scHLAcount: allele-specific HLA expression from single-cell gene expression data

Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available me...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 12; pp. 3905 - 3906
Main Authors Darby, Charlotte A, Stubbington, Michael J T, Marks, Patrick J, Martínez Barrio, Álvaro, Fiddes, Ian T
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2020
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btaa264

Cover

Abstract Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample’s HLA genotypes. Availability and implementation scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes.SUMMARYBulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes.scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount.AVAILABILITY AND IMPLEMENTATIONscHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample’s HLA genotypes. Availability and implementation scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary information Supplementary data are available at Bioinformatics online.
Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes. scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary data are available at Bioinformatics online.
Author Marks, Patrick J
Martínez Barrio, Álvaro
Fiddes, Ian T
Darby, Charlotte A
Stubbington, Michael J T
AuthorAffiliation b2 10x Genomics , Pleasanton, CA 94588, USA
b1 Department of Computer Science , Johns Hopkins University, Baltimore, MD 21218, USA
AuthorAffiliation_xml – name: b2 10x Genomics , Pleasanton, CA 94588, USA
– name: b1 Department of Computer Science , Johns Hopkins University, Baltimore, MD 21218, USA
Author_xml – sequence: 1
  givenname: Charlotte A
  orcidid: 0000-0003-2195-5300
  surname: Darby
  fullname: Darby, Charlotte A
  organization: Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Michael J T
  orcidid: 0000-0001-5924-3566
  surname: Stubbington
  fullname: Stubbington, Michael J T
  organization: 10x Genomics, Pleasanton, CA 94588, USA
– sequence: 3
  givenname: Patrick J
  surname: Marks
  fullname: Marks, Patrick J
  organization: 10x Genomics, Pleasanton, CA 94588, USA
– sequence: 4
  givenname: Álvaro
  surname: Martínez Barrio
  fullname: Martínez Barrio, Álvaro
  email: martinezbarrio.alvaro@gmail.com
  organization: 10x Genomics, Pleasanton, CA 94588, USA
– sequence: 5
  givenname: Ian T
  surname: Fiddes
  fullname: Fiddes, Ian T
  email: martinezbarrio.alvaro@gmail.com
  organization: 10x Genomics, Pleasanton, CA 94588, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32330223$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LAzEQhoMo1lb_Qtmjl7X52rQrIkjxCwp60HPIppMa2U3WZFf035vSKupFTwnM8847M-8Q7TrvAKExwScEl2xSWW-d8aFRndVxUnVKUcF30AHhAucUF-Vu-jMxzfkMswEaxviMcUE45_towChjmFJ2gO6jvllcaN-77jRTdQ015LEFbY3VWapk8NYGiNF6l5ngmyxat0qMhrrOVuDgO7BUnTpEe0bVEY627wg9Xl0-zG_yxd317fxikWteiC5NxaelwYZpwlhBqDHKFCC0xnhGlRFELKmgRcUU4yXhU81xpQ0uwWizJHzGRuh807ftqwaWGlwXVC3bYBsV3qVXVv6sOPskV_5VThnFIu0-QsfbBsG_9BA72di4Xks58H2UlJV8VqaTiYSOv3t9mXyeMQFnG0AHH2MAI7XtUjJ-bW1rSbBcpyZ_pia3qSW5-CX_dPhTSDZC37f_1XwAByi3LA
CitedBy_id crossref_primary_10_1016_j_gde_2020_10_007
crossref_primary_10_1016_j_tig_2023_10_003
crossref_primary_10_1182_blood_2024024817
crossref_primary_10_3389_fimmu_2021_629059
crossref_primary_10_1093_bib_bbac430
crossref_primary_10_3389_fimmu_2023_1146826
crossref_primary_10_1038_s41467_022_31769_4
crossref_primary_10_1146_annurev_genom_101422_100437
crossref_primary_10_1016_j_tig_2024_07_003
crossref_primary_10_1038_s41588_023_01586_6
crossref_primary_10_3389_fimmu_2022_1007425
crossref_primary_10_1007_s00251_023_01296_7
crossref_primary_10_1186_s13073_023_01154_x
crossref_primary_10_1038_s41467_024_48699_y
crossref_primary_10_1038_s41467_024_52139_2
Cites_doi 10.1186/s12920-018-0354-x
10.1093/nar/gku1161
10.1126/science.aao4572
10.1111/j.1399-0039.2012.01881.x
10.1038/s41467-019-11591-1
10.1371/journal.pgen.1008091
10.1038/ncomms10582
10.1093/bioinformatics/bty125
10.1038/nbt.3519
10.1038/s41467-018-06300-3
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btaa264
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 3906
ExternalDocumentID PMC7320622
32330223
10_1093_bioinformatics_btaa264
10.1093/bioinformatics/btaa264
Genre Journal Article
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-48479f0f3c133512ffaf5e6cc0082af616d2625b3a349147c40bcf09efcfd1483
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:07:43 EDT 2025
Fri Jul 11 07:18:46 EDT 2025
Wed Feb 19 02:29:06 EST 2025
Tue Jul 01 02:33:52 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 28 03:19:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-48479f0f3c133512ffaf5e6cc0082af616d2625b3a349147c40bcf09efcfd1483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5924-3566
0000-0003-2195-5300
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaa264
PMID 32330223
PQID 2394890516
PQPubID 23479
PageCount 2
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320622
proquest_miscellaneous_2394890516
pubmed_primary_32330223
crossref_citationtrail_10_1093_bioinformatics_btaa264
crossref_primary_10_1093_bioinformatics_btaa264
oup_primary_10_1093_bioinformatics_btaa264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bauer (2023063011474400900_btaa264-B2) 2018; 19
Paulson (2023063011474400900_btaa264-B9) 2018; 9
Tian (2023063011474400900_btaa264-B12) 2019
Bray (2023063011474400900_btaa264-B4) 2016; 34
Johnson (2023063011474400900_btaa264-B7) 2016; 7
Robinson (2023063011474400900_btaa264-B11) 2015; 43
Lee (2023063011474400900_btaa264-B8) 2018; 34
Aguiar (2023063011474400900_btaa264-B1) 2019; 15
Erlich (2023063011474400900_btaa264-B6) 2012; 80
Chowell (2023063011474400900_btaa264-B5) 2018; 359
Boegel (2023063011474400900_btaa264-B3) 2018; 11
Petti (2023063011474400900_btaa264-B10) 2019; 10
References_xml – volume: 11
  start-page: 36
  year: 2018
  ident: 2023063011474400900_btaa264-B3
  article-title: HLA and proteasome expression body map
  publication-title: BMC Med. Genomics
  doi: 10.1186/s12920-018-0354-x
– volume: 43
  start-page: D423
  year: 2015
  ident: 2023063011474400900_btaa264-B11
  article-title: The IPD and IMGT/HLA database: allele variant databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1161
– volume: 359
  start-page: 582
  year: 2018
  ident: 2023063011474400900_btaa264-B5
  article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy
  publication-title: Science
  doi: 10.1126/science.aao4572
– volume: 80
  start-page: 1
  year: 2012
  ident: 2023063011474400900_btaa264-B6
  article-title: HLA DNA typing: past, present, and future
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2012.01881.x
– volume: 10
  start-page: 3660
  year: 2019
  ident: 2023063011474400900_btaa264-B10
  article-title: A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing
  publication-title: Nat. Commun
  doi: 10.1038/s41467-019-11591-1
– year: 2019
  ident: 2023063011474400900_btaa264-B12
– volume: 15
  start-page: e1008091
  year: 2019
  ident: 2023063011474400900_btaa264-B1
  article-title: Expression estimation and eQTL mapping for HLA genes with a personalized pipeline
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008091
– volume: 19
  start-page: bbw097
  year: 2018
  ident: 2023063011474400900_btaa264-B2
  article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data
  publication-title: Brief. Bioinform
– volume: 7
  start-page: 10582
  year: 2016
  ident: 2023063011474400900_btaa264-B7
  article-title: Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy
  publication-title: Nat. Commun
  doi: 10.1038/ncomms10582
– volume: 34
  start-page: 2401
  year: 2018
  ident: 2023063011474400900_btaa264-B8
  article-title: AltHapAlignR: improved accuracy of RNA-seq analyses through the use of alternative haplotypes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty125
– volume: 34
  start-page: 525
  year: 2016
  ident: 2023063011474400900_btaa264-B4
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3519
– volume: 9
  start-page: 3868
  year: 2018
  ident: 2023063011474400900_btaa264-B9
  article-title: Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-06300-3
SSID ssj0051444
ssj0005056
Score 2.4239628
Snippet Abstract Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and...
Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion....
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3905
SubjectTerms Alleles
Applications Notes
Gene Expression
Humans
Sequence Analysis, RNA
Single-Cell Analysis
Software
Workflow
Title scHLAcount: allele-specific HLA expression from single-cell gene expression data
URI https://www.ncbi.nlm.nih.gov/pubmed/32330223
https://www.proquest.com/docview/2394890516
https://pubmed.ncbi.nlm.nih.gov/PMC7320622
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivq2PEsGTEJrsJJvEWxFLfXtoobew2exioaRiU9B_70yS1qYg6jHsbkhmNplvZme-YezCUR6EJjG2kJFve4ICTVEKtlBCQQoGbR4VJz8-if7Quxv5owZzF7Uw60f4EXSS8bQiESXi4k6SS4lWHP-6aIlpZw-eR99JHQ5Rw5QXCAW8sqctUXuHDiwKhH-8Z8021erdVmDnevbkijnqbbOtCkda3VLxO6yhs122UXaW_NxjLzPVf-gWjSCuLGqXMtE2FVVSYpCFI5b-qDJgM4sqTCwKGeAciuNbuKf06gTKIt1nw97N4LpvV80TbIWYKMcX9oLIOAYUeqFo1Y2RxtdCKTL60ghXpBx9nwQkeJHrBcpzEmWcSBtlUvSR4IA1s2mmj5gl04CniBSU1BEOJGHEw1AjkjAu-MrlLeYvxBarilmcGlxM4vKEG-K6uONK3C3WWa57K7k1fl1xiVr58-TzhfJi_GZIgDLT0_kspnbwIRGTiRY7LJW5vCdwAMQ10GJBTc3LCcTHXR_Jxq8FL3cA3BGcH__nIU_YJicPvojrnLJm_j7XZwhz8qSNAP_2vl3s7y_79QGN
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scHLAcount%3A+allele-specific+HLA+expression+from+single-cell+gene+expression+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Darby%2C+Charlotte+A&rft.au=Stubbington%2C+Michael+J+T&rft.au=Marks%2C+Patrick+J&rft.au=Mart%C3%ADnez+Barrio%2C+%C3%81lvaro&rft.date=2020-06-01&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=12&rft.spage=3905&rft.epage=3906&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btaa264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon