Droughts across China: Drought factors, prediction and impacts

Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quanti...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 803; p. 150018
Main Authors Zhang, Qiang, Shi, Rui, Singh, Vijay P., Xu, Chong-Yu, Yu, Huiqian, Fan, Keke, Wu, Zixuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.01.2022
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2021.150018

Cover

Abstract Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. [Display omitted] •New finding about critical impacts of precipitation and soil moisture on droughts•We identified and developed Extremely Randomized Trees model in drought modeling.•We quantified the probability of maize yield reduction under different compound dry-hot conditions.
AbstractList Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.
Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002-2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002-2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.
Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R² > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.
Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. [Display omitted] •New finding about critical impacts of precipitation and soil moisture on droughts•We identified and developed Extremely Randomized Trees model in drought modeling.•We quantified the probability of maize yield reduction under different compound dry-hot conditions.
ArticleNumber 150018
Author Wu, Zixuan
Xu, Chong-Yu
Singh, Vijay P.
Zhang, Qiang
Fan, Keke
Shi, Rui
Yu, Huiqian
Author_xml – sequence: 1
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhangq68@bnu.edu.cn
  organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Rui
  surname: Shi
  fullname: Shi, Rui
  organization: Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China
– sequence: 3
  givenname: Vijay P.
  surname: Singh
  fullname: Singh, Vijay P.
  organization: Department of Biological and Agricultural Engineering and Zachry Department of Civil Engineering, Texas A&M University, College Station, TX, USA
– sequence: 4
  givenname: Chong-Yu
  surname: Xu
  fullname: Xu, Chong-Yu
  organization: Department of Geosciences and Hydrology, University of Oslo, N-0316 Oslo, Norway
– sequence: 5
  givenname: Huiqian
  surname: Yu
  fullname: Yu, Huiqian
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 6
  givenname: Keke
  surname: Fan
  fullname: Fan, Keke
  organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
– sequence: 7
  givenname: Zixuan
  surname: Wu
  fullname: Wu, Zixuan
  organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
BookMark eNqNkUFP5CAYholxE8dZf4M9erCzUKBQE03M6K4mJntZz4ShX5VJByowGv-91I4e9qIcIIH3-fh4OET7zjtA6JjgBcGk_rVeRGOTT-CeFxWuyIJwjIncQzMiRVMSXNX7aIYxk2VTN-IAHca4xnkISWbo4ir47cNjioU2wcdYLB-t02fFbrvotEk-xNNiCNBak6x3hXZtYTdDPok_0Y9O9xGOdusc3f--_re8Ke_-_rldXt6VhnGeShC67UhNKylWjLQrQ6ClArCUdMWZlqzTHcFGY0qhFR1pWpBM1tVKUs6ZwHSO5FR36wb9-qL7Xg3BbnR4VQSr0YNaq08PavSgJg8ZLSbUBBuTdcr5oDMieZVnXNExcjJFhuCfthCT2thooO-1A7-NqqppzVkmyNdRLiijDX-Pnn9cnMUG6FTuT48GU9C2_0bj4j_--0--nEjIX_JsIYw5cCb_YACTVOvtlzXeAMEMuec
CitedBy_id crossref_primary_10_1177_03091333231188814
crossref_primary_10_1007_s00484_024_02770_x
crossref_primary_10_1016_j_jhydrol_2025_132706
crossref_primary_10_3390_agriengineering5020045
crossref_primary_10_1016_j_ejrh_2024_101931
crossref_primary_10_1016_j_catena_2024_107849
crossref_primary_10_3390_atmos15070761
crossref_primary_10_3389_feart_2022_914232
crossref_primary_10_3390_rs15082024
crossref_primary_10_3390_su17031308
crossref_primary_10_3390_w14060866
crossref_primary_10_1016_j_jhydrol_2024_132225
crossref_primary_10_1016_j_jhydrol_2024_132324
crossref_primary_10_1016_j_scitotenv_2024_171080
crossref_primary_10_1016_j_envpol_2022_120763
crossref_primary_10_1038_s43247_023_00808_3
crossref_primary_10_1007_s00477_022_02197_z
crossref_primary_10_1080_19475705_2022_2131471
crossref_primary_10_1007_s10661_022_10207_4
crossref_primary_10_3390_plants13172525
crossref_primary_10_5194_nhess_24_3479_2024
crossref_primary_10_1016_j_scitotenv_2021_150338
crossref_primary_10_1080_17538947_2023_2224086
crossref_primary_10_1007_s40333_023_0059_7
crossref_primary_10_1016_j_jafr_2025_101783
crossref_primary_10_1007_s11069_025_07194_3
crossref_primary_10_1016_j_ecolind_2024_111551
crossref_primary_10_1016_j_rsase_2023_100920
crossref_primary_10_1007_s11356_024_32803_2
crossref_primary_10_7717_peerj_15968
crossref_primary_10_1016_j_jhydrol_2025_132755
crossref_primary_10_1142_S2345748124500209
crossref_primary_10_1007_s10661_024_12637_8
crossref_primary_10_1016_j_atmosres_2023_106675
crossref_primary_10_3390_rs15030667
crossref_primary_10_5194_essd_15_395_2023
crossref_primary_10_1016_j_jhydrol_2024_132196
crossref_primary_10_1016_j_envres_2024_118171
crossref_primary_10_3390_rs16183363
crossref_primary_10_1016_j_gloplacha_2023_104219
crossref_primary_10_3390_agronomy14081791
crossref_primary_10_3389_fenvs_2024_1349228
crossref_primary_10_3390_land11122260
crossref_primary_10_1186_s12870_025_06280_9
Cites_doi 10.1016/S0167-9473(01)00065-2
10.1016/0273-1177(95)00079-T
10.1002/hyp.8340
10.1007/s00704-020-03386-y
10.1016/j.agrformet.2016.06.004
10.1029/2007GL031021
10.1038/ncomms6989
10.1002/wrcr.20387
10.1002/2014GB004826
10.1088/1748-9326/7/4/044037
10.1016/j.rse.2018.10.006
10.1080/02508068508686328
10.1016/j.fss.2006.07.006
10.1016/j.neucom.2005.12.126
10.1109/ACCESS.2021.3074305
10.1016/j.scitotenv.2018.10.434
10.1016/j.rse.2016.12.010
10.1016/j.agsy.2017.01.017
10.1016/j.advwatres.2008.07.017
10.1016/j.rse.2010.07.005
10.1002/2017GL075710
10.3390/rs9050402
10.1175/JHM-386.1
10.1016/j.asoc.2018.10.036
10.1016/j.rse.2018.04.001
10.1016/0167-8655(96)00026-8
10.1016/j.jhydrol.2013.10.052
10.1016/j.agrformet.2007.05.002
10.1016/j.rse.2013.02.023
10.1214/aos/1013203451
10.1016/j.agrformet.2017.06.007
10.1016/S0034-4257(96)00067-3
10.1016/j.apgeog.2019.01.005
10.1088/1748-9326/10/12/125016
10.1186/s40168-019-0735-1
10.3390/w11051096
10.1038/387484a0
10.1016/j.isprsjprs.2015.07.004
10.1007/BF02428423
10.3354/cr00771
10.1016/j.atmosres.2019.104653
10.1016/j.advwatres.2020.103562
10.1175/2009JCLI2909.1
10.1002/2014RG000456
10.5194/hess-23-4803-2019
10.1109/34.85677
10.1109/TPAMI.2009.187
10.1016/j.rse.2016.10.045
10.1016/j.scitotenv.2019.06.373
10.1016/j.gloplacha.2018.10.017
10.3390/rs13040668
10.1002/2017JD027186
10.1111/mice.12485
10.1073/pnas.1504345112
10.1016/j.jhydrol.2005.06.004
10.1016/j.trc.2015.02.019
10.3390/rs9020118
10.1002/2017JD027448
10.1016/j.rse.2017.05.008
10.1016/j.accre.2017.05.007
10.1007/s10994-006-6226-1
10.1016/j.agrformet.2015.10.011
10.1016/j.rse.2003.11.008
10.1029/2006GL029127
10.1029/2012GL052972
10.1002/joc.6307
10.1175/2012EI000434.1
10.1016/j.ecoinf.2020.101067
10.1186/s13567-015-0219-7
10.1016/j.eja.2010.04.002
10.1016/j.envint.2019.104951
10.1016/j.agsy.2019.03.015
10.1109/TCYB.2014.2307349
10.1016/j.agwat.2019.05.046
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
7X8
7S9
L.6
3HK
ADTOC
UNPAY
DOI 10.1016/j.scitotenv.2021.150018
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NORA - Norwegian Open Research Archives
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID oai:www.duo.uio.no:10852/100238
10852_100238
10_1016_j_scitotenv_2021_150018
S0048969721050932
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
3HK
AALMO
AAPBV
ABPIF
ABPTK
ABTAH
AJBFU
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c455t-e7adf163287b41dbc1ed37e0883b54a84faf10ca033ed7f19de84862b83554703
IEDL.DBID UNPAY
ISSN 0048-9697
1879-1026
IngestDate Sun Oct 26 04:06:12 EDT 2025
Sat Sep 30 03:14:38 EDT 2023
Wed Oct 01 12:53:42 EDT 2025
Sat Sep 27 22:59:05 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Thu Oct 02 04:27:43 EDT 2025
Fri Feb 23 02:44:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modeling accuracy
Impacts
Drought factors
Compound disaster
Crop yield
Prediction
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e7adf163287b41dbc1ed37e0883b54a84faf10ca033ed7f19de84862b83554703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10852/100238
PQID 2573439551
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_scitotenv_2021_150018
cristin_nora_10852_100238
proquest_miscellaneous_2636540851
proquest_miscellaneous_2573439551
crossref_citationtrail_10_1016_j_scitotenv_2021_150018
crossref_primary_10_1016_j_scitotenv_2021_150018
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150018
PublicationCentury 2000
PublicationDate 2022-01-10
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khan, Sachindra, Shahid, Ahmed, Shiru, Nawaz (bb0175) 2020; 139
Zscheischler, Michalak, Schwalm, Mahecha (bb0455) 2014; 28
Yu, Zhang, Xu, Du, Sun, Hu (bb0405) 2019; 130
Nabaei, Sharafati, Yaseen, Shahid (bb0255) 2019; 276
Belayneh, Adamowski, Khalil, Ozga-Zielinski (bb0030) 2014; 508
Nicholls (bb0260) 1997; 387
Friedman (bb0085) 2001; 29
Hayes, Alvord, Lowrey (bb0135) 2007; 3(6)
Feng, Wang, Li Liu, Yu (bb0075) 2019; 173
Guo, Bao, Liu, Ndayisaba (bb0115) 2019; 231
Bezdek (bb0035) 1981
Gao (bb0095) 1996; 58
Zhang, Waller, Jiang (bb0445) 2020; 35
Faiz, Liu, Tahir (bb0070) 2020; 231
Gupta, Arango-Argoty, Zhang, Pruden, Vikesland (bb0120) 2019; 7
Vicente-Serrano, Beguería, López-Moreno (bb0365) 2010; 23
Rodriguez, Perez, Lozano (bb0310) 2009; 32
Xie, Beni (bb0400) 1991; 13
Zhang, Chen, Li, Chen, Niyogi (bb0425) 2017; 188
Marée, Geurts, Wehenkel (bb0230) 2007; 8
Campello, Hruschka (bb0040) 2006; 157
Rajesh, Prakash (bb0285) 2011; 1
Sayago, Ovando, Bocco (bb0320) 2017; 198
AghaKouchak, Nakhjiri (bb0005) 2012; 7
Tao, Zhang (bb0345) 2010; 33
Rao, Srinivas (bb0290) 2006; 318
Wilhite, Glantz (bb0385) 1985; 10
Guzmán, Paz, Tagert, Mercer, Pote (bb0125) 2018; 159
Hosseini, Hosseini, Ghermezcheshmeh, Sharafati (bb0140) 2020; 142
Kaufman, Rousseeuw (bb0160) 1990
Zhang, Haghani (bb0415) 2015; 58
Friedman (bb0090) 2002; 38
Palmer (bb0265) 1965
Zuo, Cai, Xu (bb0460) 2019; 222
Molotch, Margulis (bb0250) 2008; 31
Zhang, Yu, Sun, Singh, Shi (bb0440) 2019; 172
Kelly, Krzysztofowicz (bb0170) 1997; 11
Huang, Zhu, Siew (bb0145) 2006; 70
Park, Im, Jang, Rhee (bb0270) 2016; 216
Mo, Hu, Lin, Liu, Xia (bb0240) 2017; 8
Lou, Wu, Ren, Yang, Cai, Wang, Guan (bb0215) 2021; 13
Wang, Vicente-Serrano, Tao (bb0380) 2016; 228
Zhou, Xiao, Zhang (bb0450) 2017; 246
McKee, Doesken, Kleist (bb0235) 1993; Vol. 17
Rhee, Im, Carbone (bb0305) 2010; 114
Huang, Song, Gupta, Wu (bb0150) 2014; 44
AghaKouchak, Farahmand, Melton (bb0010) 2015; 53
Pumsirirat, Yan (bb0275) 2018; 9
Sharafati, Nabaei, Shahid (bb0325) 2020; 40
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (bb0295) 2019; 74
Zhang, Jia (bb0420) 2013; 134
Geurts, Ernst, Wehenkel (bb0100) 2006; 63
Qutbudin, Shiru (bb0280) 2019; 11
Zhang, Jiao, Zhang, Huang, Tong (bb0430) 2017; 190
Tuv, Borisov, Runger, Torkkola (bb0355) 2009; 10
Li, Shen, Yuan, Zhang, Zhang (bb0200) 2017; 44
Lillesand, Kiefer, Chipman (bb0205) 2015
Alizadeh, Nikoo (bb0020) 2018; 211
Mokhtar, Jalali, He, Al-Ansari (bb0245) 2021; 9
Dalin, Qiu, Hanasaki, Mauzerall, Rodriguez-Iturbe (bb0055) 2015; 112
Feng, Hao, Zhang, Hao (bb0080) 2019; 689
Stewart (bb0335) 2017; 9
Lu, Carbone, Gao (bb0220) 2019; 104
Wang, Qu (bb0375) 2007; 34
Guan, Molotch, Waliser (bb0110) 2013; 49
Kaur, Sood (bb0165) 2020; 57
Kogan (bb0185) 1995; 15
Ahmed, Sachindra, Shahid, Demirel, Chung (bb0015) 2019; 23
Tao, Yokozawa, Liu, Zhang (bb0350) 2008; 38
Zhang, Li, Singh, Shi, Huang, Sun (bb0435) 2018; 123
Sun, Zhang, Wen, Singh, Shi (bb0340) 2017; 122
Gu, Brown, Verdin, Wardlow (bb0105) 2007; 34
Lobell (bb0210) 2007; 145
Wilks (bb0390) 2011; Vol. 100
Jiang, Shen, Li, Lei, Gan, Zhang (bb0155) 2017; 9
Dai, Trenberth, Qian (bb0050) 2004; 5
Kumar, Wang, Link (bb0190) 2012; 39
Xiao, Hollinger, Aber, Goltz, Davidson, Zhang, Moore (bb0395) 2004; 89
Leng, Hall (bb0195) 2019; 654
Dave (bb0060) 1996; 17
Bajgain, Xiao, Wagle, Basara, Zhou (bb0025) 2015; 108
Zambrano, Vrieling, Nelson, Meroni, Tadesse (bb0410) 2018; 2019
Vicente-Serrano, Beguería, Lorenzo-Lacruz, Camarero, López-Moreno, Azorin-Molina, Revuelto, Morán-Tejeda, Sanchez-Lorenzo (bb0370) 2012; 16
Machado, Mendoza, Corbellini (bb0225) 2015; 46
Verbyla (bb0360) 2015; 10
Du, Tian, Yu (bb1200) 2013; 23
Candel, Parmar, LeDell, Arora (bb0045) 2016
Dunn (bb0065) 1973
Ray, Gerber, Macdonald, West (bb0300) 2015; 6
Rouse, Haas, Schell, Deering (bb0315) 1974; 351
Smith, McNamara, Flores (bb0330) 2011; 25
Wang (10.1016/j.scitotenv.2021.150018_bb0375) 2007; 34
Lu (10.1016/j.scitotenv.2021.150018_bb0220) 2019; 104
Pumsirirat (10.1016/j.scitotenv.2021.150018_bb0275) 2018; 9
Rajesh (10.1016/j.scitotenv.2021.150018_bb0285) 2011; 1
Zscheischler (10.1016/j.scitotenv.2021.150018_bb0455) 2014; 28
Zhang (10.1016/j.scitotenv.2021.150018_bb0430) 2017; 190
Kaufman (10.1016/j.scitotenv.2021.150018_bb0160) 1990
Rodriguez (10.1016/j.scitotenv.2021.150018_bb0310) 2009; 32
Alizadeh (10.1016/j.scitotenv.2021.150018_bb0020) 2018; 211
Jiang (10.1016/j.scitotenv.2021.150018_bb0155) 2017; 9
Lillesand (10.1016/j.scitotenv.2021.150018_bb0205) 2015
Zambrano (10.1016/j.scitotenv.2021.150018_bb0410) 2018; 2019
Molotch (10.1016/j.scitotenv.2021.150018_bb0250) 2008; 31
Zhang (10.1016/j.scitotenv.2021.150018_bb0435) 2018; 123
Huang (10.1016/j.scitotenv.2021.150018_bb0145) 2006; 70
Dalin (10.1016/j.scitotenv.2021.150018_bb0055) 2015; 112
Stewart (10.1016/j.scitotenv.2021.150018_bb0335) 2017; 9
Rouse (10.1016/j.scitotenv.2021.150018_bb0315) 1974; 351
Gu (10.1016/j.scitotenv.2021.150018_bb0105) 2007; 34
Marée (10.1016/j.scitotenv.2021.150018_bb0230) 2007; 8
Zhang (10.1016/j.scitotenv.2021.150018_bb0445) 2020; 35
Gupta (10.1016/j.scitotenv.2021.150018_bb0120) 2019; 7
Leng (10.1016/j.scitotenv.2021.150018_bb0195) 2019; 654
Huang (10.1016/j.scitotenv.2021.150018_bb0150) 2014; 44
Khan (10.1016/j.scitotenv.2021.150018_bb0175) 2020; 139
Hayes (10.1016/j.scitotenv.2021.150018_bb0135) 2007; 3(6)
Qutbudin (10.1016/j.scitotenv.2021.150018_bb0280) 2019; 11
Ray (10.1016/j.scitotenv.2021.150018_bb0300) 2015; 6
Kaur (10.1016/j.scitotenv.2021.150018_bb0165) 2020; 57
Candel (10.1016/j.scitotenv.2021.150018_bb0045) 2016
Bezdek (10.1016/j.scitotenv.2021.150018_bb0035) 1981
Tuv (10.1016/j.scitotenv.2021.150018_bb0355) 2009; 10
Faiz (10.1016/j.scitotenv.2021.150018_bb0070) 2020; 231
AghaKouchak (10.1016/j.scitotenv.2021.150018_bb0010) 2015; 53
Sharafati (10.1016/j.scitotenv.2021.150018_bb0325) 2020; 40
Tao (10.1016/j.scitotenv.2021.150018_bb0350) 2008; 38
Palmer (10.1016/j.scitotenv.2021.150018_bb0265) 1965
Campello (10.1016/j.scitotenv.2021.150018_bb0040) 2006; 157
Guan (10.1016/j.scitotenv.2021.150018_bb0110) 2013; 49
Mokhtar (10.1016/j.scitotenv.2021.150018_bb0245) 2021; 9
Tao (10.1016/j.scitotenv.2021.150018_bb0345) 2010; 33
Rhee (10.1016/j.scitotenv.2021.150018_bb0305) 2010; 114
Friedman (10.1016/j.scitotenv.2021.150018_bb0085) 2001; 29
Verbyla (10.1016/j.scitotenv.2021.150018_bb0360) 2015; 10
McKee (10.1016/j.scitotenv.2021.150018_bb0235) 1993; Vol. 17
Xie (10.1016/j.scitotenv.2021.150018_bb0400) 1991; 13
Li (10.1016/j.scitotenv.2021.150018_bb0200) 2017; 44
Du (10.1016/j.scitotenv.2021.150018_bb1200) 2013; 23
Feng (10.1016/j.scitotenv.2021.150018_bb0075) 2019; 173
Sayago (10.1016/j.scitotenv.2021.150018_bb0320) 2017; 198
Rao (10.1016/j.scitotenv.2021.150018_bb0290) 2006; 318
Wilhite (10.1016/j.scitotenv.2021.150018_bb0385) 1985; 10
Dave (10.1016/j.scitotenv.2021.150018_bb0060) 1996; 17
Smith (10.1016/j.scitotenv.2021.150018_bb0330) 2011; 25
Dunn (10.1016/j.scitotenv.2021.150018_bb0065) 1973
Friedman (10.1016/j.scitotenv.2021.150018_bb0090) 2002; 38
Zhang (10.1016/j.scitotenv.2021.150018_bb0425) 2017; 188
Zuo (10.1016/j.scitotenv.2021.150018_bb0460) 2019; 222
Kumar (10.1016/j.scitotenv.2021.150018_bb0190) 2012; 39
Feng (10.1016/j.scitotenv.2021.150018_bb0080) 2019; 689
Vicente-Serrano (10.1016/j.scitotenv.2021.150018_bb0370) 2012; 16
Lou (10.1016/j.scitotenv.2021.150018_bb0215) 2021; 13
Guo (10.1016/j.scitotenv.2021.150018_bb0115) 2019; 231
Lobell (10.1016/j.scitotenv.2021.150018_bb0210) 2007; 145
Machado (10.1016/j.scitotenv.2021.150018_bb0225) 2015; 46
Wang (10.1016/j.scitotenv.2021.150018_bb0380) 2016; 228
Xiao (10.1016/j.scitotenv.2021.150018_bb0395) 2004; 89
Zhang (10.1016/j.scitotenv.2021.150018_bb0415) 2015; 58
Gao (10.1016/j.scitotenv.2021.150018_bb0095) 1996; 58
Rao (10.1016/j.scitotenv.2021.150018_bb0295) 2019; 74
Dai (10.1016/j.scitotenv.2021.150018_bb0050) 2004; 5
Hosseini (10.1016/j.scitotenv.2021.150018_bb0140) 2020; 142
Kelly (10.1016/j.scitotenv.2021.150018_bb0170) 1997; 11
Yu (10.1016/j.scitotenv.2021.150018_bb0405) 2019; 130
Sun (10.1016/j.scitotenv.2021.150018_bb0340) 2017; 122
Vicente-Serrano (10.1016/j.scitotenv.2021.150018_bb0365) 2010; 23
Zhang (10.1016/j.scitotenv.2021.150018_bb0440) 2019; 172
AghaKouchak (10.1016/j.scitotenv.2021.150018_bb0005) 2012; 7
Zhang (10.1016/j.scitotenv.2021.150018_bb0420) 2013; 134
Bajgain (10.1016/j.scitotenv.2021.150018_bb0025) 2015; 108
Guzmán (10.1016/j.scitotenv.2021.150018_bb0125) 2018; 159
Belayneh (10.1016/j.scitotenv.2021.150018_bb0030) 2014; 508
Kogan (10.1016/j.scitotenv.2021.150018_bb0185) 1995; 15
Park (10.1016/j.scitotenv.2021.150018_bb0270) 2016; 216
Ahmed (10.1016/j.scitotenv.2021.150018_bb0015) 2019; 23
Mo (10.1016/j.scitotenv.2021.150018_bb0240) 2017; 8
Zhou (10.1016/j.scitotenv.2021.150018_bb0450) 2017; 246
Geurts (10.1016/j.scitotenv.2021.150018_bb0100) 2006; 63
Nabaei (10.1016/j.scitotenv.2021.150018_bb0255) 2019; 276
Nicholls (10.1016/j.scitotenv.2021.150018_bb0260) 1997; 387
Wilks (10.1016/j.scitotenv.2021.150018_bb0390) 2011; Vol. 100
References_xml – volume: 351
  start-page: 309
  year: 1974
  ident: bb0315
  publication-title: Monitoring Vegetation Systems in the Great Plains With ERTS
– volume: 8
  start-page: 1
  year: 2007
  end-page: 12
  ident: bb0230
  article-title: Random subwindows and extremely randomized trees for image classification in cell biology
  publication-title: BMC Cell Biol.
– volume: 25
  start-page: 3858
  year: 2011
  end-page: 3865
  ident: bb0330
  article-title: Small soil storage capacity limits benefit of winter snowpack to upland vegetation
  publication-title: Hydrol. Process.
– volume: 39
  year: 2012
  ident: bb0190
  article-title: Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent
  publication-title: Geophys. Res. Lett.
– year: 1990
  ident: bb0160
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis
– volume: 222
  start-page: 125
  year: 2019
  end-page: 138
  ident: bb0460
  article-title: Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data
  publication-title: Agric. Water Manag.
– volume: Vol. 17
  start-page: 179
  year: 1993
  end-page: 183
  ident: bb0235
  article-title: The relationship of drought frequency and duration to time scales
  publication-title: Proceedings of the 8th Conference on Applied Climatology
– volume: 23
  start-page: 245
  year: 2013
  end-page: 253
  ident: bb1200
  article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bb0100
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 23
  start-page: 4803
  year: 2019
  end-page: 4824
  ident: bb0015
  article-title: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 57
  year: 2020
  ident: bb0165
  article-title: Deep learning based drought assessment and prediction framework
  publication-title: Ecol. Inform.
– volume: 145
  start-page: 229
  year: 2007
  end-page: 238
  ident: bb0210
  article-title: Changes in diurnal temperature range and national cereal yields
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 123
  year: 2019
  ident: bb0120
  article-title: Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm
  publication-title: Microbiome
– volume: 16
  start-page: 1
  year: 2012
  end-page: 27
  ident: bb0370
  article-title: Performance of drought indices for ecological, agricultural, and hydrological applications
  publication-title: Earth Interact.
– volume: 246
  start-page: 111
  year: 2017
  end-page: 122
  ident: bb0450
  article-title: Quantifying agricultural drought in tallgrass prairie region in the US southern Great Plains through analysis of a water-related vegetation index from MODIS images
  publication-title: Agric. For. Meteorol.
– volume: 34
  year: 2007
  ident: bb0105
  article-title: A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States
  publication-title: Geophys. Res. Lett.
– volume: 139
  year: 2020
  ident: bb0175
  article-title: Prediction of droughts over Pakistan using machine learning algorithms
  publication-title: Adv. Water Resour.
– volume: 231
  year: 2019
  ident: bb0115
  article-title: Determining variable weights for an optimal scaled drought condition index (OSDCI): evaluation in Central Asia
  publication-title: Environ. Res. Lett.
– volume: 689
  start-page: 1228
  year: 2019
  end-page: 1234
  ident: bb0080
  article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields
  publication-title: Sci. Total Environ.
– volume: 198
  start-page: 30
  year: 2017
  end-page: 39
  ident: bb0320
  article-title: Landsat images and crop model for evaluating water stress of rainfed soybean
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  ident: bb0360
  article-title: Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska
  publication-title: Environ. Res. Lett.
– volume: 9
  start-page: 118
  year: 2017
  ident: bb0335
  article-title: Detection of archaeological residues in vegetated areas using satellite synthetic aperture radar
  publication-title: Remote Sens.
– volume: 31
  start-page: 1503
  year: 2008
  end-page: 1514
  ident: bb0250
  article-title: Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison
  publication-title: Adv. Water Resour.
– volume: 1
  start-page: 35
  year: 2011
  end-page: 49
  ident: bb0285
  article-title: Extreme learning machines-a review and state-of-the-art
  publication-title: Int. J. Wisdom Based Comput.
– volume: 10
  start-page: 1341
  year: 2009
  end-page: 1366
  ident: bb0355
  article-title: Feature selection with ensembles, artificial variables, and redundancy elimination
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 11
  year: 2017
  end-page: 985
  ident: bb0200
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
– volume: 318
  start-page: 57
  year: 2006
  end-page: 79
  ident: bb0290
  article-title: Regionalization of watersheds by fuzzy cluster analysis
  publication-title: J. Hydrol.
– volume: 108
  start-page: 151
  year: 2015
  end-page: 160
  ident: bb0025
  article-title: Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 387
  start-page: 484
  year: 1997
  end-page: 485
  ident: bb0260
  article-title: Increased australian wheat yield due to recent climate trends
  publication-title: Nature
– volume: 11
  start-page: 1096
  year: 2019
  ident: bb0280
  article-title: Seasonal drought pattern changes due to climate variability: case study in Afghanistan
  publication-title: Water
– volume: 5
  start-page: 1117
  year: 2004
  end-page: 1130
  ident: bb0050
  article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J. Hydrometeorol.
– volume: 32
  start-page: 569
  year: 2009
  end-page: 575
  ident: bb0310
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 228
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0380
  article-title: Monitoring winter wheat drought threat in northern China using multiple climate-based drought indices and soil moisture during 2000–2013
  publication-title: Agric. For. Meteorol.
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: bb0295
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput.
– volume: Vol. 100
  year: 2011
  ident: bb0390
  article-title: Statistical Methods in the Atmospheric Sciences
– year: 1981
  ident: bb0035
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 38
  start-page: 83
  year: 2008
  end-page: 94
  ident: bb0350
  article-title: Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends
  publication-title: Clim. Res.
– volume: 28
  start-page: 585
  year: 2014
  end-page: 600
  ident: bb0455
  article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
  publication-title: Glob. Biogeochem. Cycles
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: bb0400
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 190
  start-page: 96
  year: 2017
  end-page: 106
  ident: bb0430
  article-title: Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  ident: bb0365
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– volume: 654
  start-page: 811
  year: 2019
  end-page: 821
  ident: bb0195
  article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 91
  year: 1995
  end-page: 100
  ident: bb0185
  article-title: Application of vegetation index and brightness temperature for drought detection
  publication-title: Adv. Space Res.
– volume: 2019
  start-page: 15
  year: 2018
  end-page: 30
  ident: bb0410
  article-title: Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 4588
  year: 2015
  end-page: 4593
  ident: bb0055
  article-title: Balancing water resource conservation and food security in China
  publication-title: Proc. Natl. Acad. Sci.
– volume: 276
  year: 2019
  ident: bb0255
  article-title: Copula based assessment of meteorological drought characteristics: regional investigation of Iran
  publication-title: Agric. For. Meteorol.
– volume: 58
  start-page: 308
  year: 2015
  end-page: 324
  ident: bb0415
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 172
  start-page: 298
  year: 2019
  end-page: 306
  ident: bb0440
  article-title: Multisource data based agricultural drought monitoring and agricultural loss in China
  publication-title: Glob. Planet Chang.
– volume: 40
  start-page: 1864
  year: 2020
  end-page: 1884
  ident: bb0325
  article-title: Spatial assessment of meteorological drought features over different climate regions in Iran
  publication-title: Int. J. Climatol.
– volume: 13
  start-page: 668
  year: 2021
  ident: bb0215
  article-title: Quantitative assessment of the influences of snow drought on Forest and grass growth in mid-high latitude regions by using remote sensing
  publication-title: Remote Sens.
– volume: 9
  start-page: 18
  year: 2018
  end-page: 25
  ident: bb0275
  article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 9
  start-page: 402
  year: 2017
  ident: bb0155
  article-title: Evaluation of multiple downscaled microwave soil moisture products over the central tibetan plateau
  publication-title: Remote Sens.
– volume: 11
  start-page: 17
  year: 1997
  end-page: 31
  ident: bb0170
  article-title: A bivariate meta-gaussian density for use in hydrology
  publication-title: Stoch. Hydrol. Hydraul.
– volume: 49
  start-page: 5029
  year: 2013
  end-page: 5046
  ident: bb0110
  article-title: Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations
  publication-title: Water Resour. Res.
– volume: 7
  year: 2012
  ident: bb0005
  article-title: A near real-time satellite-based global drought climate data record
  publication-title: Environ. Res. Lett.
– volume: 35
  start-page: 258
  year: 2020
  end-page: 276
  ident: bb0445
  article-title: An ensemble machine learning-based modeling framework for analysis of traffic crash frequency
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 8
  start-page: 93
  year: 2017
  end-page: 98
  ident: bb0240
  article-title: Impacts of climate change on agricultural water resources and adaptation on the North China plain
  publication-title: Adv. Clim. Chang. Res.
– volume: 211
  start-page: 229
  year: 2018
  end-page: 247
  ident: bb0020
  article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bb0085
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 44
  start-page: 2405
  year: 2014
  end-page: 2417
  ident: bb0150
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 5989
  year: 2015
  ident: bb0300
  article-title: Climate variation explains a third of global crop yield variability
  publication-title: Nat. Commun.
– volume: 17
  start-page: 613
  year: 1996
  end-page: 623
  ident: bb0060
  article-title: Validating fuzzy partitions obtained through c-shells clustering
  publication-title: Pattern Recogn. Lett.
– volume: 46
  start-page: 85
  year: 2015
  ident: bb0225
  article-title: What variables are important in predicting bovine viral diarrhea virus? A random forest approach
  publication-title: Vet. Res.
– volume: 89
  start-page: 519
  year: 2004
  end-page: 534
  ident: bb0395
  article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest
  publication-title: Remote Sens. Environ.
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bb0090
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– volume: 508
  start-page: 418
  year: 2014
  end-page: 429
  ident: bb0030
  article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models
  publication-title: J. Hydrol.
– volume: 159
  start-page: 248
  year: 2018
  end-page: 259
  ident: bb0125
  article-title: An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels
  publication-title: Agric. Syst.
– year: 2016
  ident: bb0045
  article-title: Deep Learning With H2O. H2O
– volume: 157
  start-page: 2858
  year: 2006
  end-page: 2875
  ident: bb0040
  article-title: A fuzzy extension of the silhouette width criterion for cluster analysis
  publication-title: Fuzzy Sets Syst.
– volume: 3(6)
  start-page: 2
  year: 2007
  end-page: 6
  ident: bb0135
  article-title: Drought indices
  publication-title: Intermountain West Climate Summary
– volume: 122
  start-page: 10751
  year: 2017
  end-page: 10772
  ident: bb0340
  article-title: Multisource data based integrated agricultural drought monitoring in the Huai River basin, China
  publication-title: J. Geophys. Res.
– volume: 188
  start-page: 141
  year: 2017
  end-page: 163
  ident: bb0425
  article-title: Multi-sensor integrated framework and index for agricultural drought monitoring
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 452
  year: 2015
  end-page: 480
  ident: bb0010
  article-title: Remote sensing of drought: progress, challenges and opportunities
  publication-title: Rev. Geophys.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bb0095
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 216
  start-page: 157
  year: 2016
  end-page: 169
  ident: bb0270
  article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
  publication-title: Agric. For. Meteorol.
– volume: 34
  year: 2007
  ident: bb0375
  article-title: NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing
  publication-title: Geophys. Res. Lett.
– volume: 130
  year: 2019
  ident: bb0405
  article-title: Modified palmer drought severity index: model improvement and application
  publication-title: Environ. Int.
– year: 1973
  ident: bb0065
  article-title: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well-separated Clusters
– volume: 10
  start-page: 111
  year: 1985
  end-page: 120
  ident: bb0385
  article-title: Understanding: the drought phenomenon: the role of definitions
  publication-title: Water Int.
– volume: 134
  start-page: 12
  year: 2013
  end-page: 23
  ident: bb0420
  article-title: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 123
  start-page: 73
  year: 2018
  end-page: 88
  ident: bb0435
  article-title: Nonparametric integrated agrometeorological drought monitoring: model development and application
  publication-title: J. Geophys. Res.
– year: 2015
  ident: bb0205
  article-title: Remote Sensing and Image Interpretation
– year: 1965
  ident: bb0265
  article-title: Meteorological Drought. Research Paper No. 45
– volume: 231
  year: 2020
  ident: bb0070
  article-title: Comprehensive evaluation of 0.25° precipitation datasets combined with MOD10A2 snow cover data in the ice-dominated river basins of Pakistan
  publication-title: Atmos. Res.
– volume: 173
  start-page: 303
  year: 2019
  end-page: 316
  ident: bb0075
  article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern Australia
  publication-title: Agric. Syst.
– volume: 142
  start-page: 1369
  year: 2020
  end-page: 1377
  ident: bb0140
  article-title: Drought hazard depending on elevation and precipitation in Lorestan, Iran
  publication-title: Theor. Appl. Climatol.
– volume: 9
  start-page: 65503
  year: 2021
  end-page: 65523
  ident: bb0245
  article-title: Estimation of SPEI meteorological drought using machine learning algorithms
  publication-title: IEEE Access
– volume: 114
  start-page: 2875
  year: 2010
  end-page: 2887
  ident: bb0305
  article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data
  publication-title: Remote Sens. Environ.
– volume: 104
  start-page: 10
  year: 2019
  end-page: 20
  ident: bb0220
  article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and north american regional reanalysis (NARR) in the United States, 1981–2013
  publication-title: Appl. Geogr.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bb0145
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 33
  start-page: 103
  year: 2010
  end-page: 116
  ident: bb0345
  article-title: Adaptation of maize production to climate change in North China plain: quantify the relative contributions of adaptation options
  publication-title: Eur. J. Agron.
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.scitotenv.2021.150018_bb0090
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 15
  start-page: 91
  issue: 11
  year: 1995
  ident: 10.1016/j.scitotenv.2021.150018_bb0185
  article-title: Application of vegetation index and brightness temperature for drought detection
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(95)00079-T
– volume: 1
  start-page: 35
  issue: 1
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150018_bb0285
  article-title: Extreme learning machines-a review and state-of-the-art
  publication-title: Int. J. Wisdom Based Comput.
– volume: 25
  start-page: 3858
  issue: 25
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150018_bb0330
  article-title: Small soil storage capacity limits benefit of winter snowpack to upland vegetation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8340
– volume: 276
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0255
  article-title: Copula based assessment of meteorological drought characteristics: regional investigation of Iran
  publication-title: Agric. For. Meteorol.
– year: 1981
  ident: 10.1016/j.scitotenv.2021.150018_bb0035
– volume: 142
  start-page: 1369
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0140
  article-title: Drought hazard depending on elevation and precipitation in Lorestan, Iran
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-020-03386-y
– volume: 351
  start-page: 309
  year: 1974
  ident: 10.1016/j.scitotenv.2021.150018_bb0315
– volume: 228
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150018_bb0380
  article-title: Monitoring winter wheat drought threat in northern China using multiple climate-based drought indices and soil moisture during 2000–2013
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.06.004
– volume: 34
  issue: 20
  year: 2007
  ident: 10.1016/j.scitotenv.2021.150018_bb0375
  article-title: NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031021
– volume: 6
  start-page: 5989
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0300
  article-title: Climate variation explains a third of global crop yield variability
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6989
– volume: 49
  start-page: 5029
  issue: 8
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150018_bb0110
  article-title: Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20387
– volume: 28
  start-page: 585
  issue: 6
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150018_bb0455
  article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2014GB004826
– volume: 7
  issue: 4
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150018_bb0005
  article-title: A near real-time satellite-based global drought climate data record
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/044037
– volume: 2019
  start-page: 15
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150018_bb0410
  article-title: Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.006
– volume: 10
  start-page: 111
  issue: 3
  year: 1985
  ident: 10.1016/j.scitotenv.2021.150018_bb0385
  article-title: Understanding: the drought phenomenon: the role of definitions
  publication-title: Water Int.
  doi: 10.1080/02508068508686328
– volume: 157
  start-page: 2858
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150018_bb0040
  article-title: A fuzzy extension of the silhouette width criterion for cluster analysis
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2006.07.006
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150018_bb0145
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 9
  start-page: 65503
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150018_bb0245
  article-title: Estimation of SPEI meteorological drought using machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074305
– volume: 654
  start-page: 811
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0195
  article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.434
– volume: Vol. 17
  start-page: 179
  year: 1993
  ident: 10.1016/j.scitotenv.2021.150018_bb0235
  article-title: The relationship of drought frequency and duration to time scales
– volume: 9
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150018_bb0275
  article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 190
  start-page: 96
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0430
  article-title: Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.010
– volume: 159
  start-page: 248
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150018_bb0125
  article-title: An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.01.017
– volume: 31
  start-page: 1503
  issue: 11
  year: 2008
  ident: 10.1016/j.scitotenv.2021.150018_bb0250
  article-title: Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.07.017
– volume: 114
  start-page: 2875
  issue: 12
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150018_bb0305
  article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.005
– volume: 3(6)
  start-page: 2
  year: 2007
  ident: 10.1016/j.scitotenv.2021.150018_bb0135
  article-title: Drought indices
– volume: 44
  start-page: 11
  issue: 23
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0200
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL075710
– volume: 9
  start-page: 402
  issue: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0155
  article-title: Evaluation of multiple downscaled microwave soil moisture products over the central tibetan plateau
  publication-title: Remote Sens.
  doi: 10.3390/rs9050402
– volume: 5
  start-page: 1117
  issue: 6
  year: 2004
  ident: 10.1016/j.scitotenv.2021.150018_bb0050
  article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-386.1
– volume: 74
  start-page: 634
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0295
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.036
– volume: 211
  start-page: 229
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150018_bb0020
  article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.001
– volume: 17
  start-page: 613
  year: 1996
  ident: 10.1016/j.scitotenv.2021.150018_bb0060
  article-title: Validating fuzzy partitions obtained through c-shells clustering
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(96)00026-8
– volume: Vol. 100
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150018_bb0390
– volume: 508
  start-page: 418
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150018_bb0030
  article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.052
– volume: 145
  start-page: 229
  issue: 3–4
  year: 2007
  ident: 10.1016/j.scitotenv.2021.150018_bb0210
  article-title: Changes in diurnal temperature range and national cereal yields
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.05.002
– volume: 134
  start-page: 12
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150018_bb0420
  article-title: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.023
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.scitotenv.2021.150018_bb0085
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 246
  start-page: 111
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0450
  article-title: Quantifying agricultural drought in tallgrass prairie region in the US southern Great Plains through analysis of a water-related vegetation index from MODIS images
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.06.007
– volume: 58
  start-page: 257
  issue: 3
  year: 1996
  ident: 10.1016/j.scitotenv.2021.150018_bb0095
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 104
  start-page: 10
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0220
  article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and north american regional reanalysis (NARR) in the United States, 1981–2013
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2019.01.005
– volume: 10
  issue: 12
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0360
  article-title: Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/12/125016
– year: 1965
  ident: 10.1016/j.scitotenv.2021.150018_bb0265
– volume: 7
  start-page: 123
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0120
  article-title: Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0735-1
– volume: 11
  start-page: 1096
  issue: 5
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0280
  article-title: Seasonal drought pattern changes due to climate variability: case study in Afghanistan
  publication-title: Water
  doi: 10.3390/w11051096
– volume: 8
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.scitotenv.2021.150018_bb0230
  article-title: Random subwindows and extremely randomized trees for image classification in cell biology
  publication-title: BMC Cell Biol.
– volume: 387
  start-page: 484
  issue: 6632
  year: 1997
  ident: 10.1016/j.scitotenv.2021.150018_bb0260
  article-title: Increased australian wheat yield due to recent climate trends
  publication-title: Nature
  doi: 10.1038/387484a0
– volume: 108
  start-page: 151
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0025
  article-title: Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.07.004
– volume: 11
  start-page: 17
  issue: 1
  year: 1997
  ident: 10.1016/j.scitotenv.2021.150018_bb0170
  article-title: A bivariate meta-gaussian density for use in hydrology
  publication-title: Stoch. Hydrol. Hydraul.
  doi: 10.1007/BF02428423
– volume: 38
  start-page: 83
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2021.150018_bb0350
  article-title: Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends
  publication-title: Clim. Res.
  doi: 10.3354/cr00771
– volume: 23
  start-page: 245
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150018_bb1200
  article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 231
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0070
  article-title: Comprehensive evaluation of 0.25° precipitation datasets combined with MOD10A2 snow cover data in the ice-dominated river basins of Pakistan
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104653
– volume: 139
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0175
  article-title: Prediction of droughts over Pakistan using machine learning algorithms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103562
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150018_bb0365
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2909.1
– volume: 53
  start-page: 452
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0010
  article-title: Remote sensing of drought: progress, challenges and opportunities
  publication-title: Rev. Geophys.
  doi: 10.1002/2014RG000456
– volume: 23
  start-page: 4803
  issue: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0015
  article-title: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-4803-2019
– volume: 13
  start-page: 841
  year: 1991
  ident: 10.1016/j.scitotenv.2021.150018_bb0400
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85677
– volume: 32
  start-page: 569
  issue: 3
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150018_bb0310
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 188
  start-page: 141
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0425
  article-title: Multi-sensor integrated framework and index for agricultural drought monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.045
– volume: 689
  start-page: 1228
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0080
  article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.373
– volume: 172
  start-page: 298
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0440
  article-title: Multisource data based agricultural drought monitoring and agricultural loss in China
  publication-title: Glob. Planet Chang.
  doi: 10.1016/j.gloplacha.2018.10.017
– volume: 13
  start-page: 668
  issue: 4
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150018_bb0215
  article-title: Quantitative assessment of the influences of snow drought on Forest and grass growth in mid-high latitude regions by using remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs13040668
– volume: 122
  start-page: 10751
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0340
  article-title: Multisource data based integrated agricultural drought monitoring in the Huai River basin, China
  publication-title: J. Geophys. Res.
  doi: 10.1002/2017JD027186
– volume: 35
  start-page: 258
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0445
  article-title: An ensemble machine learning-based modeling framework for analysis of traffic crash frequency
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12485
– volume: 112
  start-page: 4588
  issue: 15
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0055
  article-title: Balancing water resource conservation and food security in China
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1504345112
– volume: 318
  start-page: 57
  issue: 1–4
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150018_bb0290
  article-title: Regionalization of watersheds by fuzzy cluster analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.06.004
– volume: 58
  start-page: 308
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0415
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.02.019
– volume: 9
  start-page: 118
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0335
  article-title: Detection of archaeological residues in vegetated areas using satellite synthetic aperture radar
  publication-title: Remote Sens.
  doi: 10.3390/rs9020118
– volume: 123
  start-page: 73
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150018_bb0435
  article-title: Nonparametric integrated agrometeorological drought monitoring: model development and application
  publication-title: J. Geophys. Res.
  doi: 10.1002/2017JD027448
– volume: 198
  start-page: 30
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0320
  article-title: Landsat images and crop model for evaluating water stress of rainfed soybean
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.008
– volume: 8
  start-page: 93
  issue: 2
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150018_bb0240
  article-title: Impacts of climate change on agricultural water resources and adaptation on the North China plain
  publication-title: Adv. Clim. Chang. Res.
  doi: 10.1016/j.accre.2017.05.007
– volume: 231
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0115
  article-title: Determining variable weights for an optimal scaled drought condition index (OSDCI): evaluation in Central Asia
  publication-title: Environ. Res. Lett.
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150018_bb0100
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 216
  start-page: 157
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150018_bb0270
  article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.011
– year: 1990
  ident: 10.1016/j.scitotenv.2021.150018_bb0160
– volume: 89
  start-page: 519
  issue: 4
  year: 2004
  ident: 10.1016/j.scitotenv.2021.150018_bb0395
  article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.008
– volume: 34
  issue: 6
  year: 2007
  ident: 10.1016/j.scitotenv.2021.150018_bb0105
  article-title: A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL029127
– volume: 39
  issue: 20
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150018_bb0190
  article-title: Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL052972
– year: 2016
  ident: 10.1016/j.scitotenv.2021.150018_bb0045
– volume: 40
  start-page: 1864
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0325
  article-title: Spatial assessment of meteorological drought features over different climate regions in Iran
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6307
– year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0205
– volume: 16
  start-page: 1
  issue: 10
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150018_bb0370
  article-title: Performance of drought indices for ecological, agricultural, and hydrological applications
  publication-title: Earth Interact.
  doi: 10.1175/2012EI000434.1
– year: 1973
  ident: 10.1016/j.scitotenv.2021.150018_bb0065
– volume: 10
  start-page: 1341
  issue: Jul
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150018_bb0355
  article-title: Feature selection with ensembles, artificial variables, and redundancy elimination
  publication-title: J. Mach. Learn. Res.
– volume: 57
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150018_bb0165
  article-title: Deep learning based drought assessment and prediction framework
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101067
– volume: 46
  start-page: 85
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150018_bb0225
  article-title: What variables are important in predicting bovine viral diarrhea virus? A random forest approach
  publication-title: Vet. Res.
  doi: 10.1186/s13567-015-0219-7
– volume: 33
  start-page: 103
  issue: 2
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150018_bb0345
  article-title: Adaptation of maize production to climate change in North China plain: quantify the relative contributions of adaptation options
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2010.04.002
– volume: 130
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0405
  article-title: Modified palmer drought severity index: model improvement and application
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104951
– volume: 173
  start-page: 303
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0075
  article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern Australia
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.03.015
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150018_bb0150
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– volume: 222
  start-page: 125
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150018_bb0460
  article-title: Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.05.046
SSID ssj0000781
Score 2.6091704
Snippet Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and...
SourceID unpaywall
cristin
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150018
SubjectTerms algorithms
China
Compound disaster
corn
Crop yield
drought
Drought factors
environment
Impacts
Modeling accuracy
Prediction
probability
snowpack
soil water
space and time
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EWBREdFVcX0TwaLVt0m7XgyA-EEFPCt5CmqSgLN1lt6t48bc706S7evABXsOkDJnM5Esz8w3Agc65insmCVIlVCAKEQYZulEQItbOct7FWVQofHuXXj-Im8fkcQ7Om1oYSqv0sd_F9Dpa-5Fjv5rHw6cnqvEVWS8l9hniMOEUh4XoUheDo_dZmgeR2bhXZnRslP6S44XfrQaITV_wohhHRwiOQur-0dK1g5XfnVWfsOjCpByqt1fV7386lq5WYNnjSXbmVF6FOVu2oeU6TL61YeNyVsiGYt6Tx21Ycv_rmCtDWoPTi7pfTzVmqlaG1Y21T5gfZr4vzyEbjuhph8zJVGmYq7Icr8PD1eX9-XXgeysEWiRJFdiuMgViMbww5SIyuY6sQctgzOF5IlQmClVEoVYh59Z0i6hnbCbw9pNnBFAwTGzAfDko7SYwrk1PRzlPrLEi5SihRWysFhrRlDVFBzp-PWWJ25ooSZOYuJIRLXQgbVZYak9KTr0x-rLJPnuWUyNJMpJ0RupAOJ04dLwcv085aUwov2wxiafH75P3G6NLdEB6VVGlHUzGEmMeR1SHyPMHmZSnCXHJoUw03TF_VXzrP4pvw2JMFRshZS7uwHw1mthdxFFVvlc7yge-bBuj
  priority: 102
  providerName: Elsevier
Title Droughts across China: Drought factors, prediction and impacts
URI https://dx.doi.org/10.1016/j.scitotenv.2021.150018
https://www.proquest.com/docview/2573439551
https://www.proquest.com/docview/2636540851
http://hdl.handle.net/10852/100238
UnpaywallVersion submittedVersion
Volume 803
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trSYmIT4K08qgMhKPpMSxk6Z7mFSNTYWKCiEqxpPlrzywKq3WdGg88Ldzjp0yQGyIp0iRT7Jzd76f47v7AbzQislkaNIok1xGvOBxlKMbRTFi7VyxAUq5QuF302w842_P0rMtaFjXfmsv4FLjk1e0Dizb0M5SxNstaM-m70ef_dUxemtgUMkHQ9xTkuyXJC4MI9UCweclngQT2kf0Ezt6jx1de1D5t2B0DWzeWZdLefVVzufX4s7pfThuqnd8usl5f12pvv72ZzPHG5b0AO4F2ElG3k4ewpYtO7DjiSivOrB38rPeDYcFh1914K7_rUd8tdIjOHpd0_pUKyLrJZGaf_uQhNck0Pe8JMsLdwPktE5wVsQXY64ew-z05OPxOAoUDJHmaVpFdiBNgZANz1WKU6M0tQYViFsTUymXOS9kQWMtY8asGRR0aGzO8ZCkcodjcDfZg1a5KO0-EKbNUFPFUmsszxiO0DwxVnONoMuaogvdoBVRovWL-kMJ_6G6kDV6Ejr0LncUGnPRJKl9ERtVC6dq4VXdhXgjuPTtO24XOWwMQQQU4tGFwCBzu_DzxnQE-qm7fJGlXaxXArdGhuAPAeoNYzKWpa7lHI6hG7v714k_-Q-ZA9hNXD1H7PIan0KruljbZ4iyKtWD7f532oP26M1kPHXPyYdPk15wvh9jQydx
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9EEYUi9qr0WmtT6GNXdzfJ3p4PQvGDq19PCr6FbJKFk2Pv8PYqvvi3d2aTPfXBD-hrmFmGTGbym818APw0Bddp38oo00JHohRxlKMZRTFi7bzgPeSiQuHzi2xwJU6u5fUCHLS1MJRWGXy_9-mNtw4ru2E3dyfDIdX4iryfUfcZ6mHC0Q8vCZn2KALbeXjM86BuNv6ZGS0byZ8leeGH6zGC078YKabJDqKjmMZ_LJvGwqqXLqsnYHRlVk30_Z0ejZ7cS8frsBYAJfvtZf4IC67qwLIfMXnfgc2jx0o2JAumPO3AB__Djvk6pE-wf9gM7KmnTDfCsGay9h4LyywM5vnFJrf0tkP6ZLqyzJdZTjfg6vjo8mAQheEKkRFS1pHraVsiGMOIqRCJLUziLKoGnQ4vpNC5KHWZxEbHnDvbK5O-dbnA8KfICaGgn9iExWpcuc_AuLF9kxRcOutExpHCiNQ6IwzCKWfLLnTDfqoKzzX1JJUpNUtGuNCFrN1hZUJXchqOMVJt-tmNmitJkZKUV1IX4jnjxDfmeJtlr1WhenbGFF4fbzP_aJWu0ALpWUVXbjybKnR6HGEdQs9XaDKeSWomhzTJ_MS8V_Av_yP4d1gZXJ6fqbM_F6dfYTWl8o2Y0hi3YLG-nblvCKrqYrsxmn8ITR7G
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66hLBBabtsoVm3osIe58y2ZMfpw6BkLaWw0IcGuiehX35ogxMapyX963uy5KzbWDL6anQg6e50n6y7-wA-K0lFPNBJkAomApazMMjQjYIQsXYmaR-lbKHwj1F6PmYX18n1FtSsa3-0F7Cp8fHXqAosr6CZJoi3G9Acjy5PfrqnY_RWz6CS9Qd4psTpb0lcGEbKKYLPe7wJxlEP0U9o6T1aqvKg4l_B6BnYfL0oZmL5ICaTZ3HnbBeGdfWOSze57S1K2VOPfzdzXLOkPdjxsJOcODt5C1umaEPLEVEu29A5_VXvhsO8w8_bsO1-6xFXrfQOvn2vaH3KORHVkkjFv31M_Gfi6Xu-kNmdfQGyWic4K-KKMefvYXx2ejU8DzwFQ6BYkpSB6QudI2TDe5VkkZYqMhoViEcTlQkTGctFHoVKhJQa3c-jgTYZw0uSzCyOwdOkA41iWph9IFTpgYokTYw2LKU4QrFYG8UUgi6j8y50vVZ4gdbPq43ibqO6kNZ64sr3LrcUGhNeJ6nd8JWquVU1d6ruQrgSnLn2HZtFjmtD4B6FOHTBMchsFj6qTYejn9rHF1GY6WLO8WikCP4QoK4Zk9I0sS3ncEy0srv_nfiHF8gcwJvY1nOENq_xIzTKu4X5hCirlIfezZ4ANacjQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droughts+across+China%3A+Drought+factors%2C+prediction+and+impacts&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhang%2C+Qiang&rft.au=Shi%2C+Rui&rft.au=Singh%2C+Vijay+P&rft.au=Xu%2C+Chong-Yu&rft.date=2022-01-10&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150018&rft.externalDBID=n%2Fa&rft.externalDocID=10852_100238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon