Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation

Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 2; pp. 384 - 395
Main Authors Oktay, Ozan, Ferrante, Enzo, Kamnitsas, Konstantinos, Heinrich, Mattias, Wenjia Bai, Caballero, Jose, Cook, Stuart A., de Marvao, Antonio, Dawes, Timothy, O'Regan, Declan P., Kainz, Bernhard, Glocker, Ben, Rueckert, Daniel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2017.2743464

Cover

More Information
Summary:Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning-based techniques. However, in most recent and promising techniques such as CNN-based segmentation it is not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this limitation, we propose a generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the underlying anatomy (e.g. shape, label structure) via learnt non-linear representations of the shape. We show that the proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-modal cardiac data sets and public benchmarks. In addition, we demonstrate how the learnt deep models of 3-D shapes can be interpreted and used as biomarkers for classification of cardiac pathologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2017.2743464