, Kim, Moon, Cho, Lee (bib32) 2015; 281 Su, Zhou, Ren (bib5) 2010; 46 Ashuri, He, Shaw (bib1) 2016; 8 Yi, Dai, Gordin, Chen, Wang (bib12) 2013; 3 Su, Wu, Li, Xiao, Lott, Lu, Sheldon, Wu (bib4) 2014; 4 Dimov, Kugino, Yoshio (bib16) 2003; 48 Kim (10.1016/j.electacta.2017.10.198_bib33) 2015; 279 Song (10.1016/j.electacta.2017.10.198_bib11) 2014; 2 Su (10.1016/j.electacta.2017.10.198_bib25) 2014; 116 Zhang (10.1016/j.electacta.2017.10.198_bib7) 2013; 5 Hong (10.1016/j.electacta.2017.10.198_bib38) 2013; 3 Li (10.1016/j.electacta.2017.10.198_bib30) 2015; 164 Chen (10.1016/j.electacta.2017.10.198_bib37) 2014; 2 Shao (10.1016/j.electacta.2017.10.198_bib28) 2014; 727 Kim (10.1016/j.electacta.2017.10.198_bib41) 2010; 49 Yoshio (10.1016/j.electacta.2017.10.198_bib20) 2006; 163 Han (10.1016/j.electacta.2017.10.198_bib32) 2015; 281 Li (10.1016/j.electacta.2017.10.198_bib29) 2015; 51 Liang (10.1016/j.electacta.2017.10.198_bib3) 2014; 267 Yoshio (10.1016/j.electacta.2017.10.198_bib19) 2006; 153 Wu (10.1016/j.electacta.2017.10.198_bib46) 2012; 7 Yoshio (10.1016/j.electacta.2017.10.198_bib18) 2005; 146 Lee (10.1016/j.electacta.2017.10.198_bib31) 2014; 146 Pan (10.1016/j.electacta.2017.10.198_bib39) 2014; 50 Yi (10.1016/j.electacta.2017.10.198_bib26) 2014; 6 Sun (10.1016/j.electacta.2017.10.198_bib42) 2014; 4 Ren (10.1016/j.electacta.2017.10.198_bib35) 2002; 85 Liu (10.1016/j.electacta.2017.10.198_bib45) 2014; 9 Dimov (10.1016/j.electacta.2017.10.198_bib15) 2003; 114 Zhang (10.1016/j.electacta.2017.10.198_bib24) 2015; 281 Ashuri (10.1016/j.electacta.2017.10.198_bib6) 2016; 215 Chan (10.1016/j.electacta.2017.10.198_bib43) 2008; 3 Zhang (10.1016/j.electacta.2017.10.198_bib27) 2014; 588 Ashuri (10.1016/j.electacta.2017.10.198_bib1) 2016; 8 Su (10.1016/j.electacta.2017.10.198_bib4) 2014; 4 Mori (10.1016/j.electacta.2017.10.198_bib22) 2015; 165 Gilman (10.1016/j.electacta.2017.10.198_bib47) 1983; 13 Ma (10.1016/j.electacta.2017.10.198_bib23) 2014; 72 Su (10.1016/j.electacta.2017.10.198_bib5) 2010; 46 Liu (10.1016/j.electacta.2017.10.198_bib2) 2014; 9 Liu (10.1016/j.electacta.2017.10.198_bib8) 2012; 12 Yang (10.1016/j.electacta.2017.10.198_bib44) 2015; 5 Umeno (10.1016/j.electacta.2017.10.198_bib13) 2001; 30 Zhou (10.1016/j.electacta.2017.10.198_bib9) 2013; 87 Guo (10.1016/j.electacta.2017.10.198_bib34) 2005; 146 Yao (10.1016/j.electacta.2017.10.198_bib10) 2011; 11 Yi (10.1016/j.electacta.2017.10.198_bib12) 2013; 3 Yang (10.1016/j.electacta.2017.10.198_bib36) 1996; 7 Obrovac (10.1016/j.electacta.2017.10.198_bib40) 2007; 154 Dimov (10.1016/j.electacta.2017.10.198_bib21) 2007; 171 Benjamin (10.1016/j.electacta.2017.10.198_bib48) 1974; 5 Dimov (10.1016/j.electacta.2017.10.198_bib17) 2004; 136 Froes (10.1016/j.electacta.2017.10.198_bib49) 1990 Yoshio (10.1016/j.electacta.2017.10.198_bib14) 2002; 149 Dimov (10.1016/j.electacta.2017.10.198_bib16) 2003; 48 |
References_xml | – volume: 146 start-page: 60 year: 2014 end-page: 67 ident: bib31 article-title: Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries publication-title: Electrochim. Acta – volume: 51 start-page: 8429 year: 2015 end-page: 8431 ident: bib29 article-title: A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating publication-title: Chem. Commun. – volume: 11 start-page: 2949 year: 2011 end-page: 2954 ident: bib10 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. – volume: 281 start-page: 293 year: 2015 end-page: 300 ident: bib32 article-title: High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries publication-title: J. Power Sources – volume: 165 start-page: 166 year: 2015 end-page: 172 ident: bib22 article-title: High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries publication-title: Electrochim. Acta – volume: 171 start-page: 886 year: 2007 end-page: 893 ident: bib21 article-title: Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features publication-title: J. Power Sources – volume: 50 start-page: 5878 year: 2014 end-page: 5880 ident: bib39 article-title: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries publication-title: Chem. Commun. – volume: 5 start-page: 1929 year: 1974 end-page: 1934 ident: bib48 article-title: The mechanism of mechanical alloying publication-title: Metall. Trans. – volume: 87 start-page: 663 year: 2013 end-page: 668 ident: bib9 article-title: Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries publication-title: Electrochim. Acta – volume: 30 start-page: 1186 year: 2001 end-page: 1187 ident: bib13 article-title: Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition publication-title: Chem. Lett. – volume: 279 start-page: 13 year: 2015 end-page: 20 ident: bib33 article-title: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries publication-title: J. Power Sources – volume: 9 start-page: 187 year: 2014 end-page: 192 ident: bib45 article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes publication-title: Nat. Nanotechnol. – volume: 163 start-page: 215 year: 2006 end-page: 218 ident: bib20 article-title: Silicon/graphite composites as an anode material for lithium ion batteries publication-title: J. Power Sources – volume: 588 start-page: 206 year: 2014 end-page: 211 ident: bib27 article-title: Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries publication-title: J. Alloys Compd. – volume: 7 start-page: 310 year: 2012 end-page: 315 ident: bib46 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. – volume: 72 start-page: 38 year: 2014 end-page: 46 ident: bib23 article-title: Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes publication-title: Carbon – volume: 85 start-page: 819 year: 2002 end-page: 827 ident: bib35 article-title: Synthesis of nanostructured silicon carbide through an integrated mechanical and thermal activation process publication-title: J. Am. Ceram. Soc. – volume: 116 start-page: 230 year: 2014 end-page: 236 ident: bib25 article-title: Enhancement of the cyclability of a Si/Graphite@ graphene composite as anode for lithium-ion batteries publication-title: Electrochim. Acta – volume: 114 start-page: 88 year: 2003 end-page: 95 ident: bib15 article-title: Characterization of carbon-coated silicon: structural evolution and possible limitations publication-title: J. Power Sources – volume: 9 start-page: 323 year: 2014 end-page: 350 ident: bib2 article-title: Nanomaterials for electrochemical energy storage publication-title: Front. Phys. – volume: 48 start-page: 1579 year: 2003 end-page: 1587 ident: bib16 article-title: Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations publication-title: Electrochim. Acta – volume: 4 year: 2014 ident: bib4 article-title: Silicon-based nanomaterials for lithium-ion batteries: a review publication-title: Adv. Energy Mater. – volume: 5 year: 2015 ident: bib44 article-title: Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries publication-title: Sci. Rep. – volume: 5 start-page: 12340 year: 2013 end-page: 12345 ident: bib7 article-title: Preparation of Silicon@Silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-Ion battery anode publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 18026 year: 2014 end-page: 18032 ident: bib37 article-title: Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries publication-title: J. Mater. Chem. A – volume: 4 start-page: 20814 year: 2014 end-page: 20820 ident: bib42 article-title: Controlled synthesis of yolk-mesoporous shell Si@SiO2 nanohybrid designed for high performance Li ion battery publication-title: RSC Adv. – volume: 146 start-page: 10 year: 2005 end-page: 14 ident: bib18 article-title: Electrochemical behaviors of silicon based anode material publication-title: J. Power Sources – volume: 7 start-page: 873 year: 1996 end-page: 886 ident: bib36 article-title: Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling publication-title: Nanostructured Mater. – volume: 215 start-page: 126 year: 2016 end-page: 141 ident: bib6 article-title: Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study publication-title: Electrochim. Acta – volume: 3 start-page: 31 year: 2008 end-page: 35 ident: bib43 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. – volume: 46 start-page: 2590 year: 2010 end-page: 2592 ident: bib5 article-title: Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries publication-title: Chem. Commun. – volume: 727 start-page: 8 year: 2014 end-page: 12 ident: bib28 article-title: Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries publication-title: J. Electroanal. Chem. – volume: 164 start-page: 163 year: 2015 end-page: 170 ident: bib30 article-title: Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability publication-title: Electrochim. Acta – volume: 12 start-page: 3315 year: 2012 end-page: 3321 ident: bib8 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. – volume: 6 start-page: 211 year: 2014 end-page: 218 ident: bib26 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy – volume: 149 start-page: A1598 year: 2002 end-page: A1603 ident: bib14 article-title: Carbon-coated Si as a lithium-ion battery anode material publication-title: J. Electrochem. Soc. – volume: 154 start-page: A103 year: 2007 end-page: A108 ident: bib40 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. – volume: 8 start-page: 74 year: 2016 end-page: 103 ident: bib1 article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter publication-title: Nanoscale – volume: 136 start-page: 108 year: 2004 end-page: 114 ident: bib17 article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries: influence of preparation conditions on the properties of the material publication-title: J. Power Sources – year: 1990 ident: bib49 article-title: Structural applications of mechanical alloying publication-title: Proceedings of an ASM International Conference, Myrtle Beach, South Carolina, 27–29 March 1990 – volume: 3 start-page: 295 year: 2013 end-page: 300 ident: bib12 article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 3 start-page: 2700 year: 2013 ident: bib38 article-title: Origin of new broad Raman D and G Peaks in annealed graphene publication-title: Sci. Rep. – volume: 146 start-page: 448 year: 2005 end-page: 451 ident: bib34 article-title: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries publication-title: J. Power Sources – volume: 153 start-page: 375 year: 2006 end-page: 379 ident: bib19 article-title: Electrochemical behaviors of silicon based anode material publication-title: J. Power Sources – volume: 49 start-page: 2146 year: 2010 end-page: 2149 ident: bib41 article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 279 year: 1983 end-page: 300 ident: bib47 article-title: Mechanical alloying publication-title: Annu. Rev. Mater. Sci. – volume: 267 start-page: 469 year: 2014 end-page: 490 ident: bib3 article-title: Silicon-based materials as high capacity anodes for next generation lithium ion batteries publication-title: J. Power Sources – volume: 281 start-page: 425 year: 2015 end-page: 431 ident: bib24 article-title: Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO 2 with magnesium for lithium ion battery publication-title: J. Power Sources – volume: 2 start-page: 1257 year: 2014 end-page: 1262 ident: bib11 article-title: Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries publication-title: J. Mater. Chem. A – volume: 5 start-page: 1929 year: 1974 ident: 10.1016/j.electacta.2017.10.198_bib48 article-title: The mechanism of mechanical alloying publication-title: Metall. Trans. doi: 10.1007/BF02644161 – volume: 8 start-page: 74 year: 2016 ident: 10.1016/j.electacta.2017.10.198_bib1 article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter publication-title: Nanoscale doi: 10.1039/C5NR05116A – volume: 215 start-page: 126 year: 2016 ident: 10.1016/j.electacta.2017.10.198_bib6 article-title: Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.059 – volume: 3 start-page: 31 year: 2008 ident: 10.1016/j.electacta.2017.10.198_bib43 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 171 start-page: 886 year: 2007 ident: 10.1016/j.electacta.2017.10.198_bib21 article-title: Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.06.026 – volume: 281 start-page: 425 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib24 article-title: Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO 2 with magnesium for lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.020 – volume: 154 start-page: A103 year: 2007 ident: 10.1016/j.electacta.2017.10.198_bib40 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. doi: 10.1149/1.2402112 – volume: 11 start-page: 2949 year: 2011 ident: 10.1016/j.electacta.2017.10.198_bib10 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. doi: 10.1021/nl201470j – volume: 7 start-page: 873 year: 1996 ident: 10.1016/j.electacta.2017.10.198_bib36 article-title: Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling publication-title: Nanostructured Mater. doi: 10.1016/S0965-9773(96)00058-X – volume: 12 start-page: 3315 year: 2012 ident: 10.1016/j.electacta.2017.10.198_bib8 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 4 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib4 article-title: Silicon-based nanomaterials for lithium-ion batteries: a review publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300882 – year: 1990 ident: 10.1016/j.electacta.2017.10.198_bib49 article-title: Structural applications of mechanical alloying – volume: 13 start-page: 279 year: 1983 ident: 10.1016/j.electacta.2017.10.198_bib47 article-title: Mechanical alloying publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.ms.13.080183.001431 – volume: 9 start-page: 323 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib2 article-title: Nanomaterials for electrochemical energy storage publication-title: Front. Phys. doi: 10.1007/s11467-013-0408-7 – volume: 50 start-page: 5878 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib39 article-title: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C4CC01728E – volume: 72 start-page: 38 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib23 article-title: Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes publication-title: Carbon doi: 10.1016/j.carbon.2014.01.027 – volume: 6 start-page: 211 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib26 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.006 – volume: 279 start-page: 13 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib33 article-title: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.041 – volume: 116 start-page: 230 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib25 article-title: Enhancement of the cyclability of a Si/Graphite@ graphene composite as anode for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.195 – volume: 3 start-page: 2700 year: 2013 ident: 10.1016/j.electacta.2017.10.198_bib38 article-title: Origin of new broad Raman D and G Peaks in annealed graphene publication-title: Sci. Rep. doi: 10.1038/srep02700 – volume: 2 start-page: 18026 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib37 article-title: Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04103H – volume: 87 start-page: 663 year: 2013 ident: 10.1016/j.electacta.2017.10.198_bib9 article-title: Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.10.008 – volume: 146 start-page: 60 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib31 article-title: Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.08.103 – volume: 30 start-page: 1186 year: 2001 ident: 10.1016/j.electacta.2017.10.198_bib13 article-title: Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition publication-title: Chem. Lett. doi: 10.1246/cl.2001.1186 – volume: 7 start-page: 310 year: 2012 ident: 10.1016/j.electacta.2017.10.198_bib46 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 267 start-page: 469 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib3 article-title: Silicon-based materials as high capacity anodes for next generation lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.096 – volume: 5 start-page: 12340 year: 2013 ident: 10.1016/j.electacta.2017.10.198_bib7 article-title: Preparation of Silicon@Silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-Ion battery anode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402930b – volume: 146 start-page: 448 year: 2005 ident: 10.1016/j.electacta.2017.10.198_bib34 article-title: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.112 – volume: 85 start-page: 819 year: 2002 ident: 10.1016/j.electacta.2017.10.198_bib35 article-title: Synthesis of nanostructured silicon carbide through an integrated mechanical and thermal activation process publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2002.tb00178.x – volume: 2 start-page: 1257 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib11 article-title: Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14100D – volume: 165 start-page: 166 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib22 article-title: High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.219 – volume: 114 start-page: 88 year: 2003 ident: 10.1016/j.electacta.2017.10.198_bib15 article-title: Characterization of carbon-coated silicon: structural evolution and possible limitations publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00533-5 – volume: 153 start-page: 375 year: 2006 ident: 10.1016/j.electacta.2017.10.198_bib19 article-title: Electrochemical behaviors of silicon based anode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.052 – volume: 727 start-page: 8 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib28 article-title: Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2014.05.031 – volume: 48 start-page: 1579 year: 2003 ident: 10.1016/j.electacta.2017.10.198_bib16 article-title: Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(03)00030-6 – volume: 149 start-page: A1598 year: 2002 ident: 10.1016/j.electacta.2017.10.198_bib14 article-title: Carbon-coated Si as a lithium-ion battery anode material publication-title: J. Electrochem. Soc. doi: 10.1149/1.1518988 – volume: 9 start-page: 187 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib45 article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.6 – volume: 4 start-page: 20814 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib42 article-title: Controlled synthesis of yolk-mesoporous shell Si@SiO2 nanohybrid designed for high performance Li ion battery publication-title: RSC Adv. doi: 10.1039/C4RA01871K – volume: 164 start-page: 163 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib30 article-title: Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.224 – volume: 46 start-page: 2590 year: 2010 ident: 10.1016/j.electacta.2017.10.198_bib5 article-title: Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries publication-title: Chem. Commun. doi: 10.1039/b925696b – volume: 51 start-page: 8429 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib29 article-title: A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating publication-title: Chem. Commun. doi: 10.1039/C4CC09825K – volume: 3 start-page: 295 year: 2013 ident: 10.1016/j.electacta.2017.10.198_bib12 article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200857 – volume: 146 start-page: 10 year: 2005 ident: 10.1016/j.electacta.2017.10.198_bib18 article-title: Electrochemical behaviors of silicon based anode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.143 – volume: 49 start-page: 2146 year: 2010 ident: 10.1016/j.electacta.2017.10.198_bib41 article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906287 – volume: 588 start-page: 206 year: 2014 ident: 10.1016/j.electacta.2017.10.198_bib27 article-title: Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.10.160 – volume: 136 start-page: 108 year: 2004 ident: 10.1016/j.electacta.2017.10.198_bib17 article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries: influence of preparation conditions on the properties of the material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.05.012 – volume: 281 start-page: 293 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib32 article-title: High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.122 – volume: 163 start-page: 215 year: 2006 ident: 10.1016/j.electacta.2017.10.198_bib20 article-title: Silicon/graphite composites as an anode material for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.12.078 – volume: 5 year: 2015 ident: 10.1016/j.electacta.2017.10.198_bib44 article-title: Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries publication-title: Sci. Rep. |
SSID | ssj0007670 |
Score | 2.414247 |
Snippet | Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 274 |
SubjectTerms | Agglomerates Anode Anodes Batteries Chemical synthesis Electrochemical analysis Electrode materials Graphite High-energy ball mill Lithium Lithium-ion batteries Lithium-ion battery Nanocomposites Nanostructure Rechargeable batteries Silicon Voids |
Title | Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids |
URI | https://dx.doi.org/10.1016/j.electacta.2017.10.198 https://www.proquest.com/docview/2011254068 https://www.osti.gov/biblio/1461345 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h7aHlgHgUsbBFPvQaNrt2bIcbWhUtrcqlIHGL_IoahJwVWZC48NuZySZLUVVxqBRFSuKxI8_Y8yX6Zgbga261V3oSEu3xJIxOE2xZJhzdS2ZRSkkKFP55KefX4vtNdrMBsz4WhmiV3d6_2tPb3bq7M-5mc7yoKorxnXAhNbpgPqW8dRTBLiTR-k6eX2keSqq0r2JArd9wvNpSMwYP4nipkzZ4T__LQw1qXHR_bdmtHzrfhq0OQLKz1TvuwEaIu_Bx1tdt24XNP1IM7sHDr6eIGK-pGmaiZ4vXOAFWlyyaWK8yyD7cB8-a6g4NI47bLNaIRRkRzonVFRpGP2yZYcvfVWTO3Ns6soZIpG23oRsS-3isK998huvzb1ezedKVWkgcIqhlkpmJRyRTcqGdmSiT5ng4x2WubUiNDT5Y6ZQXWckRI5iguc3Qk5XeuWwaBN-HQaxjOACGH1DTNDMaF7YUCH5yUxpprFdceaWUG4Lsp7dwXR5yKodxV_SEs9tirZeC9NI-yPUQ0rXgYpWK432R015_xRurKtBhvC98RBonQcqn64h4hJJUCJ2LbAij3hCKbtk3JI2AETGSPvyfkY_gE10Ra2aajmCAdhC-IPZZ2uPWuI_hw9nFj_nlC_3rB0E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7aFwQFBALC3gA9ew2fVnuFUrqi1t90Ir9RY5tiOCKmfVbJH67zuTdRYqhHpAsnKIM3Zkj2deojczAJ-KynhtpiEzHi_CmjzDJ-uMo3uRFUppRYHC50u1uBTfruTVDsyHWBiiVSbbv7HpvbVOdyZpNSerpqEY3ykXyqAL5jPKW_cEdoVEmzyC3aOT08Vya5C10vlQyIAEHtC8-mozFhvRvPTnPn7P_MtJjVo8d39Z7d4VHb-A5wlDsqPNa76EnRD3YW8-lG7bh2d_ZBl8Bbff7yLCvK7pmI2erX6HCrC2ZtHGdpNE9vYmeNY116gbcdInskY4yohzTsSu0DH6Z8ssW_9oInP2pmoj64hH2g8b0pQ4xq-28d1ruDz-ejFfZKnaQuYQRK0zaacewUzNhXF2qm1eYHOOq8JUIbdV8KFSTnsha44wwQbDK4nOrPbOyVkQ_A2MYhvDW2D4DTXLpTV4tpVA_FPY2ipbec2111q7MahheUuXUpFTRYzrcuCc_Sy3-1LSvvQdhRlDvhVcbbJxPC7yZdi_8oFilegzHhc-oB0nQUqp64h7hJJUC50LOYbDQRHKdPI7kkbMiDDJvPufmT_C3uLi_Kw8O1meHsBT6iESzSw_hBHqRHiPUGhdfUiqfg_hzwns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+performance+of+nanostructured+silicon%2Fgraphite+composites+with+a+thin+carbon+shell+and+engineered+voids&rft.jtitle=Electrochimica+acta&rft.au=Ashuri%2C+Maziar&rft.au=He%2C+Qianran&rft.au=Liu%2C+Yuzi&rft.au=Emani%2C+Satyanarayana&rft.date=2017-12-20&rft.issn=0013-4686&rft.volume=258&rft.spage=274&rft.epage=283&rft_id=info:doi/10.1016%2Fj.electacta.2017.10.198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_10_198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |