Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications
Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research in...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 10; no. 9; p. 1838 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano10091838 |
Cover
Abstract | Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics. |
---|---|
AbstractList | Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics. Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics.Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics. |
Author | Brunet, Mathieu Y. Jones, Marie-Christine Cox, Sophie C. Man, Kenny |
AuthorAffiliation | 2 School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; m.c.jones@bham.ac.uk 1 School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; k.l.man@bham.ac.uk (K.M.); MYB925@student.bham.ac.uk (M.Y.B.) |
AuthorAffiliation_xml | – name: 1 School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; k.l.man@bham.ac.uk (K.M.); MYB925@student.bham.ac.uk (M.Y.B.) – name: 2 School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; m.c.jones@bham.ac.uk |
Author_xml | – sequence: 1 givenname: Kenny orcidid: 0000-0002-7946-9375 surname: Man fullname: Man, Kenny – sequence: 2 givenname: Mathieu Y. surname: Brunet fullname: Brunet, Mathieu Y. – sequence: 3 givenname: Marie-Christine surname: Jones fullname: Jones, Marie-Christine – sequence: 4 givenname: Sophie C. surname: Cox fullname: Cox, Sophie C. |
BookMark | eNptkk1vFDEMhkeoiJbSGz9gJC4cupDPScIBqaoWqNTCpcAx8mScJavZZElmEf33zXQr1FZcEst-89ix_bI5iCli07ym5B3nhryPEBMlxFDN9bPmiBFlFsIYevDAPmxOSlkTMsu4lvxFc8iZEUzK7qj5uYyrEBEzDu3y75TB4TjuRsjtDyzBjVg-tNcQxlQFiysYsP1aU25gwhxgLK1Pub3CITgY27PtdqzGFFIsr5rnvsbx5P4-br5_Wl6ff1lcfvt8cX52uXBCymmBVIlOc66VN1oxQIHQu455D1ypmk6ajst6UmRgCJMghAKve-dlr73mx83FnjskWNttDhvINzZBsHeOlFcW8jR_xCpCneiJ89SDYEPXozCMSQoUgApNKuvjnrXd9RscHMbaj_ER9HEkhl92lf5YJaWmVFTA23tATr93WCa7CWVuKERMu2KZEKJOQKi57jdPpOu0y7G2yrJOKaaNFjPwdK9yOZWS0f8rhhI7L4B9uABVzp7IXZju5lHLDeP_H90CrM61Pw |
CitedBy_id | crossref_primary_10_1007_s10439_021_02872_2 crossref_primary_10_1093_stcltm_szac052 crossref_primary_10_3390_cancers13123075 crossref_primary_10_1016_j_tdr_2024_100004 crossref_primary_10_1039_D2BM00062H crossref_primary_10_1080_23308249_2021_1985429 crossref_primary_10_3390_ijms22126375 crossref_primary_10_1007_s40820_024_01557_4 crossref_primary_10_3390_ijms22179543 crossref_primary_10_1016_j_bone_2021_116138 crossref_primary_10_1016_j_freeradbiomed_2024_06_002 crossref_primary_10_3389_fbioe_2021_757220 crossref_primary_10_1016_j_jconrel_2021_08_037 crossref_primary_10_3389_fped_2023_1205882 crossref_primary_10_1039_D1TB01088C crossref_primary_10_3389_fbioe_2023_1322514 crossref_primary_10_3389_fimmu_2023_1090416 crossref_primary_10_3390_ijms22083887 crossref_primary_10_1186_s12951_023_01895_2 crossref_primary_10_1021_acs_biomac_3c00279 crossref_primary_10_1016_j_lfs_2022_120935 crossref_primary_10_1007_s11481_020_09981_0 crossref_primary_10_1016_j_ejphar_2022_174995 crossref_primary_10_1016_j_bbrc_2024_150841 crossref_primary_10_1186_s12964_024_01870_w crossref_primary_10_3390_ijms23020832 crossref_primary_10_14814_phy2_15219 crossref_primary_10_1016_j_ymthe_2023_03_025 crossref_primary_10_2217_nnm_2021_0123 crossref_primary_10_3390_pr9020356 crossref_primary_10_1016_j_mtbio_2023_100751 crossref_primary_10_3390_biomedicines11041231 crossref_primary_10_3390_ijms24043061 crossref_primary_10_1016_j_jconrel_2023_03_009 crossref_primary_10_3390_pharmaceutics14030653 crossref_primary_10_1002_jev2_12118 crossref_primary_10_1007_s40778_022_00210_3 crossref_primary_10_1038_s41413_023_00313_5 crossref_primary_10_1007_s00441_022_03613_0 crossref_primary_10_1016_j_jcyt_2025_02_004 crossref_primary_10_1007_s00109_023_02357_w crossref_primary_10_3390_cells11142232 crossref_primary_10_3389_fnagi_2023_1184435 crossref_primary_10_3390_ijms24087564 crossref_primary_10_3390_cimb46090548 crossref_primary_10_32604_biocell_2022_018781 crossref_primary_10_3389_fphar_2023_1067992 crossref_primary_10_3390_ijms23126480 crossref_primary_10_3390_ijms252312524 crossref_primary_10_1002_adhm_202201384 crossref_primary_10_3389_fbioe_2022_829969 crossref_primary_10_1007_s12035_022_02752_3 crossref_primary_10_1016_j_biopha_2023_115284 crossref_primary_10_1016_j_ymthe_2023_02_013 crossref_primary_10_1016_j_addr_2021_04_013 crossref_primary_10_1021_acsomega_2c04420 crossref_primary_10_5483_BMBRep_2022_55_1_161 crossref_primary_10_3389_fneur_2023_1324216 crossref_primary_10_3390_cells11010043 crossref_primary_10_1093_burnst_tkad039 crossref_primary_10_1186_s12951_023_01973_5 crossref_primary_10_1016_j_jconrel_2023_01_057 crossref_primary_10_3390_biom14070792 crossref_primary_10_1007_s12015_021_10309_5 crossref_primary_10_1016_j_prp_2024_155618 crossref_primary_10_1186_s13287_021_02266_0 crossref_primary_10_3390_pharmaceutics15020333 crossref_primary_10_1002_jex2_111 crossref_primary_10_1002_biot_202100401 |
Cites_doi | 10.1016/j.celrep.2016.09.031 10.1016/j.biomaterials.2016.07.003 10.1016/j.ymthe.2017.03.021 10.3892/ijmm.2016.2759 10.3389/fmed.2018.00233 10.1021/la802447v 10.1002/biot.201700072 10.1007/978-1-4939-7652-2_4 10.1016/j.biomaterials.2016.09.029 10.12688/f1000research.12533.1 10.1039/C5NR07144E 10.1007/s12195-016-0457-4 10.1016/j.biomaterials.2010.03.006 10.1016/S1359-0294(00)00090-X 10.20944/preprints201810.0507.v1 10.3402/jev.v4.26883 10.1101/730077 10.1016/j.febslet.2004.06.082 10.1021/acsami.9b10126 10.1016/j.nano.2015.10.012 10.1038/nrm.2017.125 10.1021/nn402232g 10.1038/s41551-018-0229-7 10.1016/j.jcyt.2017.01.001 10.1038/s41598-019-49671-3 10.3402/jev.v4.26238 10.1038/s41598-018-19211-6 10.1016/j.devcel.2019.01.004 10.1038/s41598-018-20505-y 10.1016/j.neuint.2016.08.003 10.1093/nar/gks463 10.1038/mt.2016.126 10.1186/s13287-015-0095-0 10.1016/j.ceb.2014.06.013 10.1038/nmat2442 10.1039/C9BM00101H 10.1016/j.jconrel.2013.08.014 10.1016/j.ijpharm.2018.08.040 10.1016/j.joca.2016.06.022 10.1186/1478-811X-9-12 10.1038/nm0405-367 10.1038/s41598-017-13027-6 10.1016/j.clim.2006.07.007 10.1002/art.27501 10.1161/res.123.suppl_1.490 10.1093/pcmedi/pbaa007 10.1038/ncomms12277 10.5966/sctm.2016-0275 10.1007/s11302-009-9132-8 10.1038/mt.2010.105 10.1080/20013078.2019.1596669 10.1186/1478-811X-12-26 10.1016/j.nantod.2015.04.004 10.1016/j.ijbiomac.2018.05.066 10.1098/rsif.2008.0448.focus 10.5966/sctm.2015-0367 10.1039/C7NR00352H 10.1016/j.phrs.2016.07.006 10.1083/jcb.201211138 10.1093/cvr/cvy067 10.1021/bc500291r 10.1158/0008-5472.CAN-17-2880 10.1093/rb/rby013 10.3390/ijms18061190 10.1093/biosci/biv084 10.1038/ncb2000 10.7150/thno.30853 10.1021/acsami.6b01315 10.1016/j.biotechadv.2018.09.001 10.1177/2041731418810130 10.1155/2011/591325 10.1016/j.nano.2017.09.011 10.1002/adfm.201909125 10.1080/20013078.2017.1422676 10.1111/cpr.12669 10.1038/srep21961 10.1038/s41598-017-14725-x 10.1021/mp300258c 10.1038/nbt.1830 10.1007/s10853-009-3770-7 10.1021/acsnano.8b02053 10.1002/immu.200310028 10.1016/j.jim.2009.03.011 10.1021/acs.molpharmaceut.5b00364 10.1021/nl0722929 10.1016/j.jconrel.2014.11.029 10.1038/mt.2015.44 10.1016/j.niox.2016.12.005 10.3402/jmahp.v4.31036 10.1002/wnan.1395 10.1080/20013078.2018.1535750 10.1016/j.addr.2016.02.006 10.1021/acsnano.6b07607 10.1007/s13238-018-0529-4 10.1111/cpr.12570 10.1016/j.molmed.2018.01.006 10.1002/adhm.201801604 10.3390/cells8070727 10.1016/j.jconrel.2017.08.022 10.1080/20013078.2017.1333882 10.1021/acs.nanolett.8b02689 10.1016/j.ymthe.2018.09.015 10.1242/jcs.215210 10.1155/2016/5029619 10.1038/aps.2017.12 10.1038/cr.2014.44 10.1172/jci.insight.99263 10.1038/aps.2013.166 10.1016/j.biomaterials.2016.06.024 10.1021/nl5047494 10.1038/nri3622 10.3390/ijms20102584 10.1016/j.jconrel.2016.01.009 10.1021/acsami.8b08449 10.1083/jcb.200911018 10.1021/acsnano.5b06939 10.3402/jev.v4.26316 10.3389/fsufs.2019.00023 10.3390/cells8121509 10.1038/srep21933 10.1021/acsbiomaterials.8b01646 10.3390/ijms19020346 10.3390/nano9071025 10.1016/j.bcmd.2005.05.002 10.1038/mt.2011.303 10.1016/j.ymthe.2018.03.019 10.1016/j.omtm.2019.01.001 10.1155/2015/659890 10.3402/jev.v4.27066 10.3390/jfb6010081 10.1016/j.tibtech.2012.07.005 10.3390/cancers12020298 10.1038/labinvest.2010.152 10.1038/ncomms3980 10.1016/j.actbio.2018.11.024 10.1002/adfm.201807189 10.1016/j.biomaterials.2017.10.012 10.1038/srep10112 10.1016/j.ymeth.2019.10.005 10.1016/j.jconrel.2015.03.033 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano10091838 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_701c4b0cf1fa42d6be492251a1aa1480 PMC7558114 10_3390_nano10091838 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c455t-e174683387f9872ae4eabc62ffa377ade59635e591e2a9025a447af8bcf5b8f83 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:25:58 EDT 2025 Thu Aug 21 18:35:34 EDT 2025 Thu Sep 04 19:32:50 EDT 2025 Fri Jul 25 09:38:07 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 01:17:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-e174683387f9872ae4eabc62ffa377ade59635e591e2a9025a447af8bcf5b8f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7946-9375 |
OpenAccessLink | https://doaj.org/article/701c4b0cf1fa42d6be492251a1aa1480 |
PMID | 32942556 |
PQID | 2677289844 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_701c4b0cf1fa42d6be492251a1aa1480 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558114 proquest_miscellaneous_2444385478 proquest_journals_2677289844 crossref_primary_10_3390_nano10091838 crossref_citationtrail_10_3390_nano10091838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200915 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200915 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 Adjei (ref_139) 2015; 6 Laulagnier (ref_41) 2004; 572 Luan (ref_82) 2017; 38 Schlee (ref_19) 2011; 29 ref_12 He (ref_124) 2008; 24 ref_131 ref_11 Batrakova (ref_86) 2016; 8 ref_10 Basanez (ref_113) 2013; 10 Zhang (ref_61) 2017; 111 ref_97 ref_132 ref_135 Maeger (ref_17) 2013; 12 Tao (ref_31) 2017; 6 ref_134 Sato (ref_83) 2016; 6 Fang (ref_129) 2016; 5 ref_18 Hsu (ref_40) 2010; 189 ref_125 Palviainen (ref_67) 2019; 8 Clayton (ref_21) 2003; 33 ref_25 Tian (ref_92) 2018; 150 ref_23 Zaborowski (ref_5) 2015; 65 Kim (ref_28) 2020; 177 ref_20 ref_121 Zadpoor (ref_118) 2018; 5 Piffoux (ref_89) 2018; 12 ref_27 ref_26 Pomatto (ref_73) 2019; 13 Qu (ref_47) 2009; 5 Anderson (ref_14) 2010; 90 ref_70 Bose (ref_120) 2012; 30 ref_74 Yan (ref_141) 2018; 1740 Armstrong (ref_30) 2017; 11 Jang (ref_102) 2013; 7 Ostrowski (ref_39) 2010; 12 Patel (ref_62) 2018; 36 Kooijmans (ref_90) 2016; 224 Qi (ref_95) 2016; 10 Carreira (ref_48) 2016; 8 Zhang (ref_115) 2016; 24 Santangelo (ref_35) 2016; 17 Pachler (ref_143) 2017; 19 Ader (ref_60) 2014; 31 ref_140 Haney (ref_79) 2015; 207 Han (ref_104) 2019; 5 Fuhrmann (ref_138) 2015; 10 Lee (ref_50) 2016; 8 Barenholz (ref_54) 2001; 6 Raposo (ref_3) 2013; 200 ref_87 Willis (ref_55) 2017; 63 Haraszti (ref_68) 2018; 26 Lamichhane (ref_78) 2015; 12 Robbins (ref_7) 2014; 14 Lamichhane (ref_76) 2016; 9 Sun (ref_56) 2014; 35 Anel (ref_111) 2007; 122 Lunavat (ref_101) 2016; 102 Hu (ref_42) 2020; 3 ref_58 Sun (ref_71) 2010; 18 Nel (ref_98) 2009; 8 Leroueil (ref_99) 2008; 8 Xu (ref_128) 2018; 117 ref_53 Tabata (ref_63) 2009; 6 ref_52 Biscans (ref_94) 2018; 26 ref_59 Liu (ref_33) 2019; 9 Gnecchi (ref_15) 2005; 11 Kooijmans (ref_43) 2016; 111 Wang (ref_45) 2015; 6 ref_65 Fuhrmann (ref_80) 2015; 205 Stephenson (ref_66) 2018; 7 Lu (ref_109) 2018; 550 Kooijmans (ref_107) 2012; 7 Sutaria (ref_37) 2017; 6 Lee (ref_51) 2015; 15 Verweij (ref_22) 2019; 48 Gangadaran (ref_133) 2017; 264 Smyth (ref_91) 2014; 25 Imai (ref_114) 2015; 4 Zhang (ref_130) 2018; 10 Patel (ref_64) 2019; 95 Raposo (ref_13) 2018; 19 Madrigal (ref_110) 2009; 344 Li (ref_34) 2019; 19 Kooijmans (ref_75) 2013; 172 Chen (ref_126) 2018; 114 Mager (ref_85) 2017; 25 Wan (ref_93) 2018; 78 Deregibus (ref_123) 2016; 38 ref_36 ref_32 Li (ref_57) 2015; 4 Mardpour (ref_117) 2019; 11 ref_38 Liu (ref_136) 2017; 9 Vader (ref_29) 2016; 106 Kim (ref_77) 2016; 12 ref_103 ref_106 Colao (ref_142) 2018; 24 ref_105 Basanez (ref_112) 2010; 62 Sabir (ref_119) 2009; 44 Williams (ref_4) 2014; 24 ref_46 Kim (ref_88) 2018; 14 Liu (ref_127) 2018; 2 ref_44 ref_100 Han (ref_116) 2019; 7 ref_1 Sarkar (ref_49) 2010; 31 Watson (ref_69) 2016; 105 ref_2 Wagner (ref_108) 2011; 2011 Podolak (ref_84) 2010; 9 ref_9 Rani (ref_16) 2015; 23 ref_8 Cheng (ref_81) 2019; 10 Quah (ref_24) 2005; 35 Maguire (ref_96) 2012; 20 Didiot (ref_72) 2016; 24 Huang (ref_122) 2016; 111 Mendt (ref_144) 2018; 3 ref_6 |
References_xml | – volume: 17 start-page: 799 year: 2016 ident: ref_35 article-title: The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.031 – volume: 105 start-page: 195 year: 2016 ident: ref_69 article-title: Efficient production and enhanced tumor delivery of engineered extracellular vesicles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.003 – volume: 25 start-page: 1580 year: 2017 ident: ref_85 article-title: Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.021 – volume: 38 start-page: 1359 year: 2016 ident: ref_123 article-title: Charge-based precipitation of extracellular vesicles publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2759 – ident: ref_65 doi: 10.3389/fmed.2018.00233 – volume: 24 start-page: 12508 year: 2008 ident: ref_124 article-title: Effect of Grafting RGD and BMP-2 Protein-Derived Peptides to a Hydrogel Substrate on Osteogenic Differentiation of Marrow Stromal Cells publication-title: Langmuir doi: 10.1021/la802447v – ident: ref_125 doi: 10.1002/biot.201700072 – volume: 1740 start-page: 35 year: 2018 ident: ref_141 article-title: Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7652-2_4 – volume: 111 start-page: 103 year: 2016 ident: ref_122 article-title: Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.029 – volume: 7 start-page: 517 year: 2018 ident: ref_66 article-title: Recent advances in bioreactors for cell-based therapies publication-title: F1000Research doi: 10.12688/f1000research.12533.1 – ident: ref_1 – volume: 8 start-page: 7474 year: 2016 ident: ref_48 article-title: Ultra-fast stem cell labelling using cationised magnetoferritin publication-title: Nanoscale doi: 10.1039/C5NR07144E – volume: 9 start-page: 315 year: 2016 ident: ref_76 article-title: Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication publication-title: Cell Mol. Bioeng. doi: 10.1007/s12195-016-0457-4 – volume: 31 start-page: 5266 year: 2010 ident: ref_49 article-title: Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.006 – volume: 6 start-page: 66 year: 2001 ident: ref_54 article-title: Liposome application: Problems and prospects publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(00)00090-X – ident: ref_9 doi: 10.20944/preprints201810.0507.v1 – volume: 4 start-page: 26883 year: 2015 ident: ref_57 article-title: Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles publication-title: J. Extracell Vesicles doi: 10.3402/jev.v4.26883 – ident: ref_58 doi: 10.1101/730077 – volume: 572 start-page: 11 year: 2004 ident: ref_41 article-title: PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.06.082 – volume: 11 start-page: 37421 year: 2019 ident: ref_117 article-title: Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10126 – volume: 12 start-page: 655 year: 2016 ident: ref_77 article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomed-Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2015.10.012 – volume: 19 start-page: 213 year: 2018 ident: ref_13 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.125 – volume: 7 start-page: 7698 year: 2013 ident: ref_102 article-title: Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors publication-title: ACS Nano doi: 10.1021/nn402232g – volume: 2 start-page: 293 year: 2018 ident: ref_127 article-title: Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0229-7 – volume: 19 start-page: 458 year: 2017 ident: ref_143 article-title: A Good Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles publication-title: Cytotherapy doi: 10.1016/j.jcyt.2017.01.001 – ident: ref_140 doi: 10.1038/s41598-019-49671-3 – volume: 4 start-page: 26238 year: 2015 ident: ref_114 article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice publication-title: J. Extracell Vesicles doi: 10.3402/jev.v4.26238 – ident: ref_18 doi: 10.1038/s41598-018-19211-6 – volume: 48 start-page: 573 year: 2019 ident: ref_22 article-title: Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.01.004 – volume: 12 start-page: 348 year: 2013 ident: ref_17 article-title: Extracellular vesicles: Biology and emerging therapeutic opportunities publication-title: Nat. Rev. Drug Discov. – ident: ref_106 doi: 10.1038/s41598-018-20505-y – volume: 111 start-page: 69 year: 2017 ident: ref_61 article-title: Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2016.08.003 – ident: ref_74 doi: 10.1093/nar/gks463 – volume: 24 start-page: 1836 year: 2016 ident: ref_72 article-title: Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing publication-title: Mol. Ther. doi: 10.1038/mt.2016.126 – volume: 6 start-page: 100 year: 2015 ident: ref_45 article-title: Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-015-0095-0 – volume: 31 start-page: 23 year: 2014 ident: ref_60 article-title: Modeling human development in 3D culture publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2014.06.013 – volume: 8 start-page: 543 year: 2009 ident: ref_98 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat. Mater. doi: 10.1038/nmat2442 – volume: 7 start-page: 2920 year: 2019 ident: ref_116 article-title: Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair publication-title: Biomater. Sci. doi: 10.1039/C9BM00101H – volume: 172 start-page: 229 year: 2013 ident: ref_75 article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.08.014 – volume: 550 start-page: 100 year: 2018 ident: ref_109 article-title: Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA publication-title: Int. J. Pharm doi: 10.1016/j.ijpharm.2018.08.040 – volume: 24 start-page: 2135 year: 2016 ident: ref_115 article-title: Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2016.06.022 – ident: ref_12 doi: 10.1186/1478-811X-9-12 – volume: 11 start-page: 367 year: 2005 ident: ref_15 article-title: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells publication-title: Nat. Med. doi: 10.1038/nm0405-367 – ident: ref_59 doi: 10.1038/s41598-017-13027-6 – volume: 122 start-page: 28 year: 2007 ident: ref_111 article-title: Rheumatoid synovial fluid T cells are sensitive to APO2L/TRAIL publication-title: Clin. Immunol. doi: 10.1016/j.clim.2006.07.007 – volume: 62 start-page: 2272 year: 2010 ident: ref_112 article-title: Liposome-Bound APO2L/TRAIL Is an Effective Treatment in a Rabbit Model of Rheumatoid Arthritis publication-title: Arthritis Rheum. doi: 10.1002/art.27501 – ident: ref_134 doi: 10.1161/res.123.suppl_1.490 – volume: 3 start-page: 54 year: 2020 ident: ref_42 article-title: Clinical applications of exosome membrane proteins publication-title: Precis Clin. Med. doi: 10.1093/pcmedi/pbaa007 – ident: ref_38 doi: 10.1038/ncomms12277 – volume: 6 start-page: 736 year: 2017 ident: ref_31 article-title: Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model publication-title: Stem Cell Transl. Med. doi: 10.5966/sctm.2016-0275 – volume: 5 start-page: 163 year: 2009 ident: ref_47 article-title: P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways publication-title: Purinerg. Signal. doi: 10.1007/s11302-009-9132-8 – volume: 18 start-page: 1606 year: 2010 ident: ref_71 article-title: A Novel Nanoparticle Drug Delivery System: The Anti-inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes publication-title: Mol. Ther. doi: 10.1038/mt.2010.105 – volume: 8 start-page: 1596669 year: 2019 ident: ref_67 article-title: Metabolic signature of extracellular vesicles depends on the cell culture conditions publication-title: J. Extracell Vesicles doi: 10.1080/20013078.2019.1596669 – ident: ref_46 doi: 10.1186/1478-811X-12-26 – volume: 10 start-page: 397 year: 2015 ident: ref_138 article-title: Cell-derived vesicles for drug therapy and diagnostics: Opportunities and challenges publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.004 – volume: 117 start-page: 102 year: 2018 ident: ref_128 article-title: Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.05.066 – volume: 6 start-page: S311 year: 2009 ident: ref_63 article-title: Biomaterial technology for tissue engineering applications publication-title: J. R Soc. Interface doi: 10.1098/rsif.2008.0448.focus – volume: 5 start-page: 1425 year: 2016 ident: ref_129 article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-beta/SMAD2 Pathway During Wound Healing publication-title: Stem Cell Transl. Med. doi: 10.5966/sctm.2015-0367 – volume: 9 start-page: 4430 year: 2017 ident: ref_136 article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration publication-title: Nanoscale doi: 10.1039/C7NR00352H – volume: 111 start-page: 487 year: 2016 ident: ref_43 article-title: Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2016.07.006 – volume: 200 start-page: 373 year: 2013 ident: ref_3 article-title: Extracellular vesicles: Exosomes, microvesicles, and friends publication-title: J. Cell Biol. doi: 10.1083/jcb.201211138 – volume: 114 start-page: 1029 year: 2018 ident: ref_126 article-title: Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvy067 – volume: 25 start-page: 1777 year: 2014 ident: ref_91 article-title: Surface Functionalization of Exosomes Using Click Chemistry publication-title: Bioconjugate Chem. doi: 10.1021/bc500291r – volume: 78 start-page: 798 year: 2018 ident: ref_93 article-title: Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2880 – volume: 5 start-page: 197 year: 2018 ident: ref_118 article-title: Bone tissue engineering via growth factor delivery: From scaffolds to complex matrices publication-title: Regen. Biomater. doi: 10.1093/rb/rby013 – ident: ref_27 doi: 10.3390/ijms18061190 – volume: 65 start-page: 783 year: 2015 ident: ref_5 article-title: Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study publication-title: Bioscience doi: 10.1093/biosci/biv084 – volume: 12 start-page: 19 year: 2010 ident: ref_39 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb2000 – volume: 9 start-page: 1015 year: 2019 ident: ref_33 article-title: Design strategies and application progress of therapeutic exosomes publication-title: Theranostics doi: 10.7150/thno.30853 – volume: 7 start-page: 1525 year: 2012 ident: ref_107 article-title: Exosome mimetics: A novel class of drug delivery systems publication-title: Int. J. Nanomed. – volume: 8 start-page: 6790 year: 2016 ident: ref_50 article-title: Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01315 – volume: 36 start-page: 2051 year: 2018 ident: ref_62 article-title: Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: Impact of the bioproduction microenvironment publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.09.001 – ident: ref_10 doi: 10.1177/2041731418810130 – volume: 2011 start-page: 591325 year: 2011 ident: ref_108 article-title: Liposome technology for industrial purposes publication-title: J. Drug Deliv. doi: 10.1155/2011/591325 – volume: 14 start-page: 195 year: 2018 ident: ref_88 article-title: Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.09.011 – ident: ref_121 doi: 10.1002/adfm.201909125 – ident: ref_105 doi: 10.1080/20013078.2017.1422676 – ident: ref_132 doi: 10.1111/cpr.12669 – ident: ref_131 doi: 10.1038/srep21961 – ident: ref_100 doi: 10.1038/s41598-017-14725-x – volume: 9 start-page: 425 year: 2010 ident: ref_84 article-title: Saponins as cytotoxic agents: A review publication-title: Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnol. – volume: 10 start-page: 893 year: 2013 ident: ref_113 article-title: Liposomes Decorated with Apo2L/TRAIL Overcome Chemoresistance of Human Hematologic Tumor Cells publication-title: Mol. Pharmaceut. doi: 10.1021/mp300258c – volume: 29 start-page: 325 year: 2011 ident: ref_19 article-title: SiRNA delivery with exosome nanoparticles publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1830 – volume: 44 start-page: 5713 year: 2009 ident: ref_119 article-title: A review on biodegradable polymeric materials for bone tissue engineering applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3770-7 – volume: 12 start-page: 6830 year: 2018 ident: ref_89 article-title: Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems publication-title: ACS Nano doi: 10.1021/acsnano.8b02053 – volume: 33 start-page: 522 year: 2003 ident: ref_21 article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59 publication-title: Eur. J. Immunol. doi: 10.1002/immu.200310028 – volume: 344 start-page: 121 year: 2009 ident: ref_110 article-title: Artificial exosomes as tools for basic and clinical immunology publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2009.03.011 – volume: 12 start-page: 3650 year: 2015 ident: ref_78 article-title: Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery publication-title: Mol. Pharmaceut. doi: 10.1021/acs.molpharmaceut.5b00364 – volume: 8 start-page: 420 year: 2008 ident: ref_99 article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers publication-title: Nano Lett. doi: 10.1021/nl0722929 – volume: 205 start-page: 35 year: 2015 ident: ref_80 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.11.029 – volume: 23 start-page: 812 year: 2015 ident: ref_16 article-title: Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications publication-title: Mol. Ther. doi: 10.1038/mt.2015.44 – volume: 63 start-page: 1 year: 2017 ident: ref_55 article-title: Nitrite-derived nitric oxide reduces hypoxia-inducible factor 1alpha-mediated extracellular vesicle production by endothelial cells publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.12.005 – ident: ref_44 doi: 10.3402/jmahp.v4.31036 – volume: 8 start-page: 744 year: 2016 ident: ref_86 article-title: Development and regulation of exosome-based therapy products publication-title: Wires Nanomed. Nanobi doi: 10.1002/wnan.1395 – ident: ref_11 doi: 10.1080/20013078.2018.1535750 – volume: 106 start-page: 148 year: 2016 ident: ref_29 article-title: Extracellular vesicles for drug delivery publication-title: Adv. Drug Deliver Rev. doi: 10.1016/j.addr.2016.02.006 – volume: 11 start-page: 69 year: 2017 ident: ref_30 article-title: Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics publication-title: ACS Nano doi: 10.1021/acsnano.6b07607 – volume: 10 start-page: 295 year: 2019 ident: ref_81 article-title: Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes publication-title: Protein Cell doi: 10.1007/s13238-018-0529-4 – ident: ref_135 doi: 10.1111/cpr.12570 – volume: 24 start-page: 242 year: 2018 ident: ref_142 article-title: Manufacturing Exosomes: A Promising Therapeutic Platform publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2018.01.006 – ident: ref_137 doi: 10.1002/adhm.201801604 – ident: ref_8 doi: 10.3390/cells8070727 – volume: 264 start-page: 112 year: 2017 ident: ref_133 article-title: Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.08.022 – volume: 6 start-page: 1333882 year: 2017 ident: ref_37 article-title: Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery publication-title: J. Extracell Vesicles doi: 10.1080/20013078.2017.1333882 – volume: 19 start-page: 19 year: 2019 ident: ref_34 article-title: In Vitro and in Vivo RNA Inhibition by CD9-HuR Functionalized Exosomes Encapsulated with miRNA or CRISPR/dCas9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02689 – volume: 26 start-page: 2838 year: 2018 ident: ref_68 article-title: Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.09.015 – ident: ref_23 doi: 10.1242/jcs.215210 – ident: ref_25 doi: 10.1155/2016/5029619 – volume: 38 start-page: 754 year: 2017 ident: ref_82 article-title: Engineering exosomes as refined biological nanoplatforms for drug delivery publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2017.12 – volume: 24 start-page: 766 year: 2014 ident: ref_4 article-title: Double-stranded DNA in exosomes: A novel biomarker in cancer detection publication-title: Cell Res. doi: 10.1038/cr.2014.44 – volume: 3 start-page: e99263 year: 2018 ident: ref_144 article-title: Generation and testing of clinical-grade exosomes for pancreatic cancer publication-title: JCI Insight doi: 10.1172/jci.insight.99263 – volume: 35 start-page: 381 year: 2014 ident: ref_56 article-title: Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2013.166 – volume: 102 start-page: 231 year: 2016 ident: ref_101 article-title: RNAi delivery by exosome-mimetic nanovesicles-Implications for targeting c-Myc in cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.024 – volume: 15 start-page: 2938 year: 2015 ident: ref_51 article-title: Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration publication-title: Nano Lett. doi: 10.1021/nl5047494 – volume: 14 start-page: 195 year: 2014 ident: ref_7 article-title: Regulation of immune responses by extracellular vesicles publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3622 – ident: ref_20 doi: 10.3390/ijms20102584 – volume: 224 start-page: 77 year: 2016 ident: ref_90 article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.009 – volume: 10 start-page: 30081 year: 2018 ident: ref_130 article-title: Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b08449 – volume: 189 start-page: 223 year: 2010 ident: ref_40 article-title: Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C publication-title: J. Cell Biol. doi: 10.1083/jcb.200911018 – volume: 10 start-page: 3323 year: 2016 ident: ref_95 article-title: Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy publication-title: ACS Nano doi: 10.1021/acsnano.5b06939 – ident: ref_26 doi: 10.3402/jev.v4.26316 – ident: ref_70 doi: 10.3389/fsufs.2019.00023 – ident: ref_103 doi: 10.3390/cells8121509 – volume: 6 start-page: 21933 year: 2016 ident: ref_83 article-title: Engineering hybrid exosomes by membrane fusion with liposomes publication-title: Sci. Rep. doi: 10.1038/srep21933 – volume: 5 start-page: 1534 year: 2019 ident: ref_104 article-title: Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b01646 – ident: ref_52 doi: 10.3390/ijms19020346 – ident: ref_53 doi: 10.3390/nano9071025 – volume: 35 start-page: 94 year: 2005 ident: ref_24 article-title: The immunogenicity of dendritic cell-derived exosomes publication-title: Blood Cell Mol. Dis. doi: 10.1016/j.bcmd.2005.05.002 – volume: 20 start-page: 960 year: 2012 ident: ref_96 article-title: Microvesicle-associated AAV Vector as a Novel Gene Delivery System publication-title: Mol. Ther. doi: 10.1038/mt.2011.303 – volume: 26 start-page: 1520 year: 2018 ident: ref_94 article-title: Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.03.019 – volume: 13 start-page: 133 year: 2019 ident: ref_73 article-title: Improved Loading of Plasma-Derived Extracellular Vesicles to Encapsulate Antitumor miRNAs publication-title: Mol. Ther.-Meth. Clin. Dev. doi: 10.1016/j.omtm.2019.01.001 – ident: ref_32 doi: 10.1155/2015/659890 – ident: ref_2 doi: 10.3402/jev.v4.27066 – volume: 6 start-page: 81 year: 2015 ident: ref_139 article-title: Modulation of the tumor microenvironment for cancer treatment: A biomaterials approach publication-title: J. Funct. Biomater. doi: 10.3390/jfb6010081 – volume: 30 start-page: 546 year: 2012 ident: ref_120 article-title: Recent advances in bone tissue engineering scaffolds publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2012.07.005 – ident: ref_6 doi: 10.3390/cancers12020298 – volume: 90 start-page: 1549 year: 2010 ident: ref_14 article-title: Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis publication-title: Lab. Investig. doi: 10.1038/labinvest.2010.152 – ident: ref_36 doi: 10.1038/ncomms3980 – volume: 95 start-page: 236 year: 2019 ident: ref_64 article-title: Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.11.024 – ident: ref_87 doi: 10.1002/adfm.201807189 – volume: 150 start-page: 137 year: 2018 ident: ref_92 article-title: Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.012 – ident: ref_97 doi: 10.1038/srep10112 – volume: 177 start-page: 80 year: 2020 ident: ref_28 article-title: Engineered extracellular vesicles and their mimetics for clinical translation publication-title: Methods doi: 10.1016/j.ymeth.2019.10.005 – volume: 207 start-page: 18 year: 2015 ident: ref_79 article-title: Exosomes as drug delivery vehicles for Parkinson’s disease therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.03.033 |
SSID | ssj0000913853 |
Score | 2.4266367 |
SecondaryResourceType | review_article |
Snippet | Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1838 |
SubjectTerms | Angiogenesis Apoptosis Biomaterials Biomedical materials Biomimetics Biosynthesis Cell interactions Efficiency Engineering Enzymes EV engineering exosomes Extracellular vesicles Genomes Heterogeneity Homeostasis Hydrogels Immunogenicity microvesicles Nanomaterials nanomedicine Nanoparticles Nanotechnology Plasma Proteins Regeneration (physiology) regenerative medicine Review Tissue engineering Vesicles |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaeqEHBAXU5SUjlVMVkWTt2MsFAWJBlegJCrdo7IwBqUoou0j8fGay3iU5lEukxJZjeTyebx6eEeKHIVCsK-8SXbGb0TtIHAHxhKRR6gJq9K2j_ep3cXmjft3pu2hwm8SwyvmZ2B7UVePZRn6YF4QD7cgqdfz0L-GqUexdjSU0PosvWU6ylm-Kjy8WNhbOeUniaBbvPiTt_rCGusn4u-ULKR1J1Cbs76HMfoxkR-iMV8VKRIvyZEbeNfEJ62_iayeH4Lq4nb9hJc9faRA2xXNsqfyDkzbm7UhewyOp5VglV1ChpAO1IZw623qSQKuM3hp50vFmb4ib8fn12WUSqyUkXmk9TZB0i8KSxmnCyJocUCE4X-QhwNAYGl4Tr2l6ZpgDOxdBKQPBOh-0s8EON8VS3dT4XUiwLScHGCEDrAKUD1Xq9VAHTHMXBuLnfOVKH1OJc0WLvyWpFLzOZXedB-Jg0ftplkLjP_1OmQiLPpz4uv3QPN-XkY9Kk2ZeudSHLIDKq8KhGtGRlEEGQJpdOhA7cxKWkRsn5fveGYj9RTPxEVMEamxeqI9SijaLMjQP0yN9b0L9lvrxoc3IbbS2pFhuffzzbbGcs7bOBSj0jliaPr_gLkGaqdtr9-0ba8r5-g priority: 102 providerName: ProQuest |
Title | Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications |
URI | https://www.proquest.com/docview/2677289844 https://www.proquest.com/docview/2444385478 https://pubmed.ncbi.nlm.nih.gov/PMC7558114 https://doaj.org/article/701c4b0cf1fa42d6be492251a1aa1480 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21cGkPiAJVt4WVK5VTFZEPO3a4AdotqgSqKijcorEzFkhVtiqLxM_v2MmukkPFhUukxCPLGY_t9zKTGYAvmkGxapxNVBPcjM5iYhmIJ3wapdaTIhcd7ReX5fm1_H6rbgelvkJMWJceuFPckU4zJ23qfOZR5k1pSVZsgxlmiAzlI1tPq3RApuIeXGUFH0RdpHvBvP6oxXaRhecm_IoyOINiqv4RvhxHRw6Om_k2bPU4UZx043sHr6jdgbeD7IG7cLO6o0bMnriT8BE-RJWKX_QQo92OxRXeMyGnJrnAhgRvpQtGqJ3RCYarovfTiJOBH3sPruezq7PzpK-TkDip1DIhZhWlYa6pfWV0jiQJrStz77HQmrtXvMoUXzPKMbgVUUqN3ljnlTXeFO9ho1209AEEmriGPVYUoFWJ0vkmdapQntLc-gl8XWmudn0S8VDL4nfNZCLouR7qeQKHa-k_XfKM_8idhklYy4SU1_EBG0LdG0L9nCFMYH81hXW_Dh_qvGT2YCoj5QQ-r5t5BYUZwZYWjywjpWRjkZrHoUdTPxrQuKW9v4u5uLVShinlx5d4g0_wJg9sPhSoUPuwsfz7SAcMeZZ2Cq_N_NsUNk9nlz9-TqOt_wPpoATC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsBI9ISiJo4de5EQKtBlS7s9baG31HZsqFQlbXcr4E_xG5nJY0kOcOslUpyR43jG4288kxmAVwpBsSycjWRBbkZnTWQRiEe4G8U2eOld7WifHWbTI_H5WB6vwe_uXxgKq-x0Yq2oi8rRGfk2zxAH6rEW4t35RURVo8i72pXQaMRi3__6gSbb4u3eR-TvFueT3fmHadRWFYickHIZecTgmUbLTAW0t7nxwhvrMh6CSZUyhZcokxKvieeGnHBGCGWCti5Iq4NOsd8bcFOkaUohhHryaXWmQzk2cftr4uvTdBxvl6asEmrX9ANMb-erCwQMUO0wJrO3yU3uwd0WnbKdRpzuw5ovH8CdXs7Ch_C1u_MF2_2JndDRP8Wysi9-UcfYvWFzc3pWIUE0ww9lqMArxMWNqDMEyaz1DrGdnvf8ERxdyzw-hvWyKv0TYEbXmiOYsSdAlxnhQhE7mcrgY27DCF53M5e7NnU5VdA4y9GEoXnO-_M8gq0V9XmTsuMfdO-JCSsaSrRdN1SX3_J23eYqTpywsQtJMIIXmfVijCowMYkxaEnGI9jsWJi3q3-R_5XVEbxcPcZ1Sxwxpa-ukEYIgcIiFI5DDVg_GNDwSXn6vc4ArqTUaMhu_P_lL-DWdD47yA_2Dvefwm1OJwVU_EJuwvry8so_Qzi1tM9rGWZwct2L5g-BqDdZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QDzFlgJGoicUbeLYsRepQoV2aSmtOLTQW7Adu61UJaW7FfSv8euYyWNJDnDrJVKSUR6eh7_xjGcAXisExbJwNpIFhRmdNZFFIB7hbBTb4KV3daB9_yDbORKfjuXxEvzu9sJQWmVnE2tDXVSO1sjHPEMcqCdaiHFo0yK-bE3fXfyIqIMURVq7dhqNiOz565_ovs02dreQ1-ucT7cPP-xEbYeByAkp55FHPJ5p9NJUQN-bGy-8sS7jIZhUKVN4ifIp8Zh4biggZ4RQJmjrgrQ66BSfewtuqxT1hHapTz8u1neo3iZOhU2ufZpO4nFpyiqh65o2w_RmwbpZwADhDvMzexPe9D7ca5Eq22xE6wEs-fIhrPTqFz6Cb92ZL9j2L3wIhQEor5V99bM63-4tOzRn5xUSRPv4owyNeYUYuRF7hoCZtZEittmLpD-GoxsZxyewXFalfwrM6NqKBDPxBO4yI1woYidTGXzMbRjBm27kcteWMaduGuc5ujM0znl_nEewvqC-aMp3_IPuPTFhQUNFt-sL1eVJ3upwruLECRu7kAQjeJFZLyZoDhOTGINeZTyCtY6FeWsJZvlfuR3Bq8Vt1GHiiCl9dYU0QggUFqHwO9SA9YMPGt4pz07rauBKSo1O7er_X_4S7qC65J93D_aewV1OiwbUB0OuwfL88so_R2Q1ty9qEWbw_aZ15g-bxzuM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Extracellular+Vesicles%3A+Tailored-Made+Nanomaterials+for+Medical+Applications&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Man%2C+Kenny&rft.au=Brunet%2C+Mathieu+Y&rft.au=Jones%2C+Marie-Christine&rft.au=Cox%2C+Sophie+C&rft.date=2020-09-15&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fnano10091838&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |