Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications

Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research in...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 10; no. 9; p. 1838
Main Authors Man, Kenny, Brunet, Mathieu Y., Jones, Marie-Christine, Cox, Sophie C.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.09.2020
MDPI
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano10091838

Cover

Abstract Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics.
AbstractList Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics.
Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics.Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication, regulating tissue development and homeostasis. The low immunogenicity and natural cell-targeting capabilities of EVs has led to extensive research investigating their potential as novel acellular tools for tissue regeneration or for the diagnosis of pathological conditions. However, the clinical use of EVs has been hindered by issues with yield and heterogeneity. From the modification of parental cells and naturally-derived vesicles to the development of artificial biomimetic nanoparticles or the functionalisation of biomaterials, a multitude of techniques have been employed to augment EVs therapeutic efficacy. This review will explore various engineering strategies that could promote EVs scalability and therapeutic effectiveness beyond their native utility. Herein, we highlight the current state-of-the-art EV-engineering techniques with discussion of opportunities and obstacles for each. This is synthesised into a guide for selecting a suitable strategy to maximise the potential efficacy of EVs as nanoscale therapeutics.
Author Brunet, Mathieu Y.
Jones, Marie-Christine
Cox, Sophie C.
Man, Kenny
AuthorAffiliation 2 School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; m.c.jones@bham.ac.uk
1 School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; k.l.man@bham.ac.uk (K.M.); MYB925@student.bham.ac.uk (M.Y.B.)
AuthorAffiliation_xml – name: 1 School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; k.l.man@bham.ac.uk (K.M.); MYB925@student.bham.ac.uk (M.Y.B.)
– name: 2 School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; m.c.jones@bham.ac.uk
Author_xml – sequence: 1
  givenname: Kenny
  orcidid: 0000-0002-7946-9375
  surname: Man
  fullname: Man, Kenny
– sequence: 2
  givenname: Mathieu Y.
  surname: Brunet
  fullname: Brunet, Mathieu Y.
– sequence: 3
  givenname: Marie-Christine
  surname: Jones
  fullname: Jones, Marie-Christine
– sequence: 4
  givenname: Sophie C.
  surname: Cox
  fullname: Cox, Sophie C.
BookMark eNptkk1vFDEMhkeoiJbSGz9gJC4cupDPScIBqaoWqNTCpcAx8mScJavZZElmEf33zXQr1FZcEst-89ix_bI5iCli07ym5B3nhryPEBMlxFDN9bPmiBFlFsIYevDAPmxOSlkTMsu4lvxFc8iZEUzK7qj5uYyrEBEzDu3y75TB4TjuRsjtDyzBjVg-tNcQxlQFiysYsP1aU25gwhxgLK1Pub3CITgY27PtdqzGFFIsr5rnvsbx5P4-br5_Wl6ff1lcfvt8cX52uXBCymmBVIlOc66VN1oxQIHQu455D1ypmk6ajst6UmRgCJMghAKve-dlr73mx83FnjskWNttDhvINzZBsHeOlFcW8jR_xCpCneiJ89SDYEPXozCMSQoUgApNKuvjnrXd9RscHMbaj_ER9HEkhl92lf5YJaWmVFTA23tATr93WCa7CWVuKERMu2KZEKJOQKi57jdPpOu0y7G2yrJOKaaNFjPwdK9yOZWS0f8rhhI7L4B9uABVzp7IXZju5lHLDeP_H90CrM61Pw
CitedBy_id crossref_primary_10_1007_s10439_021_02872_2
crossref_primary_10_1093_stcltm_szac052
crossref_primary_10_3390_cancers13123075
crossref_primary_10_1016_j_tdr_2024_100004
crossref_primary_10_1039_D2BM00062H
crossref_primary_10_1080_23308249_2021_1985429
crossref_primary_10_3390_ijms22126375
crossref_primary_10_1007_s40820_024_01557_4
crossref_primary_10_3390_ijms22179543
crossref_primary_10_1016_j_bone_2021_116138
crossref_primary_10_1016_j_freeradbiomed_2024_06_002
crossref_primary_10_3389_fbioe_2021_757220
crossref_primary_10_1016_j_jconrel_2021_08_037
crossref_primary_10_3389_fped_2023_1205882
crossref_primary_10_1039_D1TB01088C
crossref_primary_10_3389_fbioe_2023_1322514
crossref_primary_10_3389_fimmu_2023_1090416
crossref_primary_10_3390_ijms22083887
crossref_primary_10_1186_s12951_023_01895_2
crossref_primary_10_1021_acs_biomac_3c00279
crossref_primary_10_1016_j_lfs_2022_120935
crossref_primary_10_1007_s11481_020_09981_0
crossref_primary_10_1016_j_ejphar_2022_174995
crossref_primary_10_1016_j_bbrc_2024_150841
crossref_primary_10_1186_s12964_024_01870_w
crossref_primary_10_3390_ijms23020832
crossref_primary_10_14814_phy2_15219
crossref_primary_10_1016_j_ymthe_2023_03_025
crossref_primary_10_2217_nnm_2021_0123
crossref_primary_10_3390_pr9020356
crossref_primary_10_1016_j_mtbio_2023_100751
crossref_primary_10_3390_biomedicines11041231
crossref_primary_10_3390_ijms24043061
crossref_primary_10_1016_j_jconrel_2023_03_009
crossref_primary_10_3390_pharmaceutics14030653
crossref_primary_10_1002_jev2_12118
crossref_primary_10_1007_s40778_022_00210_3
crossref_primary_10_1038_s41413_023_00313_5
crossref_primary_10_1007_s00441_022_03613_0
crossref_primary_10_1016_j_jcyt_2025_02_004
crossref_primary_10_1007_s00109_023_02357_w
crossref_primary_10_3390_cells11142232
crossref_primary_10_3389_fnagi_2023_1184435
crossref_primary_10_3390_ijms24087564
crossref_primary_10_3390_cimb46090548
crossref_primary_10_32604_biocell_2022_018781
crossref_primary_10_3389_fphar_2023_1067992
crossref_primary_10_3390_ijms23126480
crossref_primary_10_3390_ijms252312524
crossref_primary_10_1002_adhm_202201384
crossref_primary_10_3389_fbioe_2022_829969
crossref_primary_10_1007_s12035_022_02752_3
crossref_primary_10_1016_j_biopha_2023_115284
crossref_primary_10_1016_j_ymthe_2023_02_013
crossref_primary_10_1016_j_addr_2021_04_013
crossref_primary_10_1021_acsomega_2c04420
crossref_primary_10_5483_BMBRep_2022_55_1_161
crossref_primary_10_3389_fneur_2023_1324216
crossref_primary_10_3390_cells11010043
crossref_primary_10_1093_burnst_tkad039
crossref_primary_10_1186_s12951_023_01973_5
crossref_primary_10_1016_j_jconrel_2023_01_057
crossref_primary_10_3390_biom14070792
crossref_primary_10_1007_s12015_021_10309_5
crossref_primary_10_1016_j_prp_2024_155618
crossref_primary_10_1186_s13287_021_02266_0
crossref_primary_10_3390_pharmaceutics15020333
crossref_primary_10_1002_jex2_111
crossref_primary_10_1002_biot_202100401
Cites_doi 10.1016/j.celrep.2016.09.031
10.1016/j.biomaterials.2016.07.003
10.1016/j.ymthe.2017.03.021
10.3892/ijmm.2016.2759
10.3389/fmed.2018.00233
10.1021/la802447v
10.1002/biot.201700072
10.1007/978-1-4939-7652-2_4
10.1016/j.biomaterials.2016.09.029
10.12688/f1000research.12533.1
10.1039/C5NR07144E
10.1007/s12195-016-0457-4
10.1016/j.biomaterials.2010.03.006
10.1016/S1359-0294(00)00090-X
10.20944/preprints201810.0507.v1
10.3402/jev.v4.26883
10.1101/730077
10.1016/j.febslet.2004.06.082
10.1021/acsami.9b10126
10.1016/j.nano.2015.10.012
10.1038/nrm.2017.125
10.1021/nn402232g
10.1038/s41551-018-0229-7
10.1016/j.jcyt.2017.01.001
10.1038/s41598-019-49671-3
10.3402/jev.v4.26238
10.1038/s41598-018-19211-6
10.1016/j.devcel.2019.01.004
10.1038/s41598-018-20505-y
10.1016/j.neuint.2016.08.003
10.1093/nar/gks463
10.1038/mt.2016.126
10.1186/s13287-015-0095-0
10.1016/j.ceb.2014.06.013
10.1038/nmat2442
10.1039/C9BM00101H
10.1016/j.jconrel.2013.08.014
10.1016/j.ijpharm.2018.08.040
10.1016/j.joca.2016.06.022
10.1186/1478-811X-9-12
10.1038/nm0405-367
10.1038/s41598-017-13027-6
10.1016/j.clim.2006.07.007
10.1002/art.27501
10.1161/res.123.suppl_1.490
10.1093/pcmedi/pbaa007
10.1038/ncomms12277
10.5966/sctm.2016-0275
10.1007/s11302-009-9132-8
10.1038/mt.2010.105
10.1080/20013078.2019.1596669
10.1186/1478-811X-12-26
10.1016/j.nantod.2015.04.004
10.1016/j.ijbiomac.2018.05.066
10.1098/rsif.2008.0448.focus
10.5966/sctm.2015-0367
10.1039/C7NR00352H
10.1016/j.phrs.2016.07.006
10.1083/jcb.201211138
10.1093/cvr/cvy067
10.1021/bc500291r
10.1158/0008-5472.CAN-17-2880
10.1093/rb/rby013
10.3390/ijms18061190
10.1093/biosci/biv084
10.1038/ncb2000
10.7150/thno.30853
10.1021/acsami.6b01315
10.1016/j.biotechadv.2018.09.001
10.1177/2041731418810130
10.1155/2011/591325
10.1016/j.nano.2017.09.011
10.1002/adfm.201909125
10.1080/20013078.2017.1422676
10.1111/cpr.12669
10.1038/srep21961
10.1038/s41598-017-14725-x
10.1021/mp300258c
10.1038/nbt.1830
10.1007/s10853-009-3770-7
10.1021/acsnano.8b02053
10.1002/immu.200310028
10.1016/j.jim.2009.03.011
10.1021/acs.molpharmaceut.5b00364
10.1021/nl0722929
10.1016/j.jconrel.2014.11.029
10.1038/mt.2015.44
10.1016/j.niox.2016.12.005
10.3402/jmahp.v4.31036
10.1002/wnan.1395
10.1080/20013078.2018.1535750
10.1016/j.addr.2016.02.006
10.1021/acsnano.6b07607
10.1007/s13238-018-0529-4
10.1111/cpr.12570
10.1016/j.molmed.2018.01.006
10.1002/adhm.201801604
10.3390/cells8070727
10.1016/j.jconrel.2017.08.022
10.1080/20013078.2017.1333882
10.1021/acs.nanolett.8b02689
10.1016/j.ymthe.2018.09.015
10.1242/jcs.215210
10.1155/2016/5029619
10.1038/aps.2017.12
10.1038/cr.2014.44
10.1172/jci.insight.99263
10.1038/aps.2013.166
10.1016/j.biomaterials.2016.06.024
10.1021/nl5047494
10.1038/nri3622
10.3390/ijms20102584
10.1016/j.jconrel.2016.01.009
10.1021/acsami.8b08449
10.1083/jcb.200911018
10.1021/acsnano.5b06939
10.3402/jev.v4.26316
10.3389/fsufs.2019.00023
10.3390/cells8121509
10.1038/srep21933
10.1021/acsbiomaterials.8b01646
10.3390/ijms19020346
10.3390/nano9071025
10.1016/j.bcmd.2005.05.002
10.1038/mt.2011.303
10.1016/j.ymthe.2018.03.019
10.1016/j.omtm.2019.01.001
10.1155/2015/659890
10.3402/jev.v4.27066
10.3390/jfb6010081
10.1016/j.tibtech.2012.07.005
10.3390/cancers12020298
10.1038/labinvest.2010.152
10.1038/ncomms3980
10.1016/j.actbio.2018.11.024
10.1002/adfm.201807189
10.1016/j.biomaterials.2017.10.012
10.1038/srep10112
10.1016/j.ymeth.2019.10.005
10.1016/j.jconrel.2015.03.033
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano10091838
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_701c4b0cf1fa42d6be492251a1aa1480
PMC7558114
10_3390_nano10091838
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c455t-e174683387f9872ae4eabc62ffa377ade59635e591e2a9025a447af8bcf5b8f83
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:25:58 EDT 2025
Thu Aug 21 18:35:34 EDT 2025
Thu Sep 04 19:32:50 EDT 2025
Fri Jul 25 09:38:07 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 01:17:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-e174683387f9872ae4eabc62ffa377ade59635e591e2a9025a447af8bcf5b8f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7946-9375
OpenAccessLink https://doaj.org/article/701c4b0cf1fa42d6be492251a1aa1480
PMID 32942556
PQID 2677289844
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_701c4b0cf1fa42d6be492251a1aa1480
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7558114
proquest_miscellaneous_2444385478
proquest_journals_2677289844
crossref_primary_10_3390_nano10091838
crossref_citationtrail_10_3390_nano10091838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200915
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 9
  year: 2020
  text: 20200915
  day: 15
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
Adjei (ref_139) 2015; 6
Laulagnier (ref_41) 2004; 572
Luan (ref_82) 2017; 38
Schlee (ref_19) 2011; 29
ref_12
He (ref_124) 2008; 24
ref_131
ref_11
Batrakova (ref_86) 2016; 8
ref_10
Basanez (ref_113) 2013; 10
Zhang (ref_61) 2017; 111
ref_97
ref_132
ref_135
Maeger (ref_17) 2013; 12
Tao (ref_31) 2017; 6
ref_134
Sato (ref_83) 2016; 6
Fang (ref_129) 2016; 5
ref_18
Hsu (ref_40) 2010; 189
ref_125
Palviainen (ref_67) 2019; 8
Clayton (ref_21) 2003; 33
ref_25
Tian (ref_92) 2018; 150
ref_23
Zaborowski (ref_5) 2015; 65
Kim (ref_28) 2020; 177
ref_20
ref_121
Zadpoor (ref_118) 2018; 5
Piffoux (ref_89) 2018; 12
ref_27
ref_26
Pomatto (ref_73) 2019; 13
Qu (ref_47) 2009; 5
Anderson (ref_14) 2010; 90
ref_70
Bose (ref_120) 2012; 30
ref_74
Yan (ref_141) 2018; 1740
Armstrong (ref_30) 2017; 11
Jang (ref_102) 2013; 7
Ostrowski (ref_39) 2010; 12
Patel (ref_62) 2018; 36
Kooijmans (ref_90) 2016; 224
Qi (ref_95) 2016; 10
Carreira (ref_48) 2016; 8
Zhang (ref_115) 2016; 24
Santangelo (ref_35) 2016; 17
Pachler (ref_143) 2017; 19
Ader (ref_60) 2014; 31
ref_140
Haney (ref_79) 2015; 207
Han (ref_104) 2019; 5
Fuhrmann (ref_138) 2015; 10
Lee (ref_50) 2016; 8
Barenholz (ref_54) 2001; 6
Raposo (ref_3) 2013; 200
ref_87
Willis (ref_55) 2017; 63
Haraszti (ref_68) 2018; 26
Lamichhane (ref_78) 2015; 12
Robbins (ref_7) 2014; 14
Lamichhane (ref_76) 2016; 9
Sun (ref_56) 2014; 35
Anel (ref_111) 2007; 122
Lunavat (ref_101) 2016; 102
Hu (ref_42) 2020; 3
ref_58
Sun (ref_71) 2010; 18
Nel (ref_98) 2009; 8
Leroueil (ref_99) 2008; 8
Xu (ref_128) 2018; 117
ref_53
Tabata (ref_63) 2009; 6
ref_52
Biscans (ref_94) 2018; 26
ref_59
Liu (ref_33) 2019; 9
Gnecchi (ref_15) 2005; 11
Kooijmans (ref_43) 2016; 111
Wang (ref_45) 2015; 6
ref_65
Fuhrmann (ref_80) 2015; 205
Stephenson (ref_66) 2018; 7
Lu (ref_109) 2018; 550
Kooijmans (ref_107) 2012; 7
Sutaria (ref_37) 2017; 6
Lee (ref_51) 2015; 15
Verweij (ref_22) 2019; 48
Gangadaran (ref_133) 2017; 264
Smyth (ref_91) 2014; 25
Imai (ref_114) 2015; 4
Zhang (ref_130) 2018; 10
Patel (ref_64) 2019; 95
Raposo (ref_13) 2018; 19
Madrigal (ref_110) 2009; 344
Li (ref_34) 2019; 19
Kooijmans (ref_75) 2013; 172
Chen (ref_126) 2018; 114
Mager (ref_85) 2017; 25
Wan (ref_93) 2018; 78
Deregibus (ref_123) 2016; 38
ref_36
ref_32
Li (ref_57) 2015; 4
Mardpour (ref_117) 2019; 11
ref_38
Liu (ref_136) 2017; 9
Vader (ref_29) 2016; 106
Kim (ref_77) 2016; 12
ref_103
ref_106
Colao (ref_142) 2018; 24
ref_105
Basanez (ref_112) 2010; 62
Sabir (ref_119) 2009; 44
Williams (ref_4) 2014; 24
ref_46
Kim (ref_88) 2018; 14
Liu (ref_127) 2018; 2
ref_44
ref_100
Han (ref_116) 2019; 7
ref_1
Sarkar (ref_49) 2010; 31
Watson (ref_69) 2016; 105
ref_2
Wagner (ref_108) 2011; 2011
Podolak (ref_84) 2010; 9
ref_9
Rani (ref_16) 2015; 23
ref_8
Cheng (ref_81) 2019; 10
Quah (ref_24) 2005; 35
Maguire (ref_96) 2012; 20
Didiot (ref_72) 2016; 24
Huang (ref_122) 2016; 111
Mendt (ref_144) 2018; 3
ref_6
References_xml – volume: 17
  start-page: 799
  year: 2016
  ident: ref_35
  article-title: The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.031
– volume: 105
  start-page: 195
  year: 2016
  ident: ref_69
  article-title: Efficient production and enhanced tumor delivery of engineered extracellular vesicles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.07.003
– volume: 25
  start-page: 1580
  year: 2017
  ident: ref_85
  article-title: Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.021
– volume: 38
  start-page: 1359
  year: 2016
  ident: ref_123
  article-title: Charge-based precipitation of extracellular vesicles
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2759
– ident: ref_65
  doi: 10.3389/fmed.2018.00233
– volume: 24
  start-page: 12508
  year: 2008
  ident: ref_124
  article-title: Effect of Grafting RGD and BMP-2 Protein-Derived Peptides to a Hydrogel Substrate on Osteogenic Differentiation of Marrow Stromal Cells
  publication-title: Langmuir
  doi: 10.1021/la802447v
– ident: ref_125
  doi: 10.1002/biot.201700072
– volume: 1740
  start-page: 35
  year: 2018
  ident: ref_141
  article-title: Use of a Hollow Fiber Bioreactor to Collect Extracellular Vesicles from Cells in Culture
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7652-2_4
– volume: 111
  start-page: 103
  year: 2016
  ident: ref_122
  article-title: Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.029
– volume: 7
  start-page: 517
  year: 2018
  ident: ref_66
  article-title: Recent advances in bioreactors for cell-based therapies
  publication-title: F1000Research
  doi: 10.12688/f1000research.12533.1
– ident: ref_1
– volume: 8
  start-page: 7474
  year: 2016
  ident: ref_48
  article-title: Ultra-fast stem cell labelling using cationised magnetoferritin
  publication-title: Nanoscale
  doi: 10.1039/C5NR07144E
– volume: 9
  start-page: 315
  year: 2016
  ident: ref_76
  article-title: Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication
  publication-title: Cell Mol. Bioeng.
  doi: 10.1007/s12195-016-0457-4
– volume: 31
  start-page: 5266
  year: 2010
  ident: ref_49
  article-title: Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.006
– volume: 6
  start-page: 66
  year: 2001
  ident: ref_54
  article-title: Liposome application: Problems and prospects
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(00)00090-X
– ident: ref_9
  doi: 10.20944/preprints201810.0507.v1
– volume: 4
  start-page: 26883
  year: 2015
  ident: ref_57
  article-title: Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles
  publication-title: J. Extracell Vesicles
  doi: 10.3402/jev.v4.26883
– ident: ref_58
  doi: 10.1101/730077
– volume: 572
  start-page: 11
  year: 2004
  ident: ref_41
  article-title: PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.06.082
– volume: 11
  start-page: 37421
  year: 2019
  ident: ref_117
  article-title: Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10126
– volume: 12
  start-page: 655
  year: 2016
  ident: ref_77
  article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells
  publication-title: Nanomed-Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2015.10.012
– volume: 19
  start-page: 213
  year: 2018
  ident: ref_13
  article-title: Shedding light on the cell biology of extracellular vesicles
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.125
– volume: 7
  start-page: 7698
  year: 2013
  ident: ref_102
  article-title: Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors
  publication-title: ACS Nano
  doi: 10.1021/nn402232g
– volume: 2
  start-page: 293
  year: 2018
  ident: ref_127
  article-title: Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0229-7
– volume: 19
  start-page: 458
  year: 2017
  ident: ref_143
  article-title: A Good Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2017.01.001
– ident: ref_140
  doi: 10.1038/s41598-019-49671-3
– volume: 4
  start-page: 26238
  year: 2015
  ident: ref_114
  article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice
  publication-title: J. Extracell Vesicles
  doi: 10.3402/jev.v4.26238
– ident: ref_18
  doi: 10.1038/s41598-018-19211-6
– volume: 48
  start-page: 573
  year: 2019
  ident: ref_22
  article-title: Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.01.004
– volume: 12
  start-page: 348
  year: 2013
  ident: ref_17
  article-title: Extracellular vesicles: Biology and emerging therapeutic opportunities
  publication-title: Nat. Rev. Drug Discov.
– ident: ref_106
  doi: 10.1038/s41598-018-20505-y
– volume: 111
  start-page: 69
  year: 2017
  ident: ref_61
  article-title: Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2016.08.003
– ident: ref_74
  doi: 10.1093/nar/gks463
– volume: 24
  start-page: 1836
  year: 2016
  ident: ref_72
  article-title: Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.126
– volume: 6
  start-page: 100
  year: 2015
  ident: ref_45
  article-title: Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-015-0095-0
– volume: 31
  start-page: 23
  year: 2014
  ident: ref_60
  article-title: Modeling human development in 3D culture
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2014.06.013
– volume: 8
  start-page: 543
  year: 2009
  ident: ref_98
  article-title: Understanding biophysicochemical interactions at the nano-bio interface
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2442
– volume: 7
  start-page: 2920
  year: 2019
  ident: ref_116
  article-title: Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00101H
– volume: 172
  start-page: 229
  year: 2013
  ident: ref_75
  article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.08.014
– volume: 550
  start-page: 100
  year: 2018
  ident: ref_109
  article-title: Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA
  publication-title: Int. J. Pharm
  doi: 10.1016/j.ijpharm.2018.08.040
– volume: 24
  start-page: 2135
  year: 2016
  ident: ref_115
  article-title: Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2016.06.022
– ident: ref_12
  doi: 10.1186/1478-811X-9-12
– volume: 11
  start-page: 367
  year: 2005
  ident: ref_15
  article-title: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm0405-367
– ident: ref_59
  doi: 10.1038/s41598-017-13027-6
– volume: 122
  start-page: 28
  year: 2007
  ident: ref_111
  article-title: Rheumatoid synovial fluid T cells are sensitive to APO2L/TRAIL
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2006.07.007
– volume: 62
  start-page: 2272
  year: 2010
  ident: ref_112
  article-title: Liposome-Bound APO2L/TRAIL Is an Effective Treatment in a Rabbit Model of Rheumatoid Arthritis
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.27501
– ident: ref_134
  doi: 10.1161/res.123.suppl_1.490
– volume: 3
  start-page: 54
  year: 2020
  ident: ref_42
  article-title: Clinical applications of exosome membrane proteins
  publication-title: Precis Clin. Med.
  doi: 10.1093/pcmedi/pbaa007
– ident: ref_38
  doi: 10.1038/ncomms12277
– volume: 6
  start-page: 736
  year: 2017
  ident: ref_31
  article-title: Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model
  publication-title: Stem Cell Transl. Med.
  doi: 10.5966/sctm.2016-0275
– volume: 5
  start-page: 163
  year: 2009
  ident: ref_47
  article-title: P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways
  publication-title: Purinerg. Signal.
  doi: 10.1007/s11302-009-9132-8
– volume: 18
  start-page: 1606
  year: 2010
  ident: ref_71
  article-title: A Novel Nanoparticle Drug Delivery System: The Anti-inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.105
– volume: 8
  start-page: 1596669
  year: 2019
  ident: ref_67
  article-title: Metabolic signature of extracellular vesicles depends on the cell culture conditions
  publication-title: J. Extracell Vesicles
  doi: 10.1080/20013078.2019.1596669
– ident: ref_46
  doi: 10.1186/1478-811X-12-26
– volume: 10
  start-page: 397
  year: 2015
  ident: ref_138
  article-title: Cell-derived vesicles for drug therapy and diagnostics: Opportunities and challenges
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.004
– volume: 117
  start-page: 102
  year: 2018
  ident: ref_128
  article-title: Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.05.066
– volume: 6
  start-page: S311
  year: 2009
  ident: ref_63
  article-title: Biomaterial technology for tissue engineering applications
  publication-title: J. R Soc. Interface
  doi: 10.1098/rsif.2008.0448.focus
– volume: 5
  start-page: 1425
  year: 2016
  ident: ref_129
  article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-beta/SMAD2 Pathway During Wound Healing
  publication-title: Stem Cell Transl. Med.
  doi: 10.5966/sctm.2015-0367
– volume: 9
  start-page: 4430
  year: 2017
  ident: ref_136
  article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration
  publication-title: Nanoscale
  doi: 10.1039/C7NR00352H
– volume: 111
  start-page: 487
  year: 2016
  ident: ref_43
  article-title: Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.07.006
– volume: 200
  start-page: 373
  year: 2013
  ident: ref_3
  article-title: Extracellular vesicles: Exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211138
– volume: 114
  start-page: 1029
  year: 2018
  ident: ref_126
  article-title: Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy067
– volume: 25
  start-page: 1777
  year: 2014
  ident: ref_91
  article-title: Surface Functionalization of Exosomes Using Click Chemistry
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc500291r
– volume: 78
  start-page: 798
  year: 2018
  ident: ref_93
  article-title: Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-2880
– volume: 5
  start-page: 197
  year: 2018
  ident: ref_118
  article-title: Bone tissue engineering via growth factor delivery: From scaffolds to complex matrices
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rby013
– ident: ref_27
  doi: 10.3390/ijms18061190
– volume: 65
  start-page: 783
  year: 2015
  ident: ref_5
  article-title: Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study
  publication-title: Bioscience
  doi: 10.1093/biosci/biv084
– volume: 12
  start-page: 19
  year: 2010
  ident: ref_39
  article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2000
– volume: 9
  start-page: 1015
  year: 2019
  ident: ref_33
  article-title: Design strategies and application progress of therapeutic exosomes
  publication-title: Theranostics
  doi: 10.7150/thno.30853
– volume: 7
  start-page: 1525
  year: 2012
  ident: ref_107
  article-title: Exosome mimetics: A novel class of drug delivery systems
  publication-title: Int. J. Nanomed.
– volume: 8
  start-page: 6790
  year: 2016
  ident: ref_50
  article-title: Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01315
– volume: 36
  start-page: 2051
  year: 2018
  ident: ref_62
  article-title: Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: Impact of the bioproduction microenvironment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.09.001
– ident: ref_10
  doi: 10.1177/2041731418810130
– volume: 2011
  start-page: 591325
  year: 2011
  ident: ref_108
  article-title: Liposome technology for industrial purposes
  publication-title: J. Drug Deliv.
  doi: 10.1155/2011/591325
– volume: 14
  start-page: 195
  year: 2018
  ident: ref_88
  article-title: Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.09.011
– ident: ref_121
  doi: 10.1002/adfm.201909125
– ident: ref_105
  doi: 10.1080/20013078.2017.1422676
– ident: ref_132
  doi: 10.1111/cpr.12669
– ident: ref_131
  doi: 10.1038/srep21961
– ident: ref_100
  doi: 10.1038/s41598-017-14725-x
– volume: 9
  start-page: 425
  year: 2010
  ident: ref_84
  article-title: Saponins as cytotoxic agents: A review
  publication-title: Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnol.
– volume: 10
  start-page: 893
  year: 2013
  ident: ref_113
  article-title: Liposomes Decorated with Apo2L/TRAIL Overcome Chemoresistance of Human Hematologic Tumor Cells
  publication-title: Mol. Pharmaceut.
  doi: 10.1021/mp300258c
– volume: 29
  start-page: 325
  year: 2011
  ident: ref_19
  article-title: SiRNA delivery with exosome nanoparticles
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1830
– volume: 44
  start-page: 5713
  year: 2009
  ident: ref_119
  article-title: A review on biodegradable polymeric materials for bone tissue engineering applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3770-7
– volume: 12
  start-page: 6830
  year: 2018
  ident: ref_89
  article-title: Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02053
– volume: 33
  start-page: 522
  year: 2003
  ident: ref_21
  article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59
  publication-title: Eur. J. Immunol.
  doi: 10.1002/immu.200310028
– volume: 344
  start-page: 121
  year: 2009
  ident: ref_110
  article-title: Artificial exosomes as tools for basic and clinical immunology
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2009.03.011
– volume: 12
  start-page: 3650
  year: 2015
  ident: ref_78
  article-title: Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery
  publication-title: Mol. Pharmaceut.
  doi: 10.1021/acs.molpharmaceut.5b00364
– volume: 8
  start-page: 420
  year: 2008
  ident: ref_99
  article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl0722929
– volume: 205
  start-page: 35
  year: 2015
  ident: ref_80
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.11.029
– volume: 23
  start-page: 812
  year: 2015
  ident: ref_16
  article-title: Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.44
– volume: 63
  start-page: 1
  year: 2017
  ident: ref_55
  article-title: Nitrite-derived nitric oxide reduces hypoxia-inducible factor 1alpha-mediated extracellular vesicle production by endothelial cells
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.12.005
– ident: ref_44
  doi: 10.3402/jmahp.v4.31036
– volume: 8
  start-page: 744
  year: 2016
  ident: ref_86
  article-title: Development and regulation of exosome-based therapy products
  publication-title: Wires Nanomed. Nanobi
  doi: 10.1002/wnan.1395
– ident: ref_11
  doi: 10.1080/20013078.2018.1535750
– volume: 106
  start-page: 148
  year: 2016
  ident: ref_29
  article-title: Extracellular vesicles for drug delivery
  publication-title: Adv. Drug Deliver Rev.
  doi: 10.1016/j.addr.2016.02.006
– volume: 11
  start-page: 69
  year: 2017
  ident: ref_30
  article-title: Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07607
– volume: 10
  start-page: 295
  year: 2019
  ident: ref_81
  article-title: Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes
  publication-title: Protein Cell
  doi: 10.1007/s13238-018-0529-4
– ident: ref_135
  doi: 10.1111/cpr.12570
– volume: 24
  start-page: 242
  year: 2018
  ident: ref_142
  article-title: Manufacturing Exosomes: A Promising Therapeutic Platform
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2018.01.006
– ident: ref_137
  doi: 10.1002/adhm.201801604
– ident: ref_8
  doi: 10.3390/cells8070727
– volume: 264
  start-page: 112
  year: 2017
  ident: ref_133
  article-title: Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.08.022
– volume: 6
  start-page: 1333882
  year: 2017
  ident: ref_37
  article-title: Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery
  publication-title: J. Extracell Vesicles
  doi: 10.1080/20013078.2017.1333882
– volume: 19
  start-page: 19
  year: 2019
  ident: ref_34
  article-title: In Vitro and in Vivo RNA Inhibition by CD9-HuR Functionalized Exosomes Encapsulated with miRNA or CRISPR/dCas9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02689
– volume: 26
  start-page: 2838
  year: 2018
  ident: ref_68
  article-title: Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.09.015
– ident: ref_23
  doi: 10.1242/jcs.215210
– ident: ref_25
  doi: 10.1155/2016/5029619
– volume: 38
  start-page: 754
  year: 2017
  ident: ref_82
  article-title: Engineering exosomes as refined biological nanoplatforms for drug delivery
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2017.12
– volume: 24
  start-page: 766
  year: 2014
  ident: ref_4
  article-title: Double-stranded DNA in exosomes: A novel biomarker in cancer detection
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.44
– volume: 3
  start-page: e99263
  year: 2018
  ident: ref_144
  article-title: Generation and testing of clinical-grade exosomes for pancreatic cancer
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.99263
– volume: 35
  start-page: 381
  year: 2014
  ident: ref_56
  article-title: Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2013.166
– volume: 102
  start-page: 231
  year: 2016
  ident: ref_101
  article-title: RNAi delivery by exosome-mimetic nanovesicles-Implications for targeting c-Myc in cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.024
– volume: 15
  start-page: 2938
  year: 2015
  ident: ref_51
  article-title: Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration
  publication-title: Nano Lett.
  doi: 10.1021/nl5047494
– volume: 14
  start-page: 195
  year: 2014
  ident: ref_7
  article-title: Regulation of immune responses by extracellular vesicles
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3622
– ident: ref_20
  doi: 10.3390/ijms20102584
– volume: 224
  start-page: 77
  year: 2016
  ident: ref_90
  article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.01.009
– volume: 10
  start-page: 30081
  year: 2018
  ident: ref_130
  article-title: Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b08449
– volume: 189
  start-page: 223
  year: 2010
  ident: ref_40
  article-title: Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911018
– volume: 10
  start-page: 3323
  year: 2016
  ident: ref_95
  article-title: Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06939
– ident: ref_26
  doi: 10.3402/jev.v4.26316
– ident: ref_70
  doi: 10.3389/fsufs.2019.00023
– ident: ref_103
  doi: 10.3390/cells8121509
– volume: 6
  start-page: 21933
  year: 2016
  ident: ref_83
  article-title: Engineering hybrid exosomes by membrane fusion with liposomes
  publication-title: Sci. Rep.
  doi: 10.1038/srep21933
– volume: 5
  start-page: 1534
  year: 2019
  ident: ref_104
  article-title: Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b01646
– ident: ref_52
  doi: 10.3390/ijms19020346
– ident: ref_53
  doi: 10.3390/nano9071025
– volume: 35
  start-page: 94
  year: 2005
  ident: ref_24
  article-title: The immunogenicity of dendritic cell-derived exosomes
  publication-title: Blood Cell Mol. Dis.
  doi: 10.1016/j.bcmd.2005.05.002
– volume: 20
  start-page: 960
  year: 2012
  ident: ref_96
  article-title: Microvesicle-associated AAV Vector as a Novel Gene Delivery System
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2011.303
– volume: 26
  start-page: 1520
  year: 2018
  ident: ref_94
  article-title: Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.03.019
– volume: 13
  start-page: 133
  year: 2019
  ident: ref_73
  article-title: Improved Loading of Plasma-Derived Extracellular Vesicles to Encapsulate Antitumor miRNAs
  publication-title: Mol. Ther.-Meth. Clin. Dev.
  doi: 10.1016/j.omtm.2019.01.001
– ident: ref_32
  doi: 10.1155/2015/659890
– ident: ref_2
  doi: 10.3402/jev.v4.27066
– volume: 6
  start-page: 81
  year: 2015
  ident: ref_139
  article-title: Modulation of the tumor microenvironment for cancer treatment: A biomaterials approach
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb6010081
– volume: 30
  start-page: 546
  year: 2012
  ident: ref_120
  article-title: Recent advances in bone tissue engineering scaffolds
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2012.07.005
– ident: ref_6
  doi: 10.3390/cancers12020298
– volume: 90
  start-page: 1549
  year: 2010
  ident: ref_14
  article-title: Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2010.152
– ident: ref_36
  doi: 10.1038/ncomms3980
– volume: 95
  start-page: 236
  year: 2019
  ident: ref_64
  article-title: Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.11.024
– ident: ref_87
  doi: 10.1002/adfm.201807189
– volume: 150
  start-page: 137
  year: 2018
  ident: ref_92
  article-title: Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.10.012
– ident: ref_97
  doi: 10.1038/srep10112
– volume: 177
  start-page: 80
  year: 2020
  ident: ref_28
  article-title: Engineered extracellular vesicles and their mimetics for clinical translation
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.10.005
– volume: 207
  start-page: 18
  year: 2015
  ident: ref_79
  article-title: Exosomes as drug delivery vehicles for Parkinson’s disease therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.03.033
SSID ssj0000913853
Score 2.4266367
SecondaryResourceType review_article
Snippet Extracellular vesicles (EVs) are emerging as promising nanoscale therapeutics due to their intrinsic role as mediators of intercellular communication,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1838
SubjectTerms Angiogenesis
Apoptosis
Biomaterials
Biomedical materials
Biomimetics
Biosynthesis
Cell interactions
Efficiency
Engineering
Enzymes
EV engineering
exosomes
Extracellular vesicles
Genomes
Heterogeneity
Homeostasis
Hydrogels
Immunogenicity
microvesicles
Nanomaterials
nanomedicine
Nanoparticles
Nanotechnology
Plasma
Proteins
Regeneration (physiology)
regenerative medicine
Review
Tissue engineering
Vesicles
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaeqEHBAXU5SUjlVMVkWTt2MsFAWJBlegJCrdo7IwBqUoou0j8fGay3iU5lEukxJZjeTyebx6eEeKHIVCsK-8SXbGb0TtIHAHxhKRR6gJq9K2j_ep3cXmjft3pu2hwm8SwyvmZ2B7UVePZRn6YF4QD7cgqdfz0L-GqUexdjSU0PosvWU6ylm-Kjy8WNhbOeUniaBbvPiTt_rCGusn4u-ULKR1J1Cbs76HMfoxkR-iMV8VKRIvyZEbeNfEJ62_iayeH4Lq4nb9hJc9faRA2xXNsqfyDkzbm7UhewyOp5VglV1ChpAO1IZw623qSQKuM3hp50vFmb4ib8fn12WUSqyUkXmk9TZB0i8KSxmnCyJocUCE4X-QhwNAYGl4Tr2l6ZpgDOxdBKQPBOh-0s8EON8VS3dT4XUiwLScHGCEDrAKUD1Xq9VAHTHMXBuLnfOVKH1OJc0WLvyWpFLzOZXedB-Jg0ftplkLjP_1OmQiLPpz4uv3QPN-XkY9Kk2ZeudSHLIDKq8KhGtGRlEEGQJpdOhA7cxKWkRsn5fveGYj9RTPxEVMEamxeqI9SijaLMjQP0yN9b0L9lvrxoc3IbbS2pFhuffzzbbGcs7bOBSj0jliaPr_gLkGaqdtr9-0ba8r5-g
  priority: 102
  providerName: ProQuest
Title Engineered Extracellular Vesicles: Tailored-Made Nanomaterials for Medical Applications
URI https://www.proquest.com/docview/2677289844
https://www.proquest.com/docview/2444385478
https://pubmed.ncbi.nlm.nih.gov/PMC7558114
https://doaj.org/article/701c4b0cf1fa42d6be492251a1aa1480
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB21cGkPiAJVt4WVK5VTFZEPO3a4AdotqgSqKijcorEzFkhVtiqLxM_v2MmukkPFhUukxCPLGY_t9zKTGYAvmkGxapxNVBPcjM5iYhmIJ3wapdaTIhcd7ReX5fm1_H6rbgelvkJMWJceuFPckU4zJ23qfOZR5k1pSVZsgxlmiAzlI1tPq3RApuIeXGUFH0RdpHvBvP6oxXaRhecm_IoyOINiqv4RvhxHRw6Om_k2bPU4UZx043sHr6jdgbeD7IG7cLO6o0bMnriT8BE-RJWKX_QQo92OxRXeMyGnJrnAhgRvpQtGqJ3RCYarovfTiJOBH3sPruezq7PzpK-TkDip1DIhZhWlYa6pfWV0jiQJrStz77HQmrtXvMoUXzPKMbgVUUqN3ljnlTXeFO9ho1209AEEmriGPVYUoFWJ0vkmdapQntLc-gl8XWmudn0S8VDL4nfNZCLouR7qeQKHa-k_XfKM_8idhklYy4SU1_EBG0LdG0L9nCFMYH81hXW_Dh_qvGT2YCoj5QQ-r5t5BYUZwZYWjywjpWRjkZrHoUdTPxrQuKW9v4u5uLVShinlx5d4g0_wJg9sPhSoUPuwsfz7SAcMeZZ2Cq_N_NsUNk9nlz9-TqOt_wPpoATC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsBI9ISiJo4de5EQKtBlS7s9baG31HZsqFQlbXcr4E_xG5nJY0kOcOslUpyR43jG4288kxmAVwpBsSycjWRBbkZnTWQRiEe4G8U2eOld7WifHWbTI_H5WB6vwe_uXxgKq-x0Yq2oi8rRGfk2zxAH6rEW4t35RURVo8i72pXQaMRi3__6gSbb4u3eR-TvFueT3fmHadRWFYickHIZecTgmUbLTAW0t7nxwhvrMh6CSZUyhZcokxKvieeGnHBGCGWCti5Iq4NOsd8bcFOkaUohhHryaXWmQzk2cftr4uvTdBxvl6asEmrX9ANMb-erCwQMUO0wJrO3yU3uwd0WnbKdRpzuw5ovH8CdXs7Ch_C1u_MF2_2JndDRP8Wysi9-UcfYvWFzc3pWIUE0ww9lqMArxMWNqDMEyaz1DrGdnvf8ERxdyzw-hvWyKv0TYEbXmiOYsSdAlxnhQhE7mcrgY27DCF53M5e7NnU5VdA4y9GEoXnO-_M8gq0V9XmTsuMfdO-JCSsaSrRdN1SX3_J23eYqTpywsQtJMIIXmfVijCowMYkxaEnGI9jsWJi3q3-R_5XVEbxcPcZ1Sxwxpa-ukEYIgcIiFI5DDVg_GNDwSXn6vc4ArqTUaMhu_P_lL-DWdD47yA_2Dvefwm1OJwVU_EJuwvry8so_Qzi1tM9rGWZwct2L5g-BqDdZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QDzFlgJGoicUbeLYsRepQoV2aSmtOLTQW7Adu61UJaW7FfSv8euYyWNJDnDrJVKSUR6eh7_xjGcAXisExbJwNpIFhRmdNZFFIB7hbBTb4KV3daB9_yDbORKfjuXxEvzu9sJQWmVnE2tDXVSO1sjHPEMcqCdaiHFo0yK-bE3fXfyIqIMURVq7dhqNiOz565_ovs02dreQ1-ucT7cPP-xEbYeByAkp55FHPJ5p9NJUQN-bGy-8sS7jIZhUKVN4ifIp8Zh4biggZ4RQJmjrgrQ66BSfewtuqxT1hHapTz8u1neo3iZOhU2ufZpO4nFpyiqh65o2w_RmwbpZwADhDvMzexPe9D7ca5Eq22xE6wEs-fIhrPTqFz6Cb92ZL9j2L3wIhQEor5V99bM63-4tOzRn5xUSRPv4owyNeYUYuRF7hoCZtZEittmLpD-GoxsZxyewXFalfwrM6NqKBDPxBO4yI1woYidTGXzMbRjBm27kcteWMaduGuc5ujM0znl_nEewvqC-aMp3_IPuPTFhQUNFt-sL1eVJ3upwruLECRu7kAQjeJFZLyZoDhOTGINeZTyCtY6FeWsJZvlfuR3Bq8Vt1GHiiCl9dYU0QggUFqHwO9SA9YMPGt4pz07rauBKSo1O7er_X_4S7qC65J93D_aewV1OiwbUB0OuwfL88so_R2Q1ty9qEWbw_aZ15g-bxzuM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Extracellular+Vesicles%3A+Tailored-Made+Nanomaterials+for+Medical+Applications&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Man%2C+Kenny&rft.au=Brunet%2C+Mathieu+Y&rft.au=Jones%2C+Marie-Christine&rft.au=Cox%2C+Sophie+C&rft.date=2020-09-15&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fnano10091838&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon