Building a Cardiovascular Disease Prediction Model for Smartwatch Users Using Machine Learning: Based on the Korea National Health and Nutrition Examination Survey
Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smart...
Saved in:
Published in | Biosensors (Basel) Vol. 11; no. 7; p. 228 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
08.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-6374 2079-6374 |
DOI | 10.3390/bios11070228 |
Cover
Abstract | Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not. |
---|---|
AbstractList | Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not. Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not. |
Author | Kim, Min-Jeong |
AuthorAffiliation | Department of Consumer Economics & Design Research Institute for Creativity and Convergence, Sookmyung Women’s University, Seoul 04310, Korea; min-jeong.kim@sookmyung.ac.kr ; Tel.: +82-2-2077-7818 |
AuthorAffiliation_xml | – name: Department of Consumer Economics & Design Research Institute for Creativity and Convergence, Sookmyung Women’s University, Seoul 04310, Korea; min-jeong.kim@sookmyung.ac.kr ; Tel.: +82-2-2077-7818 |
Author_xml | – sequence: 1 givenname: Min-Jeong surname: Kim fullname: Kim, Min-Jeong |
BookMark | eNptkt1uFCEUgCemxv7YOx-AxBsvXGUGGAYvTOxabeO2mtRekzNwZpcNO1SY2drn8UVldxvTNnIBBL7zcQ5wWOz1oceieFXSd4wp-r51IZUllbSqmmfFQUWlmtRM8r0H8_3iOKUlzU1yqZh8UewzzkRdK3VQ_DkZnbeunxMgU4jWhTUkM3qI5LNLCAnJj4jWmcGFnlwEi550IZKrFcThFgazINcJY8r9RnIBZuF6JDOE2OeFD-QkKyzJscMCybcQEcglbGTgyRmCHxYEeksuxyG67Rmnv2Hl-i1Crsa4xruXxfMOfMLj-_GouP5y-nN6Npl9_3o-_TSbGC7EMEFpW0NV1yJCi13bNExibZhUnFWWMa4YaxvBjampEZWooOVgKEjTCEqxZkfF-c5rAyz1TXS5xjsdwOntQohznYt2xqNmhnEQVsmONbxUbWMraGjbYUWVQMGz6-POdTO2K7QG-yGCfyR9vNO7hZ6HtW4YLZXcJPPmXhDDrxHToFcuGfQeegxj0pUQm7rykNHXT9BlGGO-4C3FOS8Zo5l6u6NMDClF7P4lU1K9-Uz64WfKePUEN27YvkpO1_n_B_0FCmfQqg |
CitedBy_id | crossref_primary_10_1016_j_evalprogplan_2023_102324 crossref_primary_10_21076_vizyoner_1074212 crossref_primary_10_3390_app12199747 crossref_primary_10_1021_acssensors_3c01258 crossref_primary_10_3390_diagnostics13152540 crossref_primary_10_1016_j_bios_2023_115829 crossref_primary_10_1109_ACCESS_2023_3236002 crossref_primary_10_15212_CVIA_2023_0011 crossref_primary_10_1016_j_gastha_2021_09_003 crossref_primary_10_3390_bioengineering10111286 crossref_primary_10_1177_20539517241255107 crossref_primary_10_3390_math12091303 crossref_primary_10_4018_IJISSC_306965 crossref_primary_10_3390_s22145211 crossref_primary_10_3390_su15032542 crossref_primary_10_1038_s41598_022_11329_y crossref_primary_10_3389_fcvm_2022_800864 crossref_primary_10_3389_fpubh_2025_1510456 crossref_primary_10_1016_j_jacl_2023_11_006 crossref_primary_10_1109_TCE_2023_3318150 |
Cites_doi | 10.1016/j.jacc.2007.12.024 10.1111/j.1469-8986.2008.00770.x 10.1186/1471-2105-9-129 10.1373/clinchem.2007.096529 10.1093/eurheartj/ehz564 10.1109/AICCSA.2008.4493524 10.1007/s10557-007-6032-4 10.1007/s12263-008-0097-y 10.4135/9781483348964 10.22173/ksss.2019.32.2.6 10.1016/j.jbi.2016.09.001 10.1097/01.hjh.0000499906.04278.f8 10.1016/j.artmed.2007.10.003 10.4258/hir.2010.16.4.253 10.4082/kjfm.2018.39.3.135 10.1016/j.cmpb.2009.01.003 10.3904/kjm.2020.95.4.266 10.2337/db14-0020 10.1093/bioinformatics/btl653 10.1097/JCN.0000000000000146 10.1249/JES.0000000000000027 10.1161/01.CIR.100.13.1481 10.1007/s00125-012-2677-z 10.1056/NEJMoa1803180 10.1371/journal.pone.0212356 10.1161/01.CIR.97.18.1837 10.1097/MEG.0b013e3282202bb8 |
ContentType | Journal Article |
Copyright | 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the author. 2021 |
Copyright_xml | – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the author. 2021 |
DBID | AAYXX CITATION 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/bios11070228 |
DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54 PMC8301976 10_3390_bios11070228 |
GroupedDBID | .4S .DC 2XV 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV ADMLS AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TUS UKHRP 3V. 7QL 7T5 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c455t-e7dbc09fbeeabefb8837e6c379432d334933b854cc60c5252ab4ac0a7c8500e63 |
IEDL.DBID | M48 |
ISSN | 2079-6374 |
IngestDate | Wed Aug 27 01:08:19 EDT 2025 Thu Aug 21 14:13:50 EDT 2025 Thu Sep 04 17:38:54 EDT 2025 Fri Jul 25 10:38:06 EDT 2025 Tue Jul 01 02:24:29 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-e7dbc09fbeeabefb8837e6c379432d334933b854cc60c5252ab4ac0a7c8500e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios11070228 |
PMID | 34356699 |
PQID | 2554441330 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8301976 proquest_miscellaneous_2559432255 proquest_journals_2554441330 crossref_primary_10_3390_bios11070228 crossref_citationtrail_10_3390_bios11070228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210708 |
PublicationDateYYYYMMDD | 2021-07-08 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210708 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yoo (ref_15) 2019; 7 Oh (ref_43) 2020; 95 Song (ref_25) 2010; 28 Halter (ref_40) 2014; 63 ref_36 Firouzi (ref_20) 2007; 19 Thurston (ref_30) 2009; 46 ref_34 ref_33 ref_10 ref_32 Flint (ref_38) 2019; 381 Reeder (ref_7) 2016; 63 Dimsdale (ref_41) 2008; 51 Kostis (ref_24) 2007; 21 ref_18 Cook (ref_37) 2008; 54 Maglogiannis (ref_29) 2009; 95 Ahn (ref_13) 2006; 28 Son (ref_28) 2010; 16 Park (ref_16) 2018; 16 Kim (ref_17) 2010; 31 Cho (ref_14) 2018; 39 Chu (ref_31) 2008; 42 Roemmich (ref_42) 2014; 42 Lee (ref_46) 2019; 32 Jeong (ref_39) 2019; 40 ref_45 Wu (ref_6) 2002; 16 Park (ref_3) 2015; 30 Kim (ref_22) 2020; 29 Wilmot (ref_23) 2012; 55 ref_1 Devos (ref_19) 2002; 90 Grundy (ref_2) 1999; 100 Alwan (ref_35) 2020; 10 Goumidi (ref_21) 2008; 3 ref_27 ref_26 ref_9 ref_8 Wilson (ref_11) 1998; 97 ref_5 ref_4 Park (ref_44) 2007; 23 Kim (ref_12) 2016; 34 |
References_xml | – volume: 51 start-page: 1237 year: 2008 ident: ref_41 article-title: Psychological Stress and Cardiovascular Disease publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.12.024 – ident: ref_9 – volume: 46 start-page: 285 year: 2009 ident: ref_30 article-title: Improving the performance of physiologic hot flash measures with support vector machines publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00770.x – volume: 28 start-page: 162 year: 2006 ident: ref_13 article-title: Framingham equation model overestimates risk of ischemic heart disease in Korean men and women publication-title: Korean J. Epidemiol. – volume: 31 start-page: 136 year: 2010 ident: ref_17 article-title: A study on using EAV (MERIDIAN) by analysis of cerebrovascular disease risk factors publication-title: J. Korean Med. – ident: ref_45 doi: 10.1186/1471-2105-9-129 – volume: 54 start-page: 17 year: 2008 ident: ref_37 article-title: Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve publication-title: Clin. Chem. doi: 10.1373/clinchem.2007.096529 – ident: ref_5 – ident: ref_32 – volume: 40 start-page: 3547 year: 2019 ident: ref_39 article-title: Mortality reduction with physical activity in patients with and without cardiovascular disease publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz564 – ident: ref_4 doi: 10.1109/AICCSA.2008.4493524 – volume: 21 start-page: 297 year: 2007 ident: ref_24 article-title: The Importance of Managing Hypertension and Dyslipidemia to Decrease Cardiovascular Disease publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-007-6032-4 – ident: ref_34 – volume: 3 start-page: 173 year: 2008 ident: ref_21 article-title: Prediction of the metabolic syndrome status based on dietary and genetic parameters, using Random Forest publication-title: Genes Nutr. doi: 10.1007/s12263-008-0097-y – ident: ref_26 doi: 10.4135/9781483348964 – volume: 32 start-page: 92 year: 2019 ident: ref_46 article-title: The Critical Research of Healthcare Focused on Smartwatch Users publication-title: Korean J. Sociol. Sport doi: 10.22173/ksss.2019.32.2.6 – volume: 7 start-page: 127 year: 2019 ident: ref_15 article-title: The relationship between serum triglyceride/HDL cholesterol, total cholesterol/HDL cholesterol, LDL cholesterol/HDL cholesterol ratios and cardiovascular disease risk factors in Korean adults: Using the 2016 Korea National Health and Nutrition Examination Survey Data publication-title: J. Korean Soc. Integr. Med. – volume: 28 start-page: 1066 year: 2010 ident: ref_25 article-title: Evaluation of Horticultural Therapy on the Emotional Improvement of Depressed Patients by Using Heart Rate Variability publication-title: Korean J. Hortic. Sci. Technol. – volume: 63 start-page: 269 year: 2016 ident: ref_7 article-title: Health at hand: A systematic review of smart watch uses for health and wellness publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.09.001 – ident: ref_1 – ident: ref_18 – volume: 90 start-page: 557 year: 2002 ident: ref_19 article-title: Assessing association rules and decision trees on analysis of diabetes data from the DiabCare program in France publication-title: Stud. Health Technol. Inform. – volume: 34 start-page: e16 year: 2016 ident: ref_12 article-title: CVD risk prediction in high-risk versus low-risk populations publication-title: J. Hypertens. doi: 10.1097/01.hjh.0000499906.04278.f8 – volume: 42 start-page: 247 year: 2008 ident: ref_31 article-title: A decision support system to facilitate management of patients with acute gastrointestinal bleeding publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2007.10.003 – volume: 16 start-page: 253 year: 2010 ident: ref_28 article-title: Application of Support Vector Machine for Prediction of Medication Adherence in Heart Failure Patients publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2010.16.4.253 – volume: 39 start-page: 135 year: 2018 ident: ref_14 article-title: Cardiovascular risk prediction in Korean adults publication-title: Korean J. Fam. Med. doi: 10.4082/kjfm.2018.39.3.135 – volume: 95 start-page: 47 year: 2009 ident: ref_29 article-title: Support vectors machine-based identification of heart valve diseases using heart sounds publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2009.01.003 – volume: 95 start-page: 266 year: 2020 ident: ref_43 article-title: Sex Differences in Cardiovascular Disease Risk Factors among Korean Adults publication-title: Korean J. Med. doi: 10.3904/kjm.2020.95.4.266 – volume: 63 start-page: 2578 year: 2014 ident: ref_40 article-title: Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions publication-title: Diabetes doi: 10.2337/db14-0020 – volume: 16 start-page: 251 year: 2018 ident: ref_16 article-title: Convergence exploration for predictors of the cardiovascular disease risk publication-title: J. Digit. Converg. – ident: ref_8 – ident: ref_33 – volume: 10 start-page: 5497 year: 2020 ident: ref_35 article-title: The effect of gamma value on support vector machine performance with different kernels publication-title: Int. J. Electr. Comput. Eng. – volume: 23 start-page: 701 year: 2007 ident: ref_44 article-title: On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl653 – ident: ref_10 – volume: 30 start-page: 267 year: 2015 ident: ref_3 article-title: 10-year risk for cardiovascular disease among male workers in small-sized industries publication-title: J. Cardiovasc. Nurs. doi: 10.1097/JCN.0000000000000146 – volume: 42 start-page: 145 year: 2014 ident: ref_42 article-title: Stress, Behavior, and Biology: Risk Factors for Cardiovascular Diseases in Youth publication-title: Exerc. Sport Sci. Rev. doi: 10.1249/JES.0000000000000027 – volume: 100 start-page: 1481 year: 1999 ident: ref_2 article-title: Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations publication-title: Circulation doi: 10.1161/01.CIR.100.13.1481 – volume: 55 start-page: 2895 year: 2012 ident: ref_23 article-title: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis publication-title: Diabetologia doi: 10.1007/s00125-012-2677-z – volume: 29 start-page: 11 year: 2020 ident: ref_22 article-title: Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction publication-title: J. Korea Soc. Simul. – volume: 381 start-page: 243 year: 2019 ident: ref_38 article-title: Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1803180 – ident: ref_27 doi: 10.1371/journal.pone.0212356 – ident: ref_36 – volume: 16 start-page: 50 year: 2002 ident: ref_6 article-title: The next generation of clinical decision support: Linking evidence to best practice publication-title: J. Healthc. Inf. Manag. – volume: 97 start-page: 1837 year: 1998 ident: ref_11 article-title: Prediction of coronary heart disease using risk factor categories publication-title: Circulation doi: 10.1161/01.CIR.97.18.1837 – volume: 19 start-page: 1075 year: 2007 ident: ref_20 article-title: A decision tree-based approach for determining low bone mineral density in inflammatory bowel disease using PWEKA software publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/MEG.0b013e3282202bb8 |
SSID | ssj0000747937 |
Score | 2.3358457 |
Snippet | Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 228 |
SubjectTerms | Algorithms artificial neural network Artificial neural networks Cardiovascular disease cardiovascular disease prediction model Cardiovascular diseases Chronic illnesses Classification Learning algorithms logistic regression Machine learning Neural networks Nutrition Personal health Polls & surveys Prediction models smartwatch Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPEWgoEGCE4rqxnZsc2NLqwpEhVRW6i3yK7TSNou2uzx-D3-UGSe7Sg6IC6dE8STxY2zP2J-_YexVzY3Vqo2lTdqX0hIIwLWhbHE6j154X_vM9nlWn87lhwt1MQr1RZiwnh64r7gDEYR0KlrdCiMPrTexcob7NlX4taQyEyi3fORM5TFY04qR7pHuAv36A3-1vCFfh_heJnNQpuqf2JdTdORoujm5x-4OdiK86_N3n91K3QN2Z8Qe-JD9ng0hrcHB0QRWCu_7bRf4vKJ9GKp7oKBnC0ATFc6vsdQ_cAi-hDmdtYQMG4BPGVaZYGBc_foWZviJCPguGonwcYnmJQw02gvojy-B6yKcbQn94finI2RNvj_frL6nX4_Y_OT4y9FpOcRcKINUal0mHX3gtvUpOZ9ab9CBTXUQxCNXRSGkFcIbJUOoeVCVqpyXLnCng1Gcp1o8ZnvdsktPGFR1ssJpHkKIsk7OhoT1b_A3hy6GWhTszbYVmjAQklNcjEWDjgm1WTNus4K93kl_64k4_iI3owbdyRB9dn6AStUMStX8S6kKtr9Vh2bo0zcNOl8SjUcheMFe7pKxN9IWi-vScpNlqKLwUjA9UaNJhqYp3dVl5vU2ONiidfj0f5TgGbtdEfqGFqLNPttbrzbpOZpPa_8i95Q_gicdow priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIpAWw0SnFDUbGwnDpeKLa0qEBVSWWlvkV9pK22Tsg8ev6d_lBnHu2wOcEqUOA9lxp5v7C_fMPamyFRVysallS9NKioiAejGpg2Gc2e4MYUJap9nxelEfJrKaZxwW0Ra5XpMDAO16yzNkR8g9BUYujH9Prz5nlLVKFpdjSU07rJ7I0QiVLqhnJabORYSh8fw2_PdOWb3B-aqW1DGQ6ovg0gUBPsHKHPIkdwKOieP2MOIFuFDb97H7I5vn7AHWxqCT9ntOBa2Bg1HA3IpfOwXX-DrnFZjyAJApc9mgEAVzq_RaX7iQHwJE_rjEgJ5AL4EcqWHqLt68R7GeAsHeC1CRfjcIciEKKY9g_4nJtCtg7O1rD8c_9LErwn756v5D__7GZucHH87Ok1j5YXUCimXqS-dsVnVGO-18Y1RmMb6wnJSk8sd56Li3CgprC0yK3OZayO0zXRplcwyX_DnbKftWv-CQV74iusys9Y6UXhdWY_fX-FjRtrZgifs3doKtY2y5FQdY1ZjekI2q7dtlrC3m9Y3vRzHP9qNyaCbNiSiHQ5084s69smaWy60dFXZcCVGlVEu1yozjc_RUb0UCdtdu0Mde_ai_uuHCXu9OY19khZadOu7VWhDHwo3CSsHbjR4oeGZ9uoyqHsrHHIRI778_8Nfsfs5sWtoolntsp3lfOX3EB4tzX7oA38APl4VPw priority: 102 providerName: ProQuest |
Title | Building a Cardiovascular Disease Prediction Model for Smartwatch Users Using Machine Learning: Based on the Korea National Health and Nutrition Examination Survey |
URI | https://www.proquest.com/docview/2554441330 https://www.proquest.com/docview/2559432255 https://pubmed.ncbi.nlm.nih.gov/PMC8301976 https://doaj.org/article/3c34a5d97f38419b8d2a80bfe2095e54 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELb6uMAB8RSBshokOKFAGjtxgoRQt92qArqqWFbaW-RX2kpLAukutL-HP8qMk11tBNw4JUqcl2dsf2N_-YaxF2mU5TIpbZg7qUOREwlAlSYscTi3mmudaq_2OU5PpuLDLJltsVW20a4Cr_4a2lE-qWkzf339_eY9Nvh3FHFiyP5GX9ZXFMaQlMs22_UrRUTi64C-75MlzSDJlvn-x0W9MclL9_fwZp8tuTH8HN9ldzrcCAetoe-xLVfdZ7c31AQfsF_DLsU1KDjs0UzhqF2GgbOG1mXIFkBJ0OaAkBUmX9F9fmKXfAFT-vcSPI0ATj3N0kGnwHr-FoZ4Cwt4LYJG-Fgj3IROVnsO7e9MoCoL45XAP4yuFTFt_P5k2fxwNw_Z9Hj05fAk7HIwhEYkySJ00moT5aV2TmlX6gwDWpcaTrpyseVc5JzrLBHGpJFJ4iRWWigTKWmyJIpcyh-xnaqu3GMGcepyrmRkjLEidSo3Dus_w8fsK2tSHrBXKysUphMopzwZ8wIDFbJZsWmzgL1cl_7WCnP8o9yQDLouQ3La_kDdnBdd6yy44UIlNpclz8R-rjMbqyzSpYvRZV0iAra3codi5aIFBmMCwSTnUcCer09j66QlF1W5eunLUEXhJmCy50a9F-qfqS4vvM53hp0vosUn_-MLnrJbMbFxaGI622M7i2bpniGcWugB25YzOWC7B0ennya4HY7GZ58HfnJi4FvRb_6kKeU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE9hKDBI9ISsut71C6lCpE2VkjaqaCP1ZvbltlKwSx6U_h7-B7-NGWcd4gPcerJlr72WZ3bmm93Zbxh7FwdplkSF8TObKF9klAQgC-0X6M6N4krFqmb7HMb9kfh8Fp2tsd_NXhhKq2xsYm2oTaVpjnwLoa9A143h98er7z5VjaLV1aaEhnSlFcxOTTHmNnYM7M01hnDTnYM9lPdmGO73Tnf7vqsy4GsRRTPfJkbpICuUtVLZQqUYstlYc2JOCw3nAkN-lUZC6zjQURiFUgmpA5noNAoCG3N87x22LmgCpcPWu73h8ZflLA_R0yMAWGTcc54FW-qymlLMRbwzLV9Ylwxo4dx2luaK29t_yB44vAqfFgr2iK3Z8jG7v8Ji-IT96rrS2iBht5XeCnuL5R84ntB6EOkAUPG1MSBUhpNvqLbX6AouYER7PqFOX4CjOr3TgmN-Pf8AXXyFAXwWwSoMKoS54Oi8x7DYRgWyNDBsCgtA76ekDJ_6_GQ--WFvnrLRrUjlGeuUVWmfMwhjm3GZBFprI2IrM23x_6fYzbY0OuYee99IIdeOGJ3qc4xzDJBIZvmqzDy2uWx9tSAE-Ue7Lgl02YZovOsL1eQ8d1Yh55oLGZksKXgqtjOVmlCmgSpsiEPFRsJjG4065M62TPO_I8Fjb5e30SrQUo8sbTWv29CPwoPHkpYatT6ofae8vKj5xVM0-ohSX_y_8zfsbv_06DA_PBgOXrJ7IeX60LR3usE6s8ncvkKwNlOv3YgA9vW2B-EfjCRZmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIiE4IFZhKPCQ6AlZcT3jDQkh0jRqCUSVSqTczGxuKwW7ZKH09_Av-HW8N7ZDfIBbT7Hi8SK_feab7zH2Og7SLIkK42c2Ub7ICAQgC-0XGM6N4krFyrF9juPDifg4jaZb7He7F4Zgla1PdI7aVJrmyHuY-goM3Vh-94oGFnE8GL6_-O5TBylaaW3badQqMrJXl1i-Ld4dDVDWu2E4PPiyf-g3HQZ8LaJo6dvEKB1khbJWKluoFMs1G2tOrGmh4Vxgua_SSGgdBzoKo1AqIXUgE51GQWBjjve9wW4mXAhqG5FMk_X8DhHTY-ivsfacZ0FPnVcLqraIcaYTBV2zgE6G28VnbgS84T12t8lU4UOtWvfZli0fsDsb_IUP2a9-01QbJOx3gK0wqBd-4HhOK0EkfaC2azPAJBlOvqHCXmIQOIMJ7fYEB1yAzw7YaaHhfD19C328hQG8FtNUGFWY4EJD5D2DegMVyNLAuG0pAAc_JWF73PHJav7DXj1ik2uRyWO2XValfcIgjG3GZRJorY2Ircy0xe-f4mP2pNEx99ibVgq5bijRqTPHLMfSiGSWb8rMY7vr0Rc1Fcg_xvVJoOsxRODt_qjmp3njD3KuuZCRyZKCp2IvU6kJZRqowoZoJDYSHttp1SFvvMoi_2sDHnu1Po3-gBZ5ZGmrlRtDHwp_PJZ01KjzQt0z5fmZYxZP0d1jfvr0_w9_yW6h6eWfjsajZ-x2SCAfmu9Od9j2cr6yzzFLW6oXzhyAfb1u-_sDO-pXNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+a+Cardiovascular+Disease+Prediction+Model+for+Smartwatch+Users+Using+Machine+Learning%3A+Based+on+the+Korea+National+Health+and+Nutrition+Examination+Survey&rft.jtitle=Biosensors+%28Basel%29&rft.au=Min-Jeong+Kim&rft.date=2021-07-08&rft.pub=MDPI+AG&rft.eissn=2079-6374&rft.volume=11&rft.issue=7&rft.spage=228&rft_id=info:doi/10.3390%2Fbios11070228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3c34a5d97f38419b8d2a80bfe2095e54 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |