scHLAcount: allele-specific HLA expression from single-cell gene expression data
Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available me...
Saved in:
Published in | Bioinformatics Vol. 36; no. 12; pp. 3905 - 3906 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
DOI | 10.1093/bioinformatics/btaa264 |
Cover
Abstract | Abstract
Summary
Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample’s HLA genotypes.
Availability and implementation
scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes.SUMMARYBulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes.scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount.AVAILABILITY AND IMPLEMENTATIONscHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample’s HLA genotypes. Availability and implementation scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary information Supplementary data are available at Bioinformatics online. Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes. scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary data are available at Bioinformatics online. |
Author | Marks, Patrick J Martínez Barrio, Álvaro Fiddes, Ian T Darby, Charlotte A Stubbington, Michael J T |
AuthorAffiliation | b2 10x Genomics , Pleasanton, CA 94588, USA b1 Department of Computer Science , Johns Hopkins University, Baltimore, MD 21218, USA |
AuthorAffiliation_xml | – name: b2 10x Genomics , Pleasanton, CA 94588, USA – name: b1 Department of Computer Science , Johns Hopkins University, Baltimore, MD 21218, USA |
Author_xml | – sequence: 1 givenname: Charlotte A orcidid: 0000-0003-2195-5300 surname: Darby fullname: Darby, Charlotte A organization: Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 2 givenname: Michael J T orcidid: 0000-0001-5924-3566 surname: Stubbington fullname: Stubbington, Michael J T organization: 10x Genomics, Pleasanton, CA 94588, USA – sequence: 3 givenname: Patrick J surname: Marks fullname: Marks, Patrick J organization: 10x Genomics, Pleasanton, CA 94588, USA – sequence: 4 givenname: Álvaro surname: Martínez Barrio fullname: Martínez Barrio, Álvaro email: martinezbarrio.alvaro@gmail.com organization: 10x Genomics, Pleasanton, CA 94588, USA – sequence: 5 givenname: Ian T surname: Fiddes fullname: Fiddes, Ian T email: martinezbarrio.alvaro@gmail.com organization: 10x Genomics, Pleasanton, CA 94588, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32330223$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1LAzEQhoMo1lb_Qtmjl7X52rQrIkjxCwp60HPIppMa2U3WZFf035vSKupFTwnM8847M-8Q7TrvAKExwScEl2xSWW-d8aFRndVxUnVKUcF30AHhAucUF-Vu-jMxzfkMswEaxviMcUE45_towChjmFJ2gO6jvllcaN-77jRTdQ015LEFbY3VWapk8NYGiNF6l5ngmyxat0qMhrrOVuDgO7BUnTpEe0bVEY627wg9Xl0-zG_yxd317fxikWteiC5NxaelwYZpwlhBqDHKFCC0xnhGlRFELKmgRcUU4yXhU81xpQ0uwWizJHzGRuh807ftqwaWGlwXVC3bYBsV3qVXVv6sOPskV_5VThnFIu0-QsfbBsG_9BA72di4Xks58H2UlJV8VqaTiYSOv3t9mXyeMQFnG0AHH2MAI7XtUjJ-bW1rSbBcpyZ_pia3qSW5-CX_dPhTSDZC37f_1XwAByi3LA |
CitedBy_id | crossref_primary_10_1016_j_gde_2020_10_007 crossref_primary_10_1016_j_tig_2023_10_003 crossref_primary_10_1182_blood_2024024817 crossref_primary_10_3389_fimmu_2021_629059 crossref_primary_10_1093_bib_bbac430 crossref_primary_10_3389_fimmu_2023_1146826 crossref_primary_10_1038_s41467_022_31769_4 crossref_primary_10_1146_annurev_genom_101422_100437 crossref_primary_10_1016_j_tig_2024_07_003 crossref_primary_10_1038_s41588_023_01586_6 crossref_primary_10_3389_fimmu_2022_1007425 crossref_primary_10_1007_s00251_023_01296_7 crossref_primary_10_1186_s13073_023_01154_x crossref_primary_10_1038_s41467_024_48699_y crossref_primary_10_1038_s41467_024_52139_2 |
Cites_doi | 10.1186/s12920-018-0354-x 10.1093/nar/gku1161 10.1126/science.aao4572 10.1111/j.1399-0039.2012.01881.x 10.1038/s41467-019-11591-1 10.1371/journal.pgen.1008091 10.1038/ncomms10582 10.1093/bioinformatics/bty125 10.1038/nbt.3519 10.1038/s41467-018-06300-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btaa264 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 3906 |
ExternalDocumentID | PMC7320622 32330223 10_1093_bioinformatics_btaa264 10.1093/bioinformatics/btaa264 |
Genre | Journal Article |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 KOP Q5Y RD5 ROX TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c456t-48479f0f3c133512ffaf5e6cc0082af616d2625b3a349147c40bcf09efcfd1483 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 18:07:43 EDT 2025 Fri Jul 11 07:18:46 EDT 2025 Wed Feb 19 02:29:06 EST 2025 Tue Jul 01 02:33:52 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 28 03:19:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-48479f0f3c133512ffaf5e6cc0082af616d2625b3a349147c40bcf09efcfd1483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5924-3566 0000-0003-2195-5300 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btaa264 |
PMID | 32330223 |
PQID | 2394890516 |
PQPubID | 23479 |
PageCount | 2 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320622 proquest_miscellaneous_2394890516 pubmed_primary_32330223 crossref_citationtrail_10_1093_bioinformatics_btaa264 crossref_primary_10_1093_bioinformatics_btaa264 oup_primary_10_1093_bioinformatics_btaa264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Bauer (2023063011474400900_btaa264-B2) 2018; 19 Paulson (2023063011474400900_btaa264-B9) 2018; 9 Tian (2023063011474400900_btaa264-B12) 2019 Bray (2023063011474400900_btaa264-B4) 2016; 34 Johnson (2023063011474400900_btaa264-B7) 2016; 7 Robinson (2023063011474400900_btaa264-B11) 2015; 43 Lee (2023063011474400900_btaa264-B8) 2018; 34 Aguiar (2023063011474400900_btaa264-B1) 2019; 15 Erlich (2023063011474400900_btaa264-B6) 2012; 80 Chowell (2023063011474400900_btaa264-B5) 2018; 359 Boegel (2023063011474400900_btaa264-B3) 2018; 11 Petti (2023063011474400900_btaa264-B10) 2019; 10 |
References_xml | – volume: 11 start-page: 36 year: 2018 ident: 2023063011474400900_btaa264-B3 article-title: HLA and proteasome expression body map publication-title: BMC Med. Genomics doi: 10.1186/s12920-018-0354-x – volume: 43 start-page: D423 year: 2015 ident: 2023063011474400900_btaa264-B11 article-title: The IPD and IMGT/HLA database: allele variant databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1161 – volume: 359 start-page: 582 year: 2018 ident: 2023063011474400900_btaa264-B5 article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy publication-title: Science doi: 10.1126/science.aao4572 – volume: 80 start-page: 1 year: 2012 ident: 2023063011474400900_btaa264-B6 article-title: HLA DNA typing: past, present, and future publication-title: Tissue Antigens doi: 10.1111/j.1399-0039.2012.01881.x – volume: 10 start-page: 3660 year: 2019 ident: 2023063011474400900_btaa264-B10 article-title: A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing publication-title: Nat. Commun doi: 10.1038/s41467-019-11591-1 – year: 2019 ident: 2023063011474400900_btaa264-B12 – volume: 15 start-page: e1008091 year: 2019 ident: 2023063011474400900_btaa264-B1 article-title: Expression estimation and eQTL mapping for HLA genes with a personalized pipeline publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008091 – volume: 19 start-page: bbw097 year: 2018 ident: 2023063011474400900_btaa264-B2 article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data publication-title: Brief. Bioinform – volume: 7 start-page: 10582 year: 2016 ident: 2023063011474400900_btaa264-B7 article-title: Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy publication-title: Nat. Commun doi: 10.1038/ncomms10582 – volume: 34 start-page: 2401 year: 2018 ident: 2023063011474400900_btaa264-B8 article-title: AltHapAlignR: improved accuracy of RNA-seq analyses through the use of alternative haplotypes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty125 – volume: 34 start-page: 525 year: 2016 ident: 2023063011474400900_btaa264-B4 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol doi: 10.1038/nbt.3519 – volume: 9 start-page: 3868 year: 2018 ident: 2023063011474400900_btaa264-B9 article-title: Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA publication-title: Nat. Commun doi: 10.1038/s41467-018-06300-3 |
SSID | ssj0051444 ssj0005056 |
Score | 2.4239628 |
Snippet | Abstract
Summary
Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and... Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion.... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3905 |
SubjectTerms | Alleles Applications Notes Gene Expression Humans Sequence Analysis, RNA Single-Cell Analysis Software Workflow |
Title | scHLAcount: allele-specific HLA expression from single-cell gene expression data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32330223 https://www.proquest.com/docview/2394890516 https://pubmed.ncbi.nlm.nih.gov/PMC7320622 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivq2PEsGTEJrsJJvEWxFLfXtoobew2exioaRiU9B_70yS1qYg6jHsbkhmNplvZme-YezCUR6EJjG2kJFve4ICTVEKtlBCQQoGbR4VJz8-if7Quxv5owZzF7Uw60f4EXSS8bQiESXi4k6SS4lWHP-6aIlpZw-eR99JHQ5Rw5QXCAW8sqctUXuHDiwKhH-8Z8021erdVmDnevbkijnqbbOtCkda3VLxO6yhs122UXaW_NxjLzPVf-gWjSCuLGqXMtE2FVVSYpCFI5b-qDJgM4sqTCwKGeAciuNbuKf06gTKIt1nw97N4LpvV80TbIWYKMcX9oLIOAYUeqFo1Y2RxtdCKTL60ghXpBx9nwQkeJHrBcpzEmWcSBtlUvSR4IA1s2mmj5gl04CniBSU1BEOJGHEw1AjkjAu-MrlLeYvxBarilmcGlxM4vKEG-K6uONK3C3WWa57K7k1fl1xiVr58-TzhfJi_GZIgDLT0_kspnbwIRGTiRY7LJW5vCdwAMQ10GJBTc3LCcTHXR_Jxq8FL3cA3BGcH__nIU_YJicPvojrnLJm_j7XZwhz8qSNAP_2vl3s7y_79QGN |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scHLAcount%3A+allele-specific+HLA+expression+from+single-cell+gene+expression+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Darby%2C+Charlotte+A&rft.au=Stubbington%2C+Michael+J+T&rft.au=Marks%2C+Patrick+J&rft.au=Mart%C3%ADnez+Barrio%2C+%C3%81lvaro&rft.date=2020-06-01&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=12&rft.spage=3905&rft.epage=3906&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaa264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |