SETD2 deficiency promotes renal fibrosis through the TGF‐β/Smad signalling pathway in the absence of VHL

Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain‐containing 2 (SETD2) is the sole histone H3K36 tr...

Full description

Saved in:
Bibliographic Details
Published inClinical and translational medicine Vol. 13; no. 11; pp. e1468 - n/a
Main Authors Liu, Changwei, Ni, Li, Li, Xiaoxue, Rao, Hanyu, Feng, Wenxin, Zhu, Yiwen, Zhang, Wei, Ma, Chunxiao, Xu, Yue, Gui, Liming, Wang, Ziyi, Aji, Rebiguli, Xu, Jin, Gao, Wei‐Qiang, Li, Li
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.11.2023
Wiley
Subjects
Online AccessGet full text
ISSN2001-1326
2001-1326
DOI10.1002/ctm2.1468

Cover

Abstract Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain‐containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2‐mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. Methods Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel–Lindau (VHL) double‐knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. Results SETD2 deficiency leads to severe renal fibrosis in VHL‐deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor‐β (TGF‐β)/Smad signalling pathway, thereby preventing the activation of the TGF‐β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF‐β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. Conclusions Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis. Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis. Thus, our study provides an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis .
AbstractList Abstract Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain‐containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2‐mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. Methods Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel–Lindau (VHL) double‐knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. Results SETD2 deficiency leads to severe renal fibrosis in VHL‐deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor‐β (TGF‐β)/Smad signalling pathway, thereby preventing the activation of the TGF‐β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF‐β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. Conclusions Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.
Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis.BACKGROUNDRenal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis.Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis.METHODSKidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis.SETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-β (TGF-β)/Smad signalling pathway, thereby preventing the activation of the TGF-β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL.RESULTSSETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-β (TGF-β)/Smad signalling pathway, thereby preventing the activation of the TGF-β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL.Our findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.CONCLUSIONSOur findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.
Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis. Thus, our study provides an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis .
Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain‐containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2‐mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. Methods Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel–Lindau (VHL) double‐knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. Results SETD2 deficiency leads to severe renal fibrosis in VHL‐deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor‐β (TGF‐β)/Smad signalling pathway, thereby preventing the activation of the TGF‐β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF‐β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. Conclusions Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis. Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis. Thus, our study provides an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis .
Author Ma, Chunxiao
Li, Li
Liu, Changwei
Zhang, Wei
Aji, Rebiguli
Li, Xiaoxue
Feng, Wenxin
Rao, Hanyu
Gui, Liming
Zhu, Yiwen
Xu, Jin
Ni, Li
Gao, Wei‐Qiang
Xu, Yue
Wang, Ziyi
AuthorAffiliation 3 Department of Nursing Shanghai East Hospital Tongji University Shanghai China
2 School of Biomedical Engineering and Med‐X Research Institute Shanghai Jiao Tong University Shanghai China
1 State Key Laboratory of Systems Medicine for Cancer Renji‐Med X Clinical Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Systems Medicine for Cancer Renji‐Med X Clinical Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
– name: 2 School of Biomedical Engineering and Med‐X Research Institute Shanghai Jiao Tong University Shanghai China
– name: 3 Department of Nursing Shanghai East Hospital Tongji University Shanghai China
Author_xml – sequence: 1
  givenname: Changwei
  surname: Liu
  fullname: Liu, Changwei
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Li
  surname: Ni
  fullname: Ni, Li
  organization: Tongji University
– sequence: 3
  givenname: Xiaoxue
  surname: Li
  fullname: Li, Xiaoxue
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Hanyu
  surname: Rao
  fullname: Rao, Hanyu
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Wenxin
  surname: Feng
  fullname: Feng, Wenxin
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Yiwen
  surname: Zhu
  fullname: Zhu, Yiwen
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Chunxiao
  surname: Ma
  fullname: Ma, Chunxiao
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Yue
  surname: Xu
  fullname: Xu, Yue
  organization: Shanghai Jiao Tong University
– sequence: 10
  givenname: Liming
  surname: Gui
  fullname: Gui, Liming
  organization: Shanghai Jiao Tong University
– sequence: 11
  givenname: Ziyi
  surname: Wang
  fullname: Wang, Ziyi
  organization: Shanghai Jiao Tong University
– sequence: 12
  givenname: Rebiguli
  surname: Aji
  fullname: Aji, Rebiguli
  organization: Shanghai Jiao Tong University
– sequence: 13
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
  organization: Shanghai Jiao Tong University
– sequence: 14
  givenname: Wei‐Qiang
  surname: Gao
  fullname: Gao, Wei‐Qiang
  organization: Shanghai Jiao Tong University
– sequence: 15
  givenname: Li
  orcidid: 0000-0003-2342-3658
  surname: Li
  fullname: Li, Li
  email: lil@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BookMark eNp1kU9uEzEUh0eoSJTSBTfwEhZpbI_t2CuEQv9JQSwa2Foe-83EZWYc7Emr7DgCZ-lBeghOgicJEkXghd-T_f0-WX4vi6M-9FAUrwk-IxjTqR06ekaYkM-KY4oxmZCSiqM_-hfFaUq3OC_JlJrR4-LrzfnyA0UOam899HaL1jF0YYCEIvSmRbWvYkg-oWEVw6ZZ5QpoeXnx8_uPx4fpTWccSr7JZOv7Bq3NsLo3W-T7HWeqlJ2AQo2-XC1eFc9r0yY4PdST4vPF-XJ-NVl8uryev19MLONCTmzeeImlYJQ5SwwhSkgLUNfYzYgiwMEIVdqSSuyMUzOuakyBYVC4cmDLk-J673XB3Op19J2JWx2M17uDEBtt4uBtC5pJK5SBsua2YgQTUzrrJGeYCxCYj653e9d6U3XgLPRDNO0T6dOb3q90E-40wYIqwnk2vDkYYvi2gTTozicLbWt6CJukqZRCMcoZyeh0j9r85SlCra0fzODDqPZtdupxznqcsx7nnBNv_0r8ftm_2IP93rew_T-o58uPdJf4BYiEu4Y
CitedBy_id crossref_primary_10_1016_j_cellsig_2024_111347
Cites_doi 10.1681/ASN.2010060633
10.1038/s41580‐018‐0074‐2
10.1172/JCI96497
10.1136/bmj.l5873
10.1111/cpr.13045
10.1016/s0092‐8674(03)00432‐x
10.1152/ajprenal.00363.2006
10.1083/jcb.202012097
10.1016/j.cell.2016.07.005
10.1186/s13578‐022‐00936‐x
10.1038/nrc3844
10.1053/j.ajkd.2013.12.010
10.1158/0008‐5472.CAN‐21‐0345
10.1038/sj.ki.5000221
10.1016/j.celrep.2022.110530
10.1053/j.ajkd.2018.12.038
10.1158/0008‐5472.CAN‐20‐3960
10.1681/ASN.2014090875
10.1136/gutjnl‐2019‐318362
10.1074/jbc.RA118.002851
10.1172/JCI143645
10.1038/onc.2015.24
10.1038/nrneph.2016.168
10.1038/nrneph.2014.116
10.1016/S1097-2765(00)00134-9
10.1016/j.celrep.2014.08.031
10.1038/s43018‐021‐00316‐3
10.1172/JCI200319270
10.1038/nrdp.2017.88
10.1016/j.ccell.2020.05.022
10.1016/S0140‐6736(21)00519‐5
10.1038/ng.2891
10.1111/j.1523‐1755.2004.00779.x
10.1038/s41581‐020‐0301‐x
10.1016/j.it.2004.07.008
10.1371/journal.pbio.2006522
10.1038/sj.emboj.7601967
10.1016/j.redox.2021.102004
10.1038/s41467‐019‐11282‐x
10.1016/j.immuni.2019.03.024
10.1038/sj.ki.5000054
10.1016/j.cell.2017.06.042
10.1172/JCI95946
10.1172/JCI94292
10.1002/emmm.201202231
10.1016/j.tcb.2019.10.002
10.1016/j.ygeno.2021.05.034
10.1002/path.4736
10.1124/mol.105.017483
10.7150/ijbs.7.1056
10.1016/j.kint.2021.11.033
10.1038/nrneph.2016.48
10.1038/s41588‐019‐0398‐7
10.1681/ASN.2017121273
10.1016/j.biomaterials.2022.121730
10.1046/j.1523‐1755.2000.00928.x
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
2023 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
– notice: 2023 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
DBID 24P
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1002/ctm2.1468
DatabaseName Wiley Online Library Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate LIU et al
EISSN 2001-1326
EndPage n/a
ExternalDocumentID oai_doaj_org_article_48c69ae3f5cb4101a3dcd854056e605c
PMC10629155
10_1002_ctm2_1468
CTM21468
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82372604; 82073104; 82203255
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 21JC1404100
– fundername: National Key R&D Program of China
  funderid: 2022YFA1302704
– fundername: KC Wong Foundation
– fundername: 111 Project
  funderid: no.B21024
– fundername: ;
  grantid: 21JC1404100
– fundername: ;
  grantid: 82372604; 82073104; 82203255
– fundername: ;
  grantid: no.B21024
– fundername: ;
  grantid: 2022YFA1302704
GroupedDBID 0R~
1OC
24P
2VQ
4.4
53G
5VS
7X7
8AO
8FI
8FJ
AAKKN
AAMMB
ABDBF
ABEEZ
ABUWG
ACACY
ACCMX
ACGFS
ACUHS
ACULB
ACXQS
ADBBV
ADRAZ
AEFGJ
AFGXO
AFKRA
AGXDD
AHBYD
AHMBA
AHSBF
AHYZX
AIDQK
AIDYY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMKLP
AMTXH
AN0
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BNQBC
BPHCQ
BVXVI
C24
C6C
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
SMD
SOJ
UKHRP
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7X8
PPXIY
PUEGO
WIN
5PM
ID FETCH-LOGICAL-c4568-c56853086424dc1a11968ceeff0d7191e5ea693c3280dad9759f02e40e90bdec3
IEDL.DBID M48
ISSN 2001-1326
IngestDate Wed Aug 27 01:03:35 EDT 2025
Thu Aug 21 18:36:17 EDT 2025
Fri Sep 05 02:48:57 EDT 2025
Tue Jul 01 01:16:04 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Sun Jul 06 04:45:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4568-c56853086424dc1a11968ceeff0d7191e5ea693c3280dad9759f02e40e90bdec3
Notes Changwei Liu and Li Ni contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2342-3658
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ctm2.1468
PQID 2886942541
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_48c69ae3f5cb4101a3dcd854056e605c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10629155
proquest_miscellaneous_2886942541
crossref_citationtrail_10_1002_ctm2_1468
crossref_primary_10_1002_ctm2_1468
wiley_primary_10_1002_ctm2_1468_CTM21468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Clinical and translational medicine
PublicationYear 2023
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References 2004; 66
2015; 34
2017; 3
2019; 51
2019; 50
2019; 10
2004; 25
2020; 16
2014; 63
2003; 113
2013; 5
2003; 112
2022; 288
2010; 21
2018; 293
2021; 113
2007; 293
2021; 398
2000; 57
2016; 239
2006; 69
2008; 27
6
2014; 8
2022; 38
2017; 127
2014; 10
2017; 128
2021; 81
2018; 29
2015; 15
2021; 43
2019; 73
2017; 170
2020; 38
2016; 166
2014; 46
1993
2021; 221
2011; 7
2016; 12
2018; 19
2022; 101
2015; 26
2021; 54
2022; 3
2020; 30
2017; 13
2022; 12
2020; 69
2021; 131
2018; 16
2019;367
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Yamamoto T (e_1_2_8_9_1) 1993
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 398
  start-page: 786
  issue: 10302
  year: 2021
  end-page: 802
  article-title: Chronic kidney disease
  publication-title: Lancet North Am Ed
– volume: 16
  issue: 11
  year: 2018
  article-title: H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells
  publication-title: PLoS Biol
– volume: 69
  start-page: 1302
  issue: 8
  year: 2006
  end-page: 1307
  article-title: The VHL/HIF oxygen‐sensing pathway and its relevance to kidney disease
  publication-title: Kidney Int
– volume: 221
  issue: 1
  year: 2021
  article-title: pVHL‐mediated SMAD3 degradation suppresses TGF‐β signaling
  publication-title: J Cell Biol
– volume: 57
  start-page: 1002
  issue: 3
  year: 2000
  end-page: 1014
  article-title: Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy
  publication-title: Kidney Int
– volume: 66
  start-page: 597
  issue: 2
  year: 2004
  end-page: 604
  article-title: Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction
  publication-title: Kidney Int
– volume: 54
  issue: 6
  year: 2021
  article-title: SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR signalling
  publication-title: Cell Prolif
– volume: 25
  start-page: 513
  issue: 10
  year: 2004
  end-page: 517
  article-title: Smad7 in TGF‐beta‐mediated negative regulation of gut inflammation
  publication-title: Trends Immunol
– volume: 112
  start-page: 1486
  issue: 10
  year: 2003
  end-page: 1494
  article-title: Targeted disruption of TGF‐β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
  publication-title: J Clin Invest
– volume: 69
  start-page: 213
  issue: 2
  year: 2006
  end-page: 217
  article-title: Renal fibrosis: new insights into the pathogenesis and therapeutics
  publication-title: Kidney Int
– volume: 50
  start-page: 924
  issue: 4
  year: 2019
  end-page: 940
  article-title: Transforming growth factor‐β signaling in immunity and cancer
  publication-title: Immunity
– volume: 166
  start-page: 950
  issue: 4
  year: 2016
  end-page: 962
  article-title: Dual chromatin and cytoskeletal remodeling by SETD2
  publication-title: Cell
– volume: 113
  start-page: 685
  issue: 6
  year: 2003
  end-page: 700
  article-title: Mechanisms of TGF‐beta signaling from cell membrane to the nucleus
  publication-title: Cell
– volume: 293
  start-page: 9188
  issue: 24
  year: 2018
  end-page: 9197
  article-title: The histone methyltransferase SETD2 is required for expression of acrosin‐binding protein 1 and protamines and essential for spermiogenesis in mice
  publication-title: J Biol Chem
– volume: 293
  start-page: F476
  issue: 2
  year: 2007
  end-page: 485
  article-title: A primary culture of mouse proximal tubular cells, established on collagen‐coated membranes
  publication-title: Am J Physiol Renal Physiol
– volume: 10
  start-page: 517
  issue: 9
  year: 2014
  end-page: 530
  article-title: Diabetic nephropathy–emerging epigenetic mechanisms
  publication-title: Nat Rev Nephrol
– volume: 3
  issue: 1
  year: 2017
  article-title: Chronic kidney disease
  publication-title: Nat Rev Dis Primers
– volume: 73
  start-page: 797
  issue: 6
  year: 2019
  end-page: 805
  article-title: Estimated GFR at dialysis initiation and mortality in children and adolescents
  publication-title: Am J Kidney Dis
– volume: 27
  start-page: 406
  issue: 2
  year: 2008
  end-page: 420
  article-title: Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation
  publication-title: EMBO J
– volume: 26
  start-page: 2778
  issue: 11
  year: 2015
  article-title: Combined deletion of Vhl and Kif3a accelerates renal cyst formation
  publication-title: J Am Soc Nephrol
– volume: 69
  start-page: 715
  issue: 4
  year: 2020
  end-page: 726
  article-title: Loss of Setd2 promotes Kras‐induced acinar‐to‐ductal metaplasia and epithelia–mesenchymal transition during pancreatic carcinogenesis
  publication-title: Gut
– volume: 128
  start-page: 483
  issue: 1
  year: 2017
  end-page: 499
  article-title: Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease
  publication-title: J Clin Invest
– volume: 239
  start-page: 365
  issue: 3
  year: 2016
  end-page: 373
  article-title: Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions
  publication-title: J Pathol
– volume: 30
  start-page: 49
  issue: 1
  year: 2020
  end-page: 59
  article-title: Controlling immunity and inflammation through integrin‐dependent regulation of TGF‐β
  publication-title: Trends Cell Biol
– volume: 12
  start-page: 203
  issue: 1
  year: 2022
  article-title: VHL‐recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF‐2α
  publication-title: Cell Biosci
– volume: 131
  issue: 5
  year: 2021
  article-title: Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF‐β signaling in kidney fibroblasts
  publication-title: J Clin Invest
– volume: 81
  start-page: 5060
  issue: 19
  year: 2021
  end-page: 5073
  article-title: Endothelial reprogramming stimulated by oncostatin M promotes inflammation and tumorigenesis in VHL‐deficient kidney tissue
  publication-title: Cancer Res
– volume: 6
  start-page: 1365
  issue: 6
  end-page: 1375
  article-title: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation
  publication-title: Mol Cell
– volume: 81
  start-page: 3554
  issue: 13
  year: 2021
  end-page: 3567
  article-title: Multilevel regulation of β‐catenin activity by SETD2 suppresses the transition from polycystic kidney disease to clear cell renal cell carcinoma
  publication-title: Cancer Res
– volume: 113
  start-page: 2441
  issue: 4
  year: 2021
  end-page: 2454
  article-title: Loss of Setd2 associates with aberrant microRNA expression and contributes to inflammatory bowel disease progression in mice
  publication-title: Genomics
– volume: 51
  start-page: 844
  issue: 5
  year: 2019
  end-page: 856
  article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development
  publication-title: Nat Genet
– volume: 12
  start-page: 325
  issue: 6
  year: 2016
  end-page: 338
  article-title: TGF‐β: the master regulator of fibrosis
  publication-title: Nat Rev Nephrol
– year: 2019;367
  article-title: Status of care for end stage kidney disease in countries and regions worldwide: international cross sectional survey
  publication-title: BMJ
– volume: 127
  start-page: 3375
  issue: 9
  year: 2017
  end-page: 3391
  article-title: Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis
  publication-title: J Clin Invest
– volume: 3
  start-page: 188
  issue: 2
  year: 2022
  end-page: 202
  article-title: SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes
  publication-title: Nat Cancer
– volume: 46
  start-page: 225
  issue: 3
  year: 2014
  end-page: 233
  article-title: Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing
  publication-title: Nat Genet
– volume: 19
  start-page: 774
  issue: 12
  year: 2018
  end-page: 790
  article-title: Functions and mechanisms of epigenetic inheritance in animals
  publication-title: Nat Rev Mol Cell Biol
– volume: 10
  start-page: 3353
  issue: 1
  year: 2019
  article-title: The histone methyltransferase Setd2 is indispensable for V(D)J recombination
  publication-title: Nat Commun
– volume: 69
  start-page: 597
  issue: 2
  year: 2006
  end-page: 607
  article-title: Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor‐beta1‐induced extracellular matrix expression
  publication-title: Mol Pharmacol
– volume: 16
  start-page: 435
  issue: 8
  year: 2020
  end-page: 451
  article-title: Genomic profiling in renal cell carcinoma
  publication-title: Nat Rev Nephrol
– volume: 170
  start-page: 492
  issue: 3
  year: 2017
  end-page: 506
  article-title: Methyltransferase SETD2‐mediated methylation of STAT1 is critical for interferon antiviral activity
  publication-title: Cell
– volume: 34
  start-page: 5699
  issue: 46
  year: 2015
  end-page: 5708
  article-title: SETD2 loss‐of‐function promotes renal cancer branched evolution through replication stress and impaired DNA repair
  publication-title: Oncogene
– volume: 101
  start-page: 945
  issue: 5
  year: 2022
  end-page: 962
  article-title: A novel role of BK potassium channel activity in preventing the development of kidney fibrosis
  publication-title: Kidney Int
– volume: 288
  year: 2022
  article-title: Self‐carried nanodrug (SCND‐SIS3): a targeted therapy for lung cancer with superior biocompatibility and immune boosting effects
  publication-title: Biomaterials
– volume: 29
  start-page: 2169
  issue: 8
  year: 2018
  end-page: 2177
  article-title: Dialysis versus medical management at different ages and levels of kidney function in veterans with advanced CKD
  publication-title: JASN
– volume: 38
  issue: 11
  year: 2022
  article-title: Setd2 determines distinct properties of intestinal ILC3 subsets to regulate intestinal immunity
  publication-title: Cell Rep
– start-page: 5
  year: 1993
  article-title: Expression of transforming growth factor 18 is elevated in human and experimental diabetic nephropathy
  publication-title: Med Sci
– volume: 127
  start-page: 3281
  issue: 9
  year: 2017
  end-page: 3283
  article-title: Epigenetics at the base of alternative splicing changes that promote colorectal cancer
  publication-title: J Clin Invest
– volume: 8
  start-page: 1989
  issue: 6
  year: 2014
  end-page: 2002
  article-title: H3K36 histone methyltransferase Setd2 is required for murine embryonic stem cell differentiation toward endoderm
  publication-title: Cell Rep
– volume: 43
  year: 2021
  article-title: The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis
  publication-title: Redox Biol
– volume: 5
  start-page: 949
  issue: 6
  year: 2013
  end-page: 964
  article-title: Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice
  publication-title: EMBO Mol Med
– volume: 63
  start-page: 806
  issue: 5
  year: 2014
  end-page: 815
  article-title: Comparative effectiveness of early versus conventional timing of dialysis initiation in advanced CKD
  publication-title: Am J Kidney Dis
– volume: 21
  start-page: 2069
  issue: 12
  year: 2010
  end-page: 2080
  article-title: Epigenetic histone methylation modulates fibrotic gene expression
  publication-title: J Am Soc Nephrol
– volume: 13
  start-page: 47
  issue: 1
  year: 2017
  end-page: 60
  article-title: The epigenetic landscape of renal cancer
  publication-title: Nat Rev Nephrol
– volume: 15
  start-page: 55
  issue: 1
  year: 2015
  end-page: 64
  article-title: VHL, the story of a tumour suppressor gene
  publication-title: Nat Rev Cancer
– volume: 38
  start-page: 350
  issue: 3
  year: 2020
  end-page: 365
  article-title: SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways
  publication-title: Cancer Cell
– volume: 7
  start-page: 1056
  issue: 7
  year: 2011
  end-page: 1067
  article-title: Diverse roles of TGF‐β/Smads in renal fibrosis and inflammation
  publication-title: Int J Biol Sci
– ident: e_1_2_8_19_1
  doi: 10.1681/ASN.2010060633
– ident: e_1_2_8_17_1
  doi: 10.1038/s41580‐018‐0074‐2
– ident: e_1_2_8_50_1
  doi: 10.1172/JCI96497
– ident: e_1_2_8_5_1
  doi: 10.1136/bmj.l5873
– ident: e_1_2_8_36_1
  doi: 10.1111/cpr.13045
– ident: e_1_2_8_15_1
  doi: 10.1016/s0092‐8674(03)00432‐x
– ident: e_1_2_8_43_1
  doi: 10.1152/ajprenal.00363.2006
– ident: e_1_2_8_57_1
  doi: 10.1083/jcb.202012097
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cell.2016.07.005
– ident: e_1_2_8_58_1
  doi: 10.1186/s13578‐022‐00936‐x
– ident: e_1_2_8_38_1
  doi: 10.1038/nrc3844
– ident: e_1_2_8_8_1
  doi: 10.1053/j.ajkd.2013.12.010
– ident: e_1_2_8_46_1
  doi: 10.1158/0008‐5472.CAN‐21‐0345
– ident: e_1_2_8_39_1
  doi: 10.1038/sj.ki.5000221
– ident: e_1_2_8_28_1
  doi: 10.1016/j.celrep.2022.110530
– ident: e_1_2_8_6_1
  doi: 10.1053/j.ajkd.2018.12.038
– ident: e_1_2_8_27_1
  doi: 10.1158/0008‐5472.CAN‐20‐3960
– ident: e_1_2_8_40_1
  doi: 10.1681/ASN.2014090875
– ident: e_1_2_8_32_1
  doi: 10.1136/gutjnl‐2019‐318362
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.RA118.002851
– ident: e_1_2_8_45_1
  doi: 10.1172/JCI143645
– ident: e_1_2_8_21_1
  doi: 10.1038/onc.2015.24
– ident: e_1_2_8_25_1
  doi: 10.1038/nrneph.2016.168
– ident: e_1_2_8_16_1
  doi: 10.1038/nrneph.2014.116
– ident: e_1_2_8_14_1
  doi: 10.1016/S1097-2765(00)00134-9
– ident: e_1_2_8_22_1
  doi: 10.1016/j.celrep.2014.08.031
– start-page: 5
  year: 1993
  ident: e_1_2_8_9_1
  article-title: Expression of transforming growth factor 18 is elevated in human and experimental diabetic nephropathy
  publication-title: Med Sci
– ident: e_1_2_8_26_1
  doi: 10.1038/s43018‐021‐00316‐3
– ident: e_1_2_8_11_1
  doi: 10.1172/JCI200319270
– ident: e_1_2_8_3_1
  doi: 10.1038/nrdp.2017.88
– ident: e_1_2_8_51_1
  doi: 10.1016/j.ccell.2020.05.022
– ident: e_1_2_8_2_1
  doi: 10.1016/S0140‐6736(21)00519‐5
– ident: e_1_2_8_24_1
  doi: 10.1038/ng.2891
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1523‐1755.2004.00779.x
– ident: e_1_2_8_37_1
  doi: 10.1038/s41581‐020‐0301‐x
– ident: e_1_2_8_55_1
  doi: 10.1016/j.it.2004.07.008
– ident: e_1_2_8_33_1
  doi: 10.1371/journal.pbio.2006522
– ident: e_1_2_8_20_1
  doi: 10.1038/sj.emboj.7601967
– ident: e_1_2_8_31_1
  doi: 10.1016/j.redox.2021.102004
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467‐019‐11282‐x
– ident: e_1_2_8_52_1
  doi: 10.1016/j.immuni.2019.03.024
– ident: e_1_2_8_4_1
  doi: 10.1038/sj.ki.5000054
– ident: e_1_2_8_49_1
  doi: 10.1016/j.cell.2017.06.042
– ident: e_1_2_8_18_1
  doi: 10.1172/JCI95946
– ident: e_1_2_8_23_1
  doi: 10.1172/JCI94292
– ident: e_1_2_8_42_1
  doi: 10.1002/emmm.201202231
– ident: e_1_2_8_54_1
  doi: 10.1016/j.tcb.2019.10.002
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ygeno.2021.05.034
– ident: e_1_2_8_41_1
  doi: 10.1002/path.4736
– ident: e_1_2_8_47_1
  doi: 10.1124/mol.105.017483
– ident: e_1_2_8_53_1
  doi: 10.7150/ijbs.7.1056
– ident: e_1_2_8_44_1
  doi: 10.1016/j.kint.2021.11.033
– ident: e_1_2_8_13_1
  doi: 10.1038/nrneph.2016.48
– ident: e_1_2_8_34_1
  doi: 10.1038/s41588‐019‐0398‐7
– ident: e_1_2_8_7_1
  doi: 10.1681/ASN.2017121273
– ident: e_1_2_8_56_1
  doi: 10.1016/j.biomaterials.2022.121730
– ident: e_1_2_8_10_1
  doi: 10.1046/j.1523‐1755.2000.00928.x
SSID ssj0000849972
Score 2.2684796
Snippet Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a...
Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a...
Our findings reveal the role of SETD2‐mediated H3K36me3 of Smad7 in regulating the TGF‐β/Smad signalling pathway in renal fibrogenesis. Thus, our study...
Abstract Background Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1468
SubjectTerms epigenetic regulation
renal fibrosis
SET domain‐containing 2 (SETD2)
transforming growth factor‐β (TGF‐β)/Smad signalling pathway
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQD4gLogXEQqkM4sAlWif-WfsIpcsKsVy6Rb1F_hmLFTRbNVshbjwCz8KD9CH6JHicbLVBIC5cEimZKJnxeH7i8TeEvHAejHVRFjGUshB2Eovk53nhhYwBQnTG43_I-Qc1OxHvTuXpVqsvrAnr4IE7wY2F9spY4FF6J5L-WB580BhnKEihuEfrywzbSqayDdYCd4RuoIRYNfbrswrNgh44oIzTPwgufy-N3A5Zs8-Z3iN3-2CRvuo-cpfcgmaP3J73y-H3yefjo8WbigZAGAjcQ0nPc3UdtPQC8MmYkuFVu2xp344nnYEu3k6vv_-4-jk-PrOBYgGHzcDcFLsTf7Xf6LLJdNa1OO3pKtKPs_cPyMn0aHE4K_ruCShnpQufDpKnjEVUIvjSlmmu6eQSY2RhkrI0kGCV4Z5XmgUbzESayCoQDAxzATx_SHaaVQOPCGXKOcNBGi6dSBGDsyKU5SQqxbwH7kbk5Uakte-hxbHDxZe6A0WuapQ-Zhl6RJ7fkJ53eBp_InqN43JDgBDY-UJSjLpXjPpfijEizzajWqcpg-sgtoHVZVtXWiuTbJUoR0QPhnvwxuGdZvkpg2-nFLpCTP3Ec9aMv3NRHy7m2DZdP_4f7Dwhd7DTfbcNcp_srC8u4WmKh9buIKv-L0mBDDM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKkRCXil-xLSAXceASbeK_tcUJSpcVYhFSt6i3yL9lRZtUm60QNx6BZ-FBeAieBI-TDQ0CiUsiJRNFnvGMZ-yZbxB6aqxX2gSeBVfwjOlJyOI6TzPLeHDeBaMs7EPO34nZMXtzwk-20PNNLUyLD9FvuIFmJHsNCq5NM_4NGmrX5wT0XF5D16NTT2F6E_a-32DJJYOiUGguB2lDMeoSG2ShnIz7rwfrUYLtH_iaf2ZKXvVg0xI0vYV2Ot8Rv2iFfRtt-eoOujHvTsfvok9Hh4tXBDsPqBBQUokvUrKdb_DKw5chDrhulg3uuvPEu8eL19OfX7_9-D4-OtcOQz6HTjjdGJoVf9Zf8LJKdJEvYAVwHfCH2dt76Hh6uDiYZV0zBWC7kJmNF05jAMMIc7bQRVQ9GVfIEHI3iUGb514LRS0lMnfaqQlXISee5V7lxnlL76Ptqq78A4RzYYyinivKDYsOhNHMFcUkCJFb66kZoWcblpa2QxqHhhdnZYuRTErgPgQdcoSe9KQXLbzG34heglx6AkDETg_q1WnZKVjJpBVKexq4NSzaGU2ddRL8UeFjyGZHaH8j1TJqEByL6MrXl01JpBQqmi5WjJAciHvwx-GbavkxYXHHiJoAxH4cc5oZ_x5FebCYQxd1ufv_pHvoJrS3b2sfH6Lt9erSP4pO0No8TpP9F_ZCBZY
  priority: 102
  providerName: Wiley-Blackwell
Title SETD2 deficiency promotes renal fibrosis through the TGF‐β/Smad signalling pathway in the absence of VHL
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fctm2.1468
https://www.proquest.com/docview/2886942541
https://pubmed.ncbi.nlm.nih.gov/PMC10629155
https://doaj.org/article/48c69ae3f5cb4101a3dcd854056e605c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kBAXxFMsj5VBHLiEJn4k9gEhWnZZIbaq6C7aW-RnWdEmZbMV9MZP4LfwQ_gR_BI83mzVoHLh4kjJWJZnMuMZe_wNQs-0cVJpzxNvM54wVfgkrPM0MYx766zX0sA-5Hg_H03ZuxmfbaB1jc2Wgc2VoR3Uk5oujl98-3L-Kij8yxZAdMcsTwhovNhE2_GYCDL4Wi8_GmTB4HroGlfoco_OahRB-zue5t95kpf917gADW-iG63niF-vRH0LbbjqNro2bs_G76DPh4PJG4KtA0wIuFCJT2OqnWvwwkFPHyLjupk3uK3NE54OT94Of3__8evnzuGJshiyOVRE6cZQqvirOsfzKtIp3YANwLXHH0fv76LpcDDZGyVtKQVgei4SExpOQ_jCCLMmU1lQPBHWR-9TW4SQzXGnckkNJSK1ysqCS58Sx1InU22doffQVlVX7j7Caa61pI5LyjUL7oNWzGZZ4fM8NcZR3UPP1ywtTYszDuUujssVQjIpgfsQcogeenpBeroC17iKaBfkckEAeNjxRb04Klv1KpkwuVSOem40C1ZGUWusAG80dyFgMz30ZC3VMugPHIqoytVnTUmEyGUwXCzrIdERd2fE7pdq_ikicYd4mgDAfphz_DP-PYtybzKGGuriwf-P8hBdh2L3q5uQj9DWcnHmHgeXaKn7aJOwg9AWs6KPtncH-wcf-nF7oR9V4Q80jBWE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKkYAL4lfd8mcQBy7RJvHP2hIXKF0W2K2QmqLeIv_CijapNlshbjwCz8KD8BA8CR4nGwgCiUsiJRNF9njGM-OZbxB6rI2TSnuWeJuxhKqJT8I-TxJDmbfOei0NxCEXB3x2RF8fs-Mt9HRTC9PiQ_QBN5CMqK9BwCEgPf6FGmrWpzkIuriALlIeXBfAdaZv-whLKihUhUJ3OcgbCm4X30ALpfm4_3qwIUXc_oGx-Weq5O8mbNyDptfQ1c54xM9abl9HW666gS4tuuPxm-jj4X7xIsfWASwE1FTis5ht5xq8cvClDyOum2WDu_Y84e5w8XL648vX79_Gh6fKYkjoUBGoG0O34k_qM15WkU7pBtQArj1-N5vfQkfT_WJvlnTdFGDeuUhMuDASPBiaU2sylQXZE2GL9D61k-C1OeYUl8SQXKRWWTlh0qe5o6mTqbbOkNtou6ort4NwyrWWxDFJmKbBgtCK2iybeM5TYxzRI_RkM6Wl6aDGoePFSdmCJOclzD54HWKEHvWkZy2-xt-IngNfegKAxI4P6tX7spOwkgrDpXLEM6NpUDSKWGMFGKTcBZ_NjNDDDVfLIEJwLqIqV583ZS4El0F30WyExIDdgz8O31TLDxGMO7jUOWDshzHHlfHvUZR7xQLaqIvd_yd9gC7PisW8nL86eHMHXYFe920h5F20vV6du3vBIlrr-3Hh_wT7Ngj8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKkSo2iKcYngaxYBNN4tfYYgVthwE6VaVOUXeRn2UETUYzUyF2fALfwofwEXwJvk4mEAQSm0RKbhTZ9237novQU2O90ibwLLiCZ0yPQhb9PM0s48F5F4yysA45PRSTE_bmlJ9uoeebWpgGH6JbcAPNSPYaFHzhwvAXaKhdnxPQc3kJXWZR7kC8CTvqFlhyyaAoFJrLwbGhmHWJDbJQTobd1z1_lGD7e7Hmnyclf49gkwsaX0NX29gRv2iYfR1t-eoG2pm2u-M30Yfj_dkewc4DKgSUVOJFOmznV3jp4csQB1yv5ivcdueJd49nr8Y_vnz9_m14fK4dhvMcOuF0Y2hW_El_xvMq0WmzAiuA64DfTQ5uoZPx_mx3krXNFGDahcxsvHAaExhGmLOFLqLqyeghQ8jdKCZtnnstFLWUyNxpp0ZchZx4lnuVG-ctvY22q7rydxDOhTGKeq4oNywGEEYzVxSjIERuradmgJ5tprS0LdI4NLz4WDYYyaSE2YekQw7Qk4500cBr_I3oJfClIwBE7PSgXp6VrYKVTFqhtKeBW8OindHUWSchHhU-pmx2gB5vuFpGDYJtEV35-mJVEimFiqaLFQMke-zu_bH_ppq_T1jcMaMmALEfx5wk49-jKHdnU-iiLu_-P-kjtHO0Ny4PXh--vYeuQKf7pgzyPtpeLy_8gxgPrc3DJPc_AYe0CDc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SETD2+deficiency+promotes+renal+fibrosis+through+the+TGF%E2%80%90%CE%B2%2FSmad+signalling+pathway+in+the+absence+of+VHL&rft.jtitle=Clinical+and+translational+medicine&rft.au=Liu%2C+Changwei&rft.au=Ni%2C+Li&rft.au=Li%2C+Xiaoxue&rft.au=Rao%2C+Hanyu&rft.date=2023-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2001-1326&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1002%2Fctm2.1468&rft.externalDocID=PMC10629155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-1326&client=summon