Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids

Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructur...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 258; no. C; pp. 274 - 283
Main Authors Ashuri, Maziar, He, Qianran, Liu, Yuzi, Emani, Satyanarayana, Shaw, Leon L.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.12.2017
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0013-4686
1873-3859
DOI10.1016/j.electacta.2017.10.198

Cover

Abstract Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g−1 discharge capacity at the first cycle, 580 mA h g−1 after 40 cycles, and 350 mA h g−1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated.
AbstractList Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g-1 discharge capacity at the first cycle, 580 mA h g-1 after 40 cycles, and 350 mA h g-1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated.
Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of ∼1800 mA h g−1 discharge capacity at the first cycle, 580 mA h g−1 after 40 cycles, and 350 mA h g−1 after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated.
Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during lithiation, the electrochemical performance of silicon is poor. Here, we have investigated a novel yet simple approach to synthesize nanostructured silicon/graphite composites with a carbon coating and engineered voids. High-energy ball mill is employed to convert micrometer-sized silicon and graphite to nanostructured silicon/graphite composite building blocks, while a thin carbon coating is applied to encapsulate these composite agglomerates, followed by partial etching of silicon to create engineered voids inside the composite agglomerates. The batteries made with this tailored nanostructure exhibit improved electrochemical performance over the counterparts made with silicon nanoparticles and exhibited a specific capacity of similar to 1800 mA h g(-1) discharge capacity at the first cycle, 580 mA h g(-1) after 40 cycles, and 350 mA h g(-1) after 300 cycles. This study has established a novel method scalable at industry environment and capable of producing low cost Si anodes and clearly shown that the cycle stability of the tailored nanostructure improves with increasing engineered voids in the range we have investigated. (c) 2017 Elsevier Ltd. All rights reserved.
Author Liu, Yuzi
Emani, Satyanarayana
Ashuri, Maziar
He, Qianran
Shaw, Leon L.
Author_xml – sequence: 1
  givenname: Maziar
  surname: Ashuri
  fullname: Ashuri, Maziar
  organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
– sequence: 2
  givenname: Qianran
  surname: He
  fullname: He, Qianran
  organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
– sequence: 3
  givenname: Yuzi
  surname: Liu
  fullname: Liu, Yuzi
  organization: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
– sequence: 4
  givenname: Satyanarayana
  surname: Emani
  fullname: Emani, Satyanarayana
  organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
– sequence: 5
  givenname: Leon L.
  surname: Shaw
  fullname: Shaw, Leon L.
  email: lshaw2@iit.edu
  organization: Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
BackLink https://www.osti.gov/biblio/1461345$$D View this record in Osti.gov
BookMark eNqNUU1r3DAUFCWBbj5-Q0Vz9kayLMk-5BBC-gGBHpKchSw9x1q8kivJCfn3kbOlh15SeCDBmxlm3pygIx88IPSFki0lVFzutjCBybrMtiZUbtdF135CG9pKVrGWd0doQwhlVSNa8RmdpLQjhEghyQYt968-j5BcwtpbPEMcQtxrbwCHAXvtQ8pxMXmJYHFykzPBXz5FPY8uAzZhP4dUfgm_uDxijfPoPDY69sHjNMI0vcuCf3IeYNV4Ds6mM3Q86CnB-Z_3FD1-u324-VHd_fr-8-b6rjINF7nimlpZy4E1rdFUatKVMYaJru2B6B4s9MJI2_CBUU41tKznddcN1hheQ8NO0deDbknhVDLFqRlLAl8OpmgjKGt4AV0cQHMMvxdIWe3CEn3xpco9ac0bItqCkgeUiSGlCIOao9vr-KooUWsRaqf-FrES5fuiW5lX_zCLD51d8DlqN_0H__rAh3KpZwdxDQKlIevimsMG96HGG7_nryU
CitedBy_id crossref_primary_10_1021_acssuschemeng_2c03506
crossref_primary_10_3390_en14144223
crossref_primary_10_1149_2_0051902jes
crossref_primary_10_1007_s13204_018_0863_0
crossref_primary_10_1002_celc_201902098
crossref_primary_10_1016_j_compstruct_2023_117507
crossref_primary_10_1016_j_nanoms_2019_11_004
crossref_primary_10_20964_2019_06_22
crossref_primary_10_1007_s11814_021_0813_5
crossref_primary_10_1016_j_diamond_2021_108421
crossref_primary_10_1002_chem_202000953
crossref_primary_10_1002_cssc_201903155
crossref_primary_10_1016_j_ensm_2020_11_028
crossref_primary_10_1002_cssc_202101837
crossref_primary_10_1016_j_electacta_2018_11_201
crossref_primary_10_1039_D3IM00115F
crossref_primary_10_1002_smtd_202300345
crossref_primary_10_1016_j_electacta_2019_04_170
crossref_primary_10_1021_acsaem_1c03186
crossref_primary_10_1016_j_electacta_2018_11_009
crossref_primary_10_1149_1945_7111_ac91ad
crossref_primary_10_1002_smll_202301744
crossref_primary_10_1016_j_ceramint_2019_10_029
crossref_primary_10_1002_chem_202100842
crossref_primary_10_1002_cey2_2
crossref_primary_10_1021_acs_energyfuels_0c02948
crossref_primary_10_1016_j_matchemphys_2018_11_066
crossref_primary_10_1080_10408436_2023_2169658
crossref_primary_10_1002_cssc_202102675
crossref_primary_10_1016_j_jelechem_2020_114738
crossref_primary_10_1007_s11581_019_03224_w
crossref_primary_10_1016_j_jelechem_2023_117427
crossref_primary_10_1021_acsami_2c16978
Cites_doi 10.1007/BF02644161
10.1039/C5NR05116A
10.1016/j.electacta.2016.08.059
10.1038/nnano.2007.411
10.1016/j.jpowsour.2007.06.026
10.1016/j.jpowsour.2015.02.020
10.1149/1.2402112
10.1021/nl201470j
10.1016/S0965-9773(96)00058-X
10.1021/nl3014814
10.1002/aenm.201300882
10.1146/annurev.ms.13.080183.001431
10.1007/s11467-013-0408-7
10.1039/C4CC01728E
10.1016/j.carbon.2014.01.027
10.1016/j.nanoen.2014.04.006
10.1016/j.jpowsour.2014.12.041
10.1016/j.electacta.2013.10.195
10.1038/srep02700
10.1039/C4TA04103H
10.1016/j.electacta.2012.10.008
10.1016/j.electacta.2014.08.103
10.1246/cl.2001.1186
10.1038/nnano.2012.35
10.1016/j.jpowsour.2014.05.096
10.1021/am402930b
10.1016/j.jpowsour.2005.03.112
10.1111/j.1151-2916.2002.tb00178.x
10.1039/C3TA14100D
10.1016/j.electacta.2015.02.219
10.1016/S0378-7753(02)00533-5
10.1016/j.jpowsour.2005.05.052
10.1016/j.jelechem.2014.05.031
10.1016/S0013-4686(03)00030-6
10.1149/1.1518988
10.1038/nnano.2014.6
10.1039/C4RA01871K
10.1016/j.electacta.2015.02.224
10.1039/b925696b
10.1039/C4CC09825K
10.1002/aenm.201200857
10.1016/j.jpowsour.2005.03.143
10.1002/anie.200906287
10.1016/j.jallcom.2013.10.160
10.1016/j.jpowsour.2004.05.012
10.1016/j.jpowsour.2015.01.122
10.1016/j.jpowsour.2005.12.078
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Dec 20, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 20, 2017
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1016/j.electacta.2017.10.198
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 283
ExternalDocumentID 1461345
10_1016_j_electacta_2017_10_198
S0013468617323447
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c456t-5a1d727f348ca17a09a09cc3698be0abedeb6c7d45f3151ae83b5299fdcc52e43
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri May 19 00:38:11 EDT 2023
Mon Jul 14 10:03:34 EDT 2025
Wed Oct 01 05:26:02 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Fri Feb 23 02:17:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Lithium-ion battery
Silicon
Anode
High-energy ball mill
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-5a1d727f348ca17a09a09cc3698be0abedeb6c7d45f3151ae83b5299fdcc52e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
AC02-06CH11357
National Science Foundation (NSF)
OpenAccessLink https://www.osti.gov/biblio/1576857
PQID 2011254068
PQPubID 2045485
PageCount 10
ParticipantIDs osti_scitechconnect_1461345
proquest_journals_2011254068
crossref_primary_10_1016_j_electacta_2017_10_198
crossref_citationtrail_10_1016_j_electacta_2017_10_198
elsevier_sciencedirect_doi_10_1016_j_electacta_2017_10_198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-20
PublicationDateYYYYMMDD 2017-12-20
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-20
  day: 20
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Kim, Pfleging, Kohler, Seifert, Kim, Byun, Jung, Choi, Lee (bib33) 2015; 279
Liu, Li, Pasta, Cui (bib2) 2014; 9
Yang, Shaw (bib36) 1996; 7
Zhou, Tang, Yang, Xie, Ma (bib9) 2013; 87
Dimov, Kugino, Yoshio (bib17) 2004; 136
Zhang, Hou, Wang, Li, Hu, Shao, Liu (bib27) 2014; 588
Hong, Park, Lee, Lee, Hwang, Ryu (bib38) 2013; 3
Kim, Seo, Park, Cho (bib41) 2010; 49
Yoshio, Tsumura, Dimov (bib20) 2006; 163
Obrovac, Krause (bib40) 2007; 154
Su, Wang, Guo, Li, Huang, Xiao, Gan (bib25) 2014; 116
Li, Wu, Chou, Wu (bib29) 2015; 51
Yoshio, Kugino, Dimov (bib19) 2006; 153
Yi, Zai, Dai, Gordin, Wang (bib26) 2014; 6
Shao, Shu, Wu, Lin, Li, Shui, Wang, Long, Ren (bib28) 2014; 727
Liu, Lu, Zhao, McDowell, Lee, Zhao, Cui (bib45) 2014; 9
Zhang, Gu, Kaskhedikar, Cui, Maier (bib7) 2013; 5
Froes, DeBarbadillo (bib49) 1990
Mori, Chen, Hung, Mohamed, Lin, Lin, Sung, Hu, Liu (bib22) 2015; 165
Song, Chen, Zhou, Xu, Lv, Gordin, Long, Melnyk, Wang (bib11) 2014; 2
Gilman, Benjamin (bib47) 1983; 13
Sun, Song, Zhang, Gao (bib42) 2014; 4
Zhang, Jiang, Li, Li, Li, Niu (bib24) 2015; 281
Guo, Wang, Liu, Dou (bib34) 2005; 146
Lee, Shim, Kim (bib31) 2014; 146
Ren, Yang, Shaw (bib35) 2002; 85
Yoshio, Tsumura, Dimov (bib18) 2005; 146
Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib46) 2012; 7
Yoshio, Wang, Fukuda, Umeno, Dimov, Ogumi (bib14) 2002; 149
Dimov, Fukuda, Umeno, Kugino, Yoshio (bib15) 2003; 114
Chen, Liu, Ashuri, Liu, Shaw (bib37) 2014; 2
Liang, Liu, Xu (bib3) 2014; 267
Liu, Wu, McDowell, Yao, Wang, Cui (bib8) 2012; 12
Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib43) 2008; 3
Pan, Wang, Gao, Chen, Tan, Li (bib39) 2014; 50
Benjamin, Volin (bib48) 1974; 5
Umeno, Fukuda, Wang, Dimov, Iwao, Yoshio (bib13) 2001; 30
Li, Gu, Feng, He, Zeng (bib30) 2015; 164
Dimov, Xia, Yoshio (bib21) 2007; 171
Ashuri, He, Liu, Zhang, Emani, Sawicki, Shamie, Shaw (bib6) 2016; 215
Yang, Li, Liu, Sun, Tang, Lei (bib44) 2015; 5
Ma, Ma, Wang, Wang, Shi, Song, Guo, Liu (bib23) 2014; 72
Yao, McDowell, Ryu, Wu, Liu, Hu, Nix, Cui (bib10) 2011; 11
Han, Loka, Yang, Kim, Moon, Cho, Lee (bib32) 2015; 281
Su, Zhou, Ren (bib5) 2010; 46
Ashuri, He, Shaw (bib1) 2016; 8
Yi, Dai, Gordin, Chen, Wang (bib12) 2013; 3
Su, Wu, Li, Xiao, Lott, Lu, Sheldon, Wu (bib4) 2014; 4
Dimov, Kugino, Yoshio (bib16) 2003; 48
Kim (10.1016/j.electacta.2017.10.198_bib33) 2015; 279
Song (10.1016/j.electacta.2017.10.198_bib11) 2014; 2
Su (10.1016/j.electacta.2017.10.198_bib25) 2014; 116
Zhang (10.1016/j.electacta.2017.10.198_bib7) 2013; 5
Hong (10.1016/j.electacta.2017.10.198_bib38) 2013; 3
Li (10.1016/j.electacta.2017.10.198_bib30) 2015; 164
Chen (10.1016/j.electacta.2017.10.198_bib37) 2014; 2
Shao (10.1016/j.electacta.2017.10.198_bib28) 2014; 727
Kim (10.1016/j.electacta.2017.10.198_bib41) 2010; 49
Yoshio (10.1016/j.electacta.2017.10.198_bib20) 2006; 163
Han (10.1016/j.electacta.2017.10.198_bib32) 2015; 281
Li (10.1016/j.electacta.2017.10.198_bib29) 2015; 51
Liang (10.1016/j.electacta.2017.10.198_bib3) 2014; 267
Yoshio (10.1016/j.electacta.2017.10.198_bib19) 2006; 153
Wu (10.1016/j.electacta.2017.10.198_bib46) 2012; 7
Yoshio (10.1016/j.electacta.2017.10.198_bib18) 2005; 146
Lee (10.1016/j.electacta.2017.10.198_bib31) 2014; 146
Pan (10.1016/j.electacta.2017.10.198_bib39) 2014; 50
Yi (10.1016/j.electacta.2017.10.198_bib26) 2014; 6
Sun (10.1016/j.electacta.2017.10.198_bib42) 2014; 4
Ren (10.1016/j.electacta.2017.10.198_bib35) 2002; 85
Liu (10.1016/j.electacta.2017.10.198_bib45) 2014; 9
Dimov (10.1016/j.electacta.2017.10.198_bib15) 2003; 114
Zhang (10.1016/j.electacta.2017.10.198_bib24) 2015; 281
Ashuri (10.1016/j.electacta.2017.10.198_bib6) 2016; 215
Chan (10.1016/j.electacta.2017.10.198_bib43) 2008; 3
Zhang (10.1016/j.electacta.2017.10.198_bib27) 2014; 588
Ashuri (10.1016/j.electacta.2017.10.198_bib1) 2016; 8
Su (10.1016/j.electacta.2017.10.198_bib4) 2014; 4
Mori (10.1016/j.electacta.2017.10.198_bib22) 2015; 165
Gilman (10.1016/j.electacta.2017.10.198_bib47) 1983; 13
Ma (10.1016/j.electacta.2017.10.198_bib23) 2014; 72
Su (10.1016/j.electacta.2017.10.198_bib5) 2010; 46
Liu (10.1016/j.electacta.2017.10.198_bib2) 2014; 9
Liu (10.1016/j.electacta.2017.10.198_bib8) 2012; 12
Yang (10.1016/j.electacta.2017.10.198_bib44) 2015; 5
Umeno (10.1016/j.electacta.2017.10.198_bib13) 2001; 30
Zhou (10.1016/j.electacta.2017.10.198_bib9) 2013; 87
Guo (10.1016/j.electacta.2017.10.198_bib34) 2005; 146
Yao (10.1016/j.electacta.2017.10.198_bib10) 2011; 11
Yi (10.1016/j.electacta.2017.10.198_bib12) 2013; 3
Yang (10.1016/j.electacta.2017.10.198_bib36) 1996; 7
Obrovac (10.1016/j.electacta.2017.10.198_bib40) 2007; 154
Dimov (10.1016/j.electacta.2017.10.198_bib21) 2007; 171
Benjamin (10.1016/j.electacta.2017.10.198_bib48) 1974; 5
Dimov (10.1016/j.electacta.2017.10.198_bib17) 2004; 136
Froes (10.1016/j.electacta.2017.10.198_bib49) 1990
Yoshio (10.1016/j.electacta.2017.10.198_bib14) 2002; 149
Dimov (10.1016/j.electacta.2017.10.198_bib16) 2003; 48
References_xml – volume: 146
  start-page: 60
  year: 2014
  end-page: 67
  ident: bib31
  article-title: Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 8429
  year: 2015
  end-page: 8431
  ident: bib29
  article-title: A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating
  publication-title: Chem. Commun.
– volume: 11
  start-page: 2949
  year: 2011
  end-page: 2954
  ident: bib10
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
– volume: 281
  start-page: 293
  year: 2015
  end-page: 300
  ident: bib32
  article-title: High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries
  publication-title: J. Power Sources
– volume: 165
  start-page: 166
  year: 2015
  end-page: 172
  ident: bib22
  article-title: High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 171
  start-page: 886
  year: 2007
  end-page: 893
  ident: bib21
  article-title: Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features
  publication-title: J. Power Sources
– volume: 50
  start-page: 5878
  year: 2014
  end-page: 5880
  ident: bib39
  article-title: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1929
  year: 1974
  end-page: 1934
  ident: bib48
  article-title: The mechanism of mechanical alloying
  publication-title: Metall. Trans.
– volume: 87
  start-page: 663
  year: 2013
  end-page: 668
  ident: bib9
  article-title: Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 1186
  year: 2001
  end-page: 1187
  ident: bib13
  article-title: Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition
  publication-title: Chem. Lett.
– volume: 279
  start-page: 13
  year: 2015
  end-page: 20
  ident: bib33
  article-title: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 9
  start-page: 187
  year: 2014
  end-page: 192
  ident: bib45
  article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
  publication-title: Nat. Nanotechnol.
– volume: 163
  start-page: 215
  year: 2006
  end-page: 218
  ident: bib20
  article-title: Silicon/graphite composites as an anode material for lithium ion batteries
  publication-title: J. Power Sources
– volume: 588
  start-page: 206
  year: 2014
  end-page: 211
  ident: bib27
  article-title: Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 310
  year: 2012
  end-page: 315
  ident: bib46
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
– volume: 72
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib23
  article-title: Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes
  publication-title: Carbon
– volume: 85
  start-page: 819
  year: 2002
  end-page: 827
  ident: bib35
  article-title: Synthesis of nanostructured silicon carbide through an integrated mechanical and thermal activation process
  publication-title: J. Am. Ceram. Soc.
– volume: 116
  start-page: 230
  year: 2014
  end-page: 236
  ident: bib25
  article-title: Enhancement of the cyclability of a Si/Graphite@ graphene composite as anode for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 114
  start-page: 88
  year: 2003
  end-page: 95
  ident: bib15
  article-title: Characterization of carbon-coated silicon: structural evolution and possible limitations
  publication-title: J. Power Sources
– volume: 9
  start-page: 323
  year: 2014
  end-page: 350
  ident: bib2
  article-title: Nanomaterials for electrochemical energy storage
  publication-title: Front. Phys.
– volume: 48
  start-page: 1579
  year: 2003
  end-page: 1587
  ident: bib16
  article-title: Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations
  publication-title: Electrochim. Acta
– volume: 4
  year: 2014
  ident: bib4
  article-title: Silicon-based nanomaterials for lithium-ion batteries: a review
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  ident: bib44
  article-title: Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries
  publication-title: Sci. Rep.
– volume: 5
  start-page: 12340
  year: 2013
  end-page: 12345
  ident: bib7
  article-title: Preparation of Silicon@Silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-Ion battery anode
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 18026
  year: 2014
  end-page: 18032
  ident: bib37
  article-title: Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 20814
  year: 2014
  end-page: 20820
  ident: bib42
  article-title: Controlled synthesis of yolk-mesoporous shell Si@SiO2 nanohybrid designed for high performance Li ion battery
  publication-title: RSC Adv.
– volume: 146
  start-page: 10
  year: 2005
  end-page: 14
  ident: bib18
  article-title: Electrochemical behaviors of silicon based anode material
  publication-title: J. Power Sources
– volume: 7
  start-page: 873
  year: 1996
  end-page: 886
  ident: bib36
  article-title: Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling
  publication-title: Nanostructured Mater.
– volume: 215
  start-page: 126
  year: 2016
  end-page: 141
  ident: bib6
  article-title: Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: bib43
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
– volume: 46
  start-page: 2590
  year: 2010
  end-page: 2592
  ident: bib5
  article-title: Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries
  publication-title: Chem. Commun.
– volume: 727
  start-page: 8
  year: 2014
  end-page: 12
  ident: bib28
  article-title: Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries
  publication-title: J. Electroanal. Chem.
– volume: 164
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib30
  article-title: Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 3315
  year: 2012
  end-page: 3321
  ident: bib8
  article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
  publication-title: Nano Lett.
– volume: 6
  start-page: 211
  year: 2014
  end-page: 218
  ident: bib26
  article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries
  publication-title: Nano Energy
– volume: 149
  start-page: A1598
  year: 2002
  end-page: A1603
  ident: bib14
  article-title: Carbon-coated Si as a lithium-ion battery anode material
  publication-title: J. Electrochem. Soc.
– volume: 154
  start-page: A103
  year: 2007
  end-page: A108
  ident: bib40
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 74
  year: 2016
  end-page: 103
  ident: bib1
  article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
  publication-title: Nanoscale
– volume: 136
  start-page: 108
  year: 2004
  end-page: 114
  ident: bib17
  article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries: influence of preparation conditions on the properties of the material
  publication-title: J. Power Sources
– year: 1990
  ident: bib49
  article-title: Structural applications of mechanical alloying
  publication-title: Proceedings of an ASM International Conference, Myrtle Beach, South Carolina, 27–29 March 1990
– volume: 3
  start-page: 295
  year: 2013
  end-page: 300
  ident: bib12
  article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 2700
  year: 2013
  ident: bib38
  article-title: Origin of new broad Raman D and G Peaks in annealed graphene
  publication-title: Sci. Rep.
– volume: 146
  start-page: 448
  year: 2005
  end-page: 451
  ident: bib34
  article-title: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries
  publication-title: J. Power Sources
– volume: 153
  start-page: 375
  year: 2006
  end-page: 379
  ident: bib19
  article-title: Electrochemical behaviors of silicon based anode material
  publication-title: J. Power Sources
– volume: 49
  start-page: 2146
  year: 2010
  end-page: 2149
  ident: bib41
  article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 279
  year: 1983
  end-page: 300
  ident: bib47
  article-title: Mechanical alloying
  publication-title: Annu. Rev. Mater. Sci.
– volume: 267
  start-page: 469
  year: 2014
  end-page: 490
  ident: bib3
  article-title: Silicon-based materials as high capacity anodes for next generation lithium ion batteries
  publication-title: J. Power Sources
– volume: 281
  start-page: 425
  year: 2015
  end-page: 431
  ident: bib24
  article-title: Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO 2 with magnesium for lithium ion battery
  publication-title: J. Power Sources
– volume: 2
  start-page: 1257
  year: 2014
  end-page: 1262
  ident: bib11
  article-title: Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1929
  year: 1974
  ident: 10.1016/j.electacta.2017.10.198_bib48
  article-title: The mechanism of mechanical alloying
  publication-title: Metall. Trans.
  doi: 10.1007/BF02644161
– volume: 8
  start-page: 74
  year: 2016
  ident: 10.1016/j.electacta.2017.10.198_bib1
  article-title: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
  publication-title: Nanoscale
  doi: 10.1039/C5NR05116A
– volume: 215
  start-page: 126
  year: 2016
  ident: 10.1016/j.electacta.2017.10.198_bib6
  article-title: Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.059
– volume: 3
  start-page: 31
  year: 2008
  ident: 10.1016/j.electacta.2017.10.198_bib43
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 171
  start-page: 886
  year: 2007
  ident: 10.1016/j.electacta.2017.10.198_bib21
  article-title: Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.026
– volume: 281
  start-page: 425
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib24
  article-title: Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO 2 with magnesium for lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.020
– volume: 154
  start-page: A103
  year: 2007
  ident: 10.1016/j.electacta.2017.10.198_bib40
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2402112
– volume: 11
  start-page: 2949
  year: 2011
  ident: 10.1016/j.electacta.2017.10.198_bib10
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
  doi: 10.1021/nl201470j
– volume: 7
  start-page: 873
  year: 1996
  ident: 10.1016/j.electacta.2017.10.198_bib36
  article-title: Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling
  publication-title: Nanostructured Mater.
  doi: 10.1016/S0965-9773(96)00058-X
– volume: 12
  start-page: 3315
  year: 2012
  ident: 10.1016/j.electacta.2017.10.198_bib8
  article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl3014814
– volume: 4
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib4
  article-title: Silicon-based nanomaterials for lithium-ion batteries: a review
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300882
– year: 1990
  ident: 10.1016/j.electacta.2017.10.198_bib49
  article-title: Structural applications of mechanical alloying
– volume: 13
  start-page: 279
  year: 1983
  ident: 10.1016/j.electacta.2017.10.198_bib47
  article-title: Mechanical alloying
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.13.080183.001431
– volume: 9
  start-page: 323
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib2
  article-title: Nanomaterials for electrochemical energy storage
  publication-title: Front. Phys.
  doi: 10.1007/s11467-013-0408-7
– volume: 50
  start-page: 5878
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib39
  article-title: Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01728E
– volume: 72
  start-page: 38
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib23
  article-title: Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.01.027
– volume: 6
  start-page: 211
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib26
  article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.006
– volume: 279
  start-page: 13
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib33
  article-title: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.041
– volume: 116
  start-page: 230
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib25
  article-title: Enhancement of the cyclability of a Si/Graphite@ graphene composite as anode for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.195
– volume: 3
  start-page: 2700
  year: 2013
  ident: 10.1016/j.electacta.2017.10.198_bib38
  article-title: Origin of new broad Raman D and G Peaks in annealed graphene
  publication-title: Sci. Rep.
  doi: 10.1038/srep02700
– volume: 2
  start-page: 18026
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib37
  article-title: Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04103H
– volume: 87
  start-page: 663
  year: 2013
  ident: 10.1016/j.electacta.2017.10.198_bib9
  article-title: Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.10.008
– volume: 146
  start-page: 60
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib31
  article-title: Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.103
– volume: 30
  start-page: 1186
  year: 2001
  ident: 10.1016/j.electacta.2017.10.198_bib13
  article-title: Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2001.1186
– volume: 7
  start-page: 310
  year: 2012
  ident: 10.1016/j.electacta.2017.10.198_bib46
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 267
  start-page: 469
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib3
  article-title: Silicon-based materials as high capacity anodes for next generation lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.096
– volume: 5
  start-page: 12340
  year: 2013
  ident: 10.1016/j.electacta.2017.10.198_bib7
  article-title: Preparation of Silicon@Silicon oxide core–shell nanowires from a silica precursor toward a high energy density Li-Ion battery anode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402930b
– volume: 146
  start-page: 448
  year: 2005
  ident: 10.1016/j.electacta.2017.10.198_bib34
  article-title: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.112
– volume: 85
  start-page: 819
  year: 2002
  ident: 10.1016/j.electacta.2017.10.198_bib35
  article-title: Synthesis of nanostructured silicon carbide through an integrated mechanical and thermal activation process
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2002.tb00178.x
– volume: 2
  start-page: 1257
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib11
  article-title: Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14100D
– volume: 165
  start-page: 166
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib22
  article-title: High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.219
– volume: 114
  start-page: 88
  year: 2003
  ident: 10.1016/j.electacta.2017.10.198_bib15
  article-title: Characterization of carbon-coated silicon: structural evolution and possible limitations
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00533-5
– volume: 153
  start-page: 375
  year: 2006
  ident: 10.1016/j.electacta.2017.10.198_bib19
  article-title: Electrochemical behaviors of silicon based anode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.052
– volume: 727
  start-page: 8
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib28
  article-title: Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2014.05.031
– volume: 48
  start-page: 1579
  year: 2003
  ident: 10.1016/j.electacta.2017.10.198_bib16
  article-title: Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(03)00030-6
– volume: 149
  start-page: A1598
  year: 2002
  ident: 10.1016/j.electacta.2017.10.198_bib14
  article-title: Carbon-coated Si as a lithium-ion battery anode material
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1518988
– volume: 9
  start-page: 187
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib45
  article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.6
– volume: 4
  start-page: 20814
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib42
  article-title: Controlled synthesis of yolk-mesoporous shell Si@SiO2 nanohybrid designed for high performance Li ion battery
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01871K
– volume: 164
  start-page: 163
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib30
  article-title: Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.224
– volume: 46
  start-page: 2590
  year: 2010
  ident: 10.1016/j.electacta.2017.10.198_bib5
  article-title: Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/b925696b
– volume: 51
  start-page: 8429
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib29
  article-title: A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09825K
– volume: 3
  start-page: 295
  year: 2013
  ident: 10.1016/j.electacta.2017.10.198_bib12
  article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200857
– volume: 146
  start-page: 10
  year: 2005
  ident: 10.1016/j.electacta.2017.10.198_bib18
  article-title: Electrochemical behaviors of silicon based anode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.143
– volume: 49
  start-page: 2146
  year: 2010
  ident: 10.1016/j.electacta.2017.10.198_bib41
  article-title: A critical size of silicon nano-anodes for lithium rechargeable batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906287
– volume: 588
  start-page: 206
  year: 2014
  ident: 10.1016/j.electacta.2017.10.198_bib27
  article-title: Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.10.160
– volume: 136
  start-page: 108
  year: 2004
  ident: 10.1016/j.electacta.2017.10.198_bib17
  article-title: Mixed silicon–graphite composites as anode material for lithium ion batteries: influence of preparation conditions on the properties of the material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.012
– volume: 281
  start-page: 293
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib32
  article-title: High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.122
– volume: 163
  start-page: 215
  year: 2006
  ident: 10.1016/j.electacta.2017.10.198_bib20
  article-title: Silicon/graphite composites as an anode material for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.12.078
– volume: 5
  year: 2015
  ident: 10.1016/j.electacta.2017.10.198_bib44
  article-title: Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries
  publication-title: Sci. Rep.
SSID ssj0007670
Score 2.414247
Snippet Utilizing silicon as an anode material for Li-ion batteries has been the subject of many studies. However, due to the huge volume change of silicon during...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Agglomerates
Anode
Anodes
Batteries
Chemical synthesis
Electrochemical analysis
Electrode materials
Graphite
High-energy ball mill
Lithium
Lithium-ion batteries
Lithium-ion battery
Nanocomposites
Nanostructure
Rechargeable batteries
Silicon
Voids
Title Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids
URI https://dx.doi.org/10.1016/j.electacta.2017.10.198
https://www.proquest.com/docview/2011254068
https://www.osti.gov/biblio/1461345
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h7aHlgHgUsbBFPvQaNrt2bIcbWhUtrcqlIHGL_IoahJwVWZC48NuZySZLUVVxqBRFSuKxI8_Y8yX6Zgbga261V3oSEu3xJIxOE2xZJhzdS2ZRSkkKFP55KefX4vtNdrMBsz4WhmiV3d6_2tPb3bq7M-5mc7yoKorxnXAhNbpgPqW8dRTBLiTR-k6eX2keSqq0r2JArd9wvNpSMwYP4nipkzZ4T__LQw1qXHR_bdmtHzrfhq0OQLKz1TvuwEaIu_Bx1tdt24XNP1IM7sHDr6eIGK-pGmaiZ4vXOAFWlyyaWK8yyD7cB8-a6g4NI47bLNaIRRkRzonVFRpGP2yZYcvfVWTO3Ns6soZIpG23oRsS-3isK998huvzb1ezedKVWkgcIqhlkpmJRyRTcqGdmSiT5ng4x2WubUiNDT5Y6ZQXWckRI5iguc3Qk5XeuWwaBN-HQaxjOACGH1DTNDMaF7YUCH5yUxpprFdceaWUG4Lsp7dwXR5yKodxV_SEs9tirZeC9NI-yPUQ0rXgYpWK432R015_xRurKtBhvC98RBonQcqn64h4hJJUCJ2LbAij3hCKbtk3JI2AETGSPvyfkY_gE10Ra2aajmCAdhC-IPZZ2uPWuI_hw9nFj_nlC_3rB0E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7aFwQFBALC3gA9ew2fVnuFUrqi1t90Ir9RY5tiOCKmfVbJH67zuTdRYqhHpAsnKIM3Zkj2deojczAJ-KynhtpiEzHi_CmjzDJ-uMo3uRFUppRYHC50u1uBTfruTVDsyHWBiiVSbbv7HpvbVOdyZpNSerpqEY3ykXyqAL5jPKW_cEdoVEmzyC3aOT08Vya5C10vlQyIAEHtC8-mozFhvRvPTnPn7P_MtJjVo8d39Z7d4VHb-A5wlDsqPNa76EnRD3YW8-lG7bh2d_ZBl8Bbff7yLCvK7pmI2erX6HCrC2ZtHGdpNE9vYmeNY116gbcdInskY4yohzTsSu0DH6Z8ssW_9oInP2pmoj64hH2g8b0pQ4xq-28d1ruDz-ejFfZKnaQuYQRK0zaacewUzNhXF2qm1eYHOOq8JUIbdV8KFSTnsha44wwQbDK4nOrPbOyVkQ_A2MYhvDW2D4DTXLpTV4tpVA_FPY2ipbec2111q7MahheUuXUpFTRYzrcuCc_Sy3-1LSvvQdhRlDvhVcbbJxPC7yZdi_8oFilegzHhc-oB0nQUqp64h7hJJUC50LOYbDQRHKdPI7kkbMiDDJvPufmT_C3uLi_Kw8O1meHsBT6iESzSw_hBHqRHiPUGhdfUiqfg_hzwns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+performance+of+nanostructured+silicon%2Fgraphite+composites+with+a+thin+carbon+shell+and+engineered+voids&rft.jtitle=Electrochimica+acta&rft.au=Ashuri%2C+Maziar&rft.au=He%2C+Qianran&rft.au=Liu%2C+Yuzi&rft.au=Emani%2C+Satyanarayana&rft.date=2017-12-20&rft.issn=0013-4686&rft.volume=258&rft.spage=274&rft.epage=283&rft_id=info:doi/10.1016%2Fj.electacta.2017.10.198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_10_198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon