Droughts across China: Drought factors, prediction and impacts
Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quanti...
Saved in:
| Published in | The Science of the total environment Vol. 803; p. 150018 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
10.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0048-9697 1879-1026 1879-1026 |
| DOI | 10.1016/j.scitotenv.2021.150018 |
Cover
| Abstract | Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.
[Display omitted]
•New finding about critical impacts of precipitation and soil moisture on droughts•We identified and developed Extremely Randomized Trees model in drought modeling.•We quantified the probability of maize yield reduction under different compound dry-hot conditions. |
|---|---|
| AbstractList | Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002-2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction.Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002-2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R² > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and hence development of drought mitigation measures (the Standardized Precipitation-Evapotranspiration Index) in both space and time. Here we quantified relationships between drought and 23 drought factors using remote sensing data during the period of 2002–2016. Based on the Gradient Boosting Algorithm (GBM), we found that precipitation and soil moisture had relatively large contributions to droughts. During the growing season, the relative importance of Normalized Difference Water Index (NDWI-7) for SPEI3, SPEI6, SPEI9, and SPEI12 reached as high as 50%. However, during the non-growing season, the Snow Cover Fraction (SCF) had larger fractional relative importance for short-term droughts in the Inner Mongolia and the Loess Plateau which can reach as high as 10%. We also compared Extremely Randomized Trees (ERT), H2O-based Deep Learning (Model developed by H2O.deep learning in R H2O.DL), and Extreme Learning Machine (ELM) for drought prediction at various time scales, and found that the ERT model had the highest prediction performance with R2 > 0.72. Based on the Meta-Gaussian model, we quantified the probability of maize yield reduction in the North China Plain under different compound dry-hot conditions. Due to extreme drought and hot conditions, Shandong Province in North China had the highest probability of >80% of the maize yield reduction; due to the extreme hot conditions, Jiangsu Province in East China had the largest probability of >86% of the maize yield reduction. [Display omitted] •New finding about critical impacts of precipitation and soil moisture on droughts•We identified and developed Extremely Randomized Trees model in drought modeling.•We quantified the probability of maize yield reduction under different compound dry-hot conditions. |
| ArticleNumber | 150018 |
| Author | Wu, Zixuan Xu, Chong-Yu Singh, Vijay P. Zhang, Qiang Fan, Keke Shi, Rui Yu, Huiqian |
| Author_xml | – sequence: 1 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhangq68@bnu.edu.cn organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China – sequence: 2 givenname: Rui surname: Shi fullname: Shi, Rui organization: Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China – sequence: 3 givenname: Vijay P. surname: Singh fullname: Singh, Vijay P. organization: Department of Biological and Agricultural Engineering and Zachry Department of Civil Engineering, Texas A&M University, College Station, TX, USA – sequence: 4 givenname: Chong-Yu surname: Xu fullname: Xu, Chong-Yu organization: Department of Geosciences and Hydrology, University of Oslo, N-0316 Oslo, Norway – sequence: 5 givenname: Huiqian surname: Yu fullname: Yu, Huiqian organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China – sequence: 6 givenname: Keke surname: Fan fullname: Fan, Keke organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China – sequence: 7 givenname: Zixuan surname: Wu fullname: Wu, Zixuan organization: Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China |
| BookMark | eNqNkUFP5CAYholxE8dZf4M9erCzUKBQE03M6K4mJntZz4ShX5VJByowGv-91I4e9qIcIIH3-fh4OET7zjtA6JjgBcGk_rVeRGOTT-CeFxWuyIJwjIncQzMiRVMSXNX7aIYxk2VTN-IAHca4xnkISWbo4ir47cNjioU2wcdYLB-t02fFbrvotEk-xNNiCNBak6x3hXZtYTdDPok_0Y9O9xGOdusc3f--_re8Ke_-_rldXt6VhnGeShC67UhNKylWjLQrQ6ClArCUdMWZlqzTHcFGY0qhFR1pWpBM1tVKUs6ZwHSO5FR36wb9-qL7Xg3BbnR4VQSr0YNaq08PavSgJg8ZLSbUBBuTdcr5oDMieZVnXNExcjJFhuCfthCT2thooO-1A7-NqqppzVkmyNdRLiijDX-Pnn9cnMUG6FTuT48GU9C2_0bj4j_--0--nEjIX_JsIYw5cCb_YACTVOvtlzXeAMEMuec |
| CitedBy_id | crossref_primary_10_1177_03091333231188814 crossref_primary_10_1007_s00484_024_02770_x crossref_primary_10_1016_j_jhydrol_2025_132706 crossref_primary_10_3390_agriengineering5020045 crossref_primary_10_1016_j_ejrh_2024_101931 crossref_primary_10_1016_j_catena_2024_107849 crossref_primary_10_3390_atmos15070761 crossref_primary_10_3389_feart_2022_914232 crossref_primary_10_3390_rs15082024 crossref_primary_10_3390_su17031308 crossref_primary_10_3390_w14060866 crossref_primary_10_1016_j_jhydrol_2024_132225 crossref_primary_10_1016_j_jhydrol_2024_132324 crossref_primary_10_1016_j_scitotenv_2024_171080 crossref_primary_10_1016_j_envpol_2022_120763 crossref_primary_10_1038_s43247_023_00808_3 crossref_primary_10_1007_s00477_022_02197_z crossref_primary_10_1080_19475705_2022_2131471 crossref_primary_10_1007_s10661_022_10207_4 crossref_primary_10_3390_plants13172525 crossref_primary_10_5194_nhess_24_3479_2024 crossref_primary_10_1016_j_scitotenv_2021_150338 crossref_primary_10_1080_17538947_2023_2224086 crossref_primary_10_1007_s40333_023_0059_7 crossref_primary_10_1016_j_jafr_2025_101783 crossref_primary_10_1007_s11069_025_07194_3 crossref_primary_10_1016_j_ecolind_2024_111551 crossref_primary_10_1016_j_rsase_2023_100920 crossref_primary_10_1007_s11356_024_32803_2 crossref_primary_10_7717_peerj_15968 crossref_primary_10_1016_j_jhydrol_2025_132755 crossref_primary_10_1142_S2345748124500209 crossref_primary_10_1007_s10661_024_12637_8 crossref_primary_10_1016_j_atmosres_2023_106675 crossref_primary_10_3390_rs15030667 crossref_primary_10_5194_essd_15_395_2023 crossref_primary_10_1016_j_jhydrol_2024_132196 crossref_primary_10_1016_j_envres_2024_118171 crossref_primary_10_3390_rs16183363 crossref_primary_10_1016_j_gloplacha_2023_104219 crossref_primary_10_3390_agronomy14081791 crossref_primary_10_3389_fenvs_2024_1349228 crossref_primary_10_3390_land11122260 crossref_primary_10_1186_s12870_025_06280_9 |
| Cites_doi | 10.1016/S0167-9473(01)00065-2 10.1016/0273-1177(95)00079-T 10.1002/hyp.8340 10.1007/s00704-020-03386-y 10.1016/j.agrformet.2016.06.004 10.1029/2007GL031021 10.1038/ncomms6989 10.1002/wrcr.20387 10.1002/2014GB004826 10.1088/1748-9326/7/4/044037 10.1016/j.rse.2018.10.006 10.1080/02508068508686328 10.1016/j.fss.2006.07.006 10.1016/j.neucom.2005.12.126 10.1109/ACCESS.2021.3074305 10.1016/j.scitotenv.2018.10.434 10.1016/j.rse.2016.12.010 10.1016/j.agsy.2017.01.017 10.1016/j.advwatres.2008.07.017 10.1016/j.rse.2010.07.005 10.1002/2017GL075710 10.3390/rs9050402 10.1175/JHM-386.1 10.1016/j.asoc.2018.10.036 10.1016/j.rse.2018.04.001 10.1016/0167-8655(96)00026-8 10.1016/j.jhydrol.2013.10.052 10.1016/j.agrformet.2007.05.002 10.1016/j.rse.2013.02.023 10.1214/aos/1013203451 10.1016/j.agrformet.2017.06.007 10.1016/S0034-4257(96)00067-3 10.1016/j.apgeog.2019.01.005 10.1088/1748-9326/10/12/125016 10.1186/s40168-019-0735-1 10.3390/w11051096 10.1038/387484a0 10.1016/j.isprsjprs.2015.07.004 10.1007/BF02428423 10.3354/cr00771 10.1016/j.atmosres.2019.104653 10.1016/j.advwatres.2020.103562 10.1175/2009JCLI2909.1 10.1002/2014RG000456 10.5194/hess-23-4803-2019 10.1109/34.85677 10.1109/TPAMI.2009.187 10.1016/j.rse.2016.10.045 10.1016/j.scitotenv.2019.06.373 10.1016/j.gloplacha.2018.10.017 10.3390/rs13040668 10.1002/2017JD027186 10.1111/mice.12485 10.1073/pnas.1504345112 10.1016/j.jhydrol.2005.06.004 10.1016/j.trc.2015.02.019 10.3390/rs9020118 10.1002/2017JD027448 10.1016/j.rse.2017.05.008 10.1016/j.accre.2017.05.007 10.1007/s10994-006-6226-1 10.1016/j.agrformet.2015.10.011 10.1016/j.rse.2003.11.008 10.1029/2006GL029127 10.1029/2012GL052972 10.1002/joc.6307 10.1175/2012EI000434.1 10.1016/j.ecoinf.2020.101067 10.1186/s13567-015-0219-7 10.1016/j.eja.2010.04.002 10.1016/j.envint.2019.104951 10.1016/j.agsy.2019.03.015 10.1109/TCYB.2014.2307349 10.1016/j.agwat.2019.05.046 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION 7X8 7S9 L.6 3HK ADTOC UNPAY |
| DOI | 10.1016/j.scitotenv.2021.150018 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic NORA - Norwegian Open Research Archives Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | oai:www.duo.uio.no:10852/100238 10852_100238 10_1016_j_scitotenv_2021_150018 S0048969721050932 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 3HK AALMO AAPBV ABPIF ABPTK ABTAH AJBFU RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c455t-e7adf163287b41dbc1ed37e0883b54a84faf10ca033ed7f19de84862b83554703 |
| IEDL.DBID | UNPAY |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Oct 26 04:06:12 EDT 2025 Sat Sep 30 03:14:38 EDT 2023 Wed Oct 01 12:53:42 EDT 2025 Sat Sep 27 22:59:05 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Thu Oct 02 04:27:43 EDT 2025 Fri Feb 23 02:44:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Modeling accuracy Impacts Drought factors Compound disaster Crop yield Prediction |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-e7adf163287b41dbc1ed37e0883b54a84faf10ca033ed7f19de84862b83554703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10852/100238 |
| PQID | 2573439551 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_scitotenv_2021_150018 cristin_nora_10852_100238 proquest_miscellaneous_2636540851 proquest_miscellaneous_2573439551 crossref_citationtrail_10_1016_j_scitotenv_2021_150018 crossref_primary_10_1016_j_scitotenv_2021_150018 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150018 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-10 |
| PublicationDateYYYYMMDD | 2022-01-10 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Khan, Sachindra, Shahid, Ahmed, Shiru, Nawaz (bb0175) 2020; 139 Zscheischler, Michalak, Schwalm, Mahecha (bb0455) 2014; 28 Yu, Zhang, Xu, Du, Sun, Hu (bb0405) 2019; 130 Nabaei, Sharafati, Yaseen, Shahid (bb0255) 2019; 276 Belayneh, Adamowski, Khalil, Ozga-Zielinski (bb0030) 2014; 508 Nicholls (bb0260) 1997; 387 Friedman (bb0085) 2001; 29 Hayes, Alvord, Lowrey (bb0135) 2007; 3(6) Feng, Wang, Li Liu, Yu (bb0075) 2019; 173 Guo, Bao, Liu, Ndayisaba (bb0115) 2019; 231 Bezdek (bb0035) 1981 Gao (bb0095) 1996; 58 Zhang, Waller, Jiang (bb0445) 2020; 35 Faiz, Liu, Tahir (bb0070) 2020; 231 Gupta, Arango-Argoty, Zhang, Pruden, Vikesland (bb0120) 2019; 7 Vicente-Serrano, Beguería, López-Moreno (bb0365) 2010; 23 Rodriguez, Perez, Lozano (bb0310) 2009; 32 Xie, Beni (bb0400) 1991; 13 Zhang, Chen, Li, Chen, Niyogi (bb0425) 2017; 188 Marée, Geurts, Wehenkel (bb0230) 2007; 8 Campello, Hruschka (bb0040) 2006; 157 Rajesh, Prakash (bb0285) 2011; 1 Sayago, Ovando, Bocco (bb0320) 2017; 198 AghaKouchak, Nakhjiri (bb0005) 2012; 7 Tao, Zhang (bb0345) 2010; 33 Rao, Srinivas (bb0290) 2006; 318 Wilhite, Glantz (bb0385) 1985; 10 Guzmán, Paz, Tagert, Mercer, Pote (bb0125) 2018; 159 Hosseini, Hosseini, Ghermezcheshmeh, Sharafati (bb0140) 2020; 142 Kaufman, Rousseeuw (bb0160) 1990 Zhang, Haghani (bb0415) 2015; 58 Friedman (bb0090) 2002; 38 Palmer (bb0265) 1965 Zuo, Cai, Xu (bb0460) 2019; 222 Molotch, Margulis (bb0250) 2008; 31 Zhang, Yu, Sun, Singh, Shi (bb0440) 2019; 172 Kelly, Krzysztofowicz (bb0170) 1997; 11 Huang, Zhu, Siew (bb0145) 2006; 70 Park, Im, Jang, Rhee (bb0270) 2016; 216 Mo, Hu, Lin, Liu, Xia (bb0240) 2017; 8 Lou, Wu, Ren, Yang, Cai, Wang, Guan (bb0215) 2021; 13 Wang, Vicente-Serrano, Tao (bb0380) 2016; 228 Zhou, Xiao, Zhang (bb0450) 2017; 246 McKee, Doesken, Kleist (bb0235) 1993; Vol. 17 Rhee, Im, Carbone (bb0305) 2010; 114 Huang, Song, Gupta, Wu (bb0150) 2014; 44 AghaKouchak, Farahmand, Melton (bb0010) 2015; 53 Pumsirirat, Yan (bb0275) 2018; 9 Sharafati, Nabaei, Shahid (bb0325) 2020; 40 Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (bb0295) 2019; 74 Zhang, Jia (bb0420) 2013; 134 Geurts, Ernst, Wehenkel (bb0100) 2006; 63 Qutbudin, Shiru (bb0280) 2019; 11 Zhang, Jiao, Zhang, Huang, Tong (bb0430) 2017; 190 Tuv, Borisov, Runger, Torkkola (bb0355) 2009; 10 Li, Shen, Yuan, Zhang, Zhang (bb0200) 2017; 44 Lillesand, Kiefer, Chipman (bb0205) 2015 Alizadeh, Nikoo (bb0020) 2018; 211 Mokhtar, Jalali, He, Al-Ansari (bb0245) 2021; 9 Dalin, Qiu, Hanasaki, Mauzerall, Rodriguez-Iturbe (bb0055) 2015; 112 Feng, Hao, Zhang, Hao (bb0080) 2019; 689 Stewart (bb0335) 2017; 9 Lu, Carbone, Gao (bb0220) 2019; 104 Wang, Qu (bb0375) 2007; 34 Guan, Molotch, Waliser (bb0110) 2013; 49 Kaur, Sood (bb0165) 2020; 57 Kogan (bb0185) 1995; 15 Ahmed, Sachindra, Shahid, Demirel, Chung (bb0015) 2019; 23 Tao, Yokozawa, Liu, Zhang (bb0350) 2008; 38 Zhang, Li, Singh, Shi, Huang, Sun (bb0435) 2018; 123 Sun, Zhang, Wen, Singh, Shi (bb0340) 2017; 122 Gu, Brown, Verdin, Wardlow (bb0105) 2007; 34 Lobell (bb0210) 2007; 145 Wilks (bb0390) 2011; Vol. 100 Jiang, Shen, Li, Lei, Gan, Zhang (bb0155) 2017; 9 Dai, Trenberth, Qian (bb0050) 2004; 5 Kumar, Wang, Link (bb0190) 2012; 39 Xiao, Hollinger, Aber, Goltz, Davidson, Zhang, Moore (bb0395) 2004; 89 Leng, Hall (bb0195) 2019; 654 Dave (bb0060) 1996; 17 Bajgain, Xiao, Wagle, Basara, Zhou (bb0025) 2015; 108 Zambrano, Vrieling, Nelson, Meroni, Tadesse (bb0410) 2018; 2019 Vicente-Serrano, Beguería, Lorenzo-Lacruz, Camarero, López-Moreno, Azorin-Molina, Revuelto, Morán-Tejeda, Sanchez-Lorenzo (bb0370) 2012; 16 Machado, Mendoza, Corbellini (bb0225) 2015; 46 Verbyla (bb0360) 2015; 10 Du, Tian, Yu (bb1200) 2013; 23 Candel, Parmar, LeDell, Arora (bb0045) 2016 Dunn (bb0065) 1973 Ray, Gerber, Macdonald, West (bb0300) 2015; 6 Rouse, Haas, Schell, Deering (bb0315) 1974; 351 Smith, McNamara, Flores (bb0330) 2011; 25 Wang (10.1016/j.scitotenv.2021.150018_bb0375) 2007; 34 Lu (10.1016/j.scitotenv.2021.150018_bb0220) 2019; 104 Pumsirirat (10.1016/j.scitotenv.2021.150018_bb0275) 2018; 9 Rajesh (10.1016/j.scitotenv.2021.150018_bb0285) 2011; 1 Zscheischler (10.1016/j.scitotenv.2021.150018_bb0455) 2014; 28 Zhang (10.1016/j.scitotenv.2021.150018_bb0430) 2017; 190 Kaufman (10.1016/j.scitotenv.2021.150018_bb0160) 1990 Rodriguez (10.1016/j.scitotenv.2021.150018_bb0310) 2009; 32 Alizadeh (10.1016/j.scitotenv.2021.150018_bb0020) 2018; 211 Jiang (10.1016/j.scitotenv.2021.150018_bb0155) 2017; 9 Lillesand (10.1016/j.scitotenv.2021.150018_bb0205) 2015 Zambrano (10.1016/j.scitotenv.2021.150018_bb0410) 2018; 2019 Molotch (10.1016/j.scitotenv.2021.150018_bb0250) 2008; 31 Zhang (10.1016/j.scitotenv.2021.150018_bb0435) 2018; 123 Huang (10.1016/j.scitotenv.2021.150018_bb0145) 2006; 70 Dalin (10.1016/j.scitotenv.2021.150018_bb0055) 2015; 112 Stewart (10.1016/j.scitotenv.2021.150018_bb0335) 2017; 9 Rouse (10.1016/j.scitotenv.2021.150018_bb0315) 1974; 351 Gu (10.1016/j.scitotenv.2021.150018_bb0105) 2007; 34 Marée (10.1016/j.scitotenv.2021.150018_bb0230) 2007; 8 Zhang (10.1016/j.scitotenv.2021.150018_bb0445) 2020; 35 Gupta (10.1016/j.scitotenv.2021.150018_bb0120) 2019; 7 Leng (10.1016/j.scitotenv.2021.150018_bb0195) 2019; 654 Huang (10.1016/j.scitotenv.2021.150018_bb0150) 2014; 44 Khan (10.1016/j.scitotenv.2021.150018_bb0175) 2020; 139 Hayes (10.1016/j.scitotenv.2021.150018_bb0135) 2007; 3(6) Qutbudin (10.1016/j.scitotenv.2021.150018_bb0280) 2019; 11 Ray (10.1016/j.scitotenv.2021.150018_bb0300) 2015; 6 Kaur (10.1016/j.scitotenv.2021.150018_bb0165) 2020; 57 Candel (10.1016/j.scitotenv.2021.150018_bb0045) 2016 Bezdek (10.1016/j.scitotenv.2021.150018_bb0035) 1981 Tuv (10.1016/j.scitotenv.2021.150018_bb0355) 2009; 10 Faiz (10.1016/j.scitotenv.2021.150018_bb0070) 2020; 231 AghaKouchak (10.1016/j.scitotenv.2021.150018_bb0010) 2015; 53 Sharafati (10.1016/j.scitotenv.2021.150018_bb0325) 2020; 40 Tao (10.1016/j.scitotenv.2021.150018_bb0350) 2008; 38 Palmer (10.1016/j.scitotenv.2021.150018_bb0265) 1965 Campello (10.1016/j.scitotenv.2021.150018_bb0040) 2006; 157 Guan (10.1016/j.scitotenv.2021.150018_bb0110) 2013; 49 Mokhtar (10.1016/j.scitotenv.2021.150018_bb0245) 2021; 9 Tao (10.1016/j.scitotenv.2021.150018_bb0345) 2010; 33 Rhee (10.1016/j.scitotenv.2021.150018_bb0305) 2010; 114 Friedman (10.1016/j.scitotenv.2021.150018_bb0085) 2001; 29 Verbyla (10.1016/j.scitotenv.2021.150018_bb0360) 2015; 10 McKee (10.1016/j.scitotenv.2021.150018_bb0235) 1993; Vol. 17 Xie (10.1016/j.scitotenv.2021.150018_bb0400) 1991; 13 Li (10.1016/j.scitotenv.2021.150018_bb0200) 2017; 44 Du (10.1016/j.scitotenv.2021.150018_bb1200) 2013; 23 Feng (10.1016/j.scitotenv.2021.150018_bb0075) 2019; 173 Sayago (10.1016/j.scitotenv.2021.150018_bb0320) 2017; 198 Rao (10.1016/j.scitotenv.2021.150018_bb0290) 2006; 318 Wilhite (10.1016/j.scitotenv.2021.150018_bb0385) 1985; 10 Dave (10.1016/j.scitotenv.2021.150018_bb0060) 1996; 17 Smith (10.1016/j.scitotenv.2021.150018_bb0330) 2011; 25 Dunn (10.1016/j.scitotenv.2021.150018_bb0065) 1973 Friedman (10.1016/j.scitotenv.2021.150018_bb0090) 2002; 38 Zhang (10.1016/j.scitotenv.2021.150018_bb0425) 2017; 188 Zuo (10.1016/j.scitotenv.2021.150018_bb0460) 2019; 222 Kumar (10.1016/j.scitotenv.2021.150018_bb0190) 2012; 39 Feng (10.1016/j.scitotenv.2021.150018_bb0080) 2019; 689 Vicente-Serrano (10.1016/j.scitotenv.2021.150018_bb0370) 2012; 16 Lou (10.1016/j.scitotenv.2021.150018_bb0215) 2021; 13 Guo (10.1016/j.scitotenv.2021.150018_bb0115) 2019; 231 Lobell (10.1016/j.scitotenv.2021.150018_bb0210) 2007; 145 Machado (10.1016/j.scitotenv.2021.150018_bb0225) 2015; 46 Wang (10.1016/j.scitotenv.2021.150018_bb0380) 2016; 228 Xiao (10.1016/j.scitotenv.2021.150018_bb0395) 2004; 89 Zhang (10.1016/j.scitotenv.2021.150018_bb0415) 2015; 58 Gao (10.1016/j.scitotenv.2021.150018_bb0095) 1996; 58 Rao (10.1016/j.scitotenv.2021.150018_bb0295) 2019; 74 Dai (10.1016/j.scitotenv.2021.150018_bb0050) 2004; 5 Hosseini (10.1016/j.scitotenv.2021.150018_bb0140) 2020; 142 Kelly (10.1016/j.scitotenv.2021.150018_bb0170) 1997; 11 Yu (10.1016/j.scitotenv.2021.150018_bb0405) 2019; 130 Sun (10.1016/j.scitotenv.2021.150018_bb0340) 2017; 122 Vicente-Serrano (10.1016/j.scitotenv.2021.150018_bb0365) 2010; 23 Zhang (10.1016/j.scitotenv.2021.150018_bb0440) 2019; 172 AghaKouchak (10.1016/j.scitotenv.2021.150018_bb0005) 2012; 7 Zhang (10.1016/j.scitotenv.2021.150018_bb0420) 2013; 134 Bajgain (10.1016/j.scitotenv.2021.150018_bb0025) 2015; 108 Guzmán (10.1016/j.scitotenv.2021.150018_bb0125) 2018; 159 Belayneh (10.1016/j.scitotenv.2021.150018_bb0030) 2014; 508 Kogan (10.1016/j.scitotenv.2021.150018_bb0185) 1995; 15 Park (10.1016/j.scitotenv.2021.150018_bb0270) 2016; 216 Ahmed (10.1016/j.scitotenv.2021.150018_bb0015) 2019; 23 Mo (10.1016/j.scitotenv.2021.150018_bb0240) 2017; 8 Zhou (10.1016/j.scitotenv.2021.150018_bb0450) 2017; 246 Geurts (10.1016/j.scitotenv.2021.150018_bb0100) 2006; 63 Nabaei (10.1016/j.scitotenv.2021.150018_bb0255) 2019; 276 Nicholls (10.1016/j.scitotenv.2021.150018_bb0260) 1997; 387 Wilks (10.1016/j.scitotenv.2021.150018_bb0390) 2011; Vol. 100 |
| References_xml | – volume: 351 start-page: 309 year: 1974 ident: bb0315 publication-title: Monitoring Vegetation Systems in the Great Plains With ERTS – volume: 8 start-page: 1 year: 2007 end-page: 12 ident: bb0230 article-title: Random subwindows and extremely randomized trees for image classification in cell biology publication-title: BMC Cell Biol. – volume: 25 start-page: 3858 year: 2011 end-page: 3865 ident: bb0330 article-title: Small soil storage capacity limits benefit of winter snowpack to upland vegetation publication-title: Hydrol. Process. – volume: 39 year: 2012 ident: bb0190 article-title: Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent publication-title: Geophys. Res. Lett. – year: 1990 ident: bb0160 article-title: Finding Groups in Data: An Introduction to Cluster Analysis – volume: 222 start-page: 125 year: 2019 end-page: 138 ident: bb0460 article-title: Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data publication-title: Agric. Water Manag. – volume: Vol. 17 start-page: 179 year: 1993 end-page: 183 ident: bb0235 article-title: The relationship of drought frequency and duration to time scales publication-title: Proceedings of the 8th Conference on Applied Climatology – volume: 23 start-page: 245 year: 2013 end-page: 253 ident: bb1200 article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data publication-title: Int J Appl Earth Obs Geoinf – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bb0100 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 23 start-page: 4803 year: 2019 end-page: 4824 ident: bb0015 article-title: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics publication-title: Hydrol. Earth Syst. Sci. – volume: 57 year: 2020 ident: bb0165 article-title: Deep learning based drought assessment and prediction framework publication-title: Ecol. Inform. – volume: 145 start-page: 229 year: 2007 end-page: 238 ident: bb0210 article-title: Changes in diurnal temperature range and national cereal yields publication-title: Agric. For. Meteorol. – volume: 7 start-page: 123 year: 2019 ident: bb0120 article-title: Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm publication-title: Microbiome – volume: 16 start-page: 1 year: 2012 end-page: 27 ident: bb0370 article-title: Performance of drought indices for ecological, agricultural, and hydrological applications publication-title: Earth Interact. – volume: 246 start-page: 111 year: 2017 end-page: 122 ident: bb0450 article-title: Quantifying agricultural drought in tallgrass prairie region in the US southern Great Plains through analysis of a water-related vegetation index from MODIS images publication-title: Agric. For. Meteorol. – volume: 34 year: 2007 ident: bb0105 article-title: A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States publication-title: Geophys. Res. Lett. – volume: 139 year: 2020 ident: bb0175 article-title: Prediction of droughts over Pakistan using machine learning algorithms publication-title: Adv. Water Resour. – volume: 231 year: 2019 ident: bb0115 article-title: Determining variable weights for an optimal scaled drought condition index (OSDCI): evaluation in Central Asia publication-title: Environ. Res. Lett. – volume: 689 start-page: 1228 year: 2019 end-page: 1234 ident: bb0080 article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields publication-title: Sci. Total Environ. – volume: 198 start-page: 30 year: 2017 end-page: 39 ident: bb0320 article-title: Landsat images and crop model for evaluating water stress of rainfed soybean publication-title: Remote Sens. Environ. – volume: 10 year: 2015 ident: bb0360 article-title: Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska publication-title: Environ. Res. Lett. – volume: 9 start-page: 118 year: 2017 ident: bb0335 article-title: Detection of archaeological residues in vegetated areas using satellite synthetic aperture radar publication-title: Remote Sens. – volume: 31 start-page: 1503 year: 2008 end-page: 1514 ident: bb0250 article-title: Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison publication-title: Adv. Water Resour. – volume: 1 start-page: 35 year: 2011 end-page: 49 ident: bb0285 article-title: Extreme learning machines-a review and state-of-the-art publication-title: Int. J. Wisdom Based Comput. – volume: 10 start-page: 1341 year: 2009 end-page: 1366 ident: bb0355 article-title: Feature selection with ensembles, artificial variables, and redundancy elimination publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 11 year: 2017 end-page: 985 ident: bb0200 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. – volume: 318 start-page: 57 year: 2006 end-page: 79 ident: bb0290 article-title: Regionalization of watersheds by fuzzy cluster analysis publication-title: J. Hydrol. – volume: 108 start-page: 151 year: 2015 end-page: 160 ident: bb0025 article-title: Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 387 start-page: 484 year: 1997 end-page: 485 ident: bb0260 article-title: Increased australian wheat yield due to recent climate trends publication-title: Nature – volume: 11 start-page: 1096 year: 2019 ident: bb0280 article-title: Seasonal drought pattern changes due to climate variability: case study in Afghanistan publication-title: Water – volume: 5 start-page: 1117 year: 2004 end-page: 1130 ident: bb0050 article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J. Hydrometeorol. – volume: 32 start-page: 569 year: 2009 end-page: 575 ident: bb0310 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 228 start-page: 1 year: 2016 end-page: 12 ident: bb0380 article-title: Monitoring winter wheat drought threat in northern China using multiple climate-based drought indices and soil moisture during 2000–2013 publication-title: Agric. For. Meteorol. – volume: 74 start-page: 634 year: 2019 end-page: 642 ident: bb0295 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl. Soft Comput. – volume: Vol. 100 year: 2011 ident: bb0390 article-title: Statistical Methods in the Atmospheric Sciences – year: 1981 ident: bb0035 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 38 start-page: 83 year: 2008 end-page: 94 ident: bb0350 article-title: Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends publication-title: Clim. Res. – volume: 28 start-page: 585 year: 2014 end-page: 600 ident: bb0455 article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data publication-title: Glob. Biogeochem. Cycles – volume: 13 start-page: 841 year: 1991 end-page: 847 ident: bb0400 article-title: A validity measure for fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 190 start-page: 96 year: 2017 end-page: 106 ident: bb0430 article-title: Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices publication-title: Remote Sens. Environ. – volume: 23 start-page: 1696 year: 2010 end-page: 1718 ident: bb0365 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. – volume: 654 start-page: 811 year: 2019 end-page: 821 ident: bb0195 article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future publication-title: Sci. Total Environ. – volume: 15 start-page: 91 year: 1995 end-page: 100 ident: bb0185 article-title: Application of vegetation index and brightness temperature for drought detection publication-title: Adv. Space Res. – volume: 2019 start-page: 15 year: 2018 end-page: 30 ident: bb0410 article-title: Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices publication-title: Remote Sens. Environ. – volume: 112 start-page: 4588 year: 2015 end-page: 4593 ident: bb0055 article-title: Balancing water resource conservation and food security in China publication-title: Proc. Natl. Acad. Sci. – volume: 276 year: 2019 ident: bb0255 article-title: Copula based assessment of meteorological drought characteristics: regional investigation of Iran publication-title: Agric. For. Meteorol. – volume: 58 start-page: 308 year: 2015 end-page: 324 ident: bb0415 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. Part C Emerg. Technol. – volume: 172 start-page: 298 year: 2019 end-page: 306 ident: bb0440 article-title: Multisource data based agricultural drought monitoring and agricultural loss in China publication-title: Glob. Planet Chang. – volume: 40 start-page: 1864 year: 2020 end-page: 1884 ident: bb0325 article-title: Spatial assessment of meteorological drought features over different climate regions in Iran publication-title: Int. J. Climatol. – volume: 13 start-page: 668 year: 2021 ident: bb0215 article-title: Quantitative assessment of the influences of snow drought on Forest and grass growth in mid-high latitude regions by using remote sensing publication-title: Remote Sens. – volume: 9 start-page: 18 year: 2018 end-page: 25 ident: bb0275 article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 9 start-page: 402 year: 2017 ident: bb0155 article-title: Evaluation of multiple downscaled microwave soil moisture products over the central tibetan plateau publication-title: Remote Sens. – volume: 11 start-page: 17 year: 1997 end-page: 31 ident: bb0170 article-title: A bivariate meta-gaussian density for use in hydrology publication-title: Stoch. Hydrol. Hydraul. – volume: 49 start-page: 5029 year: 2013 end-page: 5046 ident: bb0110 article-title: Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations publication-title: Water Resour. Res. – volume: 7 year: 2012 ident: bb0005 article-title: A near real-time satellite-based global drought climate data record publication-title: Environ. Res. Lett. – volume: 35 start-page: 258 year: 2020 end-page: 276 ident: bb0445 article-title: An ensemble machine learning-based modeling framework for analysis of traffic crash frequency publication-title: Comput. Aided Civ. Inf. Eng. – volume: 8 start-page: 93 year: 2017 end-page: 98 ident: bb0240 article-title: Impacts of climate change on agricultural water resources and adaptation on the North China plain publication-title: Adv. Clim. Chang. Res. – volume: 211 start-page: 229 year: 2018 end-page: 247 ident: bb0020 article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data publication-title: Remote Sens. Environ. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bb0085 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 44 start-page: 2405 year: 2014 end-page: 2417 ident: bb0150 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. – volume: 6 start-page: 5989 year: 2015 ident: bb0300 article-title: Climate variation explains a third of global crop yield variability publication-title: Nat. Commun. – volume: 17 start-page: 613 year: 1996 end-page: 623 ident: bb0060 article-title: Validating fuzzy partitions obtained through c-shells clustering publication-title: Pattern Recogn. Lett. – volume: 46 start-page: 85 year: 2015 ident: bb0225 article-title: What variables are important in predicting bovine viral diarrhea virus? A random forest approach publication-title: Vet. Res. – volume: 89 start-page: 519 year: 2004 end-page: 534 ident: bb0395 article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest publication-title: Remote Sens. Environ. – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bb0090 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. – volume: 508 start-page: 418 year: 2014 end-page: 429 ident: bb0030 article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models publication-title: J. Hydrol. – volume: 159 start-page: 248 year: 2018 end-page: 259 ident: bb0125 article-title: An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels publication-title: Agric. Syst. – year: 2016 ident: bb0045 article-title: Deep Learning With H2O. H2O – volume: 157 start-page: 2858 year: 2006 end-page: 2875 ident: bb0040 article-title: A fuzzy extension of the silhouette width criterion for cluster analysis publication-title: Fuzzy Sets Syst. – volume: 3(6) start-page: 2 year: 2007 end-page: 6 ident: bb0135 article-title: Drought indices publication-title: Intermountain West Climate Summary – volume: 122 start-page: 10751 year: 2017 end-page: 10772 ident: bb0340 article-title: Multisource data based integrated agricultural drought monitoring in the Huai River basin, China publication-title: J. Geophys. Res. – volume: 188 start-page: 141 year: 2017 end-page: 163 ident: bb0425 article-title: Multi-sensor integrated framework and index for agricultural drought monitoring publication-title: Remote Sens. Environ. – volume: 53 start-page: 452 year: 2015 end-page: 480 ident: bb0010 article-title: Remote sensing of drought: progress, challenges and opportunities publication-title: Rev. Geophys. – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: bb0095 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 216 start-page: 157 year: 2016 end-page: 169 ident: bb0270 article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions publication-title: Agric. For. Meteorol. – volume: 34 year: 2007 ident: bb0375 article-title: NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing publication-title: Geophys. Res. Lett. – volume: 130 year: 2019 ident: bb0405 article-title: Modified palmer drought severity index: model improvement and application publication-title: Environ. Int. – year: 1973 ident: bb0065 article-title: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well-separated Clusters – volume: 10 start-page: 111 year: 1985 end-page: 120 ident: bb0385 article-title: Understanding: the drought phenomenon: the role of definitions publication-title: Water Int. – volume: 134 start-page: 12 year: 2013 end-page: 23 ident: bb0420 article-title: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data publication-title: Remote Sens. Environ. – volume: 123 start-page: 73 year: 2018 end-page: 88 ident: bb0435 article-title: Nonparametric integrated agrometeorological drought monitoring: model development and application publication-title: J. Geophys. Res. – year: 2015 ident: bb0205 article-title: Remote Sensing and Image Interpretation – year: 1965 ident: bb0265 article-title: Meteorological Drought. Research Paper No. 45 – volume: 231 year: 2020 ident: bb0070 article-title: Comprehensive evaluation of 0.25° precipitation datasets combined with MOD10A2 snow cover data in the ice-dominated river basins of Pakistan publication-title: Atmos. Res. – volume: 173 start-page: 303 year: 2019 end-page: 316 ident: bb0075 article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern Australia publication-title: Agric. Syst. – volume: 142 start-page: 1369 year: 2020 end-page: 1377 ident: bb0140 article-title: Drought hazard depending on elevation and precipitation in Lorestan, Iran publication-title: Theor. Appl. Climatol. – volume: 9 start-page: 65503 year: 2021 end-page: 65523 ident: bb0245 article-title: Estimation of SPEI meteorological drought using machine learning algorithms publication-title: IEEE Access – volume: 114 start-page: 2875 year: 2010 end-page: 2887 ident: bb0305 article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data publication-title: Remote Sens. Environ. – volume: 104 start-page: 10 year: 2019 end-page: 20 ident: bb0220 article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and north american regional reanalysis (NARR) in the United States, 1981–2013 publication-title: Appl. Geogr. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bb0145 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 33 start-page: 103 year: 2010 end-page: 116 ident: bb0345 article-title: Adaptation of maize production to climate change in North China plain: quantify the relative contributions of adaptation options publication-title: Eur. J. Agron. – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.scitotenv.2021.150018_bb0090 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 15 start-page: 91 issue: 11 year: 1995 ident: 10.1016/j.scitotenv.2021.150018_bb0185 article-title: Application of vegetation index and brightness temperature for drought detection publication-title: Adv. Space Res. doi: 10.1016/0273-1177(95)00079-T – volume: 1 start-page: 35 issue: 1 year: 2011 ident: 10.1016/j.scitotenv.2021.150018_bb0285 article-title: Extreme learning machines-a review and state-of-the-art publication-title: Int. J. Wisdom Based Comput. – volume: 25 start-page: 3858 issue: 25 year: 2011 ident: 10.1016/j.scitotenv.2021.150018_bb0330 article-title: Small soil storage capacity limits benefit of winter snowpack to upland vegetation publication-title: Hydrol. Process. doi: 10.1002/hyp.8340 – volume: 276 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0255 article-title: Copula based assessment of meteorological drought characteristics: regional investigation of Iran publication-title: Agric. For. Meteorol. – year: 1981 ident: 10.1016/j.scitotenv.2021.150018_bb0035 – volume: 142 start-page: 1369 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0140 article-title: Drought hazard depending on elevation and precipitation in Lorestan, Iran publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-020-03386-y – volume: 351 start-page: 309 year: 1974 ident: 10.1016/j.scitotenv.2021.150018_bb0315 – volume: 228 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2021.150018_bb0380 article-title: Monitoring winter wheat drought threat in northern China using multiple climate-based drought indices and soil moisture during 2000–2013 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.06.004 – volume: 34 issue: 20 year: 2007 ident: 10.1016/j.scitotenv.2021.150018_bb0375 article-title: NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031021 – volume: 6 start-page: 5989 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0300 article-title: Climate variation explains a third of global crop yield variability publication-title: Nat. Commun. doi: 10.1038/ncomms6989 – volume: 49 start-page: 5029 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2021.150018_bb0110 article-title: Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations publication-title: Water Resour. Res. doi: 10.1002/wrcr.20387 – volume: 28 start-page: 585 issue: 6 year: 2014 ident: 10.1016/j.scitotenv.2021.150018_bb0455 article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2014GB004826 – volume: 7 issue: 4 year: 2012 ident: 10.1016/j.scitotenv.2021.150018_bb0005 article-title: A near real-time satellite-based global drought climate data record publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/044037 – volume: 2019 start-page: 15 year: 2018 ident: 10.1016/j.scitotenv.2021.150018_bb0410 article-title: Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.006 – volume: 10 start-page: 111 issue: 3 year: 1985 ident: 10.1016/j.scitotenv.2021.150018_bb0385 article-title: Understanding: the drought phenomenon: the role of definitions publication-title: Water Int. doi: 10.1080/02508068508686328 – volume: 157 start-page: 2858 year: 2006 ident: 10.1016/j.scitotenv.2021.150018_bb0040 article-title: A fuzzy extension of the silhouette width criterion for cluster analysis publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2006.07.006 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.scitotenv.2021.150018_bb0145 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 9 start-page: 65503 year: 2021 ident: 10.1016/j.scitotenv.2021.150018_bb0245 article-title: Estimation of SPEI meteorological drought using machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074305 – volume: 654 start-page: 811 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0195 article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.434 – volume: Vol. 17 start-page: 179 year: 1993 ident: 10.1016/j.scitotenv.2021.150018_bb0235 article-title: The relationship of drought frequency and duration to time scales – volume: 9 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.150018_bb0275 article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 190 start-page: 96 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0430 article-title: Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.010 – volume: 159 start-page: 248 year: 2018 ident: 10.1016/j.scitotenv.2021.150018_bb0125 article-title: An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.01.017 – volume: 31 start-page: 1503 issue: 11 year: 2008 ident: 10.1016/j.scitotenv.2021.150018_bb0250 article-title: Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.07.017 – volume: 114 start-page: 2875 issue: 12 year: 2010 ident: 10.1016/j.scitotenv.2021.150018_bb0305 article-title: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.005 – volume: 3(6) start-page: 2 year: 2007 ident: 10.1016/j.scitotenv.2021.150018_bb0135 article-title: Drought indices – volume: 44 start-page: 11 issue: 23 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0200 article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL075710 – volume: 9 start-page: 402 issue: 5 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0155 article-title: Evaluation of multiple downscaled microwave soil moisture products over the central tibetan plateau publication-title: Remote Sens. doi: 10.3390/rs9050402 – volume: 5 start-page: 1117 issue: 6 year: 2004 ident: 10.1016/j.scitotenv.2021.150018_bb0050 article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J. Hydrometeorol. doi: 10.1175/JHM-386.1 – volume: 74 start-page: 634 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0295 article-title: Feature selection based on artificial bee colony and gradient boosting decision tree publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.036 – volume: 211 start-page: 229 year: 2018 ident: 10.1016/j.scitotenv.2021.150018_bb0020 article-title: A fusion-based methodology for meteorological drought estimation using remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.001 – volume: 17 start-page: 613 year: 1996 ident: 10.1016/j.scitotenv.2021.150018_bb0060 article-title: Validating fuzzy partitions obtained through c-shells clustering publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(96)00026-8 – volume: Vol. 100 year: 2011 ident: 10.1016/j.scitotenv.2021.150018_bb0390 – volume: 508 start-page: 418 year: 2014 ident: 10.1016/j.scitotenv.2021.150018_bb0030 article-title: Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.052 – volume: 145 start-page: 229 issue: 3–4 year: 2007 ident: 10.1016/j.scitotenv.2021.150018_bb0210 article-title: Changes in diurnal temperature range and national cereal yields publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.05.002 – volume: 134 start-page: 12 year: 2013 ident: 10.1016/j.scitotenv.2021.150018_bb0420 article-title: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.023 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.scitotenv.2021.150018_bb0085 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 246 start-page: 111 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0450 article-title: Quantifying agricultural drought in tallgrass prairie region in the US southern Great Plains through analysis of a water-related vegetation index from MODIS images publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.06.007 – volume: 58 start-page: 257 issue: 3 year: 1996 ident: 10.1016/j.scitotenv.2021.150018_bb0095 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 104 start-page: 10 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0220 article-title: Mapping the agricultural drought based on the long-term AVHRR NDVI and north american regional reanalysis (NARR) in the United States, 1981–2013 publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2019.01.005 – volume: 10 issue: 12 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0360 article-title: Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/12/125016 – year: 1965 ident: 10.1016/j.scitotenv.2021.150018_bb0265 – volume: 7 start-page: 123 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0120 article-title: Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm publication-title: Microbiome doi: 10.1186/s40168-019-0735-1 – volume: 11 start-page: 1096 issue: 5 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0280 article-title: Seasonal drought pattern changes due to climate variability: case study in Afghanistan publication-title: Water doi: 10.3390/w11051096 – volume: 8 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.scitotenv.2021.150018_bb0230 article-title: Random subwindows and extremely randomized trees for image classification in cell biology publication-title: BMC Cell Biol. – volume: 387 start-page: 484 issue: 6632 year: 1997 ident: 10.1016/j.scitotenv.2021.150018_bb0260 article-title: Increased australian wheat yield due to recent climate trends publication-title: Nature doi: 10.1038/387484a0 – volume: 108 start-page: 151 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0025 article-title: Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.07.004 – volume: 11 start-page: 17 issue: 1 year: 1997 ident: 10.1016/j.scitotenv.2021.150018_bb0170 article-title: A bivariate meta-gaussian density for use in hydrology publication-title: Stoch. Hydrol. Hydraul. doi: 10.1007/BF02428423 – volume: 38 start-page: 83 issue: 1 year: 2008 ident: 10.1016/j.scitotenv.2021.150018_bb0350 article-title: Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends publication-title: Clim. Res. doi: 10.3354/cr00771 – volume: 23 start-page: 245 issue: 1 year: 2013 ident: 10.1016/j.scitotenv.2021.150018_bb1200 article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data publication-title: Int J Appl Earth Obs Geoinf – volume: 231 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0070 article-title: Comprehensive evaluation of 0.25° precipitation datasets combined with MOD10A2 snow cover data in the ice-dominated river basins of Pakistan publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104653 – volume: 139 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0175 article-title: Prediction of droughts over Pakistan using machine learning algorithms publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103562 – volume: 23 start-page: 1696 issue: 7 year: 2010 ident: 10.1016/j.scitotenv.2021.150018_bb0365 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. doi: 10.1175/2009JCLI2909.1 – volume: 53 start-page: 452 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0010 article-title: Remote sensing of drought: progress, challenges and opportunities publication-title: Rev. Geophys. doi: 10.1002/2014RG000456 – volume: 23 start-page: 4803 issue: 11 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0015 article-title: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-4803-2019 – volume: 13 start-page: 841 year: 1991 ident: 10.1016/j.scitotenv.2021.150018_bb0400 article-title: A validity measure for fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.85677 – volume: 32 start-page: 569 issue: 3 year: 2009 ident: 10.1016/j.scitotenv.2021.150018_bb0310 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 188 start-page: 141 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0425 article-title: Multi-sensor integrated framework and index for agricultural drought monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.045 – volume: 689 start-page: 1228 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0080 article-title: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.373 – volume: 172 start-page: 298 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0440 article-title: Multisource data based agricultural drought monitoring and agricultural loss in China publication-title: Glob. Planet Chang. doi: 10.1016/j.gloplacha.2018.10.017 – volume: 13 start-page: 668 issue: 4 year: 2021 ident: 10.1016/j.scitotenv.2021.150018_bb0215 article-title: Quantitative assessment of the influences of snow drought on Forest and grass growth in mid-high latitude regions by using remote sensing publication-title: Remote Sens. doi: 10.3390/rs13040668 – volume: 122 start-page: 10751 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0340 article-title: Multisource data based integrated agricultural drought monitoring in the Huai River basin, China publication-title: J. Geophys. Res. doi: 10.1002/2017JD027186 – volume: 35 start-page: 258 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0445 article-title: An ensemble machine learning-based modeling framework for analysis of traffic crash frequency publication-title: Comput. Aided Civ. Inf. Eng. doi: 10.1111/mice.12485 – volume: 112 start-page: 4588 issue: 15 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0055 article-title: Balancing water resource conservation and food security in China publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1504345112 – volume: 318 start-page: 57 issue: 1–4 year: 2006 ident: 10.1016/j.scitotenv.2021.150018_bb0290 article-title: Regionalization of watersheds by fuzzy cluster analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.06.004 – volume: 58 start-page: 308 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0415 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.02.019 – volume: 9 start-page: 118 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0335 article-title: Detection of archaeological residues in vegetated areas using satellite synthetic aperture radar publication-title: Remote Sens. doi: 10.3390/rs9020118 – volume: 123 start-page: 73 year: 2018 ident: 10.1016/j.scitotenv.2021.150018_bb0435 article-title: Nonparametric integrated agrometeorological drought monitoring: model development and application publication-title: J. Geophys. Res. doi: 10.1002/2017JD027448 – volume: 198 start-page: 30 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0320 article-title: Landsat images and crop model for evaluating water stress of rainfed soybean publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.008 – volume: 8 start-page: 93 issue: 2 year: 2017 ident: 10.1016/j.scitotenv.2021.150018_bb0240 article-title: Impacts of climate change on agricultural water resources and adaptation on the North China plain publication-title: Adv. Clim. Chang. Res. doi: 10.1016/j.accre.2017.05.007 – volume: 231 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0115 article-title: Determining variable weights for an optimal scaled drought condition index (OSDCI): evaluation in Central Asia publication-title: Environ. Res. Lett. – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.scitotenv.2021.150018_bb0100 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 216 start-page: 157 year: 2016 ident: 10.1016/j.scitotenv.2021.150018_bb0270 article-title: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.011 – year: 1990 ident: 10.1016/j.scitotenv.2021.150018_bb0160 – volume: 89 start-page: 519 issue: 4 year: 2004 ident: 10.1016/j.scitotenv.2021.150018_bb0395 article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.008 – volume: 34 issue: 6 year: 2007 ident: 10.1016/j.scitotenv.2021.150018_bb0105 article-title: A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL029127 – volume: 39 issue: 20 year: 2012 ident: 10.1016/j.scitotenv.2021.150018_bb0190 article-title: Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL052972 – year: 2016 ident: 10.1016/j.scitotenv.2021.150018_bb0045 – volume: 40 start-page: 1864 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0325 article-title: Spatial assessment of meteorological drought features over different climate regions in Iran publication-title: Int. J. Climatol. doi: 10.1002/joc.6307 – year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0205 – volume: 16 start-page: 1 issue: 10 year: 2012 ident: 10.1016/j.scitotenv.2021.150018_bb0370 article-title: Performance of drought indices for ecological, agricultural, and hydrological applications publication-title: Earth Interact. doi: 10.1175/2012EI000434.1 – year: 1973 ident: 10.1016/j.scitotenv.2021.150018_bb0065 – volume: 10 start-page: 1341 issue: Jul year: 2009 ident: 10.1016/j.scitotenv.2021.150018_bb0355 article-title: Feature selection with ensembles, artificial variables, and redundancy elimination publication-title: J. Mach. Learn. Res. – volume: 57 year: 2020 ident: 10.1016/j.scitotenv.2021.150018_bb0165 article-title: Deep learning based drought assessment and prediction framework publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101067 – volume: 46 start-page: 85 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2021.150018_bb0225 article-title: What variables are important in predicting bovine viral diarrhea virus? A random forest approach publication-title: Vet. Res. doi: 10.1186/s13567-015-0219-7 – volume: 33 start-page: 103 issue: 2 year: 2010 ident: 10.1016/j.scitotenv.2021.150018_bb0345 article-title: Adaptation of maize production to climate change in North China plain: quantify the relative contributions of adaptation options publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2010.04.002 – volume: 130 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0405 article-title: Modified palmer drought severity index: model improvement and application publication-title: Environ. Int. doi: 10.1016/j.envint.2019.104951 – volume: 173 start-page: 303 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0075 article-title: Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern Australia publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.03.015 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 10.1016/j.scitotenv.2021.150018_bb0150 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – volume: 222 start-page: 125 year: 2019 ident: 10.1016/j.scitotenv.2021.150018_bb0460 article-title: Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.05.046 |
| SSID | ssj0000781 |
| Score | 2.6091704 |
| Snippet | Drought is a complicated and costly natural hazard and identification of critical drought factors is critical for modeling and forecasting of droughts and... |
| SourceID | unpaywall cristin proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 150018 |
| SubjectTerms | algorithms China Compound disaster corn Crop yield drought Drought factors environment Impacts Modeling accuracy Prediction probability snowpack soil water space and time |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EWBREdFVcX0TwaLVt0m7XgyA-EEFPCt5CmqSgLN1lt6t48bc706S7evABXsOkDJnM5Esz8w3Agc65insmCVIlVCAKEQYZulEQItbOct7FWVQofHuXXj-Im8fkcQ7Om1oYSqv0sd_F9Dpa-5Fjv5rHw6cnqvEVWS8l9hniMOEUh4XoUheDo_dZmgeR2bhXZnRslP6S44XfrQaITV_wohhHRwiOQur-0dK1g5XfnVWfsOjCpByqt1fV7386lq5WYNnjSXbmVF6FOVu2oeU6TL61YeNyVsiGYt6Tx21Ycv_rmCtDWoPTi7pfTzVmqlaG1Y21T5gfZr4vzyEbjuhph8zJVGmYq7Icr8PD1eX9-XXgeysEWiRJFdiuMgViMbww5SIyuY6sQctgzOF5IlQmClVEoVYh59Z0i6hnbCbw9pNnBFAwTGzAfDko7SYwrk1PRzlPrLEi5SihRWysFhrRlDVFBzp-PWWJ25ooSZOYuJIRLXQgbVZYak9KTr0x-rLJPnuWUyNJMpJ0RupAOJ04dLwcv085aUwov2wxiafH75P3G6NLdEB6VVGlHUzGEmMeR1SHyPMHmZSnCXHJoUw03TF_VXzrP4pvw2JMFRshZS7uwHw1mthdxFFVvlc7yge-bBuj priority: 102 providerName: Elsevier |
| Title | Droughts across China: Drought factors, prediction and impacts |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2021.150018 https://www.proquest.com/docview/2573439551 https://www.proquest.com/docview/2636540851 http://hdl.handle.net/10852/100238 |
| UnpaywallVersion | submittedVersion |
| Volume | 803 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trSYmIT4K08qgMhKPpMSxk6Z7mFSNTYWKCiEqxpPlrzywKq3WdGg88Ldzjp0yQGyIp0iRT7Jzd76f47v7AbzQislkaNIok1xGvOBxlKMbRTFi7VyxAUq5QuF302w842_P0rMtaFjXfmsv4FLjk1e0Dizb0M5SxNstaM-m70ef_dUxemtgUMkHQ9xTkuyXJC4MI9UCweclngQT2kf0Ezt6jx1de1D5t2B0DWzeWZdLefVVzufX4s7pfThuqnd8usl5f12pvv72ZzPHG5b0AO4F2ElG3k4ewpYtO7DjiSivOrB38rPeDYcFh1914K7_rUd8tdIjOHpd0_pUKyLrJZGaf_uQhNck0Pe8JMsLdwPktE5wVsQXY64ew-z05OPxOAoUDJHmaVpFdiBNgZANz1WKU6M0tQYViFsTUymXOS9kQWMtY8asGRR0aGzO8ZCkcodjcDfZg1a5KO0-EKbNUFPFUmsszxiO0DwxVnONoMuaogvdoBVRovWL-kMJ_6G6kDV6Ejr0LncUGnPRJKl9ERtVC6dq4VXdhXgjuPTtO24XOWwMQQQU4tGFwCBzu_DzxnQE-qm7fJGlXaxXArdGhuAPAeoNYzKWpa7lHI6hG7v714k_-Q-ZA9hNXD1H7PIan0KruljbZ4iyKtWD7f532oP26M1kPHXPyYdPk15wvh9jQydx |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9EEYUi9qr0WmtT6GNXdzfJ3p4PQvGDq19PCr6FbJKFk2Pv8PYqvvi3d2aTPfXBD-hrmFmGTGbym818APw0Bddp38oo00JHohRxlKMZRTFi7bzgPeSiQuHzi2xwJU6u5fUCHLS1MJRWGXy_9-mNtw4ru2E3dyfDIdX4iryfUfcZ6mHC0Q8vCZn2KALbeXjM86BuNv6ZGS0byZ8leeGH6zGC078YKabJDqKjmMZ_LJvGwqqXLqsnYHRlVk30_Z0ejZ7cS8frsBYAJfvtZf4IC67qwLIfMXnfgc2jx0o2JAumPO3AB__Djvk6pE-wf9gM7KmnTDfCsGay9h4LyywM5vnFJrf0tkP6ZLqyzJdZTjfg6vjo8mAQheEKkRFS1pHraVsiGMOIqRCJLUziLKoGnQ4vpNC5KHWZxEbHnDvbK5O-dbnA8KfICaGgn9iExWpcuc_AuLF9kxRcOutExpHCiNQ6IwzCKWfLLnTDfqoKzzX1JJUpNUtGuNCFrN1hZUJXchqOMVJt-tmNmitJkZKUV1IX4jnjxDfmeJtlr1WhenbGFF4fbzP_aJWu0ALpWUVXbjybKnR6HGEdQs9XaDKeSWomhzTJ_MS8V_Av_yP4d1gZXJ6fqbM_F6dfYTWl8o2Y0hi3YLG-nblvCKrqYrsxmn8ITR7G |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66hLBBabtsoVm3osIe58y2ZMfpw6BkLaWw0IcGuiehX35ogxMapyX963uy5KzbWDL6anQg6e50n6y7-wA-K0lFPNBJkAomApazMMjQjYIQsXYmaR-lbKHwj1F6PmYX18n1FtSsa3-0F7Cp8fHXqAosr6CZJoi3G9Acjy5PfrqnY_RWz6CS9Qd4psTpb0lcGEbKKYLPe7wJxlEP0U9o6T1aqvKg4l_B6BnYfL0oZmL5ICaTZ3HnbBeGdfWOSze57S1K2VOPfzdzXLOkPdjxsJOcODt5C1umaEPLEVEu29A5_VXvhsO8w8_bsO1-6xFXrfQOvn2vaH3KORHVkkjFv31M_Gfi6Xu-kNmdfQGyWic4K-KKMefvYXx2ejU8DzwFQ6BYkpSB6QudI2TDe5VkkZYqMhoViEcTlQkTGctFHoVKhJQa3c-jgTYZw0uSzCyOwdOkA41iWph9IFTpgYokTYw2LKU4QrFYG8UUgi6j8y50vVZ4gdbPq43ibqO6kNZ64sr3LrcUGhNeJ6nd8JWquVU1d6ruQrgSnLn2HZtFjmtD4B6FOHTBMchsFj6qTYejn9rHF1GY6WLO8WikCP4QoK4Zk9I0sS3ncEy0srv_nfiHF8gcwJvY1nOENq_xIzTKu4X5hCirlIfezZ4ANacjQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droughts+across+China%3A+Drought+factors%2C+prediction+and+impacts&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhang%2C+Qiang&rft.au=Shi%2C+Rui&rft.au=Singh%2C+Vijay+P&rft.au=Xu%2C+Chong-Yu&rft.date=2022-01-10&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150018&rft.externalDBID=n%2Fa&rft.externalDocID=10852_100238 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |