Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice

H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined....

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 26; no. 6; pp. 715 - 728.e8
Main Authors Gilchuk, Iuliia M., Bangaru, Sandhya, Gilchuk, Pavlo, Irving, Ryan P., Kose, Nurgun, Bombardi, Robin G., Thornburg, Natalie J., Creech, C. Buddy, Edwards, Kathryn M., Li, Sheng, Turner, Hannah L., Yu, Wenli, Zhu, Xueyong, Wilson, Ian A., Ward, Andrew B., Crowe, James E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.12.2019
Subjects
Online AccessGet full text
ISSN1931-3128
1934-6069
1934-6069
DOI10.1016/j.chom.2019.10.003

Cover

Abstract H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection. [Display omitted] •Human mAbs recognize several antigenic sites on influenza virus N9 NA•The mAbs act by blocking egress of nascent virions from infected cells•Human mAbs mediate prophylactic and therapeutic protection in vivo in mice•Protection is mediated by direct virus neutralization or Fc-region effector function Molecular determinants of the human B cell response to avian influenza N9 neuraminidase (NA) proteins, which differ from seasonal virus NAs, are ill-defined. Gilchuk et al. identify antibodies to multiple protective antigenic sites on N9 NA that block egress of nascent virions from infected cells and mediate protection in mice.
AbstractList H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection. Molecular determinants of the human B cell response to avian influenza N9 neuraminidase (NA) proteins, which differ from seasonal virus NAs, are ill-defined. Gilchuk et al. identify antibodies to multiple protective antigenic sites on N9 NA that block egress of nascent virions from infected cells and mediate protection in mice.
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection. [Display omitted] •Human mAbs recognize several antigenic sites on influenza virus N9 NA•The mAbs act by blocking egress of nascent virions from infected cells•Human mAbs mediate prophylactic and therapeutic protection in vivo in mice•Protection is mediated by direct virus neutralization or Fc-region effector function Molecular determinants of the human B cell response to avian influenza N9 neuraminidase (NA) proteins, which differ from seasonal virus NAs, are ill-defined. Gilchuk et al. identify antibodies to multiple protective antigenic sites on N9 NA that block egress of nascent virions from infected cells and mediate protection in mice.
Author Bombardi, Robin G.
Wilson, Ian A.
Li, Sheng
Bangaru, Sandhya
Creech, C. Buddy
Turner, Hannah L.
Gilchuk, Iuliia M.
Edwards, Kathryn M.
Gilchuk, Pavlo
Irving, Ryan P.
Kose, Nurgun
Crowe, James E.
Zhu, Xueyong
Yu, Wenli
Ward, Andrew B.
Thornburg, Natalie J.
AuthorAffiliation 1 The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
5 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
7 These authors contributed equally
3 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
8 Lead Contact
6 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
4 Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
AuthorAffiliation_xml – name: 3 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– name: 6 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– name: 7 These authors contributed equally
– name: 1 The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– name: 4 Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
– name: 2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– name: 5 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– name: 8 Lead Contact
Author_xml – sequence: 1
  givenname: Iuliia M.
  surname: Gilchuk
  fullname: Gilchuk, Iuliia M.
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 2
  givenname: Sandhya
  surname: Bangaru
  fullname: Bangaru, Sandhya
  organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 3
  givenname: Pavlo
  surname: Gilchuk
  fullname: Gilchuk, Pavlo
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 4
  givenname: Ryan P.
  surname: Irving
  fullname: Irving, Ryan P.
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 5
  givenname: Nurgun
  surname: Kose
  fullname: Kose, Nurgun
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 6
  givenname: Robin G.
  surname: Bombardi
  fullname: Bombardi, Robin G.
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 7
  givenname: Natalie J.
  surname: Thornburg
  fullname: Thornburg, Natalie J.
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 8
  givenname: C. Buddy
  surname: Creech
  fullname: Creech, C. Buddy
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 9
  givenname: Kathryn M.
  surname: Edwards
  fullname: Edwards, Kathryn M.
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 10
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  organization: Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
– sequence: 11
  givenname: Hannah L.
  surname: Turner
  fullname: Turner, Hannah L.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 12
  givenname: Wenli
  surname: Yu
  fullname: Yu, Wenli
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 13
  givenname: Xueyong
  surname: Zhu
  fullname: Zhu, Xueyong
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 14
  givenname: Ian A.
  surname: Wilson
  fullname: Wilson, Ian A.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 15
  givenname: Andrew B.
  surname: Ward
  fullname: Ward, Andrew B.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 16
  givenname: James E.
  surname: Crowe
  fullname: Crowe, James E.
  email: james.crowe@vumc.org
  organization: The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31757769$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcAPsEBesslgx-M4kRBSVRVmpKEg8dhajnPduaPEHuykUvkKPhmHaXktuvLVPS_rnlNy5IMHQp5ztuCMV692C7sNw6JkvMmLBWPiETnhjVgWFauao18zLwQv62NymtKOMSmZ4k_IseBKKlU1J-TH2rt-Av_d0JW6auhXjFOiVzBFM6DHziQoPu3BokNLV9NgPH0ffLB98Kan537ENnQIia79FlscZ4MMXF5HSIka39GPMYxgR-piGOgGxm2G_4TmKYMYPMXsjBaeksfO9Ame3b1n5Mvby88Xq2Lz4d364nxT2KWUYwG1FIxzXgplFdiWO2WXZddwV4PkQrWdFY0EzpitZec41A6UtLVtZcNcycQZeXPw3U_tAJ0FP-aP633EwcRbHQzqfxGPW30dbnTVLHlV8Wzw8s4ghm8TpFEPmCz0vfEQpqTL-ch1zYTM1Bd_Z_0Oua8hE-oDwcaQUgSnLY5mPkuOxl5zpufG9U7Pjeu58XmXG8_S8j_pvfuDotcHEeQL3yBEnSyCt9BhzHXoLuBD8p9eaMdn
CitedBy_id crossref_primary_10_3389_fimmu_2021_786617
crossref_primary_10_1146_annurev_immunol_042718_041309
crossref_primary_10_1016_j_immuni_2024_02_003
crossref_primary_10_1016_j_isci_2024_110038
crossref_primary_10_3390_vaccines10050804
crossref_primary_10_2222_jsv_69_145
crossref_primary_10_1016_j_celrep_2020_108682
crossref_primary_10_1080_14760584_2024_2343689
crossref_primary_10_1038_s41586_020_2711_0
crossref_primary_10_1172_JCI148763
crossref_primary_10_1128_JVI_01180_21
crossref_primary_10_1111_imr_12900
crossref_primary_10_1186_s43556_024_00210_1
crossref_primary_10_3390_vaccines9080846
crossref_primary_10_1038_s41541_023_00643_9
crossref_primary_10_1016_j_immuni_2023_10_005
crossref_primary_10_1016_j_coi_2020_03_013
crossref_primary_10_1016_j_indcrop_2022_114524
crossref_primary_10_1038_s41467_022_29416_z
crossref_primary_10_3389_fmicb_2021_729914
crossref_primary_10_1016_j_immuni_2020_08_015
crossref_primary_10_1016_j_chom_2019_10_002
crossref_primary_10_1016_j_immuni_2024_05_002
crossref_primary_10_1016_j_it_2023_11_001
crossref_primary_10_1038_s41598_021_03932_2
crossref_primary_10_1172_jci_insight_152403
crossref_primary_10_1016_j_vaccine_2024_126689
crossref_primary_10_1128_mBio_00287_21
crossref_primary_10_1016_j_vaccine_2024_126269
crossref_primary_10_1038_s41577_023_00858_w
crossref_primary_10_2139_ssrn_4022365
crossref_primary_10_1128_jvi_01400_24
crossref_primary_10_1038_s41467_024_53301_6
crossref_primary_10_1128_JVI_00759_21
crossref_primary_10_1016_j_antiviral_2023_105785
crossref_primary_10_3390_v13102087
crossref_primary_10_1016_j_chom_2019_11_006
crossref_primary_10_1128_JVI_01421_21
crossref_primary_10_3389_fimmu_2022_944907
crossref_primary_10_1126_sciadv_adq4545
crossref_primary_10_1093_bib_bbac028
crossref_primary_10_1371_journal_pone_0262873
crossref_primary_10_1128_mSphere_00958_20
crossref_primary_10_1016_j_nantod_2020_101031
crossref_primary_10_3390_v15071540
crossref_primary_10_1007_s11684_020_0814_5
crossref_primary_10_1128_jvi_00332_22
crossref_primary_10_1128_jvi_01398_23
Cites_doi 10.1128/microbiolspec.AID-0027-2014
10.1007/s00705-009-0393-x
10.1016/j.jsb.2009.01.002
10.1093/infdis/jiv195
10.1128/mBio.00417-16
10.3390/v10090497
10.1016/j.jmb.2004.05.042
10.1038/nature06106
10.1074/jbc.M111.224535
10.1128/mBio.02556-14
10.1007/978-1-59745-196-3_6
10.1080/19420862.2017.1323159
10.1128/JVI.79.5.2814-2822.2005
10.1128/JVI.01584-17
10.1038/s41541-018-0076-2
10.1021/bi9008853
10.1016/S0969-2126(00)00074-5
10.1016/j.jsb.2003.08.005
10.1128/JVI.68.3.1790-1796.1994
10.1073/pnas.1116200109
10.1016/j.antiviral.2016.10.001
10.1172/JCI69377
10.2807/1560-7917.ES.2017.22.19.30533
10.1016/j.molimm.2014.09.017
10.1107/S0907444908016648
10.1016/S0304-3991(99)00043-1
10.1038/ncomms3854
10.1016/j.chom.2019.10.002
10.1128/JVI.02293-16
10.1128/JVI.01426-12
10.1016/j.vaccine.2009.10.124
10.1016/0042-6822(84)90114-4
10.1172/JCI84428
10.1016/j.immuni.2017.09.007
10.1016/S1473-3099(17)30323-7
10.3201/eid2404.171995
10.1093/infdis/jis935
10.1097/QCO.0000000000000496
10.1093/infdis/jiy103
10.1038/ncomms7114
10.1128/mBio.02332-17
10.1093/infdis/jiw414
10.1080/22221751.2019.1572433
10.1016/j.jsb.2009.01.004
10.1038/s41591-019-0463-x
10.1371/journal.ppat.1003657
10.1128/JVI.00805-14
10.1146/annurev.biochem.76.061705.090740
10.1038/s41564-019-0401-1
10.1073/pnas.94.22.11808
10.1128/JVI.76.23.12274-12280.2002
10.1002/pro.5560020404
10.1128/JVI.06335-11
10.1002/pro.2000
10.1001/jama.2015.7916
10.1038/326358a0
10.3201/eid2201.151330
10.1128/JVI.01006-18
10.1038/s41467-018-04704-9
10.1056/NEJMc1313186
10.1038/s41564-018-0303-7
10.1128/JVI.03513-14
10.1016/j.cell.2018.03.030
10.1172/JCI85317
10.1093/nar/28.1.219
10.1126/science.1222908
10.1128/JVI.01588-17
10.1016/0042-6822(84)90223-X
10.1002/jcc.20084
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2019.10.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 728.e8
ExternalDocumentID PMC6941661
31757769
10_1016_j_chom_2019_10_003
S193131281930527X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201300023C
– fundername: NCATS NIH HHS
  grantid: UL1 TR002243
– fundername: NCI NIH HHS
  grantid: P30 CA068485
– fundername: NIAID NIH HHS
  grantid: HHSN272201300023I
– fundername: NIDDK NIH HHS
  grantid: P30 DK058404
– fundername: NIAID NIH HHS
  grantid: U19 AI117905
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NIAID NIH HHS
  grantid: HHSN272201400024C
– fundername: NCATS NIH HHS
  grantid: UL1 TR000445
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AAIKJ
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c455t-e8530111237c7ecb1f7c42d91f8e5137bdc395e100c85df1e8fe75c8cb590f203
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 17:58:43 EDT 2025
Sun Sep 28 14:50:13 EDT 2025
Sun Apr 06 01:21:09 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Tue Jul 01 02:44:22 EDT 2025
Sun Apr 06 06:53:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords epitopes
pre-exposure prophylaxis
neuraminidase
B lymphocyte
antibodies
monoclonal
H7N9
influenza A virus
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e8530111237c7ecb1f7c42d91f8e5137bdc395e100c85df1e8fe75c8cb590f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
X.Z. and W.Y. produced N9, N6, and N7 NA proteins. S.B., N.K., N.J.T., and I.M.G. performed initial screening and isolation of antibodies and isolated hybridomas. R.G.B. sequenced antibody clones and produced synthetic DNA in expression vectors. S.B. purified antibodies. S.B. and I.M.G. performed ELISA and ELLA NI; I.M.G. conducted egress assays and NA-Fluor NI assays and performed HAI. S.L. performed HDX-MS experiments. B.C. and K.M.E. directed the sample collection. H.L.T. and A.B.W. performed nsEM studies. I.M.G., P.G., and R.I. performed animal protection studies. S.B., I.M.G., and J.E.C. wrote the first draft of the manuscript. All authors revised and approved the final version of the manuscript.
OpenAccessLink http://www.cell.com/article/S193131281930527X/pdf
PMID 31757769
PQID 2317588035
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6941661
proquest_miscellaneous_2317588035
pubmed_primary_31757769
crossref_citationtrail_10_1016_j_chom_2019_10_003
crossref_primary_10_1016_j_chom_2019_10_003
elsevier_sciencedirect_doi_10_1016_j_chom_2019_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-11
PublicationDateYYYYMMDD 2019-12-11
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wan, Qi, Gao, Couzens, Jiang, Gao, Sheng, Fong, Hahn, Khurana (bib58) 2018; 92
Sun, Li, Wu, Wang, Liu, Qi, Vavricka, Gao (bib48) 2014; 88
Erbelding, Post, Stemmy, Roberts, Augustine, Ferguson, Paules, Graham, Fauci (bib13) 2018; 218
Li, Tsalkova, White, Mei, Liu, Wang, Woods, Cheng (bib30) 2011; 286
Crowe (bib8) 2009; 27
Arduin, Arora, Bamert, Kuiper, Popp, Geisse, Grau, Calzascia, Zenke, Kovarik (bib1) 2015; 63
Dreyfus, Laursen, Kwaks, Zuijdgeest, Khayat, Ekiert, Lee, Metlagel, Bujny, Jongeneelen (bib12) 2012; 337
Wang, Jiang, Wu, Uyeki, Feng, Lai, Wang, Huo, Xu, Chen (bib59) 2017; 17
Couch, Atmar, Franco, Quarles, Wells, Arden, Niño, Belmont (bib7) 2013; 207
Wohlbold, Nachbagauer, Xu, Tan, Hirsh, Brokstad, Cox, Palese, Krammer (bib64) 2015; 6
Memoli, Shaw, Han, Czajkowski, Reed, Athota, Bristol, Fargis, Risos, Powers (bib36) 2016; 7
Job, Schotsaert, Ibañez, Smet, Ysenbaert, Roose, Dai, de Haan, Kleanthous, Vogel, Saelens (bib23) 2018; 92
Ng, Nachbagauer, Balmaseda, Stadlbauer, Ojeda, Patel, Rajabhathor, Lopez, Guglia, Sanchez (bib39) 2019; 25
Chen, Wohlbold, Zheng, Huang, Huang, Neu, Lee, Wan, Rojas, Kirkpatrick (bib5) 2018; 173
Voss, Yoshioka, Radermacher, Potter, Carragher (bib55) 2009; 166
Fouchier, Munster, Wallensten, Bestebroer, Herfst, Smith, Rimmelzwaan, Olsen, Osterhaus (bib14) 2005; 79
Karunarathna, Perera, Fang, Yen, Cowling, Peiris (bib24) 2019; 8
Walz, Kays, Zimmer, von Messling (bib56) 2018; 92
Benton, Wharton, Martin, McCauley (bib4) 2017; 91
Zhu, Xu, Wilson (bib67) 2008; D64
Hai, Schmolke, Leyva-Grado, Thangavel, Margine, Jaffe, Krammer, Solórzano, García-Sastre, Palese, Bouvier (bib17) 2013; 4
Dekkers, Bentlage, Stegmann, Howie, Lissenberg-Thunnissen, Zimring, Rispens, Vidarsson (bib9) 2017; 9
Wilson, Guo, Reber, Kamal, Music, Gansebom, Bai, Levine, Carney, Tzeng (bib63) 2016; 135
Zhu, McBride, Nycholat, Yu, Paulson, Wilson (bib68) 2012; 86
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib42) 2004; 25
Bangaru, Zhang, Gilchuk, Voss, Irving, Gilchuk, Matta, Zhu, Lang, Nieusma (bib71) 2018; 9
Saito, Taylor, Laver, Kawaoka, Webster (bib45) 1994; 68
Webster, Brown, Laver (bib60) 1984; 135
(bib61) 2017; 92
DiLillo, Palese, Wilson, Ravetch (bib11) 2016; 126
Colman, Laver, Varghese, Baker, Tulloch, Air, Webster (bib6) 1987; 326
Thornburg, Zhang, Bangaru, Sapparapu, Kose, Lampley, Bombardi, Yu, Graham, Branchizio (bib50) 2016; 126
Ruiz, Giudicelli, Ginestoux, Stoehr, Robinson, Bodmer, Marsh, Bontrop, Lemaitre, Lefranc (bib44) 2000; 28
Smith, Zhou, Olivarez, Broadwater, de Silva, Crowe (bib72) 2012; 86
Tong, Zhu, Li, Shi, Zhang, Bourgeois, Yang, Chen, Recuenco, Gomez (bib52) 2013; 9
Madan, Segall, Ferguson, Frenette, Kroll, Friel, Soni, Li, Innis, Schuind (bib33) 2016; 214
Skowronski, Chambers, Gustafson, Purych, Tang, Bastien, Krajden, Li (bib46) 2016; 22
Wan, Yang, Shore, Garten, Couzens, Gao, Jiang, Carney, Villanueva, Stevens, Eichelberger (bib57) 2015; 6
Yasuhara, Yamayoshi, Kiso, Sakai-Tagawa, Koga, Adachi, Kikuchi, Wang, Yamada, Kawaoka (bib65) 2019; 4
Jackson, Campbell, Frey, Edwards, Keitel, Kotloff, Berry, Graham, Atmar, Creech (bib22) 2015; 314
Gulati, Hwang, Venkatramani, Gulati, Stray, Lee, Laver, Bochkarev, Zlotnick, Air (bib16) 2002; 76
Krammer, Fouchier, Eichelberger, Webby, Shaw-Saliba, Wan, Wilson, Compans, Skountzou, Monto (bib27) 2018; 9
Klock, Lesley (bib26) 2009; 498
Paules, Marston, Eisinger, Baltimore, Fauci (bib41) 2017; 47
Thornburg, Nannemann, Blum, Belser, Tumpey, Deshpande, Fritz, Sapparapu, Krause, Lee (bib49) 2013; 123
Zhang, Smith (bib66) 1993; 2
Huang, Rijal, Jiang, Wang, Schimanski, Dong, Liu, Chang, Iqbal, Wang (bib21) 2019; 4
Potter, Chu, Frey, Green, Kisseberth, Madden, Miller, Nahrstedt, Pulokas, Reilein (bib43) 1999; 77
Fries, Smith, Glenn (bib15) 2013; 369
Zhu, Zhou, Li, Yang, Li, Huang, Zou, Chen, Wei, Tang (bib69) 2017; 22
Beard, Brendish, Clark (bib3) 2018; 31
Tong, Li, Rivailler, Conrardy, Castillo, Chen, Recuenco, Ellison, Davis, York (bib51) 2012; 109
Hsu, Kim, Li, Durrant, Pace, Woods, Gentry (bib20) 2009; 48
Lu, Liu, Li, Woods, Hook (bib31) 2012; 21
Di Noia, Neuberger (bib10) 2007; 76
Khurana, Coyle, Manischewitz, King, Gao, Germain, Schwartzberg, Tsang, Golding, The CHI Consortium (bib25) 2018; 3
Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib28) 2009; 166
(bib62) 2018
Zhu, Turner, Lang, McBride, Bangaru, Gilchuk, Yu, Paulson, Crowe, Ward (bib70) 2019; 26
Hessell, Hangartner, Hunter, Havenith, Beurskens, Bakker, Lanigan, Landucci, Forthal, Parren (bib19) 2007; 449
Ma, Liu, Wu, Zhao, Wang, Yang, Gu, Cui, Pang, Tan (bib32) 2018; 24
Mostafa, Abdelwhab, Mettenleiter, Pleschka (bib38) 2018; 10
Malby, Tulip, Harley, McKimm-Breschkin, Laver, Webster, Colman (bib34) 1994; 2
Laver, Colman, Webster, Hinshaw, Air (bib29) 1984; 137
Marjuki, Mishin, Chesnokov, De La Cruz, Davis, Villanueva, Fry, Gubareva (bib35) 2015; 89
Varghese, Colman, van Donkelaar, Blick, Sahasrabudhe, McKimm-Breschkin (bib54) 1997; 94
Ogura, Iwasaki, Sato (bib40) 2003; 143
Monto, Petrie, Cross, Johnson, Liu, Zhong, Levine, Katz, Ohmit (bib37) 2015; 212
Uhlendorff, Matrosovich, Klenk, Matrosovich (bib53) 2009; 154
Smith, Crowe (bib47) 2015; 3
Hamuro, Anand, Kim, Juliano, Stranz, Taylor, Woods (bib18) 2004; 340
Chen (10.1016/j.chom.2019.10.003_bib5) 2018; 173
Webster (10.1016/j.chom.2019.10.003_bib60) 1984; 135
Job (10.1016/j.chom.2019.10.003_bib23) 2018; 92
Ogura (10.1016/j.chom.2019.10.003_bib40) 2003; 143
Thornburg (10.1016/j.chom.2019.10.003_bib49) 2013; 123
Couch (10.1016/j.chom.2019.10.003_bib7) 2013; 207
Hessell (10.1016/j.chom.2019.10.003_bib19) 2007; 449
Benton (10.1016/j.chom.2019.10.003_bib4) 2017; 91
Pettersen (10.1016/j.chom.2019.10.003_bib42) 2004; 25
Beard (10.1016/j.chom.2019.10.003_bib3) 2018; 31
Gulati (10.1016/j.chom.2019.10.003_bib16) 2002; 76
Voss (10.1016/j.chom.2019.10.003_bib55) 2009; 166
Paules (10.1016/j.chom.2019.10.003_bib41) 2017; 47
Crowe (10.1016/j.chom.2019.10.003_bib8) 2009; 27
Fouchier (10.1016/j.chom.2019.10.003_bib14) 2005; 79
Tong (10.1016/j.chom.2019.10.003_bib51) 2012; 109
Hsu (10.1016/j.chom.2019.10.003_bib20) 2009; 48
Arduin (10.1016/j.chom.2019.10.003_bib1) 2015; 63
Dekkers (10.1016/j.chom.2019.10.003_bib9) 2017; 9
Wilson (10.1016/j.chom.2019.10.003_bib63) 2016; 135
Saito (10.1016/j.chom.2019.10.003_bib45) 1994; 68
Klock (10.1016/j.chom.2019.10.003_bib26) 2009; 498
Marjuki (10.1016/j.chom.2019.10.003_bib35) 2015; 89
Ruiz (10.1016/j.chom.2019.10.003_bib44) 2000; 28
Karunarathna (10.1016/j.chom.2019.10.003_bib24) 2019; 8
Erbelding (10.1016/j.chom.2019.10.003_bib13) 2018; 218
Varghese (10.1016/j.chom.2019.10.003_bib54) 1997; 94
Walz (10.1016/j.chom.2019.10.003_bib56) 2018; 92
Fries (10.1016/j.chom.2019.10.003_bib15) 2013; 369
Hamuro (10.1016/j.chom.2019.10.003_bib18) 2004; 340
(10.1016/j.chom.2019.10.003_bib61) 2017; 92
DiLillo (10.1016/j.chom.2019.10.003_bib11) 2016; 126
Wohlbold (10.1016/j.chom.2019.10.003_bib64) 2015; 6
Krammer (10.1016/j.chom.2019.10.003_bib27) 2018; 9
Ng (10.1016/j.chom.2019.10.003_bib39) 2019; 25
Yasuhara (10.1016/j.chom.2019.10.003_bib65) 2019; 4
Dreyfus (10.1016/j.chom.2019.10.003_bib12) 2012; 337
Zhu (10.1016/j.chom.2019.10.003_bib68) 2012; 86
Khurana (10.1016/j.chom.2019.10.003_bib25) 2018; 3
Wang (10.1016/j.chom.2019.10.003_bib59) 2017; 17
Hai (10.1016/j.chom.2019.10.003_bib17) 2013; 4
Zhu (10.1016/j.chom.2019.10.003_bib67) 2008; D64
Madan (10.1016/j.chom.2019.10.003_bib33) 2016; 214
Colman (10.1016/j.chom.2019.10.003_bib6) 1987; 326
Lu (10.1016/j.chom.2019.10.003_bib31) 2012; 21
Bangaru (10.1016/j.chom.2019.10.003_bib71) 2018; 9
Skowronski (10.1016/j.chom.2019.10.003_bib46) 2016; 22
Smith (10.1016/j.chom.2019.10.003_bib47) 2015; 3
Ma (10.1016/j.chom.2019.10.003_bib32) 2018; 24
Laver (10.1016/j.chom.2019.10.003_bib29) 1984; 137
Huang (10.1016/j.chom.2019.10.003_bib21) 2019; 4
Tong (10.1016/j.chom.2019.10.003_bib52) 2013; 9
Lander (10.1016/j.chom.2019.10.003_bib28) 2009; 166
Memoli (10.1016/j.chom.2019.10.003_bib36) 2016; 7
Thornburg (10.1016/j.chom.2019.10.003_bib50) 2016; 126
Zhu (10.1016/j.chom.2019.10.003_bib70) 2019; 26
Potter (10.1016/j.chom.2019.10.003_bib43) 1999; 77
Zhang (10.1016/j.chom.2019.10.003_bib66) 1993; 2
Zhu (10.1016/j.chom.2019.10.003_bib69) 2017; 22
Sun (10.1016/j.chom.2019.10.003_bib48) 2014; 88
Li (10.1016/j.chom.2019.10.003_bib30) 2011; 286
Uhlendorff (10.1016/j.chom.2019.10.003_bib53) 2009; 154
Malby (10.1016/j.chom.2019.10.003_bib34) 1994; 2
Wan (10.1016/j.chom.2019.10.003_bib57) 2015; 6
Mostafa (10.1016/j.chom.2019.10.003_bib38) 2018; 10
Di Noia (10.1016/j.chom.2019.10.003_bib10) 2007; 76
Wan (10.1016/j.chom.2019.10.003_bib58) 2018; 92
Jackson (10.1016/j.chom.2019.10.003_bib22) 2015; 314
Smith (10.1016/j.chom.2019.10.003_bib72) 2012; 86
Monto (10.1016/j.chom.2019.10.003_bib37) 2015; 212
31951584 - Cell Host Microbe. 2019 Dec 11;26(6):712-713. doi: 10.1016/j.chom.2019.11.006.
References_xml – volume: 77
  start-page: 153
  year: 1999
  end-page: 161
  ident: bib43
  article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day
  publication-title: Ultramicroscopy
– volume: 3
  start-page: AID-0027
  year: 2015
  end-page: AID-2014
  ident: bib47
  article-title: Use of human hybridoma technology to isolate human monoclonal antibodies
  publication-title: Microbiol. Spectr.
– volume: 340
  start-page: 1185
  year: 2004
  end-page: 1196
  ident: bib18
  article-title: Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS)
  publication-title: J. Mol. Biol.
– volume: 498
  start-page: 91
  year: 2009
  end-page: 103
  ident: bib26
  article-title: The polymerase incomplete primer extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis
  publication-title: Methods Mol. Biol.
– volume: 9
  start-page: 767
  year: 2017
  end-page: 773
  ident: bib9
  article-title: Affinity of human IgG subclasses to mouse Fc gamma receptors
  publication-title: MAbs
– volume: 86
  start-page: 13371
  year: 2012
  end-page: 13383
  ident: bib68
  article-title: Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors
  publication-title: J. Virol.
– volume: 92
  start-page: e01584-e17
  year: 2018
  ident: bib23
  article-title: Antibodies directed toward neuraminidase N1 control disease in a mouse model of influenza
  publication-title: J. Virol.
– volume: 214
  start-page: 1717
  year: 2016
  end-page: 1727
  ident: bib33
  article-title: Immunogenicity and safety of an AS03-adjuvanted H7N9 pandemic influenza vaccine in a randomized trial in healthy adults
  publication-title: J. Infect. Dis.
– volume: 9
  start-page: 2669
  year: 2018
  ident: bib71
  article-title: A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2854
  year: 2013
  ident: bib17
  article-title: Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility
  publication-title: Nat. Commun.
– volume: 7
  start-page: e00417-e16
  year: 2016
  ident: bib36
  article-title: Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model
  publication-title: MBio
– volume: 68
  start-page: 1790
  year: 1994
  end-page: 1796
  ident: bib45
  article-title: Antigenicity of the N8 influenza A virus neuraminidase: existence of an epitope at the subunit interface of the neuraminidase
  publication-title: J. Virol.
– volume: 22
  start-page: 30533
  year: 2017
  ident: bib69
  article-title: Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017
  publication-title: Euro Surveill.
– volume: 173
  start-page: 417
  year: 2018
  end-page: 429
  ident: bib5
  article-title: Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies
  publication-title: Cell
– volume: 286
  start-page: 17889
  year: 2011
  end-page: 17897
  ident: bib30
  article-title: Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS)
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: e1003657
  year: 2013
  ident: bib52
  article-title: New world bats harbor diverse influenza A viruses
  publication-title: PLoS Pathog.
– volume: 135
  start-page: 48
  year: 2016
  end-page: 55
  ident: bib63
  article-title: An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo
  publication-title: Antiviral Res.
– volume: 76
  start-page: 12274
  year: 2002
  end-page: 12280
  ident: bib16
  article-title: Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98)
  publication-title: J. Virol.
– volume: 143
  start-page: 185
  year: 2003
  end-page: 200
  ident: bib40
  article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking
  publication-title: J. Struct. Biol.
– volume: 22
  start-page: 71
  year: 2016
  end-page: 74
  ident: bib46
  article-title: Avian influenza A(H7N9) virus infection in 2 travelers returning from China to Canada, January 2015
  publication-title: Emerg. Infect. Dis.
– volume: 10
  start-page: E497
  year: 2018
  ident: bib38
  article-title: Zoonotic potential of influenza A viruses: a comprehensive overview
  publication-title: Viruses
– volume: 337
  start-page: 1343
  year: 2012
  end-page: 1348
  ident: bib12
  article-title: Highly conserved protective epitopes on influenza B viruses
  publication-title: Science
– volume: 207
  start-page: 974
  year: 2013
  end-page: 981
  ident: bib7
  article-title: Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase
  publication-title: J. Infect. Dis.
– volume: 123
  start-page: 4405
  year: 2013
  end-page: 4409
  ident: bib49
  article-title: Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses
  publication-title: J. Clin. Invest.
– volume: 88
  start-page: 9197
  year: 2014
  end-page: 9207
  ident: bib48
  article-title: Structure of influenza virus N7: the last piece of the neuraminidase “jigsaw” puzzle
  publication-title: J. Virol.
– volume: 449
  start-page: 101
  year: 2007
  end-page: 104
  ident: bib19
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
– volume: 63
  start-page: 456
  year: 2015
  end-page: 463
  ident: bib1
  article-title: Highly reduced binding to high and low affinity mouse Fc gamma receptors by L234A/L235A and N297A Fc mutations engineered into mouse IgG2a
  publication-title: Mol. Immunol.
– volume: 314
  start-page: 237
  year: 2015
  end-page: 246
  ident: bib22
  article-title: Effect of varying doses of a monovalent H7N9 influenza vaccine with and without AS03 and MF59 adjuvants on immune response: a randomized clinical trial
  publication-title: JAMA
– volume: 92
  start-page: 633
  year: 2017
  end-page: 647
  ident: bib61
  article-title: Zoonotic influenza viruses: antigenic and genetic characteristics and development of candidate vaccine viruses for pandemic preparedness
  publication-title: Wkly. Epidemiol. Rec.
– year: 2018
  ident: bib62
  article-title: Avian Influenza Weekly Update Number 663
– volume: 166
  start-page: 95
  year: 2009
  end-page: 102
  ident: bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
– volume: 86
  start-page: 2665
  year: 2012
  end-page: 2675
  ident: bib72
  article-title: Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection
  publication-title: J. Virol.
– volume: D64
  start-page: 843
  year: 2008
  end-page: 850
  ident: bib67
  article-title: Structure determination of the 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 92
  start-page: e01006
  year: 2018
  end-page: e01018
  ident: bib56
  article-title: Neuraminidase-inhibiting antibody titers correlate with protection from heterologous influenza virus strains of the same neuraminidase subtype
  publication-title: J. Virol.
– volume: 92
  start-page: e01588-e17
  year: 2018
  ident: bib58
  article-title: Comparison of the efficacy of N9 neuraminidase-specific monoclonal antibodies against influenza A(H7N9) virus infection
  publication-title: J. Virol.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib42
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 109
  start-page: 4269
  year: 2012
  end-page: 4274
  ident: bib51
  article-title: A distinct lineage of influenza A virus from bats
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 154
  start-page: 945
  year: 2009
  end-page: 957
  ident: bib53
  article-title: Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses
  publication-title: Arch. Virol.
– volume: 326
  start-page: 358
  year: 1987
  end-page: 363
  ident: bib6
  article-title: Three-dimensional structure of a complex of antibody with influenza virus neuraminidase
  publication-title: Nature
– volume: 94
  start-page: 11808
  year: 1997
  end-page: 11812
  ident: bib54
  article-title: Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 178
  year: 2012
  end-page: 187
  ident: bib31
  article-title: The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid H-D exchange mass spectrometry
  publication-title: Protein Sci.
– volume: 6
  start-page: 6114
  year: 2015
  ident: bib57
  article-title: Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers
  publication-title: Nat. Commun.
– volume: 25
  start-page: 962
  year: 2019
  end-page: 967
  ident: bib39
  article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection
  publication-title: Nat. Med.
– volume: 24
  start-page: 663
  year: 2018
  end-page: 672
  ident: bib32
  article-title: Influenza A(H7N9) virus antibody responses in survivors 1 year after infection, China, 2017
  publication-title: Emerg. Infect. Dis.
– volume: 31
  start-page: 514
  year: 2018
  end-page: 519
  ident: bib3
  article-title: Treatment of influenza with neuraminidase inhibitors
  publication-title: Curr. Opin. Infect. Dis.
– volume: 218
  start-page: 347
  year: 2018
  end-page: 354
  ident: bib13
  article-title: A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases
  publication-title: J. Infect. Dis.
– volume: 48
  start-page: 9891
  year: 2009
  end-page: 9902
  ident: bib20
  article-title: Structural insights into glucan phosphatase dynamics using amide hydrogen-deuterium exchange mass spectrometry
  publication-title: Biochemistry
– volume: 79
  start-page: 2814
  year: 2005
  end-page: 2822
  ident: bib14
  article-title: Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls
  publication-title: J. Virol.
– volume: 26
  start-page: 729
  year: 2019
  end-page: 738
  ident: bib70
  article-title: Structural basis of protection from H7N9 influenza virus by human anti-N9 neuraminidase antibodies
  publication-title: Cell Host Microbe
– volume: 4
  start-page: 306
  year: 2019
  end-page: 315
  ident: bib21
  article-title: Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans
  publication-title: Nat. Microbiol.
– volume: 166
  start-page: 205
  year: 2009
  end-page: 213
  ident: bib55
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
– volume: 6
  start-page: e02556
  year: 2015
  ident: bib64
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: MBio
– volume: 17
  start-page: 822
  year: 2017
  end-page: 832
  ident: bib59
  article-title: Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series
  publication-title: Lancet Infect. Dis.
– volume: 4
  start-page: 1024
  year: 2019
  end-page: 1034
  ident: bib65
  article-title: Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus
  publication-title: Nat. Microbiol.
– volume: 9
  start-page: e02332-e17
  year: 2018
  ident: bib27
  article-title: NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines?
  publication-title: MBio
– volume: 47
  start-page: 599
  year: 2017
  end-page: 603
  ident: bib41
  article-title: The pathway to a universal influenza vaccine
  publication-title: Immunity
– volume: 126
  start-page: 1482
  year: 2016
  end-page: 1494
  ident: bib50
  article-title: H7N9 influenza virus neutralizing antibodies that possess few somatic mutations
  publication-title: J. Clin. Invest.
– volume: 135
  start-page: 30
  year: 1984
  end-page: 42
  ident: bib60
  article-title: Antigenic and biological characterization of influenza virus neuraminidase (N2) with monoclonal antibodies
  publication-title: Virology
– volume: 137
  start-page: 314
  year: 1984
  end-page: 323
  ident: bib29
  article-title: Influenza virus neuraminidase with hemagglutinin activity
  publication-title: Virology
– volume: 212
  start-page: 1191
  year: 2015
  end-page: 1199
  ident: bib37
  article-title: Antibody to influenza virus neuraminidase: an independent correlate of protection
  publication-title: J. Infect. Dis.
– volume: 3
  start-page: 40
  year: 2018
  ident: bib25
  article-title: AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization
  publication-title: NPJ Vaccines
– volume: 2
  start-page: 522
  year: 1993
  end-page: 531
  ident: bib66
  article-title: Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation
  publication-title: Protein Sci.
– volume: 91
  start-page: e02293-e16
  year: 2017
  ident: bib4
  article-title: Role of neuraminidase in influenza A(H7N9) virus receptor binding
  publication-title: J. Virol.
– volume: 28
  start-page: 219
  year: 2000
  end-page: 221
  ident: bib44
  article-title: IMGT, the international ImMunoGeneTics database
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 404
  year: 2019
  end-page: 412
  ident: bib24
  article-title: Serum anti-neuraminidase antibody responses in human influenza A(H1N1)pdm09 virus infections
  publication-title: Emerg. Microbes Infect.
– volume: 126
  start-page: 605
  year: 2016
  end-page: 610
  ident: bib11
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
– volume: 89
  start-page: 5419
  year: 2015
  end-page: 5426
  ident: bib35
  article-title: Neuraminidase mutations conferring resistance to oseltamivir in influenza A(H7N9) viruses
  publication-title: J. Virol.
– volume: 369
  start-page: 2564
  year: 2013
  end-page: 2566
  ident: bib15
  article-title: A recombinant viruslike particle influenza A (H7N9) vaccine
  publication-title: N. Engl. J. Med.
– volume: 76
  start-page: 1
  year: 2007
  end-page: 22
  ident: bib10
  article-title: Molecular mechanisms of antibody somatic hypermutation
  publication-title: Annu. Rev. Biochem.
– volume: 2
  start-page: 733
  year: 1994
  end-page: 746
  ident: bib34
  article-title: The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody
  publication-title: Structure
– volume: 27
  start-page: G47
  year: 2009
  end-page: G51
  ident: bib8
  article-title: Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches
  publication-title: Vaccine
– volume: 3
  start-page: AID-0027
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib47
  article-title: Use of human hybridoma technology to isolate human monoclonal antibodies
  publication-title: Microbiol. Spectr.
  doi: 10.1128/microbiolspec.AID-0027-2014
– volume: 154
  start-page: 945
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib53
  article-title: Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-009-0393-x
– volume: 166
  start-page: 95
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.002
– volume: 212
  start-page: 1191
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib37
  article-title: Antibody to influenza virus neuraminidase: an independent correlate of protection
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiv195
– volume: 7
  start-page: e00417-e16
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib36
  article-title: Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model
  publication-title: MBio
  doi: 10.1128/mBio.00417-16
– volume: 10
  start-page: E497
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib38
  article-title: Zoonotic potential of influenza A viruses: a comprehensive overview
  publication-title: Viruses
  doi: 10.3390/v10090497
– volume: 340
  start-page: 1185
  year: 2004
  ident: 10.1016/j.chom.2019.10.003_bib18
  article-title: Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS)
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.042
– volume: 449
  start-page: 101
  year: 2007
  ident: 10.1016/j.chom.2019.10.003_bib19
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
  doi: 10.1038/nature06106
– volume: 286
  start-page: 17889
  year: 2011
  ident: 10.1016/j.chom.2019.10.003_bib30
  article-title: Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.224535
– volume: 6
  start-page: e02556
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib64
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: MBio
  doi: 10.1128/mBio.02556-14
– volume: 92
  start-page: 633
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib61
  article-title: Zoonotic influenza viruses: antigenic and genetic characteristics and development of candidate vaccine viruses for pandemic preparedness
  publication-title: Wkly. Epidemiol. Rec.
– volume: 498
  start-page: 91
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib26
  article-title: The polymerase incomplete primer extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-196-3_6
– volume: 9
  start-page: 767
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib9
  article-title: Affinity of human IgG subclasses to mouse Fc gamma receptors
  publication-title: MAbs
  doi: 10.1080/19420862.2017.1323159
– volume: 79
  start-page: 2814
  year: 2005
  ident: 10.1016/j.chom.2019.10.003_bib14
  article-title: Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.5.2814-2822.2005
– volume: 92
  start-page: e01584-e17
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib23
  article-title: Antibodies directed toward neuraminidase N1 control disease in a mouse model of influenza
  publication-title: J. Virol.
  doi: 10.1128/JVI.01584-17
– volume: 3
  start-page: 40
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib25
  article-title: AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-018-0076-2
– volume: 48
  start-page: 9891
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib20
  article-title: Structural insights into glucan phosphatase dynamics using amide hydrogen-deuterium exchange mass spectrometry
  publication-title: Biochemistry
  doi: 10.1021/bi9008853
– volume: 2
  start-page: 733
  year: 1994
  ident: 10.1016/j.chom.2019.10.003_bib34
  article-title: The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00074-5
– volume: 143
  start-page: 185
  year: 2003
  ident: 10.1016/j.chom.2019.10.003_bib40
  article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2003.08.005
– volume: 68
  start-page: 1790
  year: 1994
  ident: 10.1016/j.chom.2019.10.003_bib45
  article-title: Antigenicity of the N8 influenza A virus neuraminidase: existence of an epitope at the subunit interface of the neuraminidase
  publication-title: J. Virol.
  doi: 10.1128/JVI.68.3.1790-1796.1994
– volume: 109
  start-page: 4269
  year: 2012
  ident: 10.1016/j.chom.2019.10.003_bib51
  article-title: A distinct lineage of influenza A virus from bats
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1116200109
– volume: 135
  start-page: 48
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib63
  article-title: An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2016.10.001
– volume: 123
  start-page: 4405
  year: 2013
  ident: 10.1016/j.chom.2019.10.003_bib49
  article-title: Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI69377
– volume: 22
  start-page: 30533
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib69
  article-title: Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2017.22.19.30533
– volume: 63
  start-page: 456
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib1
  article-title: Highly reduced binding to high and low affinity mouse Fc gamma receptors by L234A/L235A and N297A Fc mutations engineered into mouse IgG2a
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.09.017
– volume: D64
  start-page: 843
  year: 2008
  ident: 10.1016/j.chom.2019.10.003_bib67
  article-title: Structure determination of the 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444908016648
– volume: 77
  start-page: 153
  year: 1999
  ident: 10.1016/j.chom.2019.10.003_bib43
  article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(99)00043-1
– volume: 4
  start-page: 2854
  year: 2013
  ident: 10.1016/j.chom.2019.10.003_bib17
  article-title: Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3854
– volume: 26
  start-page: 729
  year: 2019
  ident: 10.1016/j.chom.2019.10.003_bib70
  article-title: Structural basis of protection from H7N9 influenza virus by human anti-N9 neuraminidase antibodies
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.002
– volume: 91
  start-page: e02293-e16
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib4
  article-title: Role of neuraminidase in influenza A(H7N9) virus receptor binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.02293-16
– volume: 86
  start-page: 13371
  year: 2012
  ident: 10.1016/j.chom.2019.10.003_bib68
  article-title: Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors
  publication-title: J. Virol.
  doi: 10.1128/JVI.01426-12
– volume: 27
  start-page: G47
  issue: Suppl 6
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib8
  article-title: Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.10.124
– volume: 135
  start-page: 30
  year: 1984
  ident: 10.1016/j.chom.2019.10.003_bib60
  article-title: Antigenic and biological characterization of influenza virus neuraminidase (N2) with monoclonal antibodies
  publication-title: Virology
  doi: 10.1016/0042-6822(84)90114-4
– volume: 126
  start-page: 605
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib11
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84428
– volume: 47
  start-page: 599
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib41
  article-title: The pathway to a universal influenza vaccine
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.09.007
– volume: 17
  start-page: 822
  year: 2017
  ident: 10.1016/j.chom.2019.10.003_bib59
  article-title: Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(17)30323-7
– volume: 24
  start-page: 663
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib32
  article-title: Influenza A(H7N9) virus antibody responses in survivors 1 year after infection, China, 2017
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2404.171995
– volume: 207
  start-page: 974
  year: 2013
  ident: 10.1016/j.chom.2019.10.003_bib7
  article-title: Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis935
– volume: 31
  start-page: 514
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib3
  article-title: Treatment of influenza with neuraminidase inhibitors
  publication-title: Curr. Opin. Infect. Dis.
  doi: 10.1097/QCO.0000000000000496
– volume: 218
  start-page: 347
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib13
  article-title: A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy103
– volume: 6
  start-page: 6114
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib57
  article-title: Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7114
– volume: 9
  start-page: e02332-e17
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib27
  article-title: NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines?
  publication-title: MBio
  doi: 10.1128/mBio.02332-17
– volume: 214
  start-page: 1717
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib33
  article-title: Immunogenicity and safety of an AS03-adjuvanted H7N9 pandemic influenza vaccine in a randomized trial in healthy adults
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiw414
– volume: 8
  start-page: 404
  year: 2019
  ident: 10.1016/j.chom.2019.10.003_bib24
  article-title: Serum anti-neuraminidase antibody responses in human influenza A(H1N1)pdm09 virus infections
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2019.1572433
– volume: 166
  start-page: 205
  year: 2009
  ident: 10.1016/j.chom.2019.10.003_bib55
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.004
– volume: 25
  start-page: 962
  year: 2019
  ident: 10.1016/j.chom.2019.10.003_bib39
  article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0463-x
– volume: 9
  start-page: e1003657
  year: 2013
  ident: 10.1016/j.chom.2019.10.003_bib52
  article-title: New world bats harbor diverse influenza A viruses
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003657
– volume: 88
  start-page: 9197
  year: 2014
  ident: 10.1016/j.chom.2019.10.003_bib48
  article-title: Structure of influenza virus N7: the last piece of the neuraminidase “jigsaw” puzzle
  publication-title: J. Virol.
  doi: 10.1128/JVI.00805-14
– volume: 76
  start-page: 1
  year: 2007
  ident: 10.1016/j.chom.2019.10.003_bib10
  article-title: Molecular mechanisms of antibody somatic hypermutation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.061705.090740
– volume: 4
  start-page: 1024
  year: 2019
  ident: 10.1016/j.chom.2019.10.003_bib65
  article-title: Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-019-0401-1
– volume: 94
  start-page: 11808
  year: 1997
  ident: 10.1016/j.chom.2019.10.003_bib54
  article-title: Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.22.11808
– volume: 76
  start-page: 12274
  year: 2002
  ident: 10.1016/j.chom.2019.10.003_bib16
  article-title: Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98)
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.23.12274-12280.2002
– volume: 2
  start-page: 522
  year: 1993
  ident: 10.1016/j.chom.2019.10.003_bib66
  article-title: Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560020404
– volume: 86
  start-page: 2665
  year: 2012
  ident: 10.1016/j.chom.2019.10.003_bib72
  article-title: Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.06335-11
– volume: 21
  start-page: 178
  year: 2012
  ident: 10.1016/j.chom.2019.10.003_bib31
  article-title: The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid H-D exchange mass spectrometry
  publication-title: Protein Sci.
  doi: 10.1002/pro.2000
– volume: 314
  start-page: 237
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib22
  article-title: Effect of varying doses of a monovalent H7N9 influenza vaccine with and without AS03 and MF59 adjuvants on immune response: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2015.7916
– volume: 326
  start-page: 358
  year: 1987
  ident: 10.1016/j.chom.2019.10.003_bib6
  article-title: Three-dimensional structure of a complex of antibody with influenza virus neuraminidase
  publication-title: Nature
  doi: 10.1038/326358a0
– volume: 22
  start-page: 71
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib46
  article-title: Avian influenza A(H7N9) virus infection in 2 travelers returning from China to Canada, January 2015
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2201.151330
– volume: 92
  start-page: e01006
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib56
  article-title: Neuraminidase-inhibiting antibody titers correlate with protection from heterologous influenza virus strains of the same neuraminidase subtype
  publication-title: J. Virol.
  doi: 10.1128/JVI.01006-18
– volume: 9
  start-page: 2669
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib71
  article-title: A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04704-9
– volume: 369
  start-page: 2564
  year: 2013
  ident: 10.1016/j.chom.2019.10.003_bib15
  article-title: A recombinant viruslike particle influenza A (H7N9) vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1313186
– volume: 4
  start-page: 306
  year: 2019
  ident: 10.1016/j.chom.2019.10.003_bib21
  article-title: Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0303-7
– volume: 89
  start-page: 5419
  year: 2015
  ident: 10.1016/j.chom.2019.10.003_bib35
  article-title: Neuraminidase mutations conferring resistance to oseltamivir in influenza A(H7N9) viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.03513-14
– volume: 173
  start-page: 417
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib5
  article-title: Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.030
– volume: 126
  start-page: 1482
  year: 2016
  ident: 10.1016/j.chom.2019.10.003_bib50
  article-title: H7N9 influenza virus neutralizing antibodies that possess few somatic mutations
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI85317
– volume: 28
  start-page: 219
  year: 2000
  ident: 10.1016/j.chom.2019.10.003_bib44
  article-title: IMGT, the international ImMunoGeneTics database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.219
– volume: 337
  start-page: 1343
  year: 2012
  ident: 10.1016/j.chom.2019.10.003_bib12
  article-title: Highly conserved protective epitopes on influenza B viruses
  publication-title: Science
  doi: 10.1126/science.1222908
– volume: 92
  start-page: e01588-e17
  year: 2018
  ident: 10.1016/j.chom.2019.10.003_bib58
  article-title: Comparison of the efficacy of N9 neuraminidase-specific monoclonal antibodies against influenza A(H7N9) virus infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.01588-17
– volume: 137
  start-page: 314
  year: 1984
  ident: 10.1016/j.chom.2019.10.003_bib29
  article-title: Influenza virus neuraminidase with hemagglutinin activity
  publication-title: Virology
  doi: 10.1016/0042-6822(84)90223-X
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.chom.2019.10.003_bib42
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– reference: 31951584 - Cell Host Microbe. 2019 Dec 11;26(6):712-713. doi: 10.1016/j.chom.2019.11.006.
SSID ssj0055071
Score 2.5054443
Snippet H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 715
SubjectTerms Animals
antibodies
Antibodies, Heterophile - pharmacology
Antibodies, Monoclonal - pharmacology
Antibodies, Neutralizing - pharmacology
Antibodies, Viral - pharmacology
B lymphocyte
Birds
epitopes
Epitopes - immunology
H7N9
Humans
influenza A virus
Influenza A Virus, H7N9 Subtype - drug effects
Influenza A Virus, H7N9 Subtype - immunology
Influenza in Birds - prevention & control
Influenza in Birds - virology
Influenza Vaccines - immunology
Influenza, Human - prevention & control
Influenza, Human - virology
Mice
monoclonal
neuraminidase
Neuraminidase - immunology
Orthomyxoviridae Infections - prevention & control
Orthomyxoviridae Infections - virology
Pre-Exposure Prophylaxis
Vaccination
Vaccines, Inactivated
Viral Proteins - immunology
Virus Release - drug effects
Title Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice
URI https://dx.doi.org/10.1016/j.chom.2019.10.003
https://www.ncbi.nlm.nih.gov/pubmed/31757769
https://www.proquest.com/docview/2317588035
https://pubmed.ncbi.nlm.nih.gov/PMC6941661
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-WR2UkbihsnNhxcixVq10EFRIU7S2KX1qjyqna7AF-BT-5M3aydEH0wDG241ie8Tzib2YIeaOsdFyWVWaVq8BB4XnWNMZkuVaqqrhRnGOg8KfTanHGP6zEao8cTbEwCKscZX-S6VFajy3zcTfnF97Pv4Dpwcp4EQQ8W8gVyGGMKsUgvtX7SRpjui6WbpZZhqPHwJmE8cJ6JAjvat5FhFf5L-X0t_H5J4byhlI6uU_ujdYkPUwLfkD2bHhI7qT6kj8ekV_LVILkZ0cX8rSh3_zl5opiPo4OU4oY0GBZLEDvvKbxdz6FM97r8z7OGgavekQZ0mVYe-UHnAA6jqOPTrtg6OeU5oFilAr9aIc1dP_-6HJEegXqYWYQSY_J2cnx16NFNpZgyDQXYsgsaHOsRl-UUkurFXNS88I0zNVWsFIqo8tGWJbnuhbGMVs7K4WutRJN7oq8fEL2Qx_sM0LRueRABvBfBO9q2ZhaCCPrvHZKFU7OCJv2vtVjfnIsk3HeTkC07y3Sq0V6YRvQa0bebt-5SNk5bh0tJpK2OzzWgvq49b3XE_1bOHx4o9IF22-u2gKtL5CApZiRp4kftuvALimrZkbkDqdsB2Bi792e4NcxwTcGF4Pd9Pw_1_uC3MUnBN0w9pLsD5cb-wpMp0EdxLNxDeByGMc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILKu-FAkbihsLGiR3HR1q12sB2hUSL9hbFL21QlVRt9gC_gp_MjJNsWRA9cPXYjuUZz4zjb2YIeaud9FymWeS0z-CCwuNIKWuj2GidZdxqzjFQ-GSRzc74x6VY7pDDMRYGYZWD7u91etDWQ8t02M3pRV1Pv4DrwdLwEAQym8jlLXIbvIEYRbtYHozqGPN1sf5pmUXYfYic6UFeWJAE8V3qfYB4pf-yTn97n3-CKH-zSsd75P7gTtIP_YofkB3XPCR3-gKT3x-Rn0Vfg-RHRWdyoejX-nJ9RTEhR4U5RSyYsChUoPe1oeF_PoVD3przNszadLVuEWZIi2ZV67rDCYBwFC7ptGos_dzneaAYpkLnrlsB-fqjxQD1amgNM4NOekzOjo9OD2fRUIMhMlyILnJgzrEcfZJKI53RzEvDE6uYz51gqdTWpEo4FscmF9Yzl3snhcmNFir2SZw-IbtN27hnhOLtkgMb4AIjeJVLZXMhrMzj3GudeDkhbNz70gwJyrFOxnk5ItG-lcivEvmFbcCvCXm3GXPRp-e4sbcYWVpuCVkJ9uPGcW9G_pdw-vBJpWpcu74qE3S_QAWmYkKe9vKwWQeSpMzUhMgtSdl0wMze25SmXoUM3xhdDI7T8_9c72tyd3Z6Mi_nxeLTC3IPKYjAYWyf7HaXa_cS_KhOvwrn5BcEaRvq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influenza+H7N9+Virus+Neuraminidase-Specific+Human+Monoclonal+Antibodies+Inhibit+Viral+Egress+and+Protect+from+Lethal+Influenza+Infection+in+Mice&rft.jtitle=Cell+host+%26+microbe&rft.au=Gilchuk%2C+Iuliia+M.&rft.au=Bangaru%2C+Sandhya&rft.au=Gilchuk%2C+Pavlo&rft.au=Irving%2C+Ryan+P.&rft.date=2019-12-11&rft.issn=1931-3128&rft.volume=26&rft.issue=6&rft.spage=715&rft.epage=728.e8&rft_id=info:doi/10.1016%2Fj.chom.2019.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chom_2019_10_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon