Cortical cartography using the discrete conformal approach of circle packings

Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathemati...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 23; pp. S119 - S128
Main Authors Hurdal, Monica K., Stephenson, Ken
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2004
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2004.07.018

Cover

Abstract Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and display of results. In addition, it offers some new and interesting metrics that may be useful in neuroscientific analysis and are not available through numerical partial differential equation conformal methods. In this paper, we begin with a brief description of cortical “flat” mapping, from data acquisition to map displays, including a brief review of past flat mapping approaches. We then describe the mathematics of conformal geometry and key elements of conformal mapping. We introduce the mechanics of circle packing and discuss its connections with conformal geometry. Using a triangulated surface representing a cortical hemisphere, we illustrate several manipulations available using circle packing methods and describe the associated “ensemble conformal features” (ECFs). We conclude by discussing current and potential uses of conformal methods in neuroscience and computational anatomy.
AbstractList Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and display of results. In addition, it offers some new and interesting metrics that may be useful in neuroscientific analysis and are not available through numerical partial differential equation conformal methods. In this paper, we begin with a brief description of cortical “flat” mapping, from data acquisition to map displays, including a brief review of past flat mapping approaches. We then describe the mathematics of conformal geometry and key elements of conformal mapping. We introduce the mechanics of circle packing and discuss its connections with conformal geometry. Using a triangulated surface representing a cortical hemisphere, we illustrate several manipulations available using circle packing methods and describe the associated “ensemble conformal features” (ECFs). We conclude by discussing current and potential uses of conformal methods in neuroscience and computational anatomy.
Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and display of results. In addition, it offers some new and interesting metrics that may be useful in neuroscientific analysis and are not available through numerical partial differential equation conformal methods. In this paper, we begin with a brief description of cortical "flat" mapping, from data acquisition to map displays, including a brief review of past flat mapping approaches. We then describe the mathematics of conformal geometry and key elements of conformal mapping. We introduce the mechanics of circle packing and discuss its connections with conformal geometry. Using a triangulated surface representing a cortical hemisphere, we illustrate several manipulations available using circle packing methods and describe the associated "ensemble conformal features" (ECFs). We conclude by discussing current and potential uses of conformal methods in neuroscience and computational anatomy.
Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and display of results. In addition, it offers some new and interesting metrics that may be useful in neuroscientific analysis and are not available through numerical partial differential equation conformal methods. In this paper, we begin with a brief description of cortical "flat" mapping, from data acquisition to map displays, including a brief review of past flat mapping approaches. We then describe the mathematics of conformal geometry and key elements of conformal mapping. We introduce the mechanics of circle packing and discuss its connections with conformal geometry. Using a triangulated surface representing a cortical hemisphere, we illustrate several manipulations available using circle packing methods and describe the associated "ensemble conformal features" (ECFs). We conclude by discussing current and potential uses of conformal methods in neuroscience and computational anatomy.Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based approaches are the most common but suffer from high distortions. Conformal, or angle-based algorithms, are supported by a comprehensive mathematical theory. The conformal approach that uses circle packings is versatile in the manipulation and display of results. In addition, it offers some new and interesting metrics that may be useful in neuroscientific analysis and are not available through numerical partial differential equation conformal methods. In this paper, we begin with a brief description of cortical "flat" mapping, from data acquisition to map displays, including a brief review of past flat mapping approaches. We then describe the mathematics of conformal geometry and key elements of conformal mapping. We introduce the mechanics of circle packing and discuss its connections with conformal geometry. Using a triangulated surface representing a cortical hemisphere, we illustrate several manipulations available using circle packing methods and describe the associated "ensemble conformal features" (ECFs). We conclude by discussing current and potential uses of conformal methods in neuroscience and computational anatomy.
Author Hurdal, Monica K.
Stephenson, Ken
Author_xml – sequence: 1
  givenname: Monica K.
  surname: Hurdal
  fullname: Hurdal, Monica K.
  email: mhurdal@math.fsu.edu
  organization: Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, USA
– sequence: 2
  givenname: Ken
  surname: Stephenson
  fullname: Stephenson, Ken
  organization: Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15501081$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuP0zAUhS00iHnAX0CRkNglXDtx4mwQTMVLGsQG1pZzc9O6k9rFdpD673HVAaRuGG_sxXeOj865ZhfOO2Ks4FBx4O2bbeVoCd7uzJoqAdBU0FXA1RN2xaGXZS87cXF8y7pUnPeX7DrGLQD0vFHP2CWXEjgofsW-rnxIFs1coAnJr4PZbw7FEq1bF2lDxWgjBkpUoHeTD7sMmv0-eIObwk8F2oAzFXuD91kRn7Onk5kjvXi4b9iPjx--rz6Xd98-fVm9vyuxkTKVwzj1Ugolx2ESssNOqlFwxRFqwLpRQrT5cJqI10o2YjSiHbBVg2kn1Q11fcNen3xzkp8LxaR3OSfNs3Hkl6jbDkD0rczgqzNw65fgcjbNJXSi6RpoMvXygVqGHY16H3Kz4aD_1JSBtycAg48x0KTRJpOsdykYO2sO-riL3up_u-jjLho6nXfJBurM4O8f_5fenqSUC_1lKeiIlhzSaANh0qO3jzF5d2aCs3XH3e_p8DiL33g_w4w
CitedBy_id crossref_primary_10_1007_s10915_011_9506_2
crossref_primary_10_1109_TMI_2011_2168233
crossref_primary_10_1016_j_neuroimage_2005_06_055
crossref_primary_10_1007_s10915_014_9903_4
crossref_primary_10_1038_s41598_019_52300_8
crossref_primary_10_1109_TMI_2014_2313812
crossref_primary_10_2217_iim_13_28
crossref_primary_10_1109_TMI_2008_918338
crossref_primary_10_1016_j_apnum_2006_07_031
crossref_primary_10_1111_cgf_13445
crossref_primary_10_1016_j_neuroimage_2010_03_085
crossref_primary_10_1016_j_media_2015_02_004
crossref_primary_10_1016_j_neuroimage_2014_09_062
crossref_primary_10_1016_j_pscychresns_2004_07_003
crossref_primary_10_1002_ima_20140
crossref_primary_10_1109_TMI_2013_2241651
crossref_primary_10_3934_ipi_2017039
crossref_primary_10_1016_j_cad_2014_08_024
crossref_primary_10_1016_j_neuroimage_2013_02_011
crossref_primary_10_1016_j_compbiomed_2023_107185
crossref_primary_10_1007_s11263_012_0586_8
crossref_primary_10_1137_130950008
crossref_primary_10_1016_j_cviu_2013_02_010
crossref_primary_10_1016_j_media_2021_102230
crossref_primary_10_1109_TMI_2007_895464
crossref_primary_10_1016_j_neuroimage_2010_02_008
crossref_primary_10_1111_j_1552_6569_2010_00484_x
crossref_primary_10_1155_2007_13963
crossref_primary_10_1109_TVCG_2017_2772237
crossref_primary_10_1016_j_comgeo_2017_03_002
crossref_primary_10_1137_080738386
crossref_primary_10_1016_j_media_2007_11_001
crossref_primary_10_1109_TMI_2007_893284
crossref_primary_10_1016_j_neuroimage_2008_10_044
crossref_primary_10_1016_j_neuroimage_2007_05_007
crossref_primary_10_1016_j_neuroimage_2009_10_086
crossref_primary_10_1016_j_neuroimage_2004_07_021
crossref_primary_10_1007_s10851_008_0101_6
crossref_primary_10_1016_j_neuroimage_2008_10_045
crossref_primary_10_1007_s10915_015_9998_2
crossref_primary_10_1016_j_eplepsyres_2009_08_002
crossref_primary_10_1137_15M1006726
crossref_primary_10_1002_hbm_20404
crossref_primary_10_1007_s10851_011_0296_9
Cites_doi 10.1001/archopht.1991.01080060080030
10.1007/978-3-540-45087-0_15
10.1016/S1874-5709(02)80013-0
10.4310/CIS.2002.v2.n2.a2
10.1016/S1053-8119(03)00238-6
10.1162/jocn.1996.8.1.1
10.1512/iumj.1990.39.39062
10.1126/science.7754376
10.1016/S1053-8119(00)91610-0
10.1007/978-3-662-05105-4_1
10.1016/S0925-7721(02)00099-8
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1007/BF01885636
10.1016/S1053-8119(01)91387-4
10.1523/JNEUROSCI.17-18-07079.1997
10.1145/37402.37422
10.1145/566570.566590
10.1006/nimg.1999.0534
10.1109/42.993130
10.1109/42.796283
10.1006/nimg.1998.0396
10.4310/jdg/1214441375
10.1162/089892900562561
10.1007/BF01250286
10.1073/pnas.95.3.788
10.1017/CBO9781139568050.002
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright Elsevier Limited Jan 1, 2004
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 1, 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2004.07.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage S128
ExternalDocumentID 3246195181
15501081
10_1016_j_neuroimage_2004_07_018
S1053811904003830
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Review
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41-RR15241
– fundername: NIMH NIH HHS
  grantid: R01 MH62626-01
– fundername: NIBIB NIH HHS
  grantid: P20 EB02013
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c455t-bdf955285dbf257c758d2181c030c3482266661efe138542da26bc68ba6f87b33
IEDL.DBID BENPR
ISSN 1053-8119
IngestDate Thu Oct 02 08:04:16 EDT 2025
Tue Oct 07 06:49:22 EDT 2025
Wed Feb 19 01:48:45 EST 2025
Wed Oct 01 01:28:47 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:29:07 EST 2024
Tue Oct 14 19:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Circle packing
Riemann Mapping Theorem
Conformal map
Mapping
Surface flattening
Computational anatomy
Cortical flat map
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-bdf955285dbf257c758d2181c030c3482266661efe138542da26bc68ba6f87b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 15501081
PQID 1507247404
PQPubID 2031077
ParticipantIDs proquest_miscellaneous_67002965
proquest_journals_1507247404
pubmed_primary_15501081
crossref_citationtrail_10_1016_j_neuroimage_2004_07_018
crossref_primary_10_1016_j_neuroimage_2004_07_018
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_07_018
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_07_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004
2004-1-00
2004-00-00
20040101
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Fischl, Sereno (bib10) 1999; 8
Levy, Petitjean (bib22) 2002
Sereno, Dale (bib32) 1995; 268
Drury, Van Essen (bib6) 1996; 8
Gu, Yau (bib12) 2002; 2
Lorensen, Cline (bib23) 1987; 21
Stephenson, K., 1992–2004. CirclePack software.
Van Essen, Drury (bib38) 1997; 17
Stephenson (bib34) 1999; vol. 11
Hurdal, Lee (bib20) 2003; 22
Schwartz (bib31) 1977; 25
Drasdo (bib5) 1991; vol. 5
Horton, Hoyt (bib15) 1991; 109
Wandell, Chial (bib41) 2000; 12
Beardon, Stephenson (bib2) 1990; 39
Ratnanather, Barta (bib28) 2003; 20
Goebel (bib11) 2000; 11
Hurdal, Bowers (bib19) 1999; vol. 1679
Gu, Wang (bib13) 2003
Stephenson, K. Introduction to circle packing and the theory of discrete analytic functions. Camb. Univ. Press. (in press).
Mangin, Frouin (bib25) 1995; 5
Han, Xu (bib14) 2002; 21
Rodin, Sullivan (bib30) 1987; 26
Hurdal, M.K., 2004a. TopoCV software.
Fischl, Sereno (bib9) 1999; 9
Stephenson (bib35) 2002; vol. 1
MacDonald, Kabsni (bib24) 2000; 12
Polya (bib27) 1968; vol. 2
Collins, Stephenson (bib4) 2003; 25
Wagner (bib40) 1936; 46
Hurdal (bib18) 2004; 22
Hurdal, M.K., 1998. Mathematical and computer modelling of the human brain with reference to cortical magnification and dipole source localisation in the visual cortex. PhD thesis, Queensland University of Technology, Brisbane, Australia.
Stern, Schaper (bib37) 2001; 13
.
Riemann, B., 1876. Grundlagen für eine allgemeine theorie der functionen einer veränderlichen complexen grösse, inauguraldissertation, göttingen, 1851. Gesammelte mathematische Werke und wissenschaftlicher Nachlass. 2nd edn, pp. 3–48. Teubner, Leipzig.
Van Essen, Drury (bib39) 1998; vol. 95
Massey (bib26) 1967
Fary (bib8) 1948; 11
Ju, Stern (bib21) 2004
Bowers, Hurdal (bib3) 2003
Ermentrout (bib7) 1984
Angenent, Haker (bib1) 1999; 18
Horton (10.1016/j.neuroimage.2004.07.018_bib15) 1991; 109
Polya (10.1016/j.neuroimage.2004.07.018_bib27) 1968; vol. 2
Drasdo (10.1016/j.neuroimage.2004.07.018_bib5) 1991; vol. 5
Hurdal (10.1016/j.neuroimage.2004.07.018_bib19) 1999; vol. 1679
Lorensen (10.1016/j.neuroimage.2004.07.018_bib23) 1987; 21
Ju (10.1016/j.neuroimage.2004.07.018_bib21) 2004
Hurdal (10.1016/j.neuroimage.2004.07.018_bib18) 2004; 22
Collins (10.1016/j.neuroimage.2004.07.018_bib4) 2003; 25
MacDonald (10.1016/j.neuroimage.2004.07.018_bib24) 2000; 12
Schwartz (10.1016/j.neuroimage.2004.07.018_bib31) 1977; 25
Mangin (10.1016/j.neuroimage.2004.07.018_bib25) 1995; 5
Wandell (10.1016/j.neuroimage.2004.07.018_bib41) 2000; 12
Fischl (10.1016/j.neuroimage.2004.07.018_bib10) 1999; 8
Han (10.1016/j.neuroimage.2004.07.018_bib14) 2002; 21
10.1016/j.neuroimage.2004.07.018_bib29
Wagner (10.1016/j.neuroimage.2004.07.018_bib40) 1936; 46
Fischl (10.1016/j.neuroimage.2004.07.018_bib9) 1999; 9
Ermentrout (10.1016/j.neuroimage.2004.07.018_bib7) 1984
Massey (10.1016/j.neuroimage.2004.07.018_bib26) 1967
Stephenson (10.1016/j.neuroimage.2004.07.018_bib34) 1999; vol. 11
Stern (10.1016/j.neuroimage.2004.07.018_bib37) 2001; 13
Hurdal (10.1016/j.neuroimage.2004.07.018_bib20) 2003; 22
Gu (10.1016/j.neuroimage.2004.07.018_bib12) 2002; 2
Drury (10.1016/j.neuroimage.2004.07.018_bib6) 1996; 8
Levy (10.1016/j.neuroimage.2004.07.018_bib22) 2002
Van Essen (10.1016/j.neuroimage.2004.07.018_bib39) 1998; vol. 95
Rodin (10.1016/j.neuroimage.2004.07.018_bib30) 1987; 26
10.1016/j.neuroimage.2004.07.018_bib33
Beardon (10.1016/j.neuroimage.2004.07.018_bib2) 1990; 39
Bowers (10.1016/j.neuroimage.2004.07.018_bib3) 2003
10.1016/j.neuroimage.2004.07.018_bib16
10.1016/j.neuroimage.2004.07.018_bib36
Goebel (10.1016/j.neuroimage.2004.07.018_bib11) 2000; 11
Gu (10.1016/j.neuroimage.2004.07.018_bib13) 2003
10.1016/j.neuroimage.2004.07.018_bib17
Stephenson (10.1016/j.neuroimage.2004.07.018_bib35) 2002; vol. 1
Fary (10.1016/j.neuroimage.2004.07.018_bib8) 1948; 11
Angenent (10.1016/j.neuroimage.2004.07.018_bib1) 1999; 18
Van Essen (10.1016/j.neuroimage.2004.07.018_bib38) 1997; 17
Ratnanather (10.1016/j.neuroimage.2004.07.018_bib28) 2003; 20
Sereno (10.1016/j.neuroimage.2004.07.018_bib32) 1995; 268
References_xml – year: 1967
  ident: bib26
  article-title: Algebraic Topology: An Introduction
– volume: 22
  year: 2004
  ident: bib18
  article-title: Automated topological correction of cortical surfaces
  publication-title: NeuroImage
– volume: 22
  year: 2003
  ident: bib20
  article-title: Investigating the medial prefrontal cortex with cortical flat mappings
  publication-title: NeuroImage
– reference: Stephenson, K. Introduction to circle packing and the theory of discrete analytic functions. Camb. Univ. Press. (in press).
– reference: Stephenson, K., 1992–2004. CirclePack software.
– volume: vol. 95
  start-page: 788
  year: 1998
  end-page: 795
  ident: bib39
  article-title: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 109
  start-page: 816
  year: 1991
  end-page: 824
  ident: bib15
  article-title: The representation of the visual field in human striate cortex: a revision of the classic holmes map
  publication-title: Arch. Opthalmol.
– reference: Hurdal, M.K., 2004a. TopoCV software.
– volume: vol. 2
  year: 1968
  ident: bib27
  publication-title: Mathematical Discovery
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bib9
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
– volume: 21
  start-page: 109
  year: 2002
  end-page: 121
  ident: bib14
  article-title: Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm
  publication-title: IEEE Trans. Med. Imag.
– year: 2002
  ident: bib22
  article-title: Least squares conformal maps for automatic texture Atlas generation
– start-page: 3
  year: 2003
  end-page: 34
  ident: bib3
  article-title: Planar conformal mappings of piecewise flat surfaces
  publication-title: Visualization and Mathematics III
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: bib10
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 359
  year: 2003
  end-page: 377
  ident: bib28
  article-title: Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale
  publication-title: NeuroImage
– volume: 46
  start-page: 26
  year: 1936
  end-page: 32
  ident: bib40
  article-title: Bemerkunge zum Vierfarbenproblem
  publication-title: Jahresber. Dtsch. Math.-Ver.
– reference: Hurdal, M.K., 1998. Mathematical and computer modelling of the human brain with reference to cortical magnification and dipole source localisation in the visual cortex. PhD thesis, Queensland University of Technology, Brisbane, Australia.
– volume: 17
  start-page: 7079
  year: 1997
  end-page: 7102
  ident: bib38
  article-title: Structural and functional analyses of human cerebral cortex using a surface-based atlas
  publication-title: J. Neurosci.
– volume: 5
  start-page: 297
  year: 1995
  end-page: 318
  ident: bib25
  article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations
  publication-title: J. Math. Imaging Vis.
– volume: 11
  start-page: S680
  year: 2000
  ident: bib11
  article-title: A fast automated method for flattening cortical surfaces
  publication-title: NeuroImage
– volume: 12
  start-page: 739
  year: 2000
  end-page: 752
  ident: bib41
  article-title: Visualization and measurement of the cortical surface
  publication-title: J. Cogn. Neurosci.
– volume: 26
  start-page: 349
  year: 1987
  end-page: 360
  ident: bib30
  article-title: The convergence of circle packings to the Riemann mapping
  publication-title: J. Differ. Geom.
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: bib32
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
– start-page: 267
  year: 1984
  end-page: 283
  ident: bib7
  article-title: Mathematical models for the patterns of premigrainous auras
  publication-title: Neurobiology of Pain
– volume: vol. 1679
  start-page: 279
  year: 1999
  end-page: 286
  ident: bib19
  article-title: Quasi-conformally flat mapping the human cerebellum
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI'99
– volume: 25
  start-page: 181
  year: 1977
  end-page: 194
  ident: bib31
  article-title: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception
  publication-title: Biol. Cybern.
– volume: vol. 11
  start-page: 551
  year: 1999
  end-page: 582
  ident: bib34
  article-title: Approximation of conformal structures via circle packing
  publication-title: Computational Methods and Function Theory 1997, Proceedings of the Third CMFT Conference
– volume: 11
  start-page: 229
  year: 1948
  end-page: 233
  ident: bib8
  article-title: On straight lines representation of planar graphs
  publication-title: Acta Sci. Math. Szeged.
– start-page: 172
  year: 2003
  end-page: 184
  ident: bib13
  article-title: Genus zero surface conformal mapping and its application to brain surface mapping
  publication-title: Inf. Process. Med. Imag., Ambleside, UK
– volume: 13
  start-page: S157
  year: 2001
  ident: bib37
  article-title: Automatic surface extraction by discrete, topologically-controlled, region growing
  publication-title: NeuroImage
– volume: vol. 1
  year: 2002
  ident: bib35
  article-title: Circle packing and discrete analytic function theory
  publication-title: Handbook of Complex Analysis
– volume: 18
  start-page: 700
  year: 1999
  end-page: 711
  ident: bib1
  article-title: On the Laplace–Beltrami operator and brain surface flattening
  publication-title: IEEE Trans. Med. Imag.
– start-page: 77
  year: 2004
  end-page: 80
  ident: bib21
  article-title: Cortical surface flattening using least square conformal mapping with minimal metric distortion
  publication-title: Proc. IEEE Biomed. Imaging
– reference: Riemann, B., 1876. Grundlagen für eine allgemeine theorie der functionen einer veränderlichen complexen grösse, inauguraldissertation, göttingen, 1851. Gesammelte mathematische Werke und wissenschaftlicher Nachlass. 2nd edn, pp. 3–48. Teubner, Leipzig.
– volume: 25
  start-page: 21
  year: 2003
  end-page: 34
  ident: bib4
  article-title: A circle packing algorithm
  publication-title: Comput. Geom.
– volume: vol. 5
  start-page: 251
  year: 1991
  end-page: 265
  ident: bib5
  article-title: Neural substrates and threshold gradients of peripheral vision
  publication-title: Limits of Vision
– volume: 21
  start-page: 163
  year: 1987
  end-page: 169
  ident: bib23
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: Comput. Graph.
– volume: 2
  start-page: 121
  year: 2002
  end-page: 146
  ident: bib12
  article-title: Computing conformal structures of surfaces
  publication-title: Commun. Inform. Syst.
– volume: 39
  start-page: 1383
  year: 1990
  end-page: 1425
  ident: bib2
  article-title: The uniformization theorem for circle packings
  publication-title: Indiana Univ. Math. J.
– volume: 12
  start-page: 340
  year: 2000
  end-page: 355
  ident: bib24
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: NeuroImage
– volume: 8
  start-page: 1
  year: 1996
  end-page: 28
  ident: bib6
  article-title: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system
  publication-title: J. Cogn. Neurosci.
– reference: .
– volume: 109
  start-page: 816
  year: 1991
  ident: 10.1016/j.neuroimage.2004.07.018_bib15
  article-title: The representation of the visual field in human striate cortex: a revision of the classic holmes map
  publication-title: Arch. Opthalmol.
  doi: 10.1001/archopht.1991.01080060080030
– start-page: 172
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.018_bib13
  article-title: Genus zero surface conformal mapping and its application to brain surface mapping
  publication-title: Inf. Process. Med. Imag., Ambleside, UK
  doi: 10.1007/978-3-540-45087-0_15
– start-page: 77
  year: 2004
  ident: 10.1016/j.neuroimage.2004.07.018_bib21
  article-title: Cortical surface flattening using least square conformal mapping with minimal metric distortion
  publication-title: Proc. IEEE Biomed. Imaging
– volume: vol. 1
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.018_bib35
  article-title: Circle packing and discrete analytic function theory
  doi: 10.1016/S1874-5709(02)80013-0
– volume: 2
  start-page: 121
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.018_bib12
  article-title: Computing conformal structures of surfaces
  publication-title: Commun. Inform. Syst.
  doi: 10.4310/CIS.2002.v2.n2.a2
– volume: 20
  start-page: 359
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.018_bib28
  article-title: Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00238-6
– volume: 11
  start-page: 229
  year: 1948
  ident: 10.1016/j.neuroimage.2004.07.018_bib8
  article-title: On straight lines representation of planar graphs
  publication-title: Acta Sci. Math. Szeged.
– year: 1967
  ident: 10.1016/j.neuroimage.2004.07.018_bib26
– ident: 10.1016/j.neuroimage.2004.07.018_bib33
– volume: 8
  start-page: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2004.07.018_bib6
  article-title: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1996.8.1.1
– volume: 39
  start-page: 1383
  year: 1990
  ident: 10.1016/j.neuroimage.2004.07.018_bib2
  article-title: The uniformization theorem for circle packings
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1990.39.39062
– ident: 10.1016/j.neuroimage.2004.07.018_bib17
– volume: 268
  start-page: 889
  year: 1995
  ident: 10.1016/j.neuroimage.2004.07.018_bib32
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: vol. 11
  start-page: 551
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.018_bib34
  article-title: Approximation of conformal structures via circle packing
– volume: 11
  start-page: S680
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.018_bib11
  article-title: A fast automated method for flattening cortical surfaces
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(00)91610-0
– volume: vol. 5
  start-page: 251
  year: 1991
  ident: 10.1016/j.neuroimage.2004.07.018_bib5
  article-title: Neural substrates and threshold gradients of peripheral vision
– start-page: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.018_bib3
  article-title: Planar conformal mappings of piecewise flat surfaces
  doi: 10.1007/978-3-662-05105-4_1
– volume: 25
  start-page: 21
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.018_bib4
  article-title: A circle packing algorithm
  publication-title: Comput. Geom.
  doi: 10.1016/S0925-7721(02)00099-8
– volume: 46
  start-page: 26
  year: 1936
  ident: 10.1016/j.neuroimage.2004.07.018_bib40
  article-title: Bemerkunge zum Vierfarbenproblem
  publication-title: Jahresber. Dtsch. Math.-Ver.
– volume: 8
  start-page: 272
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.018_bib10
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 25
  start-page: 181
  year: 1977
  ident: 10.1016/j.neuroimage.2004.07.018_bib31
  article-title: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception
  publication-title: Biol. Cybern.
  doi: 10.1007/BF01885636
– volume: 13
  start-page: S157
  year: 2001
  ident: 10.1016/j.neuroimage.2004.07.018_bib37
  article-title: Automatic surface extraction by discrete, topologically-controlled, region growing
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(01)91387-4
– ident: 10.1016/j.neuroimage.2004.07.018_bib36
– volume: 17
  start-page: 7079
  year: 1997
  ident: 10.1016/j.neuroimage.2004.07.018_bib38
  article-title: Structural and functional analyses of human cerebral cortex using a surface-based atlas
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-18-07079.1997
– volume: 21
  start-page: 163
  year: 1987
  ident: 10.1016/j.neuroimage.2004.07.018_bib23
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: Comput. Graph.
  doi: 10.1145/37402.37422
– volume: vol. 1679
  start-page: 279
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.018_bib19
  article-title: Quasi-conformally flat mapping the human cerebellum
– year: 2002
  ident: 10.1016/j.neuroimage.2004.07.018_bib22
  article-title: Least squares conformal maps for automatic texture Atlas generation
  doi: 10.1145/566570.566590
– volume: 12
  start-page: 340
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.018_bib24
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0534
– volume: 21
  start-page: 109
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2004.07.018_bib14
  article-title: Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.993130
– ident: 10.1016/j.neuroimage.2004.07.018_bib16
– volume: 22
  year: 2004
  ident: 10.1016/j.neuroimage.2004.07.018_bib18
  article-title: Automated topological correction of cortical surfaces
  publication-title: NeuroImage
– volume: 18
  start-page: 700
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.018_bib1
  article-title: On the Laplace–Beltrami operator and brain surface flattening
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.796283
– volume: 9
  start-page: 195
  year: 1999
  ident: 10.1016/j.neuroimage.2004.07.018_bib9
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume: 26
  start-page: 349
  year: 1987
  ident: 10.1016/j.neuroimage.2004.07.018_bib30
  article-title: The convergence of circle packings to the Riemann mapping
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214441375
– volume: 22
  year: 2003
  ident: 10.1016/j.neuroimage.2004.07.018_bib20
  article-title: Investigating the medial prefrontal cortex with cortical flat mappings
  publication-title: NeuroImage
– volume: 12
  start-page: 739
  year: 2000
  ident: 10.1016/j.neuroimage.2004.07.018_bib41
  article-title: Visualization and measurement of the cortical surface
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892900562561
– volume: 5
  start-page: 297
  year: 1995
  ident: 10.1016/j.neuroimage.2004.07.018_bib25
  article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/BF01250286
– volume: vol. 95
  start-page: 788
  year: 1998
  ident: 10.1016/j.neuroimage.2004.07.018_bib39
  article-title: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.3.788
– ident: 10.1016/j.neuroimage.2004.07.018_bib29
  doi: 10.1017/CBO9781139568050.002
– start-page: 267
  year: 1984
  ident: 10.1016/j.neuroimage.2004.07.018_bib7
  article-title: Mathematical models for the patterns of premigrainous auras
– volume: vol. 2
  year: 1968
  ident: 10.1016/j.neuroimage.2004.07.018_bib27
SSID ssj0009148
Score 2.0738475
SecondaryResourceType review_article
Snippet Cortical flattening algorithms are becoming more widely used to assist in visualizing the convoluted cortical gray matter sheet of the brain. Metric-based...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S119
SubjectTerms Acquisitions & mergers
Algorithms
Brain
Cartography
Cerebral Cortex - anatomy & histology
Circle packing
Computational anatomy
Conformal map
Cortical flat map
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Mapping
Methods
Models, Statistical
NMR
Nuclear magnetic resonance
Riemann Mapping Theorem
Software
Surface flattening
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KC-JFfFutugevoXnsZhM8lWKpSnvRQm9Ls9lIpTalj__vTLJpERQKXhMmJLuZ-b7ZnfkW4EGaNJmEaewIqX2Ha26c2M1CJ4sSkmtHwHSpUXgwDPsj_jIW4xp0q14YKqu0sb-M6UW0tlfadjTbi-m0_YbMAOEGAY3T9laAeXsD8SeK6tDoPL_2hzvtXY-XHXEicMjAFvSUZV6FbOT0C523SBYLJU86AeR3lPqLhRZo1DuGI0sjWad80xOomfkpHAzsRvkZDLr5slilZhq_xspSMypy_2BI-Rg14y6RLzNMhwvaOmOVujjLM6anS3wsw3y6WEk_h1Hv6b3bd-zJCY7mQqydJM1iIfxIpEmGPqkxKUgJyzW6tCY5G4RlBGaTGS-IBPfTiR8mOoxw2rJIJkFwAfV5PjdXwESMKQXPtCTZHsz-YmR8XEqRukYj9_KaIKuRUtrKitPpFjNV1Y99qt0Y06mXXLlS4Rg3wdtaLkppjT1s4moyVNU6isFOYfzfw_Zxa_vjF9vTulXNvbJuvlLEpn0uucubcL-9jQ5Kuy6Tuck3K0V9UH4ciiZcln_M7mMxO_SQkl3_68Vu4LCsJqJloRbU18uNuUWitE7urCN8Axm4EP8
  priority: 102
  providerName: Elsevier
Title Cortical cartography using the discrete conformal approach of circle packings
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904003830
https://dx.doi.org/10.1016/j.neuroimage.2004.07.018
https://www.ncbi.nlm.nih.gov/pubmed/15501081
https://www.proquest.com/docview/1507247404
https://www.proquest.com/docview/67002965
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BK017mTbYj25Q_MCrtyS140QTQlCBClsrhIbUN6uxnQkEDSvldX_77hy7fdmmviQP0VmKfef7zr77DuBQOVvNcltyqUzGhRGOl0md87qoiK4dHWZChcLjST66EZdTOd2CSayFobTKuCf6jdo2hs7IvxBwyYQSiTh-_MWpaxTdrsYWGrPQWsEeeYqxbehmxIzVge7p2eTqek3Dm4q2OE4OeJGmZcjtaTO-PIPk7QPasY8bPaknNQP5u8P6FyD1jun8NbwKiJKdtCrwBrbcfAdejMOd-S6Mh83CH1gzg2oSGKoZ5bv_ZIj-GNXlLhA6M4yMPYK9Z5FonDU1M7cLHJZhaO0P1d_CzfnZj-GIhyYK3Agpl7yydSllVkhb1WieBuMDS27doHUbYrZBD40-2tUuHRRSZHaW5ZXJC1zBulDVYPAOOvNm7j4AkyVGF6I2ihh8MBAsEfwJpaRNnEEYlvZAxZnSJjCMU6OLex1Tye70eo6pAabQidI4xz1IV5KPLcvGBjJlXAwdq0hx39PoCjaQ_bqSDUijRRAbSu_FtdfB4p_0Wj97cLD6jLZKFzCzuWuenzSVRGVlLnvwvtWY9c9ioJgiOvv4_6E_wcs2c4iOgPags1w8u30ERcuqD9uff6f4VFPVh-7J8Pr7Fb0vvo0m_WAFfwCf-A_L
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VrQRcUPlsoFAf4Gixu7HXa6EKQWmV0iZCqJV6M1nbi4pKtiSpqv65_jZmvHZyAZRLz6tZyfZ45s145g3AG-VdPS6d5lLZggsrPNdZU_KmqomuHR1mRo3Cw1E5OBVfzuTZGtymXhgqq0w2MRhq11rKkb8j4FIIJTLx4fI3p6lR9LqaRmiM42gFtxsoxmJjx5G_ucYQbrZ7-BnP-21RHOyf7A14nDLArZByzmvXaCmLSrq6Qf21CKAd-T2L6m-J-gVdGDox3_i8X0lRuHFR1rascIlNpWpKiKIL2BB9oTH42_i0P_r6bUn7m4uuGU_2eZXnOtYSdRVmgbHy_BfajRCnBhJRGj7ydwf5LwAcHOHBJjyMCJZ97FTuEaz5yWO4N4xv9E9guNdOQ4KcWVTLyIjNqL7-B0O0yagPeIpQnWEkHhDzBUvE5qxtmD2f4m8ZhvIhif8UTu9kO5_B-qSd-C1gUmM0IxqriDEIA0-NYFMoJV3mLcK-vAcq7ZSxkdGcBmtcmFS69tMs95gGbgqTKYN73IN8IXnZsXqsIKPTYZjUtYp21qDrWUH2_UI2IpsOsawovZ3O3kQLMzPL-9CDncVntA304DOe-PZqZqgFq9Cl7MHzTmOWi8XANEc0-OL_v96B-4OT4bE5PhwdvYQHXdUSpZ-2YX0-vfKvEJDN69dR6xl8v-uL9geMtUZ3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0hkFAvFf1OgeJDe7TY3djrtVBVIWgEpUE9FCk3N-u1KyqahSSo6l_j13XGayeXgnLhvJqVbI9n3oxn3gC8V66px2WjuVS24MIKx3XmS-6rmuja0WFm1Cg8PC9PLsSXkRytwV3qhaGyymQTg6FuWks58n0CLoVQIhP7PpZFfDsefLq-4TRBil5a0ziNTkXO3N8_GL7NPp4e41l_KIrB5-9HJzxOGOBWSDnndeO1lEUlm9qj7loEzw35PIuqb4n2Bd0XOjDnXd6vpCiacVHWtqxweb5SNSVD0fxvqH5fUzmhGqkl4W8uujY82edVnutYRdTVlgWuysvfaDFChBroQ2nsyP9d433QN7jAwRY8jdiVHXbK9gzW3OQ5bA7j6_wLGB6105AaZxYVMnJhM6qs_8kQZzLqAJ4iSGcYgwesfMUSpTlrPbOXU_wtwyA-pO9fwsWjbOYrWJ-0E_cGmNQYxwhvFXEFYcipEWYKpWSTOYuAL--BSjtlbOQyp5EaVyYVrf0yyz2mUZvCZMrgHvcgX0hed3weK8jodBgm9auihTXodFaQPVjIRkzTYZUVpXfS2ZtoW2ZmeRN6sLf4jFaBnnrGE9fezgw1XxW6lD143WnMcrEYkuaIA98-_Os92MTrZb6enp9tw5OuXInyTjuwPp_eul1EYvP6XVB5Bj8e-479A5R4RBE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+cartography+using+the+discrete+conformal+approach+of+circle+packings&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hurdal%2C+Monica+K&rft.au=Stephenson%2C+Ken&rft.date=2004&rft.issn=1053-8119&rft.volume=23+Suppl+1&rft.spage=S119&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.07.018&rft_id=info%3Apmid%2F15501081&rft.externalDocID=15501081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon