Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms

Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Townshi...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 615; pp. 438 - 451
Main Authors Razavi Termeh, Seyed Vahid, Kornejady, Aiding, Pourghasemi, Hamid Reza, Keesstra, Saskia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2018
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2017.09.262

Cover

Abstract Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses. [Display omitted] •The performance of meta-heuristics was assessed in flood susceptibility mapping.•ANFIS-PSO adopted faster convergence algorithm and outperformed other models.•ANFIS-PSO showed practical and robust results compared to other models.
AbstractList Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses.
Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses. [Display omitted] •The performance of meta-heuristics was assessed in flood susceptibility mapping.•ANFIS-PSO adopted faster convergence algorithm and outperformed other models.•ANFIS-PSO showed practical and robust results compared to other models.
Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses.Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses.
Author Razavi Termeh, Seyed Vahid
Pourghasemi, Hamid Reza
Kornejady, Aiding
Keesstra, Saskia
Author_xml – sequence: 1
  givenname: Seyed Vahid
  surname: Razavi Termeh
  fullname: Razavi Termeh, Seyed Vahid
  organization: Faculty of Geodesy & Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Aiding
  surname: Kornejady
  fullname: Kornejady, Aiding
  organization: Department of Watershed Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
– sequence: 3
  givenname: Hamid Reza
  orcidid: 0000-0003-2328-2998
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  email: hr.pourghasemi@shirazu.ac.ir
  organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
– sequence: 4
  givenname: Saskia
  surname: Keesstra
  fullname: Keesstra, Saskia
  email: saskia.keesstra@wur.nl
  organization: Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 4, 6708PB Wageningen, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28988080$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v3CAQxVGVqtmk_Qotx17sAv6HK_UQRU1SKVIv7RlhGG9YYXABb7L59MXapIdelgNz-b1hmPcu0JnzDhD6RElJCW2_7MqoTPIJ3L5khHYl6UvWsjdoQ3nXF5Sw9gxtCKl50bd9d44uYtyRfDpO36FzxnvOCScb9HRjvdc4LlHBnMxgrEkHPMl5Nm6Ll7jezu_BYnARpsFCxH7EUstM7wE7WILH4_L8fMDGjRDAKcDxEBNMWDqNJ0jyIUMmJqOwtFsfTHqY4nv0dpQ2woeXeol-33z_dX1X3P-8_XF9dV-oumlSoSUlXd20lYSK6oFUqubQjIqxoa-ZbshY1bSWpNLQDrQbJbTtoDTVcpBaA6su0ddj30e5BZe_A044GZSJwksjrBmCDAfxuATh7FrmZYiiYbypaRZ_Porn4P8sEJOYTF6UtdKBX6JgeaNNRauGnERpX_eEV03NM_rxBV2GCbSYg5nWGV5dycC3I6CCjzHAKLLZMhnvUpDGCkrEmgKxE_9SINYUCNKLnIKs7_7Tvz5xWnl1VEK2ZG8grNxqqTYBVBLam5M9_gKjHdfA
CitedBy_id crossref_primary_10_1016_j_jag_2023_103401
crossref_primary_10_1007_s12665_018_7667_0
crossref_primary_10_1016_j_gsf_2020_07_012
crossref_primary_10_1016_j_jhydrol_2019_05_089
crossref_primary_10_1007_s12145_024_01539_5
crossref_primary_10_1016_j_ejrs_2021_08_006
crossref_primary_10_1016_j_envint_2022_107724
crossref_primary_10_1080_10106049_2022_2107714
crossref_primary_10_3390_land12040810
crossref_primary_10_1016_j_scitotenv_2018_04_282
crossref_primary_10_61186_jgst_12_4_53
crossref_primary_10_1002_ldr_3058
crossref_primary_10_1016_j_jenvman_2021_113344
crossref_primary_10_1007_s12517_018_3584_5
crossref_primary_10_1016_j_catena_2018_12_011
crossref_primary_10_1016_j_catena_2020_105114
crossref_primary_10_1016_j_jhydrol_2019_124379
crossref_primary_10_1016_j_chemolab_2024_105135
crossref_primary_10_3390_w12040985
crossref_primary_10_1007_s11600_023_01238_7
crossref_primary_10_1016_j_jenvman_2021_112250
crossref_primary_10_1016_j_scitotenv_2018_12_397
crossref_primary_10_1007_s11069_021_05110_z
crossref_primary_10_1016_j_ijdrr_2019_101211
crossref_primary_10_1007_s11600_023_01072_x
crossref_primary_10_1016_j_agrformet_2018_12_015
crossref_primary_10_1016_j_jenvman_2020_110485
crossref_primary_10_1007_s11069_023_06232_2
crossref_primary_10_7717_peerj_7653
crossref_primary_10_1016_j_scitotenv_2018_07_001
crossref_primary_10_3390_w15101943
crossref_primary_10_1016_j_asr_2024_06_018
crossref_primary_10_1111_tgis_12688
crossref_primary_10_1016_j_scitotenv_2018_04_055
crossref_primary_10_1007_s10661_023_12141_5
crossref_primary_10_3390_w14193062
crossref_primary_10_1016_j_jafrearsci_2024_105237
crossref_primary_10_5812_jjhs_121005
crossref_primary_10_3390_w11020364
crossref_primary_10_1080_10106049_2021_1967464
crossref_primary_10_1007_s10668_024_04926_6
crossref_primary_10_1007_s11442_022_1969_6
crossref_primary_10_3390_s18113704
crossref_primary_10_1007_s41976_024_00101_7
crossref_primary_10_18069_firatsbed_1441156
crossref_primary_10_3390_ijgi9120720
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_1007_s12665_024_11988_2
crossref_primary_10_1007_s41976_019_00018_6
crossref_primary_10_5004_dwt_2018_22061
crossref_primary_10_1016_j_scitotenv_2019_01_021
crossref_primary_10_1007_s13201_022_01772_7
crossref_primary_10_1016_j_scitotenv_2019_07_197
crossref_primary_10_1007_s12517_021_07263_4
crossref_primary_10_1016_j_gsf_2024_101960
crossref_primary_10_1080_19475705_2019_1699608
crossref_primary_10_1007_s10064_020_02048_7
crossref_primary_10_2166_wst_2024_146
crossref_primary_10_1016_j_catena_2018_12_033
crossref_primary_10_3390_rs12213568
crossref_primary_10_1007_s12594_023_2507_6
crossref_primary_10_1016_j_jenvman_2022_116450
crossref_primary_10_3390_w15223918
crossref_primary_10_1155_2020_4271376
crossref_primary_10_1080_10106049_2022_2112982
crossref_primary_10_1016_j_ecolind_2023_111250
crossref_primary_10_1007_s00366_019_00798_x
crossref_primary_10_1007_s11053_019_09465_w
crossref_primary_10_1080_17538947_2023_2252401
crossref_primary_10_2166_wcc_2024_035
crossref_primary_10_3390_rs13132638
crossref_primary_10_3390_sym12030405
crossref_primary_10_1016_j_jhydrol_2024_132337
crossref_primary_10_1080_10106049_2021_1973115
crossref_primary_10_1007_s40996_024_01721_1
crossref_primary_10_1016_j_jenvman_2019_06_102
crossref_primary_10_1080_10106049_2021_1892209
crossref_primary_10_3390_w11030615
crossref_primary_10_1007_s11356_024_33389_5
crossref_primary_10_3390_su12031069
crossref_primary_10_1108_BIJ_04_2019_0178
crossref_primary_10_3390_geosciences15030110
crossref_primary_10_1007_s11069_024_06924_3
crossref_primary_10_1108_IJDRBE_09_2020_0104
crossref_primary_10_3390_rs15174208
crossref_primary_10_1007_s11069_021_04673_1
crossref_primary_10_1007_s11269_024_03770_7
crossref_primary_10_3390_su10103697
crossref_primary_10_3390_ijgi10090578
crossref_primary_10_1002_asl_1000
crossref_primary_10_1007_s00477_022_02273_4
crossref_primary_10_1007_s11356_023_25423_9
crossref_primary_10_1016_j_jhydrol_2019_05_046
crossref_primary_10_3390_app10114016
crossref_primary_10_1016_j_jag_2024_103686
crossref_primary_10_3390_rs13020238
crossref_primary_10_1016_j_jag_2021_102508
crossref_primary_10_1016_j_jenvman_2021_112731
crossref_primary_10_1007_s11356_022_22649_x
crossref_primary_10_1080_10106049_2022_2071477
crossref_primary_10_1007_s11356_021_14534_w
crossref_primary_10_1080_10106049_2022_2066200
crossref_primary_10_1007_s11069_021_04877_5
crossref_primary_10_1016_j_wace_2023_100595
crossref_primary_10_3390_ai5040098
crossref_primary_10_1016_j_ijdrr_2024_104539
crossref_primary_10_1016_j_jhydrol_2020_124808
crossref_primary_10_1080_10106049_2022_2071470
crossref_primary_10_1080_19475705_2020_1836036
crossref_primary_10_1007_s11356_023_29049_9
crossref_primary_10_3390_w12061702
crossref_primary_10_3390_buildings13020347
crossref_primary_10_1016_j_jclepro_2020_123475
crossref_primary_10_1080_13658816_2020_1808897
crossref_primary_10_46453_jader_1358845
crossref_primary_10_1007_s11069_023_06105_8
crossref_primary_10_1029_2023EF003749
crossref_primary_10_3389_fclim_2023_1295592
crossref_primary_10_3390_rs11131589
crossref_primary_10_1016_j_scitotenv_2019_134979
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_1080_19475705_2019_1650126
crossref_primary_10_1007_s12665_018_7762_2
crossref_primary_10_1016_j_scitotenv_2018_04_250
crossref_primary_10_1016_j_catena_2019_104179
crossref_primary_10_1016_j_jclepro_2021_128073
crossref_primary_10_1007_s10661_023_11197_7
crossref_primary_10_3390_en15218289
crossref_primary_10_3390_rs12172688
crossref_primary_10_1038_s41598_023_32149_8
crossref_primary_10_1016_j_engappai_2023_106582
crossref_primary_10_1016_j_jenvman_2018_03_089
crossref_primary_10_1016_j_scitotenv_2020_138931
crossref_primary_10_1016_j_ejrs_2024_03_004
crossref_primary_10_1007_s12665_025_12140_4
crossref_primary_10_15446_ing_investig_108609
crossref_primary_10_3390_rs14215523
crossref_primary_10_1016_j_conbuildmat_2022_128158
crossref_primary_10_1016_j_jhydrol_2020_125552
crossref_primary_10_1007_s11269_024_04013_5
crossref_primary_10_1016_j_asr_2021_02_011
crossref_primary_10_1016_j_jenvman_2021_112162
crossref_primary_10_1016_j_scitotenv_2019_05_312
crossref_primary_10_1016_j_ejrs_2022_11_002
crossref_primary_10_1007_s11069_022_05336_5
crossref_primary_10_46453_jader_1513212
crossref_primary_10_1016_j_gsf_2021_101206
crossref_primary_10_1080_10106049_2021_1953618
crossref_primary_10_2166_wcc_2022_257
crossref_primary_10_1080_19475705_2022_2097131
crossref_primary_10_3390_s20061723
crossref_primary_10_1016_j_compag_2020_105279
crossref_primary_10_1016_j_jhydrol_2021_126846
crossref_primary_10_1016_j_scitotenv_2020_139937
crossref_primary_10_1007_s11069_022_05424_6
crossref_primary_10_1080_10106049_2020_1852615
crossref_primary_10_1007_s00521_024_09909_2
crossref_primary_10_1007_s11356_024_34501_5
crossref_primary_10_3390_w10091210
crossref_primary_10_1016_j_jhydrol_2020_125682
crossref_primary_10_3390_rs12010106
crossref_primary_10_1016_j_jhydrol_2022_128072
crossref_primary_10_1016_j_jhydrol_2023_129100
crossref_primary_10_1016_j_eti_2021_101762
crossref_primary_10_1080_19475705_2020_1753824
crossref_primary_10_3390_rs14215515
crossref_primary_10_1016_j_uclim_2023_101503
crossref_primary_10_1016_j_asr_2024_08_030
crossref_primary_10_1016_j_scitotenv_2020_141565
crossref_primary_10_1007_s41748_021_00215_8
crossref_primary_10_1016_j_geogeo_2023_100233
crossref_primary_10_1007_s00477_020_01862_5
crossref_primary_10_3390_rs13234945
crossref_primary_10_1007_s12517_020_05363_1
crossref_primary_10_1111_sum_12753
crossref_primary_10_1007_s11069_022_05580_9
crossref_primary_10_1080_14498596_2025_2476973
crossref_primary_10_1080_09640568_2020_1775561
crossref_primary_10_1016_j_ecoinf_2022_101838
crossref_primary_10_1080_10106049_2023_2167005
crossref_primary_10_1016_j_jhydrol_2019_03_073
crossref_primary_10_1080_02626667_2022_2027949
crossref_primary_10_1080_19475705_2020_1713234
crossref_primary_10_3390_rs12091422
crossref_primary_10_1111_jfr3_12683
crossref_primary_10_1007_s11709_022_0846_9
crossref_primary_10_1007_s00704_025_05402_5
crossref_primary_10_1016_j_jhydrol_2019_02_034
crossref_primary_10_1080_10106049_2018_1474276
crossref_primary_10_1016_j_catena_2023_107537
crossref_primary_10_1111_tgis_13023
crossref_primary_10_1007_s00477_022_02342_8
crossref_primary_10_1016_j_knosys_2018_04_014
crossref_primary_10_2166_wcc_2023_035
crossref_primary_10_1016_j_compgeo_2024_106106
crossref_primary_10_1016_j_scitotenv_2024_171713
crossref_primary_10_1007_s12665_020_09327_2
crossref_primary_10_1016_j_rsase_2020_100343
crossref_primary_10_1016_j_jhydrol_2019_124536
crossref_primary_10_3390_w16233511
crossref_primary_10_3390_ijgi8020094
crossref_primary_10_1007_s11069_019_03615_2
crossref_primary_10_3390_s19163451
crossref_primary_10_3390_su142316270
crossref_primary_10_1016_j_gsf_2020_09_006
crossref_primary_10_3390_land12061125
crossref_primary_10_1007_s11069_022_05288_w
crossref_primary_10_1007_s11069_024_06483_7
crossref_primary_10_3390_su132212560
crossref_primary_10_1080_19475705_2020_1810138
crossref_primary_10_1016_j_jenvman_2019_109867
crossref_primary_10_1016_j_jhydrol_2020_125663
crossref_primary_10_3390_rs13071326
crossref_primary_10_1016_j_asoc_2023_110846
crossref_primary_10_1016_j_jhydrol_2020_125423
crossref_primary_10_1016_j_scitotenv_2023_162285
crossref_primary_10_1080_10106049_2021_2005698
crossref_primary_10_1007_s11069_021_04821_7
crossref_primary_10_1007_s40808_023_01912_1
crossref_primary_10_1016_j_envc_2024_101079
crossref_primary_10_1016_j_scitotenv_2019_02_328
crossref_primary_10_3390_w14111721
crossref_primary_10_1016_j_ecolind_2022_109785
crossref_primary_10_3390_rs15092447
crossref_primary_10_1007_s11069_024_06614_0
crossref_primary_10_1016_j_ecolind_2020_106825
crossref_primary_10_3390_su14095039
crossref_primary_10_1080_10106049_2019_1695958
crossref_primary_10_1016_j_scitotenv_2019_135161
crossref_primary_10_1016_j_gsf_2019_10_008
crossref_primary_10_1016_j_jhydrol_2021_126470
crossref_primary_10_1016_j_rsase_2020_100425
crossref_primary_10_3389_fevo_2022_699201
crossref_primary_10_1007_s12145_022_00872_x
crossref_primary_10_1016_j_jenvman_2024_123842
crossref_primary_10_1016_j_catena_2019_04_009
crossref_primary_10_1016_j_jhydrol_2020_125085
crossref_primary_10_3389_feart_2021_659296
crossref_primary_10_3390_w12030683
crossref_primary_10_1080_10106049_2021_1920629
crossref_primary_10_3390_rs16142595
crossref_primary_10_3390_s18124436
crossref_primary_10_1007_s11069_022_05701_4
crossref_primary_10_1016_j_scitotenv_2022_157691
crossref_primary_10_1007_s11600_020_00480_7
crossref_primary_10_3390_su13020682
crossref_primary_10_3390_ijgi8120578
crossref_primary_10_1007_s11069_020_04067_9
crossref_primary_10_32604_cmes_2023_022566
crossref_primary_10_3390_w13040474
crossref_primary_10_1016_j_jenvman_2019_04_117
crossref_primary_10_1007_s00704_022_04068_7
crossref_primary_10_1016_j_ecolind_2023_111417
crossref_primary_10_1016_j_heliyon_2024_e37789
crossref_primary_10_1016_j_jhydrol_2022_128956
crossref_primary_10_1016_j_gsf_2021_101232
crossref_primary_10_1111_jfr3_12656
crossref_primary_10_1007_s10040_019_02017_9
crossref_primary_10_1007_s13201_022_01815_z
crossref_primary_10_3390_s19214636
crossref_primary_10_1007_s00477_022_02292_1
crossref_primary_10_1007_s11356_021_12806_z
crossref_primary_10_1016_j_jenvman_2019_01_108
crossref_primary_10_1016_j_scitotenv_2018_06_130
crossref_primary_10_1080_10106049_2020_1730448
crossref_primary_10_1016_j_jenvman_2023_118682
crossref_primary_10_35414_akufemubid_658662
crossref_primary_10_1007_s11600_020_00446_9
crossref_primary_10_3390_e24060772
crossref_primary_10_48123_rsgis_1129606
crossref_primary_10_1016_j_asr_2022_02_027
crossref_primary_10_1080_10106049_2021_1923834
crossref_primary_10_2166_wcc_2022_435
crossref_primary_10_1007_s11069_024_06764_1
crossref_primary_10_1007_s12145_018_0352_8
crossref_primary_10_1016_j_actatropica_2024_107483
crossref_primary_10_1111_jfr3_12920
crossref_primary_10_3390_rs11060618
crossref_primary_10_2166_nh_2019_090
crossref_primary_10_1007_s11069_021_05083_z
crossref_primary_10_1016_j_jhydrol_2020_125734
crossref_primary_10_2166_aqua_2024_023
crossref_primary_10_1007_s00477_022_02179_1
crossref_primary_10_1016_j_jhydrol_2020_125615
crossref_primary_10_1080_02626667_2023_2259887
crossref_primary_10_1007_s11069_025_07212_4
crossref_primary_10_3390_rs13051025
crossref_primary_10_1080_02626667_2020_1842412
crossref_primary_10_1007_s11069_019_03617_0
crossref_primary_10_1007_s11269_020_02603_7
crossref_primary_10_1016_j_jenvman_2023_118790
crossref_primary_10_1007_s12665_021_09964_1
crossref_primary_10_1007_s12665_025_12129_z
crossref_primary_10_1016_j_envres_2020_109321
crossref_primary_10_1016_j_geoderma_2018_12_042
crossref_primary_10_3390_app10010067
crossref_primary_10_1080_10106049_2019_1687594
crossref_primary_10_1016_j_gsf_2021_101175
crossref_primary_10_1007_s12145_022_00825_4
crossref_primary_10_3390_rs17030524
crossref_primary_10_3390_w11040638
crossref_primary_10_1016_j_jenvman_2021_112449
crossref_primary_10_1007_s12665_022_10589_1
crossref_primary_10_1016_j_jclepro_2020_122757
crossref_primary_10_1016_j_jhydrol_2020_125275
crossref_primary_10_2166_nh_2023_139
crossref_primary_10_5194_hess_22_4771_2018
crossref_primary_10_1016_j_jhydrol_2024_130907
crossref_primary_10_3390_w11081596
crossref_primary_10_3390_su131810232
crossref_primary_10_1016_j_jag_2025_104357
crossref_primary_10_1007_s11356_025_35976_6
crossref_primary_10_1007_s12524_023_01798_7
crossref_primary_10_1016_j_scitotenv_2018_10_064
crossref_primary_10_1080_02626667_2021_1985123
crossref_primary_10_1007_s12145_020_00530_0
crossref_primary_10_1016_j_eiar_2022_106953
crossref_primary_10_1016_j_acags_2024_100189
crossref_primary_10_3390_rs14164050
crossref_primary_10_1007_s11356_022_24672_4
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_1007_s12524_023_01776_z
crossref_primary_10_1007_s11069_022_05428_2
crossref_primary_10_3390_geosciences8020050
crossref_primary_10_1016_j_scitotenv_2018_12_217
crossref_primary_10_1007_s00477_022_02301_3
crossref_primary_10_1016_j_wace_2019_100215
crossref_primary_10_1080_10106049_2022_2144475
crossref_primary_10_1016_j_jenvman_2025_124238
crossref_primary_10_1080_02626667_2020_1828589
crossref_primary_10_1007_s12145_023_00954_4
crossref_primary_10_1007_s10661_020_08562_1
crossref_primary_10_1007_s12205_022_0559_6
crossref_primary_10_1016_j_rsase_2019_02_006
crossref_primary_10_1016_j_ecoinf_2021_101267
crossref_primary_10_1007_s10668_021_01377_1
crossref_primary_10_1016_j_scitotenv_2019_02_422
crossref_primary_10_1080_10106049_2022_2093990
crossref_primary_10_1016_j_jenvman_2022_114589
crossref_primary_10_1007_s13753_023_00477_y
crossref_primary_10_1080_10106049_2022_2093992
crossref_primary_10_1016_j_gsf_2020_10_007
crossref_primary_10_1016_j_ecoinf_2023_102273
crossref_primary_10_1016_j_jclepro_2020_124707
crossref_primary_10_24012_dumf_394591
crossref_primary_10_3390_rs12101689
crossref_primary_10_3390_rs11111375
Cites_doi 10.1016/j.catena.2017.01.010
10.1016/j.procs.2015.04.212
10.1007/s11069-011-9879-4
10.1016/S0304-3800(00)00322-7
10.1007/s00477-010-0436-6
10.1086/587826
10.1016/j.geoderma.2017.06.020
10.1016/j.jhydrol.2010.12.027
10.1016/j.agrformet.2016.11.002
10.1007/s11053-007-9043-8
10.1007/s12665-009-0394-9
10.1016/S0022-5193(05)80686-1
10.1108/09653560610659775
10.1016/j.catena.2012.05.005
10.1007/s11269-017-1589-6
10.1016/0893-6080(90)90071-R
10.1016/j.cageo.2011.10.031
10.1007/s00254-007-0788-5
10.3390/ijgi5100191
10.1061/(ASCE)HE.1943-5584.0000040
10.1016/j.jhydrol.2009.06.005
10.1016/j.catena.2017.05.034
10.1007/s12665-016-5424-9
10.1007/s11069-011-9831-7
10.1016/j.medengphy.2016.07.003
10.1109/4235.985692
10.1002/hyp.3360050103
10.1016/j.tcs.2005.05.020
10.1007/s10661-015-5049-6
10.1007/s12665-014-3289-3
10.1016/j.jhydrol.2011.10.010
10.1016/j.eswa.2010.12.167
10.1007/s00477-015-1021-9
10.1007/s12665-016-5774-3
10.1007/s11069-013-0932-3
10.1016/j.scitotenv.2015.08.055
10.1007/s10661-016-5665-9
10.1016/S0167-8809(01)00187-6
10.1016/j.dsp.2006.05.001
10.4028/www.scientific.net/AMM.225.486
10.2475/ajs.290.5.569
10.1080/10106049.2015.1041559
10.1007/s11069-012-0217-2
10.1007/s12665-011-1504-z
10.1016/j.geomorph.2015.10.030
10.1016/j.eswa.2011.02.108
10.1007/s11069-013-0728-5
10.1007/s12665-015-4950-1
10.5194/hess-15-617-2011
10.1016/j.jhydrol.2013.09.034
10.1016/j.jhydrol.2009.09.037
10.1016/j.jhydrol.2009.12.013
10.1016/j.geomorph.2017.09.007
10.1016/j.geomorph.2009.02.026
10.1016/j.eswa.2007.06.026
10.1080/10106049.2014.966161
10.1007/s13762-013-0464-0
10.1016/j.jhydrol.2012.09.006
10.1016/j.cageo.2012.08.023
10.1016/j.applthermaleng.2004.06.024
10.1080/02626667909491834
10.14207/ejsd.2012.v1n2p85
10.1016/j.jhydrol.2014.02.053
10.1007/s11069-007-9197-z
10.1016/j.scitotenv.2015.02.027
10.1007/s11069-016-2357-2
10.1016/j.catena.2017.07.002
10.1007/s12517-012-0825-x
10.1016/j.scitotenv.2017.07.198
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Wageningen University & Research
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
QVL
DOI 10.1016/j.scitotenv.2017.09.262
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 451
ExternalDocumentID oai_library_wur_nl_wurpubs_528541
28988080
10_1016_j_scitotenv_2017_09_262
S0048969717326141
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
NPM
7X8
7S9
L.6
AALMO
AAPBV
ABFLS
ABPIF
ABPTK
ABTAH
ADALY
IPNFZ
QVL
ID FETCH-LOGICAL-c455t-da1074563ae31db03c48e5fc22b942d50f3414a03de6b17fae66bcd1dabadde23
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 13 09:31:00 EDT 2022
Sat Sep 27 18:36:33 EDT 2025
Mon Sep 29 05:26:01 EDT 2025
Wed Feb 19 02:41:33 EST 2025
Wed Oct 01 02:05:12 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Fri Feb 23 02:12:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ant colony
ANFIS
Genetic algorithm
Particle swarm optimization
Flood susceptibility mapping
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-da1074563ae31db03c48e5fc22b942d50f3414a03de6b17fae66bcd1dabadde23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2328-2998
PMID 28988080
PQID 1949083548
PQPubID 23479
PageCount 14
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_528541
proquest_miscellaneous_2000531350
proquest_miscellaneous_1949083548
pubmed_primary_28988080
crossref_citationtrail_10_1016_j_scitotenv_2017_09_262
crossref_primary_10_1016_j_scitotenv_2017_09_262
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_09_262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pourghasemi, Beheshtirad (bb0335) 2014; 30
Polat, Gunes (bb0320) 2006; 16
Pontius, Schneider (bb0330) 2001; 85
Saito, Nakayama, Matsuyama (bb0420) 2009; 109
Tehrany, Pradhan, Jebur (bb0460) 2015; 29
Mahapatra, Daniel, Dey, Nayak (bb0245) 2015; 48
Sivanandam, Deepa (bb0440) 2007
Lee, Kang, Jeon (bb0230) 2012
Kohonen (bb0200) 1995
Ravagnani, Silva, Arroyo, Constantino (bb0410) 2005; 25
Pourghasemi, Pradhan, Gokceoglu (bb0355) 2012; 63
Tunusluoglu, Gokceoglu, Nefeslioglu, Sonmez (bb9100) 2008; 54
Lin, Xia, Jiang, Bai, Wu (bb0235) 2016; 5
Yu, Ding, Zhu (bb0500) 2011; 38
Kenndy, Eberhart (bb0175) 1995; 4
Oh, Kim, Choi, Park, Lee (bb0295) 2011; 399
Pradhan (bb0380) 2010; 9
Khosravi, Nohani, Maroufinia, Pourghasemi (bb0190) 2016; 83
Pourghasemi, Mohammady, Pradhan (bb0345) 2012; 97
Agyare (bb0010) 2004; 17
Beven, Kirkby (bb0040) 1979; 24
Bui, Bui, Nguyen, Pradhan, Nampak, Trinh (bb0060) 2017; 233
Ahalt, Krishnamurthy, Chen, Melton (bb0015) 1990; 3
Cloke, Pappenberger (bb0110) 2009; 375
Pradhan (bb0385) 2013; 51
Zabihi, Pourghasemi, Pourtaghi, Behzadfar (bb0510) 2016; 75
Srivastava, Denis, Srivastava, Kumar, Kumar (bb0445) 2014; 3
Pourtaghi, Pourghasemi (bb0375) 2014; 22
Kornejady, Ownegh, Rahmati, Bahremand (bb0225) 2017
Naghibi, Pourghasemi, Dixon (bb0270) 2016; 188
Kohonen, Hynninen, Kangas, Laaksonen, Torkkola (bb0205) 1996
Chen, Pourghasemi, Kornejady, Zhang (bb0085) 2017; 305
Dorigo, Blum (bb0135) 2005; 344
Wu, Lien, Chang (bb0485) 2010; 24
Khaledian, Brevik, Pereira, Cerdà, Fattah, Tazikeh (bb0180) 2017; 158
Yilmaz (bb0495) 2010; 61
Kornejady, Ownegh, Bahremand (bb0220) 2017; 152
Poli, Sterlacchini (bb0325) 2007; 16
Kornejady, Kohzad, Sarparast, Khosravi, Mombeini (bb0210) 2014; 4
Mukerji, Chatterjee, Raghuwanshi (bb0265) 2009; 14
Pourghasemi, Pradhan, Gokceoglu (bb0350) 2012; 225
Kazakis, Kougias, Patsialis (bb0170) 2015; 538
Kornejady, Heidari, Nakhavali (bb0215) 2015; 3
Cherqui, Belmeziti, Granger, Sourdril, Le Gauffre (bb0095) 2015; 514
Messner, Meyer (bb0250) 2006
Ozdemir (bb0305) 2011; 411
Chen, Pourghasemi, Panahi, Kornejady, Wang, Xie, Cao (bb0090) 2017; 297
Pourghasemi, Yousefi, Kornejady, Cerdà (bb0370) 2017; 609
Norouzi, Taslimi (bb0285) 2012; 12
Sezer, Pradhan, Gokceoglu (bb0425) 2011; 38
Nourani, Pradhan, Ghaffari, Sharifi (bb0290) 2014; 71
Negnevitsky (bb0280) 2002; 394
Central Office of Natural Resources and Watershed Management in the Jahrom Township (CONRWMJT) (bb0065) 2015; 1
Olden, Lawler, Poff (bb0300) 2008; 83
Jung, Chang, Moradkhani (bb0165) 2011; 15
Tiwari, Chatterjee (bb0475) 2010; 382
Clerc, Kennedy (bb0105) 2002; 6
Tehrany, Pradhan, Jebur (bb0450) 2013; 504
Khosravi, Pourghasemi, Chapi, Bahri (bb0185) 2016; 188
Hussin, Zumpano, Reichenbach, Sterlacchini, Micu, van Westen, Bălteanu (bb0150) 2016; 253
Iranian Department of Natural Resources Management [IDNRM] (bb0155) 2002
Armaş (bb0030) 2012; 60
Doocy, Daniels, Packer, Dick, Kirsch (bb0130) 2013; 5
Huang, Tan, Zhou, Yang, Benjamin, Wen, Fen (bb0145) 2008; 47
Pourghasemi, Moradi, Aghda, Gokceoglu, Pradhan (bb0365) 2014; 7
Mathur, Glesk, Buis (bb9000) 2016; 38
Miller (bb0255) 1990; 290
Pourghasemi, Kerle (bb0340) 2016; 75
Adeli, Hung (bb0005) 1994
Chau, Wu, Li (bb0070) 2005; 10
Pearce, Ferrier (bb0310) 2000; 133
Moore, Grayson, Ladson (bb0260) 1991; 5
Tehrany, Lee, Pradhan, Jebur, Lee (bb0455) 2014; 72
Beckers, Deneubourg, Goss (bb0035) 1992; 159
Jaafari, Najafi, Pourghasemi, Rezaeian, Sattarian (bb0160) 2014; 11
Nampak, Pradhan, Manap (bb0275) 2014; 513
Sahoo, Schladow, Reuter (bb0415) 2009; 378
Rahmati, Pourghasemi (bb0400) 2017; 31
Akgün, Bulut (bb0020) 2007; 51
Rahmati, Pourghasemi, Zeinivand (bb0405) 2016; 31
Pierdicca, Pulvirenti, Chini, Guerriero, Ferrazzoli (bb0315) 2010
Yesilnacar (bb0490) 2005
Clapcott, Goodwin, Snelder (bb0100) 2013; 2301
Pourghasemi, Moradi, Aghda (bb0360) 2013; 69
Degiorgis, Gnecco, Gorni, Roth, Sanguineti, Taramasso (bb0125) 2012; 470
Singhal, Goyal (bb0435) 2012; 1
Chen, Panahi, Pourghasemi (bb0080) 2017; 157
Kia, Pirasteh, Pradhan, Mahmud, Sulaiman, Moradi (bb0195) 2012; 67
Bonham-Carter (bb0050) 1994; 13
Sheta, Turabieh (bb0430) 2006; 6
Tien Bui, Pradhan, Lofman, Revhaug, Dick (bb0465) 2012; 45
Billa, Shattri, Mahmud, Ghazali (bb0045) 2006; 15
Chen, Yeh, Yu (bb0075) 2011; 59
Qian, Chen, Xiang, Zhang, Niu (bb0395) 2016; 75
Wang, Elhag (bb0480) 2008; 34
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0345) 2012; 97
Sezer (10.1016/j.scitotenv.2017.09.262_bb0425) 2011; 38
Khaledian (10.1016/j.scitotenv.2017.09.262_bb0180) 2017; 158
Sahoo (10.1016/j.scitotenv.2017.09.262_bb0415) 2009; 378
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0365) 2014; 7
Ravagnani (10.1016/j.scitotenv.2017.09.262_bb0410) 2005; 25
Agyare (10.1016/j.scitotenv.2017.09.262_bb0010) 2004; 17
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0370) 2017; 609
Tien Bui (10.1016/j.scitotenv.2017.09.262_bb0465) 2012; 45
Iranian Department of Natural Resources Management [IDNRM] (10.1016/j.scitotenv.2017.09.262_bb0155)
Wang (10.1016/j.scitotenv.2017.09.262_bb0480) 2008; 34
Degiorgis (10.1016/j.scitotenv.2017.09.262_bb0125) 2012; 470
Kia (10.1016/j.scitotenv.2017.09.262_bb0195) 2012; 67
Mahapatra (10.1016/j.scitotenv.2017.09.262_bb0245) 2015; 48
Pourtaghi (10.1016/j.scitotenv.2017.09.262_bb0375) 2014; 22
Armaş (10.1016/j.scitotenv.2017.09.262_bb0030) 2012; 60
Jaafari (10.1016/j.scitotenv.2017.09.262_bb0160) 2014; 11
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0335) 2014; 30
Billa (10.1016/j.scitotenv.2017.09.262_bb0045) 2006; 15
Polat (10.1016/j.scitotenv.2017.09.262_bb0320) 2006; 16
Yu (10.1016/j.scitotenv.2017.09.262_bb0500) 2011; 38
Bui (10.1016/j.scitotenv.2017.09.262_bb0060) 2017; 233
Ozdemir (10.1016/j.scitotenv.2017.09.262_bb0305) 2011; 411
Beven (10.1016/j.scitotenv.2017.09.262_bb0040) 1979; 24
Kohonen (10.1016/j.scitotenv.2017.09.262_bb0205) 1996
Zabihi (10.1016/j.scitotenv.2017.09.262_bb0510) 2016; 75
Oh (10.1016/j.scitotenv.2017.09.262_bb0295) 2011; 399
Tunusluoglu (10.1016/j.scitotenv.2017.09.262_bb9100) 2008; 54
Clerc (10.1016/j.scitotenv.2017.09.262_bb0105) 2002; 6
Negnevitsky (10.1016/j.scitotenv.2017.09.262_bb0280) 2002; 394
Pierdicca (10.1016/j.scitotenv.2017.09.262_bb0315) 2010
Norouzi (10.1016/j.scitotenv.2017.09.262_bb0285) 2012; 12
Pradhan (10.1016/j.scitotenv.2017.09.262_bb0385) 2013; 51
Jung (10.1016/j.scitotenv.2017.09.262_bb0165) 2011; 15
Moore (10.1016/j.scitotenv.2017.09.262_bb0260) 1991; 5
Chen (10.1016/j.scitotenv.2017.09.262_bb0075) 2011; 59
Pearce (10.1016/j.scitotenv.2017.09.262_bb0310) 2000; 133
Chau (10.1016/j.scitotenv.2017.09.262_bb0070) 2005; 10
Chen (10.1016/j.scitotenv.2017.09.262_bb0080) 2017; 157
Lin (10.1016/j.scitotenv.2017.09.262_bb0235) 2016; 5
Kornejady (10.1016/j.scitotenv.2017.09.262_bb0220) 2017; 152
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0350) 2012; 225
Cherqui (10.1016/j.scitotenv.2017.09.262_bb0095) 2015; 514
Srivastava (10.1016/j.scitotenv.2017.09.262_bb0445) 2014; 3
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0355) 2012; 63
Pontius (10.1016/j.scitotenv.2017.09.262_bb0330) 2001; 85
Tehrany (10.1016/j.scitotenv.2017.09.262_bb0460) 2015; 29
Huang (10.1016/j.scitotenv.2017.09.262_bb0145) 2008; 47
Singhal (10.1016/j.scitotenv.2017.09.262_bb0435) 2012; 1
Khosravi (10.1016/j.scitotenv.2017.09.262_bb0185) 2016; 188
Kazakis (10.1016/j.scitotenv.2017.09.262_bb0170) 2015; 538
Hussin (10.1016/j.scitotenv.2017.09.262_bb0150) 2016; 253
Dorigo (10.1016/j.scitotenv.2017.09.262_bb0135) 2005; 344
Central Office of Natural Resources and Watershed Management in the Jahrom Township (CONRWMJT) (10.1016/j.scitotenv.2017.09.262_bb0065) 2015; 1
Clapcott (10.1016/j.scitotenv.2017.09.262_bb0100) 2013; 2301
Beckers (10.1016/j.scitotenv.2017.09.262_bb0035) 1992; 159
Naghibi (10.1016/j.scitotenv.2017.09.262_bb0270) 2016; 188
Poli (10.1016/j.scitotenv.2017.09.262_bb0325) 2007; 16
Cloke (10.1016/j.scitotenv.2017.09.262_bb0110) 2009; 375
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0340) 2016; 75
Doocy (10.1016/j.scitotenv.2017.09.262_bb0130) 2013; 5
Kornejady (10.1016/j.scitotenv.2017.09.262_bb0215) 2015; 3
Lee (10.1016/j.scitotenv.2017.09.262_bb0230) 2012
Kornejady (10.1016/j.scitotenv.2017.09.262_bb0210) 2014; 4
Mathur (10.1016/j.scitotenv.2017.09.262_bb9000) 2016; 38
Rahmati (10.1016/j.scitotenv.2017.09.262_bb0405) 2016; 31
Qian (10.1016/j.scitotenv.2017.09.262_bb0395) 2016; 75
Saito (10.1016/j.scitotenv.2017.09.262_bb0420) 2009; 109
Nampak (10.1016/j.scitotenv.2017.09.262_bb0275) 2014; 513
Pradhan (10.1016/j.scitotenv.2017.09.262_bb0380) 2010; 9
Khosravi (10.1016/j.scitotenv.2017.09.262_bb0190) 2016; 83
Olden (10.1016/j.scitotenv.2017.09.262_bb0300) 2008; 83
Kenndy (10.1016/j.scitotenv.2017.09.262_bb0175) 1995; 4
Adeli (10.1016/j.scitotenv.2017.09.262_bb0005) 1994
Akgün (10.1016/j.scitotenv.2017.09.262_bb0020) 2007; 51
Pourghasemi (10.1016/j.scitotenv.2017.09.262_bb0360) 2013; 69
Mukerji (10.1016/j.scitotenv.2017.09.262_bb0265) 2009; 14
Nourani (10.1016/j.scitotenv.2017.09.262_bb0290) 2014; 71
Chen (10.1016/j.scitotenv.2017.09.262_bb0090) 2017; 297
Kohonen (10.1016/j.scitotenv.2017.09.262_bb0200) 1995
Miller (10.1016/j.scitotenv.2017.09.262_bb0255) 1990; 290
Ahalt (10.1016/j.scitotenv.2017.09.262_bb0015) 1990; 3
Tiwari (10.1016/j.scitotenv.2017.09.262_bb0475) 2010; 382
Rahmati (10.1016/j.scitotenv.2017.09.262_bb0400) 2017; 31
Sheta (10.1016/j.scitotenv.2017.09.262_bb0430) 2006; 6
Yilmaz (10.1016/j.scitotenv.2017.09.262_bb0495) 2010; 61
Chen (10.1016/j.scitotenv.2017.09.262_bb0085) 2017; 305
Bonham-Carter (10.1016/j.scitotenv.2017.09.262_bb0050) 1994; 13
Tehrany (10.1016/j.scitotenv.2017.09.262_bb0450) 2013; 504
Tehrany (10.1016/j.scitotenv.2017.09.262_bb0455) 2014; 72
Yesilnacar (10.1016/j.scitotenv.2017.09.262_bb0490) 2005
Messner (10.1016/j.scitotenv.2017.09.262_bb0250) 2006
Sivanandam (10.1016/j.scitotenv.2017.09.262_bb0440) 2007
Kornejady (10.1016/j.scitotenv.2017.09.262_bb0225) 2017
Wu (10.1016/j.scitotenv.2017.09.262_bb0485) 2010; 24
References_xml – volume: 375
  start-page: 613
  year: 2009
  end-page: 626
  ident: bb0110
  article-title: Ensemble flood forecasting: a review
  publication-title: J. Hydrol.
– volume: 14
  start-page: 647
  year: 2009
  end-page: 652
  ident: bb0265
  article-title: Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
  publication-title: J. Hydrol. Eng.
– volume: 9
  start-page: 1
  year: 2010
  end-page: 18
  ident: bb0380
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
  publication-title: J. Spat. Hydrol.
– volume: 34
  start-page: 3099
  year: 2008
  end-page: 3106
  ident: bb0480
  article-title: An adaptive neuro-fuzzy inference system for bridge risk assessment
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 71
  year: 2014
  end-page: 79
  ident: bb0445
  article-title: Morphometric analysis of a Semi Urban Watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS
  publication-title: Int. J. Eng. Sci.
– volume: 399
  start-page: 158
  year: 2011
  end-page: 172
  ident: bb0295
  article-title: GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea
  publication-title: J. Hydrol.
– volume: 470
  start-page: 302
  year: 2012
  end-page: 315
  ident: bb0125
  article-title: Classifiers for the detection of flood-prone areas using remote sensed elevation data
  publication-title: J. Hydrol.
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: bb0135
  article-title: Ant colony optimization theory: a survey
  publication-title: Theor. Comput. Sci.
– volume: 51
  start-page: 1377
  year: 2007
  end-page: 1387
  ident: bb0020
  article-title: GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region
  publication-title: Environ. Lithol.
– year: 2002
  ident: bb0155
  article-title: PRINCIPLES of Watershed Management and Land Use Planning
– volume: 67
  start-page: 251
  year: 2012
  end-page: 264
  ident: bb0195
  article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin Malaysia
  publication-title: Environ. Earth Sci.
– volume: 7
  start-page: 1857
  year: 2014
  end-page: 1878
  ident: bb0365
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: bb0385
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
– start-page: 432
  year: 2005
  ident: bb0490
  article-title: The Application of Computational Inelegance to Landslide Susceptibility Mapping in Turkey
– year: 1994
  ident: bb0005
  article-title: Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems
– volume: 83
  start-page: 947
  year: 2016
  end-page: 987
  ident: bb0190
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique
  publication-title: Nat. Hazards
– volume: 71
  start-page: 523
  year: 2014
  end-page: 547
  ident: bb0290
  article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
– volume: 152
  start-page: 144
  year: 2017
  end-page: 162
  ident: bb0220
  article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods
  publication-title: Catena
– volume: 225
  start-page: 486
  year: 2012
  end-page: 491
  ident: bb0350
  article-title: Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon's entropy and GIS
  publication-title: Appl. Mech. Mater.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0395
  article-title: A novel hybrid KPCA and SVM with PSO model for identifying debris flow hazard degree: a case study in Southwest China
  publication-title: Environ. Earth Sci.
– volume: 59
  start-page: 1261
  year: 2011
  end-page: 1276
  ident: bb0075
  article-title: Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan
  publication-title: Nat. Hazards
– volume: 3
  start-page: 85
  year: 2015
  end-page: 109
  ident: bb0215
  article-title: Assessment of landslide susceptibility, semi-quantitative risk and management in the Ilam dam basin, Ilam, Iran
  publication-title: Environ. Resour. Res.
– volume: 133
  start-page: 225
  year: 2000
  end-page: 245
  ident: bb0310
  article-title: Evaluating the predictive performance of habitat models developed using logistic regression
  publication-title: Ecol. Model.
– volume: 157
  start-page: 310
  year: 2017
  end-page: 324
  ident: bb0080
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
– volume: 16
  start-page: 71
  year: 2006
  end-page: 84
  ident: bb0320
  article-title: A hybrid medical decision making system based on principle component analysis, k-NN based weighted pre-processing and adaptive neuro fuzzy inference system
  publication-title: Digital Signal Process.
– volume: 54
  start-page: 9
  year: 2008
  end-page: 22
  ident: bb9100
  article-title: Extraction of potential debris source areas by logistic regression technique: A case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)
  publication-title: Environ. Geol.
– volume: 60
  start-page: 937
  year: 2012
  end-page: 950
  ident: bb0030
  article-title: Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania
  publication-title: Nat. Hazards
– volume: 47
  start-page: 65
  year: 2008
  end-page: 73
  ident: bb0145
  article-title: Flood hazard in Hunan province of China: an economic loss analysis
  publication-title: Nat. Hazards
– volume: 253
  start-page: 508
  year: 2016
  end-page: 523
  ident: bb0150
  article-title: Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model
  publication-title: Geomorphology
– start-page: 175
  year: 1995
  end-page: 189
  ident: bb0200
  article-title: Learning Vector Quantization; Self-organizing Maps
– volume: 188
  start-page: 44
  year: 2016
  ident: bb0270
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
– volume: 2301
  start-page: 35
  year: 2013
  ident: bb0100
  article-title: Predictive Models of Benthic Macro-invertebrate Metrics. Cawthron Report
– volume: 538
  start-page: 555
  year: 2015
  end-page: 563
  ident: bb0170
  article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: application in Rhodope–Evros region, Greece
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 121
  year: 2007
  end-page: 134
  ident: bb0325
  article-title: Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique
  publication-title: Nat. Resour. Res.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 17
  ident: bb0340
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
– start-page: 1991
  year: 1996
  end-page: 1992
  ident: bb0205
  article-title: LVQ PAK: the learning vector quantization program package
  publication-title: Technical report, Laboratory of Computer and Information Science Rakentajanaukio 2 C
– start-page: 4796
  year: 2010
  end-page: 4798
  ident: bb0315
  article-title: A fuzzy-logic-based approach for flood detection from Cosmo-SkyMed data
  publication-title: Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE Int.
– volume: 38
  start-page: 1083
  year: 2016
  end-page: 1089
  ident: bb9000
  article-title: Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.
  publication-title: Med. Eng. Phys.
– volume: 30
  start-page: 662
  year: 2014
  end-page: 685
  ident: bb0335
  article-title: Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran
  publication-title: Geocarto Int.
– volume: 69
  start-page: 749
  year: 2013
  end-page: 779
  ident: bb0360
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
– volume: 3
  start-page: 277
  year: 1990
  end-page: 290
  ident: bb0015
  article-title: Competitive learning algorithms for vector quantization
  publication-title: Neural Netw.
– volume: 233
  start-page: 32
  year: 2017
  end-page: 44
  ident: bb0060
  article-title: A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area
  publication-title: Agric. For. Meteorol.
– volume: 394
  year: 2002
  ident: bb0280
  article-title: Artificial Intelligence: A Guide to Intelligent Systems
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: bb0260
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
– volume: 290
  start-page: 569
  year: 1990
  end-page: 599
  ident: bb0255
  article-title: Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford upland, south-central Indiana
  publication-title: Am. J. Sci.
– volume: 1
  start-page: 121
  year: 2015
  end-page: 122
  ident: bb0065
  article-title: Hydrology and Flood Technical Report
– volume: 61
  start-page: 821
  year: 2010
  end-page: 836
  ident: bb0495
  article-title: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine
  publication-title: Environ. Earth Sci.
– volume: 4
  start-page: 169
  year: 2014
  end-page: 176
  ident: bb0210
  article-title: Performance assessment of two “LNRF” and “AHP-Area Density” models in landslide susceptibility zonation
  publication-title: J. Life Sci. Biomed.
– volume: 158
  start-page: 194
  year: 2017
  end-page: 200
  ident: bb0180
  article-title: Modeling soil cation exchange capacity in multiple countries
  publication-title: Catena
– volume: 5
  start-page: 191
  year: 2016
  ident: bb0235
  article-title: Landslide susceptibility mapping based on particle swarm optimization of multiple kernel relevance vector machines: case of a low hill area in Sichuan Province, China
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 513
  start-page: 283
  year: 2014
  end-page: 300
  ident: bb0275
  article-title: Application of GIS based data driven evidential belief function model to predict groundwater potential zonation
  publication-title: J. Hydrol.
– volume: 25
  start-page: 1223-1217
  year: 2005
  ident: bb0410
  article-title: Heat exchanger network synthesis and optimization using genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 45
  start-page: 199
  year: 2012
  end-page: 211
  ident: bb0465
  article-title: Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS
  publication-title: Comput. Geosci.
– volume: 382
  start-page: 20
  year: 2010
  end-page: 33
  ident: bb0475
  article-title: Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
  publication-title: J. Hydrol.
– volume: 10
  start-page: 485
  year: 2005
  end-page: 491
  ident: bb0070
  article-title: Comparison of several flood forecasting models in Yangtze River
  publication-title: J. Hydraul. Eng.
– volume: 12
  start-page: 921
  year: 2012
  end-page: 926
  ident: bb0285
  article-title: The impact of flood damages on production of Iran's Agricultural Sector. Middle East
  publication-title: J. Sci. Res.
– volume: 22
  start-page: 643
  year: 2014
  end-page: 662
  ident: bb0375
  article-title: GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran
  publication-title: Hydrolith. J.
– volume: 17
  year: 2004
  ident: bb0010
  article-title: Soil Characterization and Modeling of Spatial Distribution of Saturated Hydraulic Conductivity at Two Sites in the Volta Basin of Ghana
– volume: 83
  start-page: 171
  year: 2008
  end-page: 193
  ident: bb0300
  article-title: Machine learning without tears: a primer for ecologists
  publication-title: Q. Rev. Biol.
– volume: 48
  start-page: 753
  year: 2015
  end-page: 768
  ident: bb0245
  article-title: Induction motor control using PSO-ANFIS
  publication-title: Procedia Comput. Sci.
– volume: 13
  start-page: 398
  year: 1994
  ident: bb0050
  article-title: Geographic information systems for geoscientists-modeling with GIS
  publication-title: Comput. Methods Geosci.
– volume: 31
  start-page: 1473
  year: 2017
  end-page: 1487
  ident: bb0400
  article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models
  publication-title: Water Resour. Manag.
– volume: 188
  start-page: 656
  year: 2016
  ident: bb0185
  article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon's entropy, statistical index, and weighting factor models
  publication-title: Environ. Model. Assess.
– volume: 24
  start-page: 1175
  year: 2010
  end-page: 1191
  ident: bb0485
  article-title: Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation
  publication-title: Stoch. Env. Res. Risk A.
– start-page: 1
  year: 2017
  end-page: 68
  ident: bb0225
  article-title: Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND
  publication-title: Geocarto Int.
– start-page: 895
  year: 2012
  end-page: 898
  ident: bb0230
  article-title: Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich
– volume: 159
  start-page: 397
  year: 1992
  end-page: 415
  ident: bb0035
  article-title: Trails and U-turns in the selection of the shortest path by the ant Lasius niger
  publication-title: J. Theor. Biol.
– year: 2007
  ident: bb0440
  article-title: Introduction to Genetic Algorithms
– volume: 504
  start-page: 69
  year: 2013
  end-page: 79
  ident: bb0450
  article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS
  publication-title: J. Hydrol.
– volume: 378
  start-page: 325
  year: 2009
  end-page: 342
  ident: bb0415
  article-title: Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
  publication-title: J. Hydrol.
– volume: 15
  start-page: 617
  year: 2011
  end-page: 633
  ident: bb0165
  article-title: Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 411
  start-page: 290
  year: 2011
  end-page: 308
  ident: bb0305
  article-title: GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison
  publication-title: J. Hydrol.
– volume: 305
  start-page: 314
  year: 2017
  end-page: 327
  ident: bb0085
  article-title: Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
– volume: 29
  start-page: 1149
  year: 2015
  end-page: 1165
  ident: bb0460
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Env. Res. Risk A.
– volume: 63
  start-page: 965
  year: 2012
  end-page: 996
  ident: bb0355
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bb0175
  article-title: Particle Swarm Optimization. In Proceedings of IEEE International Conference on neural networks
– volume: 72
  start-page: 4001
  year: 2014
  end-page: 4015
  ident: bb0455
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
– volume: 85
  start-page: 239
  year: 2001
  end-page: 248
  ident: bb0330
  article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
  publication-title: Agric. Ecosyst. Environ.
– volume: 6
  start-page: 67
  year: 2006
  end-page: 74
  ident: bb0430
  article-title: A comparison between genetic algorithms and sequential quadratic programming in solving constrained optimization problems
  publication-title: ICGST Int. J. Artif. Intell. Mach. Lear.
– volume: 38
  start-page: 10568
  year: 2011
  end-page: 10573
  ident: bb0500
  article-title: A hybrid GA–TS algorithm for open vehicle routing optimization of coal mines material
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 8208
  year: 2011
  end-page: 8219
  ident: bb0425
  article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang Valley Malaysia
  publication-title: Expert Syst. Appl.
– volume: 609
  start-page: 764
  year: 2017
  end-page: 775
  ident: bb0370
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
– volume: 297
  start-page: 69
  year: 2017
  end-page: 85
  ident: bb0090
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
– volume: 31
  start-page: 42
  year: 2016
  end-page: 70
  ident: bb0405
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golestan Province, Iran
  publication-title: Geocarto Int.
– volume: 75
  start-page: 665
  year: 2016
  ident: bb0510
  article-title: GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran
  publication-title: Environ. Earth Sci.
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  ident: bb0040
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrol. Sci. Bull.
– volume: 109
  start-page: 108
  year: 2009
  end-page: 121
  ident: bb0420
  article-title: Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains Japan
  publication-title: Geomorphology
– volume: 11
  start-page: 909
  year: 2014
  end-page: 926
  ident: bb0160
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 15
  start-page: 233
  year: 2006
  end-page: 240
  ident: bb0045
  article-title: Comprehensive planning and the role of SDSS in flood disaster management in Malaysia
  publication-title: Disaster Prev Manag
– volume: 5
  year: 2013
  ident: bb0130
  article-title: The human impact of earthquakes: a historical review of events 1980–2009 and systematic literature review
  publication-title: PLoS Curr.
– volume: 514
  start-page: 418
  year: 2015
  end-page: 425
  ident: bb0095
  article-title: Assessing urban potential flooding risk and identifying effective risk-reduction measures
  publication-title: Sci. Total Environ.
– volume: 97
  start-page: 71
  year: 2012
  end-page: 84
  ident: bb0345
  article-title: Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran
  publication-title: Catena
– volume: 1
  start-page: 85
  year: 2012
  ident: bb0435
  article-title: A methodology based on spatial distribution of parameters for understanding affect of rainfall and vegetation density on groundwater recharge
  publication-title: Eur. J. Sustain. Dev.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bb0105
  article-title: The particle swarm-explosion, stability and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 149
  year: 2006
  end-page: 167
  ident: bb0250
  article-title: Flood damage, vulnerability and risk perception–challenges for flood damage research
– volume: 152
  start-page: 144
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0220
  article-title: Landslide susceptibility assessment using maximum entropy model with two different data sampling methods
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.010
– volume: 48
  start-page: 753
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0245
  article-title: Induction motor control using PSO-ANFIS
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.04.212
– start-page: 175
  year: 1995
  ident: 10.1016/j.scitotenv.2017.09.262_bb0200
– volume: 60
  start-page: 937
  issue: 3
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0030
  article-title: Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9879-4
– volume: 1
  start-page: 121
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0065
– volume: 133
  start-page: 225
  issue: 3
  year: 2000
  ident: 10.1016/j.scitotenv.2017.09.262_bb0310
  article-title: Evaluating the predictive performance of habitat models developed using logistic regression
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(00)00322-7
– volume: 24
  start-page: 1175
  issue: 8
  year: 2010
  ident: 10.1016/j.scitotenv.2017.09.262_bb0485
  article-title: Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-010-0436-6
– year: 1994
  ident: 10.1016/j.scitotenv.2017.09.262_bb0005
– start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0225
  article-title: Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND
  publication-title: Geocarto Int.
– volume: 83
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2017.09.262_bb0300
  article-title: Machine learning without tears: a primer for ecologists
  publication-title: Q. Rev. Biol.
  doi: 10.1086/587826
– volume: 305
  start-page: 314
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0085
  article-title: Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.020
– volume: 399
  start-page: 158
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0295
  article-title: GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.027
– volume: 13
  start-page: 398
  year: 1994
  ident: 10.1016/j.scitotenv.2017.09.262_bb0050
  article-title: Geographic information systems for geoscientists-modeling with GIS
  publication-title: Comput. Methods Geosci.
– start-page: 149
  year: 2006
  ident: 10.1016/j.scitotenv.2017.09.262_bb0250
– volume: 51
  start-page: 1377
  issue: 8
  year: 2007
  ident: 10.1016/j.scitotenv.2017.09.262_bb0020
  article-title: GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region
  publication-title: Environ. Lithol.
– volume: 233
  start-page: 32
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0060
  article-title: A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.11.002
– volume: 16
  start-page: 121
  issue: 2
  year: 2007
  ident: 10.1016/j.scitotenv.2017.09.262_bb0325
  article-title: Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-007-9043-8
– volume: 61
  start-page: 821
  issue: 4
  year: 2010
  ident: 10.1016/j.scitotenv.2017.09.262_bb0495
  article-title: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-009-0394-9
– volume: 159
  start-page: 397
  year: 1992
  ident: 10.1016/j.scitotenv.2017.09.262_bb0035
  article-title: Trails and U-turns in the selection of the shortest path by the ant Lasius niger
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(05)80686-1
– volume: 15
  start-page: 233
  year: 2006
  ident: 10.1016/j.scitotenv.2017.09.262_bb0045
  article-title: Comprehensive planning and the role of SDSS in flood disaster management in Malaysia
  publication-title: Disaster Prev Manag
  doi: 10.1108/09653560610659775
– volume: 97
  start-page: 71
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0345
  article-title: Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2012.05.005
– volume: 31
  start-page: 1473
  issue: 5
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0400
  article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1589-6
– volume: 3
  start-page: 277
  issue: 3
  year: 1990
  ident: 10.1016/j.scitotenv.2017.09.262_bb0015
  article-title: Competitive learning algorithms for vector quantization
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90071-R
– volume: 45
  start-page: 199
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0465
  article-title: Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.10.031
– volume: 5
  year: 2013
  ident: 10.1016/j.scitotenv.2017.09.262_bb0130
  article-title: The human impact of earthquakes: a historical review of events 1980–2009 and systematic literature review
  publication-title: PLoS Curr.
– volume: 54
  start-page: 9
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2017.09.262_bb9100
  article-title: Extraction of potential debris source areas by logistic regression technique: A case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0788-5
– volume: 5
  start-page: 191
  issue: 10
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0235
  article-title: Landslide susceptibility mapping based on particle swarm optimization of multiple kernel relevance vector machines: case of a low hill area in Sichuan Province, China
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi5100191
– volume: 9
  start-page: 1
  issue: 2
  year: 2010
  ident: 10.1016/j.scitotenv.2017.09.262_bb0380
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
  publication-title: J. Spat. Hydrol.
– volume: 14
  start-page: 647
  issue: 6
  year: 2009
  ident: 10.1016/j.scitotenv.2017.09.262_bb0265
  article-title: Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000040
– volume: 375
  start-page: 613
  issue: 3
  year: 2009
  ident: 10.1016/j.scitotenv.2017.09.262_bb0110
  article-title: Ensemble flood forecasting: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.005
– volume: 157
  start-page: 310
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0080
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
  doi: 10.1016/j.catena.2017.05.034
– year: 2007
  ident: 10.1016/j.scitotenv.2017.09.262_bb0440
– volume: 75
  start-page: 665
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0510
  article-title: GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5424-9
– volume: 59
  start-page: 1261
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0075
  article-title: Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-011-9831-7
– volume: 38
  start-page: 1083
  issue: 10
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb9000
  article-title: Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.07.003
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.scitotenv.2017.09.262_bb0105
  article-title: The particle swarm-explosion, stability and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 5
  start-page: 3
  issue: 1
  year: 1991
  ident: 10.1016/j.scitotenv.2017.09.262_bb0260
  article-title: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– ident: 10.1016/j.scitotenv.2017.09.262_bb0155
– volume: 3
  start-page: 85
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0215
  article-title: Assessment of landslide susceptibility, semi-quantitative risk and management in the Ilam dam basin, Ilam, Iran
  publication-title: Environ. Resour. Res.
– volume: 344
  start-page: 243
  year: 2005
  ident: 10.1016/j.scitotenv.2017.09.262_bb0135
  article-title: Ant colony optimization theory: a survey
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– volume: 188
  start-page: 44
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0270
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-5049-6
– volume: 72
  start-page: 4001
  issue: 10
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0455
  article-title: Flood susceptibility mapping using integrated bivariate and multivariate statistical models
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3289-3
– volume: 394
  year: 2002
  ident: 10.1016/j.scitotenv.2017.09.262_bb0280
– volume: 411
  start-page: 290
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0305
  article-title: GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.010
– volume: 38
  start-page: 8208
  issue: 7
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0425
  article-title: Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang Valley Malaysia
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.167
– start-page: 895
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0230
  article-title: Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS
– volume: 29
  start-page: 1149
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0460
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-015-1021-9
– volume: 75
  start-page: 1
  issue: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0395
  article-title: A novel hybrid KPCA and SVM with PSO model for identifying debris flow hazard degree: a case study in Southwest China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5774-3
– volume: 71
  start-page: 523
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0290
  article-title: Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0932-3
– volume: 538
  start-page: 555
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0170
  article-title: Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: application in Rhodope–Evros region, Greece
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.055
– volume: 188
  start-page: 656
  issue: 12
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0185
  article-title: Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon's entropy, statistical index, and weighting factor models
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10661-016-5665-9
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.scitotenv.2017.09.262_bb0175
– volume: 85
  start-page: 239
  issue: 1
  year: 2001
  ident: 10.1016/j.scitotenv.2017.09.262_bb0330
  article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00187-6
– volume: 6
  start-page: 67
  issue: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2017.09.262_bb0430
  article-title: A comparison between genetic algorithms and sequential quadratic programming in solving constrained optimization problems
  publication-title: ICGST Int. J. Artif. Intell. Mach. Lear.
– volume: 12
  start-page: 921
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0285
  article-title: The impact of flood damages on production of Iran's Agricultural Sector. Middle East
  publication-title: J. Sci. Res.
– start-page: 1991
  year: 1996
  ident: 10.1016/j.scitotenv.2017.09.262_bb0205
  article-title: LVQ PAK: the learning vector quantization program package
– volume: 16
  start-page: 71
  issue: 6
  year: 2006
  ident: 10.1016/j.scitotenv.2017.09.262_bb0320
  article-title: A hybrid medical decision making system based on principle component analysis, k-NN based weighted pre-processing and adaptive neuro fuzzy inference system
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2006.05.001
– volume: 225
  start-page: 486
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0350
  article-title: Remote sensing data derived parameters and its use in landslide susceptibility assessment using Shannon's entropy and GIS
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.225.486
– volume: 290
  start-page: 569
  year: 1990
  ident: 10.1016/j.scitotenv.2017.09.262_bb0255
  article-title: Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford upland, south-central Indiana
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.290.5.569
– volume: 31
  start-page: 42
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0405
  article-title: Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golestan Province, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2015.1041559
– start-page: 432
  year: 2005
  ident: 10.1016/j.scitotenv.2017.09.262_bb0490
– volume: 63
  start-page: 965
  issue: 2
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0355
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0217-2
– volume: 2301
  start-page: 35
  year: 2013
  ident: 10.1016/j.scitotenv.2017.09.262_bb0100
– volume: 67
  start-page: 251
  issue: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0195
  article-title: An artificial neural network model for flood simulation using GIS: Johor River Basin Malaysia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1504-z
– volume: 253
  start-page: 508
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0150
  article-title: Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.10.030
– volume: 38
  start-page: 10568
  issue: 8
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0500
  article-title: A hybrid GA–TS algorithm for open vehicle routing optimization of coal mines material
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.108
– volume: 69
  start-page: 749
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2017.09.262_bb0360
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0728-5
– volume: 75
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0340
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4950-1
– volume: 17
  year: 2004
  ident: 10.1016/j.scitotenv.2017.09.262_bb0010
– volume: 15
  start-page: 617
  issue: 2
  year: 2011
  ident: 10.1016/j.scitotenv.2017.09.262_bb0165
  article-title: Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-617-2011
– volume: 504
  start-page: 69
  year: 2013
  ident: 10.1016/j.scitotenv.2017.09.262_bb0450
  article-title: Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.034
– volume: 378
  start-page: 325
  issue: 3
  year: 2009
  ident: 10.1016/j.scitotenv.2017.09.262_bb0415
  article-title: Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.09.037
– volume: 382
  start-page: 20
  issue: 1
  year: 2010
  ident: 10.1016/j.scitotenv.2017.09.262_bb0475
  article-title: Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.12.013
– volume: 297
  start-page: 69
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0090
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.007
– volume: 109
  start-page: 108
  issue: 3
  year: 2009
  ident: 10.1016/j.scitotenv.2017.09.262_bb0420
  article-title: Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.026
– volume: 22
  start-page: 643
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0375
  article-title: GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran
  publication-title: Hydrolith. J.
– volume: 34
  start-page: 3099
  issue: 4
  year: 2008
  ident: 10.1016/j.scitotenv.2017.09.262_bb0480
  article-title: An adaptive neuro-fuzzy inference system for bridge risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.026
– volume: 30
  start-page: 662
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0335
  article-title: Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2014.966161
– volume: 11
  start-page: 909
  issue: 4
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0160
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0464-0
– volume: 470
  start-page: 302
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0125
  article-title: Classifiers for the detection of flood-prone areas using remote sensed elevation data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.09.006
– volume: 51
  start-page: 350
  year: 2013
  ident: 10.1016/j.scitotenv.2017.09.262_bb0385
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 25
  start-page: 1223-1217
  issue: 7
  year: 2005
  ident: 10.1016/j.scitotenv.2017.09.262_bb0410
  article-title: Heat exchanger network synthesis and optimization using genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.06.024
– volume: 24
  start-page: 43
  year: 1979
  ident: 10.1016/j.scitotenv.2017.09.262_bb0040
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrol. Sci. Bull.
  doi: 10.1080/02626667909491834
– volume: 3
  start-page: 71
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0445
  article-title: Morphometric analysis of a Semi Urban Watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS
  publication-title: Int. J. Eng. Sci.
– start-page: 4796
  year: 2010
  ident: 10.1016/j.scitotenv.2017.09.262_bb0315
  article-title: A fuzzy-logic-based approach for flood detection from Cosmo-SkyMed data
– volume: 4
  start-page: 169
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0210
  article-title: Performance assessment of two “LNRF” and “AHP-Area Density” models in landslide susceptibility zonation
  publication-title: J. Life Sci. Biomed.
– volume: 10
  start-page: 485
  issue: 6
  year: 2005
  ident: 10.1016/j.scitotenv.2017.09.262_bb0070
  article-title: Comparison of several flood forecasting models in Yangtze River
  publication-title: J. Hydraul. Eng.
– volume: 1
  start-page: 85
  issue: 2
  year: 2012
  ident: 10.1016/j.scitotenv.2017.09.262_bb0435
  article-title: A methodology based on spatial distribution of parameters for understanding affect of rainfall and vegetation density on groundwater recharge
  publication-title: Eur. J. Sustain. Dev.
  doi: 10.14207/ejsd.2012.v1n2p85
– volume: 513
  start-page: 283
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0275
  article-title: Application of GIS based data driven evidential belief function model to predict groundwater potential zonation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.02.053
– volume: 47
  start-page: 65
  issue: 1
  year: 2008
  ident: 10.1016/j.scitotenv.2017.09.262_bb0145
  article-title: Flood hazard in Hunan province of China: an economic loss analysis
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-007-9197-z
– volume: 514
  start-page: 418
  year: 2015
  ident: 10.1016/j.scitotenv.2017.09.262_bb0095
  article-title: Assessing urban potential flooding risk and identifying effective risk-reduction measures
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.027
– volume: 83
  start-page: 947
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2017.09.262_bb0190
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2357-2
– volume: 158
  start-page: 194
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0180
  article-title: Modeling soil cation exchange capacity in multiple countries
  publication-title: Catena
  doi: 10.1016/j.catena.2017.07.002
– volume: 7
  start-page: 1857
  issue: 5
  year: 2014
  ident: 10.1016/j.scitotenv.2017.09.262_bb0365
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0825-x
– volume: 609
  start-page: 764
  year: 2017
  ident: 10.1016/j.scitotenv.2017.09.262_bb0370
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
SSID ssj0000781
Score 2.6778443
Snippet Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood...
SourceID wageningen
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 438
SubjectTerms algorithms
altitude
ANFIS
Ant colony
computer software
disasters
flood control
Flood susceptibility mapping
fuzzy logic
Genetic algorithm
geographic information systems
land cover
land use planning
model validation
neural networks
Particle swarm optimization
rain
rivers
streams
system optimization
Title Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
URI https://dx.doi.org/10.1016/j.scitotenv.2017.09.262
https://www.ncbi.nlm.nih.gov/pubmed/28988080
https://www.proquest.com/docview/1949083548
https://www.proquest.com/docview/2000531350
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F528541
Volume 615
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamIaQhNEFh0AGTkbiGNY7tJNymaVWh0g6Iid0sO7a7TmlSNclGd-Bvxy9OWiY07cApSmRbad9Px9_7HkKfnBpwQrM40AxItVNuAmVTHRDNIGJbRnTL9nnOJxf02yW73EGnfS0MwCo73-99euutuyfH3b95vJzPocaXJilP4RjZbQPa4nVKY-hi8Pn3FuYBZDb-lNkZtht9D-Pl1q1Ll5veAMYrBsJTwslDEerfDPQZ2rt1Vl-0ZVB_haXxC7Tf5ZP4xL_yS7RjigF66jtMrgfo4GxbyOaGdZZcDdBz_70O-zKkV-jXGBDsuGqqFufSQmbXeCGBvmGGAR0_w0V5Y3Ls9r1moXJT4dJiqeUSHCZueTGxbe7u1njeFxFizxONZaHxwtTyyjSeGBrLfFau5vXVonqNLsZnP04nQdeVIcgoY3WgJWA4GY-kiUKtRlFGE8NsRohKKYjYusBI5SjShqswttJwrjIdaqnAl5LoAO0WZWHeImwUdymXdilUbKkNldKJJaHRsGasaTpEvJeEyDrKcuickYsem3YtNiIUIEIxSoUT4RCNNhOXnrXj8SlfelGLewooXGx5fPLHXjmEM084c5GFKZtKhCmcrEZuX_jwGNJWRIcRGw3RG69Zm7d2--EEqD-HKNqqmiigz1QlgBq8-9gnbpuVKHK4uBUqwaAyNjz8nx_1Du25uwQg6iF7j3brVWM-uAysVketiR2hJydfp5NzuE6__5z-AfZCOWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLamIcQQQlAYlE8jcQ1LHNtJuKFpVYGx0ybtZtmx3RWlSdUkG92B347fOGmZ0LQDp0iNbSV9v-PnfYzQR6cGnNA8CTQDUu2Mm0DZTAdEM4jYlhHdsX2e8OkZ_XbOznfQ4dALA7DK3vd7n9556_6Xg_7fPFjO59DjS9OMZ7CN7MoAaF6_RxlJoAL79HuL8wA2G7_N7CzbDb8B8nILN5VLTi8B5JUA4ynh5LYQ9W8K-hDtXTmzL7s-qL_i0uQJetwnlPiLf-anaMeUI3TfHzG5HqH9o20nmxvWm3I9Qo_8Bzvs-5CeoV8TgLDjuq07oEuHmV3jhQT-hhkGePwMl9WlKbArfM1CFabGlcVSyyV4TNwRY2LbXl-v8XzoIsSeKBrLUuOFaeSFaT0zNJbFrFrNm4tF_RydTY5OD6dBfyxDkFPGmkBLAHEyHksTR1qFcU5Tw2xOiMooyNi6yEhlGGvDVZRYaThXuY60VOBMSbyPdsuqNC8RNoq7nEu7HCqx1EZK6dSSyGhYM9E0GyM-SELkPWc5HJ1RiAGc9lNsRChAhCLMhBPhGIWbiUtP23H3lM-DqMUNDRQuuNw9-cOgHMLZJ2y6yNJUbS2iDLZWY1cY3j6GdC3RUczCMXrhNWvz1K4gToH7c4ziraqJEg6aqgVwg_df-8RVuxJlARe3Qi0YtMZGr_7npd6jB9PTH8fi-OvJ99doz91JAa8esTdot1m15q1Lxxr1rjO3Pw_BOV4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flood+susceptibility+mapping+using+novel+ensembles+of+adaptive+neuro+fuzzy+inference+system+and+metaheuristic+algorithms&rft.jtitle=The+Science+of+the+total+environment&rft.au=Razavi+Termeh%2C+Seyed+Vahid&rft.au=Kornejady%2C+Aiding&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Keesstra%2C+Saskia&rft.date=2018-02-15&rft.issn=0048-9697&rft.volume=615+p.438-451&rft.spage=438&rft.epage=451&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.09.262&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon