Building a Cardiovascular Disease Prediction Model for Smartwatch Users Using Machine Learning: Based on the Korea National Health and Nutrition Examination Survey

Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smart...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 11; no. 7; p. 228
Main Author Kim, Min-Jeong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN2079-6374
2079-6374
DOI10.3390/bios11070228

Cover

Abstract Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.
AbstractList Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.
Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.
Author Kim, Min-Jeong
AuthorAffiliation Department of Consumer Economics & Design Research Institute for Creativity and Convergence, Sookmyung Women’s University, Seoul 04310, Korea; min-jeong.kim@sookmyung.ac.kr ; Tel.: +82-2-2077-7818
AuthorAffiliation_xml – name: Department of Consumer Economics & Design Research Institute for Creativity and Convergence, Sookmyung Women’s University, Seoul 04310, Korea; min-jeong.kim@sookmyung.ac.kr ; Tel.: +82-2-2077-7818
Author_xml – sequence: 1
  givenname: Min-Jeong
  surname: Kim
  fullname: Kim, Min-Jeong
BookMark eNptkt1uFCEUgCemxv7YOx-AxBsvXGUGGAYvTOxabeO2mtRekzNwZpcNO1SY2drn8UVldxvTNnIBBL7zcQ5wWOz1oceieFXSd4wp-r51IZUllbSqmmfFQUWlmtRM8r0H8_3iOKUlzU1yqZh8UewzzkRdK3VQ_DkZnbeunxMgU4jWhTUkM3qI5LNLCAnJj4jWmcGFnlwEi550IZKrFcThFgazINcJY8r9RnIBZuF6JDOE2OeFD-QkKyzJscMCybcQEcglbGTgyRmCHxYEeksuxyG67Rmnv2Hl-i1Crsa4xruXxfMOfMLj-_GouP5y-nN6Npl9_3o-_TSbGC7EMEFpW0NV1yJCi13bNExibZhUnFWWMa4YaxvBjampEZWooOVgKEjTCEqxZkfF-c5rAyz1TXS5xjsdwOntQohznYt2xqNmhnEQVsmONbxUbWMraGjbYUWVQMGz6-POdTO2K7QG-yGCfyR9vNO7hZ6HtW4YLZXcJPPmXhDDrxHToFcuGfQeegxj0pUQm7rykNHXT9BlGGO-4C3FOS8Zo5l6u6NMDClF7P4lU1K9-Uz64WfKePUEN27YvkpO1_n_B_0FCmfQqg
CitedBy_id crossref_primary_10_1016_j_evalprogplan_2023_102324
crossref_primary_10_21076_vizyoner_1074212
crossref_primary_10_3390_app12199747
crossref_primary_10_1021_acssensors_3c01258
crossref_primary_10_3390_diagnostics13152540
crossref_primary_10_1016_j_bios_2023_115829
crossref_primary_10_1109_ACCESS_2023_3236002
crossref_primary_10_15212_CVIA_2023_0011
crossref_primary_10_1016_j_gastha_2021_09_003
crossref_primary_10_3390_bioengineering10111286
crossref_primary_10_1177_20539517241255107
crossref_primary_10_3390_math12091303
crossref_primary_10_4018_IJISSC_306965
crossref_primary_10_3390_s22145211
crossref_primary_10_3390_su15032542
crossref_primary_10_1038_s41598_022_11329_y
crossref_primary_10_3389_fcvm_2022_800864
crossref_primary_10_3389_fpubh_2025_1510456
crossref_primary_10_1016_j_jacl_2023_11_006
crossref_primary_10_1109_TCE_2023_3318150
Cites_doi 10.1016/j.jacc.2007.12.024
10.1111/j.1469-8986.2008.00770.x
10.1186/1471-2105-9-129
10.1373/clinchem.2007.096529
10.1093/eurheartj/ehz564
10.1109/AICCSA.2008.4493524
10.1007/s10557-007-6032-4
10.1007/s12263-008-0097-y
10.4135/9781483348964
10.22173/ksss.2019.32.2.6
10.1016/j.jbi.2016.09.001
10.1097/01.hjh.0000499906.04278.f8
10.1016/j.artmed.2007.10.003
10.4258/hir.2010.16.4.253
10.4082/kjfm.2018.39.3.135
10.1016/j.cmpb.2009.01.003
10.3904/kjm.2020.95.4.266
10.2337/db14-0020
10.1093/bioinformatics/btl653
10.1097/JCN.0000000000000146
10.1249/JES.0000000000000027
10.1161/01.CIR.100.13.1481
10.1007/s00125-012-2677-z
10.1056/NEJMoa1803180
10.1371/journal.pone.0212356
10.1161/01.CIR.97.18.1837
10.1097/MEG.0b013e3282202bb8
ContentType Journal Article
Copyright 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the author. 2021
Copyright_xml – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the author. 2021
DBID AAYXX
CITATION
3V.
7QL
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/bios11070228
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6374
ExternalDocumentID oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54
PMC8301976
10_3390_bios11070228
GroupedDBID .4S
.DC
2XV
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TUS
UKHRP
3V.
7QL
7T5
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c455t-e7dbc09fbeeabefb8837e6c379432d334933b854cc60c5252ab4ac0a7c8500e63
IEDL.DBID M48
ISSN 2079-6374
IngestDate Wed Aug 27 01:08:19 EDT 2025
Thu Aug 21 14:13:50 EDT 2025
Thu Sep 04 17:38:54 EDT 2025
Fri Jul 25 10:38:06 EDT 2025
Tue Jul 01 02:24:29 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e7dbc09fbeeabefb8837e6c379432d334933b854cc60c5252ab4ac0a7c8500e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios11070228
PMID 34356699
PQID 2554441330
PQPubID 2032424
ParticipantIDs doaj_primary_oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8301976
proquest_miscellaneous_2559432255
proquest_journals_2554441330
crossref_primary_10_3390_bios11070228
crossref_citationtrail_10_3390_bios11070228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210708
PublicationDateYYYYMMDD 2021-07-08
PublicationDate_xml – month: 7
  year: 2021
  text: 20210708
  day: 8
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biosensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yoo (ref_15) 2019; 7
Oh (ref_43) 2020; 95
Song (ref_25) 2010; 28
Halter (ref_40) 2014; 63
ref_36
Firouzi (ref_20) 2007; 19
Thurston (ref_30) 2009; 46
ref_34
ref_33
ref_10
ref_32
Flint (ref_38) 2019; 381
Reeder (ref_7) 2016; 63
Dimsdale (ref_41) 2008; 51
Kostis (ref_24) 2007; 21
ref_18
Cook (ref_37) 2008; 54
Maglogiannis (ref_29) 2009; 95
Ahn (ref_13) 2006; 28
Son (ref_28) 2010; 16
Park (ref_16) 2018; 16
Kim (ref_17) 2010; 31
Cho (ref_14) 2018; 39
Chu (ref_31) 2008; 42
Roemmich (ref_42) 2014; 42
Lee (ref_46) 2019; 32
Jeong (ref_39) 2019; 40
ref_45
Wu (ref_6) 2002; 16
Park (ref_3) 2015; 30
Kim (ref_22) 2020; 29
Wilmot (ref_23) 2012; 55
ref_1
Devos (ref_19) 2002; 90
Grundy (ref_2) 1999; 100
Alwan (ref_35) 2020; 10
Goumidi (ref_21) 2008; 3
ref_27
ref_26
ref_9
ref_8
Wilson (ref_11) 1998; 97
ref_5
ref_4
Park (ref_44) 2007; 23
Kim (ref_12) 2016; 34
References_xml – volume: 51
  start-page: 1237
  year: 2008
  ident: ref_41
  article-title: Psychological Stress and Cardiovascular Disease
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.12.024
– ident: ref_9
– volume: 46
  start-page: 285
  year: 2009
  ident: ref_30
  article-title: Improving the performance of physiologic hot flash measures with support vector machines
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2008.00770.x
– volume: 28
  start-page: 162
  year: 2006
  ident: ref_13
  article-title: Framingham equation model overestimates risk of ischemic heart disease in Korean men and women
  publication-title: Korean J. Epidemiol.
– volume: 31
  start-page: 136
  year: 2010
  ident: ref_17
  article-title: A study on using EAV (MERIDIAN) by analysis of cerebrovascular disease risk factors
  publication-title: J. Korean Med.
– ident: ref_45
  doi: 10.1186/1471-2105-9-129
– volume: 54
  start-page: 17
  year: 2008
  ident: ref_37
  article-title: Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2007.096529
– ident: ref_5
– ident: ref_32
– volume: 40
  start-page: 3547
  year: 2019
  ident: ref_39
  article-title: Mortality reduction with physical activity in patients with and without cardiovascular disease
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz564
– ident: ref_4
  doi: 10.1109/AICCSA.2008.4493524
– volume: 21
  start-page: 297
  year: 2007
  ident: ref_24
  article-title: The Importance of Managing Hypertension and Dyslipidemia to Decrease Cardiovascular Disease
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-007-6032-4
– ident: ref_34
– volume: 3
  start-page: 173
  year: 2008
  ident: ref_21
  article-title: Prediction of the metabolic syndrome status based on dietary and genetic parameters, using Random Forest
  publication-title: Genes Nutr.
  doi: 10.1007/s12263-008-0097-y
– ident: ref_26
  doi: 10.4135/9781483348964
– volume: 32
  start-page: 92
  year: 2019
  ident: ref_46
  article-title: The Critical Research of Healthcare Focused on Smartwatch Users
  publication-title: Korean J. Sociol. Sport
  doi: 10.22173/ksss.2019.32.2.6
– volume: 7
  start-page: 127
  year: 2019
  ident: ref_15
  article-title: The relationship between serum triglyceride/HDL cholesterol, total cholesterol/HDL cholesterol, LDL cholesterol/HDL cholesterol ratios and cardiovascular disease risk factors in Korean adults: Using the 2016 Korea National Health and Nutrition Examination Survey Data
  publication-title: J. Korean Soc. Integr. Med.
– volume: 28
  start-page: 1066
  year: 2010
  ident: ref_25
  article-title: Evaluation of Horticultural Therapy on the Emotional Improvement of Depressed Patients by Using Heart Rate Variability
  publication-title: Korean J. Hortic. Sci. Technol.
– volume: 63
  start-page: 269
  year: 2016
  ident: ref_7
  article-title: Health at hand: A systematic review of smart watch uses for health and wellness
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.09.001
– ident: ref_1
– ident: ref_18
– volume: 90
  start-page: 557
  year: 2002
  ident: ref_19
  article-title: Assessing association rules and decision trees on analysis of diabetes data from the DiabCare program in France
  publication-title: Stud. Health Technol. Inform.
– volume: 34
  start-page: e16
  year: 2016
  ident: ref_12
  article-title: CVD risk prediction in high-risk versus low-risk populations
  publication-title: J. Hypertens.
  doi: 10.1097/01.hjh.0000499906.04278.f8
– volume: 42
  start-page: 247
  year: 2008
  ident: ref_31
  article-title: A decision support system to facilitate management of patients with acute gastrointestinal bleeding
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2007.10.003
– volume: 16
  start-page: 253
  year: 2010
  ident: ref_28
  article-title: Application of Support Vector Machine for Prediction of Medication Adherence in Heart Failure Patients
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2010.16.4.253
– volume: 39
  start-page: 135
  year: 2018
  ident: ref_14
  article-title: Cardiovascular risk prediction in Korean adults
  publication-title: Korean J. Fam. Med.
  doi: 10.4082/kjfm.2018.39.3.135
– volume: 95
  start-page: 47
  year: 2009
  ident: ref_29
  article-title: Support vectors machine-based identification of heart valve diseases using heart sounds
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.01.003
– volume: 95
  start-page: 266
  year: 2020
  ident: ref_43
  article-title: Sex Differences in Cardiovascular Disease Risk Factors among Korean Adults
  publication-title: Korean J. Med.
  doi: 10.3904/kjm.2020.95.4.266
– volume: 63
  start-page: 2578
  year: 2014
  ident: ref_40
  article-title: Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions
  publication-title: Diabetes
  doi: 10.2337/db14-0020
– volume: 16
  start-page: 251
  year: 2018
  ident: ref_16
  article-title: Convergence exploration for predictors of the cardiovascular disease risk
  publication-title: J. Digit. Converg.
– ident: ref_8
– ident: ref_33
– volume: 10
  start-page: 5497
  year: 2020
  ident: ref_35
  article-title: The effect of gamma value on support vector machine performance with different kernels
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 23
  start-page: 701
  year: 2007
  ident: ref_44
  article-title: On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl653
– ident: ref_10
– volume: 30
  start-page: 267
  year: 2015
  ident: ref_3
  article-title: 10-year risk for cardiovascular disease among male workers in small-sized industries
  publication-title: J. Cardiovasc. Nurs.
  doi: 10.1097/JCN.0000000000000146
– volume: 42
  start-page: 145
  year: 2014
  ident: ref_42
  article-title: Stress, Behavior, and Biology: Risk Factors for Cardiovascular Diseases in Youth
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1249/JES.0000000000000027
– volume: 100
  start-page: 1481
  year: 1999
  ident: ref_2
  article-title: Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.13.1481
– volume: 55
  start-page: 2895
  year: 2012
  ident: ref_23
  article-title: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2677-z
– volume: 29
  start-page: 11
  year: 2020
  ident: ref_22
  article-title: Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction
  publication-title: J. Korea Soc. Simul.
– volume: 381
  start-page: 243
  year: 2019
  ident: ref_38
  article-title: Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1803180
– ident: ref_27
  doi: 10.1371/journal.pone.0212356
– ident: ref_36
– volume: 16
  start-page: 50
  year: 2002
  ident: ref_6
  article-title: The next generation of clinical decision support: Linking evidence to best practice
  publication-title: J. Healthc. Inf. Manag.
– volume: 97
  start-page: 1837
  year: 1998
  ident: ref_11
  article-title: Prediction of coronary heart disease using risk factor categories
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.18.1837
– volume: 19
  start-page: 1075
  year: 2007
  ident: ref_20
  article-title: A decision tree-based approach for determining low bone mineral density in inflammatory bowel disease using PWEKA software
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/MEG.0b013e3282202bb8
SSID ssj0000747937
Score 2.3358457
Snippet Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 228
SubjectTerms Algorithms
artificial neural network
Artificial neural networks
Cardiovascular disease
cardiovascular disease prediction model
Cardiovascular diseases
Chronic illnesses
Classification
Learning algorithms
logistic regression
Machine learning
Neural networks
Nutrition
Personal health
Polls & surveys
Prediction models
smartwatch
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgoEGCE4rqxnZsc2NLqwpEhVRW6i3yK7TSNou2uzx-D3-UGSe7Sg6IC6dE8STxY2zP2J-_YexVzY3Vqo2lTdqX0hIIwLWhbHE6j154X_vM9nlWn87lhwt1MQr1RZiwnh64r7gDEYR0KlrdCiMPrTexcob7NlX4taQyEyi3fORM5TFY04qR7pHuAv36A3-1vCFfh_heJnNQpuqf2JdTdORoujm5x-4OdiK86_N3n91K3QN2Z8Qe-JD9ng0hrcHB0QRWCu_7bRf4vKJ9GKp7oKBnC0ATFc6vsdQ_cAi-hDmdtYQMG4BPGVaZYGBc_foWZviJCPguGonwcYnmJQw02gvojy-B6yKcbQn94finI2RNvj_frL6nX4_Y_OT4y9FpOcRcKINUal0mHX3gtvUpOZ9ab9CBTXUQxCNXRSGkFcIbJUOoeVCVqpyXLnCng1Gcp1o8ZnvdsktPGFR1ssJpHkKIsk7OhoT1b_A3hy6GWhTszbYVmjAQklNcjEWDjgm1WTNus4K93kl_64k4_iI3owbdyRB9dn6AStUMStX8S6kKtr9Vh2bo0zcNOl8SjUcheMFe7pKxN9IWi-vScpNlqKLwUjA9UaNJhqYp3dVl5vU2ONiidfj0f5TgGbtdEfqGFqLNPttbrzbpOZpPa_8i95Q_gicdow
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIpAWw0SnFDUbGwnDpeKLa0qEBVSWWlvkV9pK22Tsg8ev6d_lBnHu2wOcEqUOA9lxp5v7C_fMPamyFRVysallS9NKioiAejGpg2Gc2e4MYUJap9nxelEfJrKaZxwW0Ra5XpMDAO16yzNkR8g9BUYujH9Prz5nlLVKFpdjSU07rJ7I0QiVLqhnJabORYSh8fw2_PdOWb3B-aqW1DGQ6ovg0gUBPsHKHPIkdwKOieP2MOIFuFDb97H7I5vn7AHWxqCT9ntOBa2Bg1HA3IpfOwXX-DrnFZjyAJApc9mgEAVzq_RaX7iQHwJE_rjEgJ5AL4EcqWHqLt68R7GeAsHeC1CRfjcIciEKKY9g_4nJtCtg7O1rD8c_9LErwn756v5D__7GZucHH87Ok1j5YXUCimXqS-dsVnVGO-18Y1RmMb6wnJSk8sd56Li3CgprC0yK3OZayO0zXRplcwyX_DnbKftWv-CQV74iusys9Y6UXhdWY_fX-FjRtrZgifs3doKtY2y5FQdY1ZjekI2q7dtlrC3m9Y3vRzHP9qNyaCbNiSiHQ5084s69smaWy60dFXZcCVGlVEu1yozjc_RUb0UCdtdu0Mde_ai_uuHCXu9OY19khZadOu7VWhDHwo3CSsHbjR4oeGZ9uoyqHsrHHIRI778_8Nfsfs5sWtoolntsp3lfOX3EB4tzX7oA38APl4VPw
  priority: 102
  providerName: ProQuest
Title Building a Cardiovascular Disease Prediction Model for Smartwatch Users Using Machine Learning: Based on the Korea National Health and Nutrition Examination Survey
URI https://www.proquest.com/docview/2554441330
https://www.proquest.com/docview/2559432255
https://pubmed.ncbi.nlm.nih.gov/PMC8301976
https://doaj.org/article/3c34a5d97f38419b8d2a80bfe2095e54
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELb6uMAB8RSBshokOKFAGjtxgoRQt92qArqqWFbaW-RX2kpLAukutL-HP8qMk11tBNw4JUqcl2dsf2N_-YaxF2mU5TIpbZg7qUOREwlAlSYscTi3mmudaq_2OU5PpuLDLJltsVW20a4Cr_4a2lE-qWkzf339_eY9Nvh3FHFiyP5GX9ZXFMaQlMs22_UrRUTi64C-75MlzSDJlvn-x0W9MclL9_fwZp8tuTH8HN9ldzrcCAetoe-xLVfdZ7c31AQfsF_DLsU1KDjs0UzhqF2GgbOG1mXIFkBJ0OaAkBUmX9F9fmKXfAFT-vcSPI0ATj3N0kGnwHr-FoZ4Cwt4LYJG-Fgj3IROVnsO7e9MoCoL45XAP4yuFTFt_P5k2fxwNw_Z9Hj05fAk7HIwhEYkySJ00moT5aV2TmlX6gwDWpcaTrpyseVc5JzrLBHGpJFJ4iRWWigTKWmyJIpcyh-xnaqu3GMGcepyrmRkjLEidSo3Dus_w8fsK2tSHrBXKysUphMopzwZ8wIDFbJZsWmzgL1cl_7WCnP8o9yQDLouQ3La_kDdnBdd6yy44UIlNpclz8R-rjMbqyzSpYvRZV0iAra3codi5aIFBmMCwSTnUcCer09j66QlF1W5eunLUEXhJmCy50a9F-qfqS4vvM53hp0vosUn_-MLnrJbMbFxaGI622M7i2bpniGcWugB25YzOWC7B0ennya4HY7GZ58HfnJi4FvRb_6kKeU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE9hKDBI9ISsut71C6lCpE2VkjaqaCP1ZvbltlKwSx6U_h7-B7-NGWcd4gPcerJlr72WZ3bmm93Zbxh7FwdplkSF8TObKF9klAQgC-0X6M6N4krFqmb7HMb9kfh8Fp2tsd_NXhhKq2xsYm2oTaVpjnwLoa9A143h98er7z5VjaLV1aaEhnSlFcxOTTHmNnYM7M01hnDTnYM9lPdmGO73Tnf7vqsy4GsRRTPfJkbpICuUtVLZQqUYstlYc2JOCw3nAkN-lUZC6zjQURiFUgmpA5noNAoCG3N87x22LmgCpcPWu73h8ZflLA_R0yMAWGTcc54FW-qymlLMRbwzLV9Ylwxo4dx2luaK29t_yB44vAqfFgr2iK3Z8jG7v8Ji-IT96rrS2iBht5XeCnuL5R84ntB6EOkAUPG1MSBUhpNvqLbX6AouYER7PqFOX4CjOr3TgmN-Pf8AXXyFAXwWwSoMKoS54Oi8x7DYRgWyNDBsCgtA76ekDJ_6_GQ--WFvnrLRrUjlGeuUVWmfMwhjm3GZBFprI2IrM23x_6fYzbY0OuYee99IIdeOGJ3qc4xzDJBIZvmqzDy2uWx9tSAE-Ue7Lgl02YZovOsL1eQ8d1Yh55oLGZksKXgqtjOVmlCmgSpsiEPFRsJjG4065M62TPO_I8Fjb5e30SrQUo8sbTWv29CPwoPHkpYatT6ofae8vKj5xVM0-ohSX_y_8zfsbv_06DA_PBgOXrJ7IeX60LR3usE6s8ncvkKwNlOv3YgA9vW2B-EfjCRZmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIiE4IFZhKPCQ6AlZcT3jDQkh0jRqCUSVSqTczGxuKwW7ZKH09_Av-HW8N7ZDfIBbT7Hi8SK_feab7zH2Og7SLIkK42c2Ub7ICAQgC-0XGM6N4krFyrF9juPDifg4jaZb7He7F4Zgla1PdI7aVJrmyHuY-goM3Vh-94oGFnE8GL6_-O5TBylaaW3badQqMrJXl1i-Ld4dDVDWu2E4PPiyf-g3HQZ8LaJo6dvEKB1khbJWKluoFMs1G2tOrGmh4Vxgua_SSGgdBzoKo1AqIXUgE51GQWBjjve9wW4mXAhqG5FMk_X8DhHTY-ivsfacZ0FPnVcLqraIcaYTBV2zgE6G28VnbgS84T12t8lU4UOtWvfZli0fsDsb_IUP2a9-01QbJOx3gK0wqBd-4HhOK0EkfaC2azPAJBlOvqHCXmIQOIMJ7fYEB1yAzw7YaaHhfD19C328hQG8FtNUGFWY4EJD5D2DegMVyNLAuG0pAAc_JWF73PHJav7DXj1ik2uRyWO2XValfcIgjG3GZRJorY2Ircy0xe-f4mP2pNEx99ibVgq5bijRqTPHLMfSiGSWb8rMY7vr0Rc1Fcg_xvVJoOsxRODt_qjmp3njD3KuuZCRyZKCp2IvU6kJZRqowoZoJDYSHttp1SFvvMoi_2sDHnu1Po3-gBZ5ZGmrlRtDHwp_PJZ01KjzQt0z5fmZYxZP0d1jfvr0_w9_yW6h6eWfjsajZ-x2SCAfmu9Od9j2cr6yzzFLW6oXzhyAfb1u-_sDO-pXNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+a+Cardiovascular+Disease+Prediction+Model+for+Smartwatch+Users+Using+Machine+Learning%3A+Based+on+the+Korea+National+Health+and+Nutrition+Examination+Survey&rft.jtitle=Biosensors+%28Basel%29&rft.au=Min-Jeong+Kim&rft.date=2021-07-08&rft.pub=MDPI+AG&rft.eissn=2079-6374&rft.volume=11&rft.issue=7&rft.spage=228&rft_id=info:doi/10.3390%2Fbios11070228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon