Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations
Zeta potential of porous silicon nanoparticles is highly dependent on the nature of the loaded peptide and the isotonic medium. Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs ar...
Saved in:
Published in | International journal of pharmaceutics Vol. 431; no. 1-2; pp. 230 - 236 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-5173 1873-3476 1873-3476 |
DOI | 10.1016/j.ijpharm.2012.04.059 |
Cover
Abstract | Zeta potential of porous silicon nanoparticles is highly dependent on the nature of the loaded peptide and the isotonic medium.
Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered. |
---|---|
AbstractList | Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered. Zeta potential of porous silicon nanoparticles is highly dependent on the nature of the loaded peptide and the isotonic medium. Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered. Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered.Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered. |
Author | Lehto, Vesa-Pekka Mäkilä, Ermei Riikonen, Joakim Salonen, Jarno Kaasalainen, Martti Järvinen, Kristiina Kovalainen, Miia Herzig, Karl-Heinz |
Author_xml | – sequence: 1 givenname: Martti surname: Kaasalainen fullname: Kaasalainen, Martti organization: Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland – sequence: 2 givenname: Ermei surname: Mäkilä fullname: Mäkilä, Ermei organization: Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland – sequence: 3 givenname: Joakim surname: Riikonen fullname: Riikonen, Joakim organization: Department of Physics, University of Eastern Finland, FI-70211 Kuopio, Finland – sequence: 4 givenname: Miia surname: Kovalainen fullname: Kovalainen, Miia organization: School of Pharmacy, Pharmaceutical Technology, University of Eastern Finland, FI-70211 Kuopio, Finland – sequence: 5 givenname: Kristiina surname: Järvinen fullname: Järvinen, Kristiina organization: School of Pharmacy, Pharmaceutical Technology, University of Eastern Finland, FI-70211 Kuopio, Finland – sequence: 6 givenname: Karl-Heinz surname: Herzig fullname: Herzig, Karl-Heinz organization: Institute of Biomedicine, Biocenter of Oulu, University of Oulu, FI-90014 Oulu, Finland – sequence: 7 givenname: Vesa-Pekka surname: Lehto fullname: Lehto, Vesa-Pekka organization: Department of Physics, University of Eastern Finland, FI-70211 Kuopio, Finland – sequence: 8 givenname: Jarno surname: Salonen fullname: Salonen, Jarno email: jarno.salonen@utu.fi organization: Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22569227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk2LFDEQhoOsuB_6E9QcvcxYSTpJBw8iy_oBCx50zyGbrqwZejptkl5YL_51MzujBy8DgUDxvFVFnpyTkylNSMhLBmsGTL3drONm_uHyds2B8TV0a5DmCTljvRYr0Wl1Qs5A6H4lmRan5LyUDQAozsQzcsq5VIZzfUZ-X4WAvtIUaCyppil6WtK41JimQt000BnnGgekbigpz7s6becXVkfnVHGq0Y27-JxyWgotcYy-AZOb0uxyjX5EOuTljg44xnvMDzSkvF1G9zjiOXka3FjwxeG-IDcfr75ffl5df_305fLD9cp3UtaVBwMBXC8GE5RXQmsIJjDd8_7WuVbsPZecOYbQY-cNhw65FtLz4DWXQlyQN_u-c04_FyzVbmPxOI5uwra2ZUr3UjFtzHFUGGOgE5IdR4HJTilQ0NBXB3S53eJg5xy3Lj_YvyoaIPeAz6mUjOEfwmDXSNmNPSi3O-UWOtuUt9y7_3I-1sfHrdnF8Wj69T4dXLLuLsdib741QEKDOtOrRrzfE9j03EfMtviIk8ch5vZz7JDikRl_AD7w1bw |
CitedBy_id | crossref_primary_10_1016_j_ajps_2020_11_002 crossref_primary_10_1016_j_ejpb_2019_12_008 crossref_primary_10_1039_D2NH00130F crossref_primary_10_1021_acs_biomac_3c00424 crossref_primary_10_1007_s12274_015_0715_0 crossref_primary_10_1016_j_apsusc_2019_144359 crossref_primary_10_1039_C6RA27102B crossref_primary_10_1016_j_elstat_2017_10_005 crossref_primary_10_1186_s11671_017_1853_y crossref_primary_10_1016_j_apsusc_2019_05_317 crossref_primary_10_3389_fchem_2018_00539 crossref_primary_10_3390_ijms241914983 crossref_primary_10_4028_www_scientific_net_AMM_618_431 crossref_primary_10_1016_j_cej_2019_123414 crossref_primary_10_1103_PhysRevLett_125_037801 crossref_primary_10_1002_elps_201200549 crossref_primary_10_1021_la5047047 crossref_primary_10_1016_j_jinorgbio_2024_112549 crossref_primary_10_1016_j_colsurfb_2015_04_066 crossref_primary_10_1016_j_jclepro_2024_140956 crossref_primary_10_1039_C8CP01906A crossref_primary_10_1080_10717544_2022_2092238 crossref_primary_10_1002_elps_201500374 crossref_primary_10_3897_pharmacia_69_e86907 crossref_primary_10_3390_md17080438 crossref_primary_10_1016_j_biomaterials_2015_01_008 crossref_primary_10_1016_j_xphs_2016_02_018 crossref_primary_10_1039_C7RA06829H crossref_primary_10_1016_j_colsurfb_2017_02_022 crossref_primary_10_1134_S000635091404023X crossref_primary_10_1016_j_jconrel_2013_05_036 crossref_primary_10_1080_03639045_2020_1862171 crossref_primary_10_1021_acsabm_9b00230 crossref_primary_10_1021_mp500787b crossref_primary_10_1021_acssuschemeng_2c03506 crossref_primary_10_3390_molecules22112020 crossref_primary_10_3139_113_110469 crossref_primary_10_2217_nnm_15_53 crossref_primary_10_1002_jsfa_7768 crossref_primary_10_1080_08982104_2020_1818779 crossref_primary_10_3390_pharmaceutics14010126 crossref_primary_10_1016_j_materresbull_2014_05_014 crossref_primary_10_1039_C7CP00728K crossref_primary_10_1016_j_bioactmat_2020_01_006 crossref_primary_10_3390_md14050090 crossref_primary_10_1039_D1CS01022K crossref_primary_10_3390_pharmaceutics11120666 crossref_primary_10_1007_s12035_016_0200_0 crossref_primary_10_1016_j_jddst_2022_103323 crossref_primary_10_1016_j_colsurfb_2015_09_022 crossref_primary_10_1021_acsbiomaterials_6b00550 crossref_primary_10_1016_j_eurpolymj_2018_09_033 crossref_primary_10_1016_j_foodhyd_2013_12_022 crossref_primary_10_4028_www_scientific_net_AMR_669_217 crossref_primary_10_1089_jop_2017_0057 crossref_primary_10_1016_j_ijpharm_2012_06_037 crossref_primary_10_3390_ma11071083 crossref_primary_10_3390_pharmaceutics11110606 crossref_primary_10_1016_j_ijpharm_2013_06_063 crossref_primary_10_1208_s12249_016_0493_3 crossref_primary_10_1016_j_biomaterials_2013_08_034 crossref_primary_10_1080_03639045_2017_1371741 crossref_primary_10_3390_ph16030349 crossref_primary_10_4236_msa_2022_131003 crossref_primary_10_1016_j_jddst_2019_05_029 crossref_primary_10_2147_IJN_S421617 |
Cites_doi | 10.1021/mp100227m 10.1016/S0142-9612(01)00267-8 10.1021/cm071289n 10.1053/j.gastro.2007.03.048 10.1006/jcis.1994.1419 10.1016/j.apsusc.2003.10.028 10.1016/j.biomaterials.2009.01.019 10.1016/S1748-0132(07)70084-1 10.1016/0021-9797(88)90407-9 10.1016/j.jconrel.2009.03.017 10.1016/0307-4412(86)90176-7 10.1016/j.jcis.2006.12.075 10.1002/jps.20999 10.1002/elps.200700734 10.1021/ja0719780 10.1098/rspa.1931.0133 10.1021/la904820k 10.1016/j.regpep.2007.10.008 10.1038/nmat2398 10.1021/la102367z 10.1039/c0cs00227e 10.1016/j.biomaterials.2009.02.008 10.1016/j.biomaterials.2007.07.029 10.1021/la202252m 10.1021/mp2001654 10.1021/nn100816s 10.1126/science.1095833 10.1063/1.1678153 10.3109/09687688.2010.522117 10.1021/ja0645943 10.1007/s11095-011-0453-2 10.1021/cr60234a002 10.1016/j.ijpharm.2005.10.010 10.1016/j.biomaterials.2010.12.011 10.1016/j.jconrel.2005.08.017 10.1016/S0142-9612(02)00440-4 10.1002/adma.19950071215 10.1007/s11095-011-0611-6 10.1021/bi060359l 10.1002/mrc.880 10.1021/nn901657w 10.1021/la00064a016 10.1021/nn103077k 10.1155/2008/712514 10.1021/la062450w 10.1517/17425240903199143 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. Copyright © 2012 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7S9 L.6 |
DOI | 10.1016/j.ijpharm.2012.04.059 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
EndPage | 236 |
ExternalDocumentID | 22569227 10_1016_j_ijpharm_2012_04_059 US201500124986 S037851731200405X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G AAQXK ABPIF ABPTK ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HMT HVGLF R2- SEW SPT WUQ ZXP AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 7QO 8FD FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-c090f0a83d9f6c63770f9f17828baad9f8c2521a1e08e4c9204e2735c2fc72533 |
IEDL.DBID | AIKHN |
ISSN | 0378-5173 1873-3476 |
IngestDate | Sun Sep 28 01:32:21 EDT 2025 Fri Sep 05 04:43:53 EDT 2025 Sat Sep 27 20:16:13 EDT 2025 Mon Jul 21 05:54:36 EDT 2025 Tue Jul 01 00:28:51 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Dec 27 19:17:04 EST 2023 Fri Feb 23 02:20:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Nanoparticles Gastrointestinal peptide Isotonic formulation Zeta potential Porous silicon Parenteral peptide delivery |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-c090f0a83d9f6c63770f9f17828baad9f8c2521a1e08e4c9204e2735c2fc72533 |
Notes | http://dx.doi.org/10.1016/j.ijpharm.2012.04.059 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22569227 |
PQID | 1015466060 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1678561799 proquest_miscellaneous_1399904351 proquest_miscellaneous_1015466060 pubmed_primary_22569227 crossref_primary_10_1016_j_ijpharm_2012_04_059 crossref_citationtrail_10_1016_j_ijpharm_2012_04_059 fao_agris_US201500124986 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2012_04_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-15 |
PublicationDateYYYYMMDD | 2012-07-15 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Slowing, Trewyn, Lin (bib0240) 2007; 129 Asati, Santra, Kaittanis, Perez (bib0015) 2010; 4 Rosenholm, Lindén (bib0195) 2007; 19 Cameselle, Ribeiro, Sillero (bib0045) 1986; 14 Salonen, Kaukonen, Hirvonen, Lehto (bib0215) 2008; 97 Gu, Biswas, Zhao, Tang (bib0070) 2011; 40 Wren, Bloom (bib0260) 2007; 132 Parks (bib0180) 1965; 65 Rosenholm, Czuryszkiewicz, Kleitz, Rosenholm, Lindén (bib0200) 2007; 23 Koppel (bib0115) 1972; 57 Kosmulski (bib0120) 2009 Slowing, Trewyn, Lin (bib0235) 2006; 128 Mäkilä, E., Kaasalainen, M., Héllsten, S., Louhi-Kultanen, M., Airaksinen A.J., Kukk, E., Salonen, J., Aminofunctionalization of thermally carbonized porous silicon with silane coupling chemistry, submitted for publication. Tandon, Bhagavatula, Nelson, Kirby (bib0245) 2008; 29 De Rosa, Chiappini, Fan, Liu, Ferrari, Tasciotti (bib0190) 2011; 28 Jarvis, Barnes, Prestidge (bib0090) 2010; 26 Koopal, Hlady, Lyklema (bib0110) 1988; 121 Ohshima (bib0165) 1994; 168 Zhang, Kohler, Zhang (bib0265) 2002; 23 Bimbo, Sarparanta, Santos, Airaksinen, Mäkilä, Laaksonen, Peltonen, Lehto, Hirvonen, Salonen (bib0030) 2010; 4 Delgado, González-Caballero, Hunter, Koopal, Lyklema (bib0055) 2007; 309 Nieto, Colilla, Balas, Vallet-Regí (bib0155) 2010; 26 Allen, Cullis (bib0005) 2004; 303 Bimbo, Mäkilä, Laaksonen, Lehto, Salonen, Hirvonen, Santos (bib0025) 2011; 32 Nelson, Cox (bib0150) 2000 Jorgensen, Hostrup, Moeller, Grohganz (bib0095) 2009; 6 Bergman, Rosenholm, Öst, Duchanoy, Kankaanpää, Heino, Lindén (bib0020) 2008 Budavari, O’Neil, Smith, Heckelman (bib0035) 2001 Serda, Gu, Bhavane, Liu, Chiappini, Decuzzi, Ferrari (bib0230) 2009; 30 Lide (bib0130) 2008 Karhunen, Juvonen, Huotari, Purhonen, Herzig (bib0100) 2008; 149 Low, Voelcker, Canham, Williams (bib0135) 2009; 30 Wang, Coffer, Dorraj, Hartman, Armano, Canham (bib0250) 2010; 7 Salonen, Björkqvist, Laine, Niinistö (bib0210) 2004; 225 Morrison, Grabowski (bib0140) 1985; 1 Sarparanta, Mäkilä, Heikkilä, Salonen, Kukk, Lehto, Santos, Hirvonen, Airaksinen (bib0225) 2011; 8 Park, Gu, von Maltzahn, Ruoslahti, Bhatia, Sailor (bib0175) 2009; 8 Arruebo, Fernández-Pacheco, Ibarra, Santamaría (bib0010) 2007; 2 Canham (bib0040) 1995; 7 Huang, Mocherla, Heslinga, Charoenphol, Eniola-Adefeso (bib0080) 2010; 27 Florence, Attwood (bib0065) 2011 Ferstl, Strasser, Wittmann, Drechsler, Rischer, Engel, Goepferich (bib0060) 2011; 27 Nygaard, Nielbo, Schwartz, Poulsen (bib0160) 2006; 45 Hunter (bib0085) 2001 Rytkönen, J., Miettinen, R., Kaasalainen, M., Lehto, V.P., Salonen, J., Närvänen, A., Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes, submitted for publication. Kilpeläinen, Riikonen, Vlasova, Huotari, Lehto, Salonen, Herzig, Järvinen (bib0105) 2009; 137 Wilhelm, Billotey, Roger, Pons, Bacri, Gazeau (bib0255) 2003; 24 Chang, Keller, Björn, Led (bib0050) 2001; 39 Salonen, Laitinen, Kaukonen, Tuura, Björkqvist, Heikkilä, Vähä-Heikkilä, Hirvonen, Lehto (bib0220) 2005; 108 Zhao, Sun, Zhang, Trewyn, Slowing, Lin (bib0270) 2011; 5 Owens, Peppas (bib0170) 2006; 307 Patil, Sandberg, Heckert, Self, Seal (bib0185) 2007; 28 Kovalainen, Mönkäre, Mäkilä, Salonen, Lehto, Herzig, Järvinen (bib0125) 2012; 29 Henry (bib0075) 1931; 133 Koopal (10.1016/j.ijpharm.2012.04.059_bib0110) 1988; 121 Bimbo (10.1016/j.ijpharm.2012.04.059_bib0030) 2010; 4 Koppel (10.1016/j.ijpharm.2012.04.059_bib0115) 1972; 57 Florence (10.1016/j.ijpharm.2012.04.059_bib0065) 2011 Lide (10.1016/j.ijpharm.2012.04.059_bib0130) 2008 Ohshima (10.1016/j.ijpharm.2012.04.059_bib0165) 1994; 168 Rosenholm (10.1016/j.ijpharm.2012.04.059_bib0200) 2007; 23 Kovalainen (10.1016/j.ijpharm.2012.04.059_bib0125) 2012; 29 Sarparanta (10.1016/j.ijpharm.2012.04.059_bib0225) 2011; 8 De Rosa (10.1016/j.ijpharm.2012.04.059_bib0190) 2011; 28 Serda (10.1016/j.ijpharm.2012.04.059_bib0230) 2009; 30 Gu (10.1016/j.ijpharm.2012.04.059_bib0070) 2011; 40 Kilpeläinen (10.1016/j.ijpharm.2012.04.059_bib0105) 2009; 137 Asati (10.1016/j.ijpharm.2012.04.059_bib0015) 2010; 4 Patil (10.1016/j.ijpharm.2012.04.059_bib0185) 2007; 28 Park (10.1016/j.ijpharm.2012.04.059_bib0175) 2009; 8 Rosenholm (10.1016/j.ijpharm.2012.04.059_bib0195) 2007; 19 Bimbo (10.1016/j.ijpharm.2012.04.059_bib0025) 2011; 32 10.1016/j.ijpharm.2012.04.059_bib0145 Allen (10.1016/j.ijpharm.2012.04.059_bib0005) 2004; 303 Jarvis (10.1016/j.ijpharm.2012.04.059_bib0090) 2010; 26 Jorgensen (10.1016/j.ijpharm.2012.04.059_bib0095) 2009; 6 Kosmulski (10.1016/j.ijpharm.2012.04.059_bib0120) 2009 Henry (10.1016/j.ijpharm.2012.04.059_bib0075) 1931; 133 Owens (10.1016/j.ijpharm.2012.04.059_bib0170) 2006; 307 Tandon (10.1016/j.ijpharm.2012.04.059_bib0245) 2008; 29 Delgado (10.1016/j.ijpharm.2012.04.059_bib0055) 2007; 309 Morrison (10.1016/j.ijpharm.2012.04.059_bib0140) 1985; 1 Salonen (10.1016/j.ijpharm.2012.04.059_bib0220) 2005; 108 Huang (10.1016/j.ijpharm.2012.04.059_bib0080) 2010; 27 Chang (10.1016/j.ijpharm.2012.04.059_bib0050) 2001; 39 Wilhelm (10.1016/j.ijpharm.2012.04.059_bib0255) 2003; 24 Canham (10.1016/j.ijpharm.2012.04.059_bib0040) 1995; 7 Hunter (10.1016/j.ijpharm.2012.04.059_bib0085) 2001 Salonen (10.1016/j.ijpharm.2012.04.059_bib0215) 2008; 97 Cameselle (10.1016/j.ijpharm.2012.04.059_bib0045) 1986; 14 Low (10.1016/j.ijpharm.2012.04.059_bib0135) 2009; 30 Ferstl (10.1016/j.ijpharm.2012.04.059_bib0060) 2011; 27 Nieto (10.1016/j.ijpharm.2012.04.059_bib0155) 2010; 26 Arruebo (10.1016/j.ijpharm.2012.04.059_bib0010) 2007; 2 Slowing (10.1016/j.ijpharm.2012.04.059_bib0240) 2007; 129 Salonen (10.1016/j.ijpharm.2012.04.059_bib0210) 2004; 225 Zhang (10.1016/j.ijpharm.2012.04.059_bib0265) 2002; 23 Wren (10.1016/j.ijpharm.2012.04.059_bib0260) 2007; 132 Nelson (10.1016/j.ijpharm.2012.04.059_bib0150) 2000 Nygaard (10.1016/j.ijpharm.2012.04.059_bib0160) 2006; 45 Slowing (10.1016/j.ijpharm.2012.04.059_bib0235) 2006; 128 Budavari (10.1016/j.ijpharm.2012.04.059_bib0035) 2001 Karhunen (10.1016/j.ijpharm.2012.04.059_bib0100) 2008; 149 Zhao (10.1016/j.ijpharm.2012.04.059_bib0270) 2011; 5 10.1016/j.ijpharm.2012.04.059_bib0205 Bergman (10.1016/j.ijpharm.2012.04.059_bib0020) 2008 Wang (10.1016/j.ijpharm.2012.04.059_bib0250) 2010; 7 Parks (10.1016/j.ijpharm.2012.04.059_bib0180) 1965; 65 |
References_xml | – year: 2008 ident: bib0130 article-title: CRC Handbook of Chemistry and Physics – volume: 4 start-page: 3023 year: 2010 end-page: 3032 ident: bib0030 article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats publication-title: ACS Nano – year: 2000 ident: bib0150 article-title: Lehninger Principles of Biochemistry – volume: 7 start-page: 2232 year: 2010 end-page: 2239 ident: bib0250 article-title: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon publication-title: Mol. Pharm. – volume: 168 start-page: 269 year: 1994 end-page: 271 ident: bib0165 article-title: A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 4600 year: 2007 end-page: 4607 ident: bib0185 article-title: Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential publication-title: Biomaterials – volume: 7 start-page: 1033 year: 1995 end-page: 1037 ident: bib0040 article-title: Bioactive silicon structure fabrication through nanoetching techniques publication-title: Adv. Mater. – start-page: 1 year: 2008 end-page: 9 ident: bib0020 article-title: On the complexity of electrostatic suspension stabilization of functionalized silica nanoparticles for biotargeting and imaging applications publication-title: J. Nanomater. – volume: 27 start-page: 312 year: 2010 end-page: 327 ident: bib0080 article-title: Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery publication-title: Mol. Membr. Biol. – volume: 27 start-page: 14450 year: 2011 end-page: 14459 ident: bib0060 article-title: Nanofibers resulting from cooperative electrostatic and hydrophobic interactions between peptides and polyelectrolytes of opposite charge publication-title: Langmuir – volume: 303 start-page: 1818 year: 2004 end-page: 1822 ident: bib0005 article-title: Drug delivery systems: entering the mainstream publication-title: Science – volume: 19 start-page: 5023 year: 2007 end-page: 5034 ident: bib0195 article-title: Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas publication-title: Chem. Mater. – volume: 29 start-page: 1092 year: 2008 end-page: 1101 ident: bib0245 article-title: Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge publication-title: Electrophoresis – volume: 39 start-page: 477 year: 2001 end-page: 483 ident: bib0050 article-title: Structure and folding of glucagon-like peptide-1-(7-36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy publication-title: Magn. Reson. Chem. – volume: 225 start-page: 389 year: 2004 end-page: 394 ident: bib0210 article-title: Stabilization of porous silicon surface by thermal decomposition of acetylene publication-title: Appl. Surf. Sci. – volume: 30 start-page: 2440 year: 2009 end-page: 2448 ident: bib0230 article-title: The association of silicon microparticles with endothelial cells in drug delivery to the vasculature publication-title: Biomaterials – volume: 108 start-page: 362 year: 2005 end-page: 374 ident: bib0220 article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs publication-title: J. Control. Release – year: 2001 ident: bib0085 article-title: Foundations of Colloid Science – volume: 128 start-page: 14792 year: 2006 end-page: 14793 ident: bib0235 article-title: Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 8845 year: 2007 end-page: 8849 ident: bib0240 article-title: Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 3638 year: 2011 end-page: 3655 ident: bib0070 article-title: Tailoring nanocarriers for intracellular protein delivery publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1553 year: 2002 end-page: 1561 ident: bib0265 article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake publication-title: Biomaterials – volume: 149 start-page: 70 year: 2008 end-page: 78 ident: bib0100 article-title: Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans publication-title: Regul. Pept. – volume: 28 start-page: 1520 year: 2011 end-page: 1530 ident: bib0190 article-title: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system publication-title: Pharm. Res. – volume: 57 start-page: 4814 year: 1972 end-page: 4821 ident: bib0115 article-title: Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants publication-title: J. Chem. Phys. – volume: 45 start-page: 8350 year: 2006 end-page: 8357 ident: bib0160 article-title: The PP-fold solution structure of human polypeptide YY and human PYY3-36 as determined by NMR publication-title: Biochemistry-US – volume: 8 start-page: 1799 year: 2011 end-page: 1806 ident: bib0225 article-title: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography publication-title: Mol. Pharm. – volume: 6 start-page: 1219 year: 2009 end-page: 1230 ident: bib0095 article-title: Recent trends in stabilising peptides and proteins in pharmaceutical formulation – considerations in the choice of excipients publication-title: Expert Opin. Drug Deliv. – volume: 132 start-page: 2116 year: 2007 end-page: 2130 ident: bib0260 article-title: Gut hormones and appetite control publication-title: Gastroenterology – volume: 24 start-page: 1001 year: 2003 end-page: 1011 ident: bib0255 article-title: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating publication-title: Biomaterials – volume: 97 start-page: 632 year: 2008 end-page: 653 ident: bib0215 article-title: Mesoporous silicon in drug delivery applications publication-title: J. Pharm. Sci. – volume: 4 start-page: 5321 year: 2010 end-page: 5331 ident: bib0015 article-title: Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles publication-title: ACS Nano – year: 2001 ident: bib0035 article-title: The Merck Index – volume: 309 start-page: 194 year: 2007 end-page: 224 ident: bib0055 article-title: Measurement and interpretation of electrokinetic phenomena publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 496 year: 1985 end-page: 501 ident: bib0140 article-title: Improved techniques for particle size determination by quasi-elastic light scattering publication-title: Langmuir – reference: Mäkilä, E., Kaasalainen, M., Héllsten, S., Louhi-Kultanen, M., Airaksinen A.J., Kukk, E., Salonen, J., Aminofunctionalization of thermally carbonized porous silicon with silane coupling chemistry, submitted for publication. – volume: 2 start-page: 22 year: 2007 end-page: 32 ident: bib0010 article-title: Magnetic nanoparticles for drug delivery publication-title: Nano Today – volume: 26 start-page: 5038 year: 2010 end-page: 5049 ident: bib0155 article-title: Surface electrochemistry of mesoporous silicas as a key factor in the design of tailored delivery devices publication-title: Langmuir – volume: 137 start-page: 166 year: 2009 end-page: 170 ident: bib0105 article-title: In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles publication-title: J. Control. Release – volume: 14 start-page: 131 year: 1986 end-page: 136 ident: bib0045 article-title: Derivation and use of a formula to calculate the net charge of acid–base compounds. Its application to amino acids, proteins and nucleotides publication-title: Biochem. Educ. – year: 2009 ident: bib0120 article-title: Surface Charging and Points of Zero Charge, Surfactant Science Series 145 – volume: 32 start-page: 2625 year: 2011 end-page: 2633 ident: bib0025 article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles publication-title: Biomaterials – volume: 29 start-page: 837 year: 2012 end-page: 846 ident: bib0125 article-title: Mesoporous silicon (PSi) for sustained peptide delivery: effect of PSi microparticle surface chemistry on peptide YY3-36 release publication-title: Pharm. Res. – volume: 307 start-page: 93 year: 2006 end-page: 102 ident: bib0170 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. – volume: 5 start-page: 1366 year: 2011 end-page: 1375 ident: bib0270 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano – year: 2011 ident: bib0065 article-title: Physicochemical Principles of Pharmacy – volume: 8 start-page: 331 year: 2009 end-page: 336 ident: bib0175 article-title: Biodegradable luminescent porous silicon nanoparticles for in vivo applications publication-title: Nat. Mater. – volume: 133 start-page: 106 year: 1931 end-page: 129 ident: bib0075 article-title: The cataphoresis of suspended particles. Part I.–The equation of cataphoresis publication-title: Proc. R. Soc. London, A Math. Phys. Sci. – volume: 26 start-page: 14316 year: 2010 end-page: 14322 ident: bib0090 article-title: Thermal ocidation for controlling protein interactions with porous silicon publication-title: Langmuir – volume: 65 start-page: 177 year: 1965 end-page: 198 ident: bib0180 article-title: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems publication-title: Chem. Rev. – reference: Rytkönen, J., Miettinen, R., Kaasalainen, M., Lehto, V.P., Salonen, J., Närvänen, A., Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes, submitted for publication. – volume: 23 start-page: 4315 year: 2007 end-page: 4323 ident: bib0200 article-title: On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution publication-title: Langmuir – volume: 121 start-page: 49 year: 1988 end-page: 62 ident: bib0110 article-title: Electrophoretic study of polymer adsorption: dextran, polyethylene oxide and polyvinyl alcohol on silver iodide publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 2873 year: 2009 end-page: 2880 ident: bib0135 article-title: The biocompatibility of porous silicon in tissues of the eye publication-title: Biomaterials – volume: 7 start-page: 2232 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0250 article-title: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon publication-title: Mol. Pharm. doi: 10.1021/mp100227m – ident: 10.1016/j.ijpharm.2012.04.059_bib0145 – volume: 23 start-page: 1553 year: 2002 ident: 10.1016/j.ijpharm.2012.04.059_bib0265 article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00267-8 – volume: 19 start-page: 5023 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0195 article-title: Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas publication-title: Chem. Mater. doi: 10.1021/cm071289n – volume: 132 start-page: 2116 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0260 article-title: Gut hormones and appetite control publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.03.048 – volume: 168 start-page: 269 year: 1994 ident: 10.1016/j.ijpharm.2012.04.059_bib0165 article-title: A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1419 – volume: 225 start-page: 389 year: 2004 ident: 10.1016/j.ijpharm.2012.04.059_bib0210 article-title: Stabilization of porous silicon surface by thermal decomposition of acetylene publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2003.10.028 – volume: 30 start-page: 2440 year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0230 article-title: The association of silicon microparticles with endothelial cells in drug delivery to the vasculature publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.019 – volume: 2 start-page: 22 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0010 article-title: Magnetic nanoparticles for drug delivery publication-title: Nano Today doi: 10.1016/S1748-0132(07)70084-1 – volume: 121 start-page: 49 year: 1988 ident: 10.1016/j.ijpharm.2012.04.059_bib0110 article-title: Electrophoretic study of polymer adsorption: dextran, polyethylene oxide and polyvinyl alcohol on silver iodide publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(88)90407-9 – volume: 137 start-page: 166 year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0105 article-title: In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.03.017 – volume: 14 start-page: 131 year: 1986 ident: 10.1016/j.ijpharm.2012.04.059_bib0045 article-title: Derivation and use of a formula to calculate the net charge of acid–base compounds. Its application to amino acids, proteins and nucleotides publication-title: Biochem. Educ. doi: 10.1016/0307-4412(86)90176-7 – volume: 309 start-page: 194 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0055 article-title: Measurement and interpretation of electrokinetic phenomena publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.075 – volume: 97 start-page: 632 year: 2008 ident: 10.1016/j.ijpharm.2012.04.059_bib0215 article-title: Mesoporous silicon in drug delivery applications publication-title: J. Pharm. Sci. doi: 10.1002/jps.20999 – volume: 29 start-page: 1092 year: 2008 ident: 10.1016/j.ijpharm.2012.04.059_bib0245 article-title: Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge publication-title: Electrophoresis doi: 10.1002/elps.200700734 – year: 2008 ident: 10.1016/j.ijpharm.2012.04.059_bib0130 – ident: 10.1016/j.ijpharm.2012.04.059_bib0205 – volume: 129 start-page: 8845 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0240 article-title: Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0719780 – volume: 133 start-page: 106 year: 1931 ident: 10.1016/j.ijpharm.2012.04.059_bib0075 article-title: The cataphoresis of suspended particles. Part I.–The equation of cataphoresis publication-title: Proc. R. Soc. London, A Math. Phys. Sci. doi: 10.1098/rspa.1931.0133 – volume: 26 start-page: 5038 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0155 article-title: Surface electrochemistry of mesoporous silicas as a key factor in the design of tailored delivery devices publication-title: Langmuir doi: 10.1021/la904820k – volume: 149 start-page: 70 year: 2008 ident: 10.1016/j.ijpharm.2012.04.059_bib0100 article-title: Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans publication-title: Regul. Pept. doi: 10.1016/j.regpep.2007.10.008 – volume: 8 start-page: 331 year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0175 article-title: Biodegradable luminescent porous silicon nanoparticles for in vivo applications publication-title: Nat. Mater. doi: 10.1038/nmat2398 – year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0120 – volume: 26 start-page: 14316 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0090 article-title: Thermal ocidation for controlling protein interactions with porous silicon publication-title: Langmuir doi: 10.1021/la102367z – volume: 40 start-page: 3638 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0070 article-title: Tailoring nanocarriers for intracellular protein delivery publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00227e – year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0065 – volume: 30 start-page: 2873 year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0135 article-title: The biocompatibility of porous silicon in tissues of the eye publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.008 – volume: 28 start-page: 4600 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0185 article-title: Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.029 – volume: 27 start-page: 14450 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0060 article-title: Nanofibers resulting from cooperative electrostatic and hydrophobic interactions between peptides and polyelectrolytes of opposite charge publication-title: Langmuir doi: 10.1021/la202252m – volume: 8 start-page: 1799 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0225 article-title: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography publication-title: Mol. Pharm. doi: 10.1021/mp2001654 – volume: 4 start-page: 5321 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0015 article-title: Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles publication-title: ACS Nano doi: 10.1021/nn100816s – volume: 303 start-page: 1818 year: 2004 ident: 10.1016/j.ijpharm.2012.04.059_bib0005 article-title: Drug delivery systems: entering the mainstream publication-title: Science doi: 10.1126/science.1095833 – volume: 57 start-page: 4814 year: 1972 ident: 10.1016/j.ijpharm.2012.04.059_bib0115 article-title: Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants publication-title: J. Chem. Phys. doi: 10.1063/1.1678153 – volume: 27 start-page: 312 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0080 article-title: Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery publication-title: Mol. Membr. Biol. doi: 10.3109/09687688.2010.522117 – volume: 128 start-page: 14792 year: 2006 ident: 10.1016/j.ijpharm.2012.04.059_bib0235 article-title: Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0645943 – year: 2001 ident: 10.1016/j.ijpharm.2012.04.059_bib0085 – volume: 28 start-page: 1520 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0190 article-title: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system publication-title: Pharm. Res. doi: 10.1007/s11095-011-0453-2 – volume: 65 start-page: 177 year: 1965 ident: 10.1016/j.ijpharm.2012.04.059_bib0180 article-title: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems publication-title: Chem. Rev. doi: 10.1021/cr60234a002 – volume: 307 start-page: 93 year: 2006 ident: 10.1016/j.ijpharm.2012.04.059_bib0170 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.10.010 – volume: 32 start-page: 2625 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0025 article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.011 – volume: 108 start-page: 362 year: 2005 ident: 10.1016/j.ijpharm.2012.04.059_bib0220 article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.08.017 – volume: 24 start-page: 1001 year: 2003 ident: 10.1016/j.ijpharm.2012.04.059_bib0255 article-title: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00440-4 – volume: 7 start-page: 1033 year: 1995 ident: 10.1016/j.ijpharm.2012.04.059_bib0040 article-title: Bioactive silicon structure fabrication through nanoetching techniques publication-title: Adv. Mater. doi: 10.1002/adma.19950071215 – volume: 29 start-page: 837 year: 2012 ident: 10.1016/j.ijpharm.2012.04.059_bib0125 article-title: Mesoporous silicon (PSi) for sustained peptide delivery: effect of PSi microparticle surface chemistry on peptide YY3-36 release publication-title: Pharm. Res. doi: 10.1007/s11095-011-0611-6 – volume: 45 start-page: 8350 year: 2006 ident: 10.1016/j.ijpharm.2012.04.059_bib0160 article-title: The PP-fold solution structure of human polypeptide YY and human PYY3-36 as determined by NMR publication-title: Biochemistry-US doi: 10.1021/bi060359l – volume: 39 start-page: 477 year: 2001 ident: 10.1016/j.ijpharm.2012.04.059_bib0050 article-title: Structure and folding of glucagon-like peptide-1-(7-36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.880 – volume: 4 start-page: 3023 year: 2010 ident: 10.1016/j.ijpharm.2012.04.059_bib0030 article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats publication-title: ACS Nano doi: 10.1021/nn901657w – year: 2001 ident: 10.1016/j.ijpharm.2012.04.059_bib0035 – year: 2000 ident: 10.1016/j.ijpharm.2012.04.059_bib0150 – volume: 1 start-page: 496 year: 1985 ident: 10.1016/j.ijpharm.2012.04.059_bib0140 article-title: Improved techniques for particle size determination by quasi-elastic light scattering publication-title: Langmuir doi: 10.1021/la00064a016 – volume: 5 start-page: 1366 year: 2011 ident: 10.1016/j.ijpharm.2012.04.059_bib0270 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano doi: 10.1021/nn103077k – start-page: 1 year: 2008 ident: 10.1016/j.ijpharm.2012.04.059_bib0020 article-title: On the complexity of electrostatic suspension stabilization of functionalized silica nanoparticles for biotargeting and imaging applications publication-title: J. Nanomater. doi: 10.1155/2008/712514 – volume: 23 start-page: 4315 year: 2007 ident: 10.1016/j.ijpharm.2012.04.059_bib0200 article-title: On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution publication-title: Langmuir doi: 10.1021/la062450w – volume: 6 start-page: 1219 year: 2009 ident: 10.1016/j.ijpharm.2012.04.059_bib0095 article-title: Recent trends in stabilising peptides and proteins in pharmaceutical formulation – considerations in the choice of excipients publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425240903199143 |
SSID | ssj0006213 |
Score | 2.365867 |
Snippet | Zeta potential of porous silicon nanoparticles is highly dependent on the nature of the loaded peptide and the isotonic medium.
Recently, highly promising... Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 230 |
SubjectTerms | Adsorption Drug Carriers - chemistry drugs electrostatic interactions Gastrointestinal peptide gastrointestinal system glucagon-like peptide 1 Glucagon-Like Peptide 1 - chemistry glucose isoelectric point Isotonic formulation Isotonic Solutions lactic acid mannitol Nanoparticles Nanoparticles - chemistry Parenteral peptide delivery Particle Size Peptide Fragments - chemistry Peptide YY - chemistry peptides Porosity Porous silicon silicon Silicon - chemistry sucrose Zeta potential |
Title | Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations |
URI | https://dx.doi.org/10.1016/j.ijpharm.2012.04.059 https://www.ncbi.nlm.nih.gov/pubmed/22569227 https://www.proquest.com/docview/1015466060 https://www.proquest.com/docview/1399904351 https://www.proquest.com/docview/1678561799 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdNetll7LvZR9Fg9FQnsizL0rGUlWxjpdAGchOKZJeEYJvYOWSH7V_fe_5IGGwtDHyx0bMlvaenn-Sn3yPkE7NWSxX7wMIwDITOwgDAURQsMDcVt1ZmHM87f7-W05n4Oo_nR-SyPwuDYZWd7299euOtuyeTrjcn5XI5uWVRk1g-ClHRLJ4PyDGH2V4NyfHFl2_T671DlrzLkgwLJhQ4HOSZrMbLVYkc0RjkxRvSU2Qt_fsUNchs8W8g2kxIV8_I0w5J0ou2ss_JUZq_IGc3LRX17pzeHU5WVef0jN4cSKp3L8mvlraYFhldVkWNBLl0b4bU5p6WGO_iU2p9VWwax0Lh-pHWlpZFjUFG8HUQBwBfbCtaLddgVDnNbQ7r8LZS1G-299Snawz-2FHEx122sOoVmV19vrucBl0yhsCJOK4DxzTLmFWR15l0MkoSloFmAWCohbXwUDkOUMCGKVOpcJozkQI0ih3PXMIBVL4mw7zI0xNCQwVyXsVaCS4ynVjhvIsXTGofeha5ERF9_xvXMZVjwoy16UPSVqZTm0G1GSYMqG1ExnuxsqXqeExA9co1f9icgenkMdETMAZj78ETm9ktx30jhnm8lRyRj72FGBiq-P_F5ikoAl8XCwkrRvZAGQCMmgGGDR8oAwADYG-ioRpvWhPcNxjcs9ScJ2__v23vyBO8ww3sMH5PhvVmm34A5FUvTslg_DM87cbXb5ulLqE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEBZteti9lH03-9TC0lPdyLJkW8dStqTbNhSaQG5CkeziEGwTO4fspX-9M7aTsLDbwoJPssaWPKPRJ3n0DSE_mDEqjKXzDAxDT6jU9wAcBd4Mc1NxY8KU43nnm1E4nIhfUzndI-ebszAYVtn5_tanN966Kxl0X3NQZtngjgVNYvnAR0UzOd0nBwKTWvfIwdnl1XC0dcgh77Ikw4IJBXYHeQbz02xeIkc0BnnxhvQUWUv_PkXtp6b4NxBtJqSLV-SwQ5L0rG3sa7KX5G_I8W1LRb0-oePdyarqhB7T2x1J9foteWhpi2mR0qwqaiTIpVszpCZ3tMR4F5dQ46pi2TgWCtfvpDa0LGoMMoK3gzgA-GJV0SpbgFHlNDc5rMPbRlG3XN1Tlyww-GNNER932cKqd2Ry8XN8PvS6ZAyeFVLWnmWKpczEgVNpaMMgilgKmgWAEc-MgcLYcoACxk9YnAirOBMJQCNpeWojDqDyPenlRZ4cEerHIOdiqWLBRaoiI6yzcsZC5XzHAtsnYvP9te2YyjFhxkJvQtLmulObRrVpJjSorU9Ot2JlS9XxnEC8Ua7-w-Y0TCfPiR6BMWhzD55YT-447hsxzOMdh33yfWMhGoYq_n8xeQKKwMdJEcKKkT1RBwCjYoBh_SfqAMAA2BspaMaH1gS3HQb3HCrOo4__37dv5MVwfHOtry9HV5_IS7yDm9m-_Ex69XKVfAEUVs--dqPsEbeeMIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+isotonic+solutions+and+peptide+adsorption+on+zeta+potential+of+porous+silicon+nanoparticle+drug+delivery+formulations&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Kaasalainen%2C+Martti&rft.au=M%C3%A4kil%C3%A4%2C+Ermei&rft.au=Riikonen%2C+Joakim&rft.au=Kovalainen%2C+Miia&rft.date=2012-07-15&rft.pub=Elsevier+B.V&rft.issn=0378-5173&rft.eissn=1873-3476&rft.volume=431&rft.issue=1-2&rft.spage=230&rft.epage=236&rft_id=info:doi/10.1016%2Fj.ijpharm.2012.04.059&rft.externalDocID=US201500124986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |