Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes
Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data s...
Saved in:
Published in | Cell metabolism Vol. 30; no. 3; pp. 447 - 461.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4131 1932-7420 1932-7420 |
DOI | 10.1016/j.cmet.2019.07.004 |
Cover
Abstract | Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D.
[Display omitted]
•Glycolysis in T cells/PBMCs from T2D subjects fails to stimulate T2D inflammation•T cells from T2D subjects have altered mitochondria•Altered import or oxidation of fatty acids activates inflammation in healthy cells•Mitochondrial changes combine with fatty acid metabolites to activate inflammation
Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation. |
---|---|
AbstractList | Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize
C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. [Display omitted] •Glycolysis in T cells/PBMCs from T2D subjects fails to stimulate T2D inflammation•T cells from T2D subjects have altered mitochondria•Altered import or oxidation of fatty acids activates inflammation in healthy cells•Mitochondrial changes combine with fatty acid metabolites to activate inflammation Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation. Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells to mimic characteristics of T2D promotes cells from lean subjects to utilize 16 C-fatty acylcarnitine to support a Th17 cytokines. These data show long chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. Although glycolysis generally fuels inflammation, Nicholas, Proctor and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation. Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D.Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. |
Author | Nicholas, Dequina A. Zhu, Min Persky, Leah Kern, Philip A. Ip, Blanche C. Habib, Chloe Raval, Forum Sullivan, Patrick G. Proctor, Elizabeth A. Jones, Albert R. Sainz-Rueda, Nestor Nikolajczyk, Barbara S. Agrawal, Madhur Panneerseelan-Bharath, Leena Corkey, Barbara E. Van Nostrand, Stephen C. Cacicedo, Jose M. Apovian, Caroline M. Lauffenburger, Douglas A. Belkina, Anna C. |
AuthorAffiliation | 3 Current address: Departments of Neurosurgery, Pharmacology, and Biomedical Engineering, Pennsylvania State University, Hershey, PA, 17033 USA 5 Department of Pathology, Boston University School of Medicine, Boston, MA, 02118 USA 8 Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY, 40536 USA 1 Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118 USA 10 Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, 40536 USA 4 Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY, 40536 USA 6 Current address: College of Health Sciences, Merrimack College, North Andover, MA, 01845, USA 9 Department of Medicine, University of Kentucky, Lexington KY, 40536 USA 7 Department of Medicine, Boston University School of Medicine, Boston, MA, 02118 USA 2 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridg |
AuthorAffiliation_xml | – name: 3 Current address: Departments of Neurosurgery, Pharmacology, and Biomedical Engineering, Pennsylvania State University, Hershey, PA, 17033 USA – name: 4 Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY, 40536 USA – name: 8 Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY, 40536 USA – name: 6 Current address: College of Health Sciences, Merrimack College, North Andover, MA, 01845, USA – name: 9 Department of Medicine, University of Kentucky, Lexington KY, 40536 USA – name: 5 Department of Pathology, Boston University School of Medicine, Boston, MA, 02118 USA – name: 2 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA – name: 10 Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, 40536 USA – name: 1 Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118 USA – name: 7 Department of Medicine, Boston University School of Medicine, Boston, MA, 02118 USA |
Author_xml | – sequence: 1 givenname: Dequina A. surname: Nicholas fullname: Nicholas, Dequina A. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 2 givenname: Elizabeth A. surname: Proctor fullname: Proctor, Elizabeth A. organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA – sequence: 3 givenname: Madhur surname: Agrawal fullname: Agrawal, Madhur organization: Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA – sequence: 4 givenname: Anna C. surname: Belkina fullname: Belkina, Anna C. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 5 givenname: Stephen C. surname: Van Nostrand fullname: Van Nostrand, Stephen C. organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA – sequence: 6 givenname: Leena surname: Panneerseelan-Bharath fullname: Panneerseelan-Bharath, Leena organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 7 givenname: Albert R. surname: Jones fullname: Jones, Albert R. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 8 givenname: Forum surname: Raval fullname: Raval, Forum organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 9 givenname: Blanche C. surname: Ip fullname: Ip, Blanche C. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 10 givenname: Min surname: Zhu fullname: Zhu, Min organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 11 givenname: Jose M. surname: Cacicedo fullname: Cacicedo, Jose M. organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 12 givenname: Chloe surname: Habib fullname: Habib, Chloe organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 13 givenname: Nestor surname: Sainz-Rueda fullname: Sainz-Rueda, Nestor organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 14 givenname: Leah surname: Persky fullname: Persky, Leah organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA – sequence: 15 givenname: Patrick G. surname: Sullivan fullname: Sullivan, Patrick G. organization: Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA – sequence: 16 givenname: Barbara E. surname: Corkey fullname: Corkey, Barbara E. organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 17 givenname: Caroline M. surname: Apovian fullname: Apovian, Caroline M. organization: Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 18 givenname: Philip A. surname: Kern fullname: Kern, Philip A. organization: Department of Medicine, University of Kentucky, Lexington, KY 40536, USA – sequence: 19 givenname: Douglas A. surname: Lauffenburger fullname: Lauffenburger, Douglas A. email: lauffen@mit.edu organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA – sequence: 20 givenname: Barbara S. surname: Nikolajczyk fullname: Nikolajczyk, Barbara S. email: barb.nik@uky.edu organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31378464$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u1DAYxC1URP_AC3BAPnJJsGMndiSEVC2UViqqhJazZTtfWK8Se4mdLftaPEifqV62RcChJ1v65jcjzZyiIx88IPSakpIS2rxbl3aEVFaEtiURJSH8GTqhLasKwStylP91TQpOGT1GpzGuCWENa9kLdMwoE5I3_ASFC53SDp9b1-EvkLQJg0sQ8SKMxnnAty6t8FfoZgsdvvuFb366TicXPE4hU8ltdQK8XFGBr3w_6HE8XJ3Hl_OoPV7uNoAr_NFpA9n4JXre6yHCq4f3DH27-LRcXBbXN5-vFufXheV1nQrdVroDLUhvGtEBcGI46aWuZSes4FbSymhttehpI6U2PQPGrTWGSssbUrMz9OHgu5nNCJ0FnyY9qM3kRj3tVNBO_XvxbqW-h62SNWmaWmSDtw8GU_gxQ0xqdNHCMGgPYY6qqhpZC96KNkvf_J31J-Sx5SyQB4GdQowT9Mq69LunHO0GRYnaD6rWaj-o2g-qiFB50IxW_6GP7k9C7w8Q5Ia3DiYVrQOfJ3QT2KS64J7C7wGUKbxV |
CitedBy_id | crossref_primary_10_12677_PI_2023_123031 crossref_primary_10_3892_mmr_2024_13261 crossref_primary_10_1016_j_biopha_2023_115198 crossref_primary_10_15252_embr_202154228 crossref_primary_10_1016_j_exer_2021_108710 crossref_primary_10_1016_j_cmet_2020_04_015 crossref_primary_10_1007_s12020_022_03043_6 crossref_primary_10_1007_s11357_024_01441_4 crossref_primary_10_2174_1573399817666210101110253 crossref_primary_10_1038_s41574_019_0252_0 crossref_primary_10_1111_jfbc_14455 crossref_primary_10_1093_braincomms_fcad259 crossref_primary_10_1111_bcpt_13524 crossref_primary_10_1186_s13098_023_01022_z crossref_primary_10_1016_j_tem_2019_11_002 crossref_primary_10_1111_cns_14497 crossref_primary_10_3389_fimmu_2020_607473 crossref_primary_10_1038_s41401_023_01160_0 crossref_primary_10_3389_fimmu_2022_943333 crossref_primary_10_1016_j_jcmgh_2024_02_014 crossref_primary_10_1038_s41417_021_00348_y crossref_primary_10_1172_jci_insight_139793 crossref_primary_10_1038_s41467_021_26277_w crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_20900_agmr20220007 crossref_primary_10_34133_research_0365 crossref_primary_10_1111_jdi_13172 crossref_primary_10_1007_s40618_024_02501_4 crossref_primary_10_1016_j_aca_2025_343856 crossref_primary_10_1016_j_envpol_2020_114109 crossref_primary_10_1186_s12944_021_01576_9 crossref_primary_10_3390_ijms22168460 crossref_primary_10_2337_db21_0659 crossref_primary_10_3389_fmolb_2022_945917 crossref_primary_10_1155_2021_6634532 crossref_primary_10_1038_s41574_021_00575_1 crossref_primary_10_3389_fendo_2020_00526 crossref_primary_10_1136_jitc_2024_009399 crossref_primary_10_3389_fcvm_2020_629933 crossref_primary_10_1038_s41598_024_60426_7 crossref_primary_10_1152_ajpcell_00607_2020 crossref_primary_10_1038_s41598_020_71946_3 crossref_primary_10_1038_s41423_020_0375_1 crossref_primary_10_1093_infdis_jiac345 crossref_primary_10_1016_j_scitotenv_2021_151739 crossref_primary_10_1124_pharmrev_120_000043 crossref_primary_10_3389_fendo_2022_1053879 crossref_primary_10_1038_s41392_024_01954_6 crossref_primary_10_3390_nu13030823 crossref_primary_10_1093_rheumatology_keab788 crossref_primary_10_1177_0022034520912188 crossref_primary_10_1016_j_biocel_2024_106518 crossref_primary_10_1146_annurev_physiol_042222_024353 crossref_primary_10_2147_CCID_S424478 crossref_primary_10_2337_dc21_2102 crossref_primary_10_1016_j_jnutbio_2023_109415 crossref_primary_10_1111_imr_13354 crossref_primary_10_1002_eji_202048645 crossref_primary_10_1186_s12979_024_00443_2 crossref_primary_10_1111_acel_13996 crossref_primary_10_1136_ard_2024_225925 crossref_primary_10_1210_endocr_bqac124 crossref_primary_10_1124_pharmrev_121_000408 crossref_primary_10_1038_s41390_021_01753_7 crossref_primary_10_1016_j_jdermsci_2021_07_007 crossref_primary_10_1016_j_phymed_2023_155188 crossref_primary_10_2174_1871530323666221220141716 crossref_primary_10_1055_a_1214_5618 crossref_primary_10_1136_gutjnl_2020_323565 crossref_primary_10_3389_fimmu_2022_932893 crossref_primary_10_3389_fimmu_2021_678355 crossref_primary_10_3389_fimmu_2022_845422 crossref_primary_10_1186_s12263_023_00729_y crossref_primary_10_1038_s41586_022_04536_0 crossref_primary_10_1093_jn_nxab263 crossref_primary_10_3389_fimmu_2020_00822 crossref_primary_10_3390_nu16101404 crossref_primary_10_1139_bcb_2022_0266 crossref_primary_10_3390_cells9061383 crossref_primary_10_3390_jcm9010272 crossref_primary_10_3390_children8070554 crossref_primary_10_1016_j_neurobiolaging_2022_11_015 crossref_primary_10_3390_ijms24032010 crossref_primary_10_1177_00220345241280743 crossref_primary_10_1038_s41467_022_31722_5 crossref_primary_10_3389_fendo_2022_817147 crossref_primary_10_1111_obr_13128 crossref_primary_10_1016_j_cell_2021_05_023 crossref_primary_10_1007_s40618_021_01587_4 crossref_primary_10_1002_oby_23528 crossref_primary_10_1007_s12195_023_00782_y crossref_primary_10_3389_fragi_2021_681428 crossref_primary_10_1002_adhm_202100764 crossref_primary_10_3389_fimmu_2022_1104943 crossref_primary_10_1021_acs_analchem_1c02606 crossref_primary_10_3389_fnut_2023_1243359 crossref_primary_10_1126_sciimmunol_add4346 crossref_primary_10_1111_febs_15853 crossref_primary_10_1186_s43042_024_00615_1 crossref_primary_10_1016_j_molmet_2020_101044 crossref_primary_10_1016_j_fitote_2025_106474 crossref_primary_10_3390_dairy3010005 crossref_primary_10_1111_dom_16000 |
Cites_doi | 10.4049/jimmunol.1502506 10.1189/jlb.72.2.330 10.1128/IAI.00791-17 10.1016/j.celrep.2017.09.026 10.1002/oby.21243 10.1016/j.bbrc.2010.11.127 10.1084/jem.20080397 10.1371/journal.pone.0130893 10.1016/j.immuni.2014.12.030 10.4049/jimmunol.1203247 10.1126/scisignal.2001338 10.4049/jimmunol.1001269 10.1016/S0022-2275(20)38435-2 10.1038/cddis.2015.404 10.4161/epi.4.6.9767 10.1073/pnas.1215840110 10.1038/nrm.2017.95 10.1038/srep42665 10.1042/bj2210471 10.2337/db12-0420 10.1126/science.271.5249.665 10.1016/j.metabol.2013.12.002 10.1172/JCI76012 10.1016/0014-5793(87)80292-2 10.1371/journal.pone.0170975 10.1038/s41586-018-0326-5 10.1016/j.celrep.2018.01.030 10.1073/pnas.1012645108 10.1016/j.redox.2017.08.018 10.1016/j.cmet.2018.06.002 10.1371/journal.pbio.2003782 10.1074/jbc.M113.540351 10.1038/nm.2001 10.1371/journal.pone.0091146 10.1038/nrendo.2015.129 10.1016/j.immuni.2009.04.014 10.1097/01.aids.0000432455.06476.bc 10.1126/scitranslmed.aaa0835 10.1371/journal.pone.0188474 10.3389/fimmu.2017.01516 10.1038/nature23475 10.4049/jimmunol.1002615 10.1126/science.aab4138 10.1189/jlb.3AB0417-159RR 10.1161/ATVBAHA.114.304636 10.7150/thno.21451 10.1152/ajpendo.00656.2013 10.1053/j.gastro.2013.04.010 10.1038/ni.3047 10.1172/JCI113046 10.4049/jimmunol.1302062 10.1073/pnas.1322807111 10.1016/j.cell.2017.09.029 10.1126/science.aaf6284 10.4049/jimmunol.174.8.4670 10.4049/jimmunol.1003613 10.1016/j.immuni.2016.01.028 10.1038/ijo.2014.195 10.1042/bj2280353 10.1016/S0169-7439(01)00155-1 10.1172/JCI73658 10.1016/j.immuni.2007.01.011 10.1038/ni.2005 10.1016/j.celrep.2015.07.014 10.1210/jc.2018-01000 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2019.07.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 461.e5 |
ExternalDocumentID | PMC8506657 31378464 10_1016_j_cmet_2019_07_004 S1550413119303778 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK108056 – fundername: NIDDK NIH HHS grantid: T32 DK007201 – fundername: NCI NIH HHS grantid: P30 CA177558 – fundername: NHLBI NIH HHS grantid: T32 HL007501 – fundername: NCATS NIH HHS grantid: UL1 TR001998 – fundername: NIAID NIH HHS grantid: T32 AI089673 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c455t-a92adea70fb67dee40b40f8a58d7c74c812baaca7f1688abf3e34ccbb18c46053 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 13:28:10 EDT 2025 Sat Sep 27 20:38:10 EDT 2025 Mon Jul 21 06:03:02 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Fri Feb 23 02:48:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | metaflammation fatty acid oxidation immunometabolism glycolysis |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-a92adea70fb67dee40b40f8a58d7c74c812baaca7f1688abf3e34ccbb18c46053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Writing-original draft: DN, EP, BN Methodology: DN, EP, MA, SVN, DL Validation: DN, EP, MA, AB, LB, FR, BI, MZ, JC Visualization: DN, EP, MA, AB, LB Supervision: CA, PK, DL, BN These authors contributed equally Investigation: DN, EP, MA, AB, AJ, LB, FR, BI, MZ, JC Conceptualization: DN, EP, MA, LB, BC, PS, DL, BN Lead Contact, 561 Wethington Bldg. 900 South Limestone St., Lexington, KY 40536 PH 859.281.1382 @scientistbarb Software: EP, DL Project Administration: DL, BN Formal Analysis: DN, EP, MA, AB, SVN Funding Acquisition: CA, DL, BC, PK, BN Resources: AB, CH, NR, LP, CA, PK Data Curation: DN, EP, AB Writing-review and editing: DN, AB, AJ, BC, PK, PS, DL, BN Author Contributions |
OpenAccessLink | http://www.cell.com/article/S1550413119303778/pdf |
PMID | 31378464 |
PQID | 2268574979 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8506657 proquest_miscellaneous_2268574979 pubmed_primary_31378464 crossref_citationtrail_10_1016_j_cmet_2019_07_004 crossref_primary_10_1016_j_cmet_2019_07_004 elsevier_sciencedirect_doi_10_1016_j_cmet_2019_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-03 |
PublicationDateYYYYMMDD | 2019-09-03 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Michalek, Gerriets, Jacobs, Macintyre, MacIver, Mason, Sullivan, Nichols, Rathmell (bib43) 2011; 186 Wouters, Gaens, Bijnen, Verboven, Jocken, Wetzels, Wijnands, Hansen, van Greevenbroek, Duijvestijn (bib62) 2017; 7 Lord, Matarese, Howard, Bloom, Lechler (bib37) 2002; 72 Endo, Asou, Matsugae, Hirahara, Shinoda, Tumes, Tokuyama, Yokote, Nakayama (bib16) 2015; 12 Dang, McDonald, Russell, Cyster (bib11) 2017; 171 McLaughlin, Liu, Lamendola, Shen, Morton, Rivas, Winer, Tolentino, Choi, Zhang (bib42) 2014; 34 Toyama, Herzig, Courchet, Lewis, Losón, Hellberg, Young, Chen, Polleux, Chan, Shaw (bib56) 2016; 351 van Beek, Lips, Visser, Pijl, Ioan-Facsinay, Toes, Berends, Willems van Dijk, Koning, van Harmelen (bib58) 2014; 63 Cham, Gajewski (bib8) 2005; 174 Lynch, Michelet, Zhang, Brennan, Moseman, Lester, Besra, Vomhof-Dekrey, Tighe, Koay (bib38) 2015; 16 Cameron, Logie, Patel, Erhardt, Bacon, Middleton, Harthill, Forteath, Coats, Kerr (bib5) 2018; 14 Roth, Puig-Saus, Yu, Shifrut, Carnevale, Li, Hiatt, Saco, Krystofinski, Li (bib51) 2018; 559 Kurmi, Hitosugi, Wiese, Boakye-Agyeman, Gonsalves, Lou, Karnitz, Goetz, Hitosugi (bib33) 2018; 22 Ip, Cilfone, Belkina, DeFuria, Jagannathan-Bogdan, Zhu, Kuchibhatla, McDonnell, Xiao, Kepler (bib26) 2016; 24 Rabinovitch, Samborska, Faubert, Ma, Gravel, Andrzejewski, Raissi, Pause, St-Pierre, Jones (bib49) 2017; 21 Procaccini, Carbone, Di Silvestre, Brambilla, De Rosa, Galgani, Faicchia, Marone, Tramontano, Corona (bib48) 2016; 44 Yin, Choi, Xu, Perry, Seay, Croker, Sobel, Brusko, Morel (bib65) 2015; 7 Cosmi, De Palma, Santarlasci, Maggi, Capone, Frosali, Rodolico, Querci, Abbate, Angeli (bib10) 2008; 205 Grunfeld, Verdier, Neese, Moser, Feingold (bib22) 1988; 29 Xu, Stewart, Wang, Liu, Xie, Ryu, Li, Ma, Wang, Ni (bib63) 2017; 548 Gauthier, O’Brien, Bigornia, Mott, Cacicedo, Xu, Gokce, Apovian, Ruderman (bib20) 2011; 404 Fabbrini, Cella, McCartney, Fuchs, Abumrad, Pietka, Chen, Finck, Han, Magkos (bib17) 2013; 145 McCoin, Knotts, Adams (bib41) 2015; 11 Kemmerer, Finkernagel, Cavalcante, Abdalla, Müller, Brüne, Namgaladze (bib30) 2015; 10 Zúñiga, Shen, Joyce-Shaikh, Pyatnova, Richards, Thom, Andrade, Cua, Kraemer, Butcher (bib67) 2010; 185 Carling, Zammit, Hardie (bib6) 1987; 223 De Rosa, Procaccini, Calì, Pirozzi, Fontana, Zappacosta, La Cava, Matarese (bib12) 2007; 26 Mandraju, Jain, Gao, Ouyang, Norgard, Pasare (bib40) 2018; 86 Winer, Chan, Paltser, Truong, Tsui, Bahrami, Dorfman, Wang, Zielenski, Mastronardi (bib59) 2009; 15 Blagih, Coulombe, Vincent, Dupuy, Galicia-Vázquez, Yurchenko, Raissi, van der Windt, Viollet, Pearce (bib2) 2015; 42 (bib1) 2017 Jones, Cronin, Dolton, Panetti, Schauenburg, Galloway, Sewell, Cole, Thornton, Francis (bib29) 2017; 8 Lee, Won, Bae, Hong, Hwang (bib35) 2011; 108 Young, Flaherty, Woodman, Sharma-Walia, Reynolds (bib66) 2017; 102 Hotamisligil, Peraldi, Budavari, Ellis, White, Spiegelman (bib25) 1996; 271 Jagannathan-Bogdan, McDonnell, Shin, Rehman, Hasturk, Apovian, Nikolajczyk (bib27) 2011; 186 Delgoffe, Kole, Zheng, Zarek, Matthews, Xiao, Worley, Kozma, Powell (bib14) 2009; 30 Travers, Motta, Betts, Bouloumié, Thompson (bib57) 2015; 39 Nicholas, Proctor, Raval, Ip, Habib, Ritou, Grammatopoulos, Steenkamp, Dooms, Apovian (bib44) 2017; 12 Lee, Kim, Kim, Shong, Ku, Jo (bib36) 2013; 62 Rutkowsky, Knotts, Ono-Moore, McCoin, Huang, Schneider, Singh, Adams, Hwang (bib52) 2014; 306 Pandolfi, Ferraro, Sananez, Gancedo, Baz, Billordo, Fainboim, Arruvito (bib45) 2016; 196 Delgoffe, Pollizzi, Waickman, Heikamp, Meyers, Horton, Xiao, Worley, Powell (bib15) 2011; 12 Wold, Sjöström, Eriksson (bib60) 2001; 58 Tan, Xiao, Tang, Bai, Li, Li, Shi, Li, Li, Du (bib55) 2018; 8 Gerriets, Kishton, Nichols, Macintyre, Inoue, Ilkayeva, Winter, Liu, Priyadharshini, Slawinska (bib21) 2015; 125 Jones, Coleman, Husni, Deeney, Raval, Steenkamp, Dooms, Nikolajczyk, Corkey (bib28) 2017; 12 Raud, Roy, Divakaruni, Tarasenko, Franke, Ma, Samborska, Hsieh, Wong, Stüve (bib50) 2018; 28 Soroosh, Wu, Xue, Song, Sutton, Sablad, Yu, Nelen, Liu, Castro (bib54) 2014; 111 Guasch-Ferre, Ruiz-Canela, Li, Zheng, Bullo, Wang, Toledo, Clish, Corella, Estruch (bib23) 2019; 104 Brand, Williams, Weidemann (bib4) 1984; 221 Ferrante (bib19) 2013; 123 Lau, Juchheim, Cavaliere, Philips, Lauffenburger, Haigis (bib34) 2011; 4 Simmons, Scully, Groden, Arnold, Chang, Lane, Lifson, Rosenberg, Lauffenburger, Altfeld (bib53) 2013; 27 Kim, Lee, Choi, Hong, Kie, Lim, Lee, Moon, Seoh (bib32) 2014; 9 Won, Jang, Lee, Oh, Kim, Woo, Kang, Yu, Rhee, Hwang (bib61) 2013; 191 DeFuria, Belkina, Jagannathan-Bogdan, Snyder-Cappione, Carr, Nersesova, Markham, Strissel, Watkins, Zhu (bib13) 2013; 110 Peyrot, Nachtergaele, Luchetti, Mydock-McGrane, Fujiwara, Scherrer, Jallouk, Schlesinger, Ory, Covey, Rohatgi (bib47) 2014; 289 Caro-Maldonado, Wang, Nichols, Kuraoka, Milasta, Sun, Gavin, Abel, Kelsoe, Green, Rathmell (bib7) 2014; 192 Feingold, Grunfeld (bib18) 1987; 80 Madiraju, Pande, Prentki, Madiraju (bib39) 2009; 4 Herzig, Shaw (bib24) 2018; 19 Peng, Yin, Chhangawala, Xu, Leslie, Li (bib46) 2016; 354 Yao, Liu, Wang, Moon, Gross, Patti (bib64) 2018; 16 Brand (bib3) 1985; 228 Chaube, Bhat (bib9) 2016; 7 Feingold (10.1016/j.cmet.2019.07.004_bib18) 1987; 80 Travers (10.1016/j.cmet.2019.07.004_bib57) 2015; 39 De Rosa (10.1016/j.cmet.2019.07.004_bib12) 2007; 26 Pandolfi (10.1016/j.cmet.2019.07.004_bib45) 2016; 196 Delgoffe (10.1016/j.cmet.2019.07.004_bib14) 2009; 30 Rabinovitch (10.1016/j.cmet.2019.07.004_bib49) 2017; 21 Kemmerer (10.1016/j.cmet.2019.07.004_bib30) 2015; 10 Soroosh (10.1016/j.cmet.2019.07.004_bib54) 2014; 111 Ip (10.1016/j.cmet.2019.07.004_bib26) 2016; 24 Young (10.1016/j.cmet.2019.07.004_bib66) 2017; 102 Caro-Maldonado (10.1016/j.cmet.2019.07.004_bib7) 2014; 192 Procaccini (10.1016/j.cmet.2019.07.004_bib48) 2016; 44 Lau (10.1016/j.cmet.2019.07.004_bib34) 2011; 4 Jones (10.1016/j.cmet.2019.07.004_bib29) 2017; 8 Dang (10.1016/j.cmet.2019.07.004_bib11) 2017; 171 Lee (10.1016/j.cmet.2019.07.004_bib36) 2013; 62 Blagih (10.1016/j.cmet.2019.07.004_bib2) 2015; 42 Herzig (10.1016/j.cmet.2019.07.004_bib24) 2018; 19 Brand (10.1016/j.cmet.2019.07.004_bib4) 1984; 221 McCoin (10.1016/j.cmet.2019.07.004_bib41) 2015; 11 van Beek (10.1016/j.cmet.2019.07.004_bib58) 2014; 63 Nicholas (10.1016/j.cmet.2019.07.004_bib44) 2017; 12 Cham (10.1016/j.cmet.2019.07.004_bib8) 2005; 174 Chaube (10.1016/j.cmet.2019.07.004_bib9) 2016; 7 Michalek (10.1016/j.cmet.2019.07.004_bib43) 2011; 186 Peng (10.1016/j.cmet.2019.07.004_bib46) 2016; 354 Delgoffe (10.1016/j.cmet.2019.07.004_bib15) 2011; 12 Fabbrini (10.1016/j.cmet.2019.07.004_bib17) 2013; 145 Won (10.1016/j.cmet.2019.07.004_bib61) 2013; 191 Xu (10.1016/j.cmet.2019.07.004_bib63) 2017; 548 DeFuria (10.1016/j.cmet.2019.07.004_bib13) 2013; 110 Lord (10.1016/j.cmet.2019.07.004_bib37) 2002; 72 Gauthier (10.1016/j.cmet.2019.07.004_bib20) 2011; 404 Wold (10.1016/j.cmet.2019.07.004_bib60) 2001; 58 Simmons (10.1016/j.cmet.2019.07.004_bib53) 2013; 27 Jones (10.1016/j.cmet.2019.07.004_bib28) 2017; 12 Zúñiga (10.1016/j.cmet.2019.07.004_bib67) 2010; 185 Roth (10.1016/j.cmet.2019.07.004_bib51) 2018; 559 Grunfeld (10.1016/j.cmet.2019.07.004_bib22) 1988; 29 Kurmi (10.1016/j.cmet.2019.07.004_bib33) 2018; 22 Toyama (10.1016/j.cmet.2019.07.004_bib56) 2016; 351 Lynch (10.1016/j.cmet.2019.07.004_bib38) 2015; 16 Rutkowsky (10.1016/j.cmet.2019.07.004_bib52) 2014; 306 Hotamisligil (10.1016/j.cmet.2019.07.004_bib25) 1996; 271 McLaughlin (10.1016/j.cmet.2019.07.004_bib42) 2014; 34 Lee (10.1016/j.cmet.2019.07.004_bib35) 2011; 108 Winer (10.1016/j.cmet.2019.07.004_bib59) 2009; 15 Jagannathan-Bogdan (10.1016/j.cmet.2019.07.004_bib27) 2011; 186 Raud (10.1016/j.cmet.2019.07.004_bib50) 2018; 28 Brand (10.1016/j.cmet.2019.07.004_bib3) 1985; 228 Yin (10.1016/j.cmet.2019.07.004_bib65) 2015; 7 Madiraju (10.1016/j.cmet.2019.07.004_bib39) 2009; 4 Guasch-Ferre (10.1016/j.cmet.2019.07.004_bib23) 2019; 104 Yao (10.1016/j.cmet.2019.07.004_bib64) 2018; 16 Cameron (10.1016/j.cmet.2019.07.004_bib5) 2018; 14 Endo (10.1016/j.cmet.2019.07.004_bib16) 2015; 12 Tan (10.1016/j.cmet.2019.07.004_bib55) 2018; 8 Wouters (10.1016/j.cmet.2019.07.004_bib62) 2017; 7 Kim (10.1016/j.cmet.2019.07.004_bib32) 2014; 9 Carling (10.1016/j.cmet.2019.07.004_bib6) 1987; 223 Cosmi (10.1016/j.cmet.2019.07.004_bib10) 2008; 205 Mandraju (10.1016/j.cmet.2019.07.004_bib40) 2018; 86 Gerriets (10.1016/j.cmet.2019.07.004_bib21) 2015; 125 Ferrante (10.1016/j.cmet.2019.07.004_bib19) 2013; 123 Peyrot (10.1016/j.cmet.2019.07.004_bib47) 2014; 289 31417193 - Nat Rev Endocrinol. 2019 Oct;15(10):564 |
References_xml | – volume: 192 start-page: 3626 year: 2014 end-page: 3636 ident: bib7 article-title: Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells publication-title: J. Immunol. – volume: 27 start-page: 2505 year: 2013 end-page: 2517 ident: bib53 article-title: HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways publication-title: AIDS – volume: 26 start-page: 241 year: 2007 end-page: 255 ident: bib12 article-title: A key role of leptin in the control of regulatory T cell proliferation publication-title: Immunity – volume: 351 start-page: 275 year: 2016 end-page: 281 ident: bib56 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science – volume: 15 start-page: 921 year: 2009 end-page: 929 ident: bib59 article-title: Normalization of obesity-associated insulin resistance through immunotherapy publication-title: Nat. Med. – volume: 191 start-page: 4029 year: 2013 end-page: 4037 ident: bib61 article-title: Ablation of peroxiredoxin II attenuates experimental colitis by increasing FoxO1-induced Foxp3+ regulatory T cells publication-title: J. Immunol. – volume: 80 start-page: 184 year: 1987 end-page: 190 ident: bib18 article-title: Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo publication-title: J. Clin. Invest. – volume: 12 start-page: e0188474 year: 2017 ident: bib28 article-title: Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells publication-title: PLoS One – volume: 125 start-page: 194 year: 2015 end-page: 207 ident: bib21 article-title: Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation publication-title: J. Clin. Invest. – volume: 559 start-page: 405 year: 2018 end-page: 409 ident: bib51 article-title: Reprogramming human T cell function and specificity with non-viral genome targeting publication-title: Nature – volume: 22 start-page: 1365 year: 2018 end-page: 1373 ident: bib33 article-title: Carnitine palmitoyltransferase 1A has a lysine succinyltransferase activity publication-title: Cell Rep. – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bib60 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. – volume: 102 start-page: 1229 year: 2017 end-page: 1235 ident: bib66 article-title: Fatty acid synthase regulates the pathogenicity of Th17 cells publication-title: J. Leukoc. Biol. – volume: 86 year: 2018 ident: bib40 article-title: MyD88 signaling in T cells is critical for effector CD4 T cell differentiation following a transitional T follicular helper cell stage publication-title: Infect. Immun. – volume: 39 start-page: 762 year: 2015 end-page: 769 ident: bib57 article-title: The impact of adiposity on adipose tissue-resident lymphocyte activation in humans publication-title: Int. J. Obes. – volume: 63 start-page: 492 year: 2014 end-page: 501 ident: bib58 article-title: Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese women with normal glucose tolerance publication-title: Metabolism – volume: 42 start-page: 41 year: 2015 end-page: 54 ident: bib2 article-title: The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo publication-title: Immunity – volume: 174 start-page: 4670 year: 2005 end-page: 4677 ident: bib8 article-title: Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells publication-title: J. Immunol. – volume: 108 start-page: 9548 year: 2011 end-page: 9553 ident: bib35 article-title: Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 221 start-page: 471 year: 1984 end-page: 475 ident: bib4 article-title: Glucose and glutamine metabolism in rat thymocytes publication-title: Biochem. J. – volume: 10 start-page: e0130893 year: 2015 ident: bib30 article-title: AMP-activated protein kinase interacts with the peroxisome proliferator-activated receptor delta to induce genes affecting fatty acid oxidation in human macrophages publication-title: PLoS One – volume: 7 start-page: e2044 year: 2016 ident: bib9 article-title: AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells publication-title: Cell Death Dis. – volume: 123 start-page: 4992 year: 2013 end-page: 4993 ident: bib19 article-title: Macrophages, fat, and the emergence of immunometabolism publication-title: J. Clin. Invest. – volume: 186 start-page: 1162 year: 2011 end-page: 1172 ident: bib27 article-title: Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes publication-title: J. Immunol. – volume: 8 start-page: 2329 year: 2018 end-page: 2347 ident: bib55 article-title: Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy publication-title: Theranostics – volume: 7 start-page: 274ra18 year: 2015 ident: bib65 article-title: Normalization of CD4+ T cell metabolism reverses lupus publication-title: Sci. Transl. Med. – volume: 24 start-page: 102 year: 2016 end-page: 112 ident: bib26 article-title: Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production publication-title: Obesity (Silver Spring) – volume: 11 start-page: 617 year: 2015 end-page: 625 ident: bib41 article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology publication-title: Nat. Rev. Endocrinol. – volume: 62 start-page: 194 year: 2013 end-page: 204 ident: bib36 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes – volume: 29 start-page: 1327 year: 1988 end-page: 1335 ident: bib22 article-title: Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo publication-title: J. Lipid Res. – volume: 205 start-page: 1903 year: 2008 end-page: 1916 ident: bib10 article-title: Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor publication-title: J. Exp. Med. – volume: 171 start-page: 1057 year: 2017 end-page: 1071.e11 ident: bib11 article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation publication-title: Cell – year: 2017 ident: bib1 article-title: Agilent Seahorse XF Mito Fuel Flex Test Kit User Manual – volume: 21 start-page: 1 year: 2017 end-page: 9 ident: bib49 article-title: AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species publication-title: Cell Rep. – volume: 44 start-page: 406 year: 2016 end-page: 421 ident: bib48 article-title: The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements publication-title: Immunity – volume: 34 start-page: 2637 year: 2014 end-page: 2643 ident: bib42 article-title: T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 8 start-page: 1516 year: 2017 ident: bib29 article-title: Metabolic adaptation of human CD4 publication-title: Front. Immunol. – volume: 185 start-page: 6947 year: 2010 end-page: 6959 ident: bib67 article-title: IL-17 regulates adipogenesis, glucose homeostasis, and obesity publication-title: J. Immunol. – volume: 19 start-page: 121 year: 2018 end-page: 135 ident: bib24 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 223 start-page: 217 year: 1987 end-page: 222 ident: bib6 article-title: A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis publication-title: FEBS Lett. – volume: 104 start-page: 1508 year: 2019 end-page: 1519 ident: bib23 article-title: Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk publication-title: J. Clin. Endocrinol. Metab. – volume: 28 start-page: 504 year: 2018 end-page: 515.e7 ident: bib50 article-title: Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation publication-title: Cell Metab. – volume: 16 start-page: e2003782 year: 2018 ident: bib64 article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation publication-title: PLoS Biol. – volume: 306 start-page: E1378 year: 2014 end-page: E1387 ident: bib52 article-title: Acylcarnitines activate proinflammatory signaling pathways publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 14 start-page: 187 year: 2018 end-page: 197 ident: bib5 article-title: Metformin selectively targets redox control of complex I energy transduction publication-title: Redox Biol. – volume: 228 start-page: 353 year: 1985 end-page: 361 ident: bib3 article-title: Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism publication-title: Biochem. J. – volume: 111 start-page: 12163 year: 2014 end-page: 12168 ident: bib54 article-title: Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 42665 year: 2017 ident: bib62 article-title: Circulating classical monocytes are associated with CD11c publication-title: Sci. Rep. – volume: 12 start-page: 1042 year: 2015 end-page: 1055 ident: bib16 article-title: Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1 publication-title: Cell Rep. – volume: 271 start-page: 665 year: 1996 end-page: 668 ident: bib25 article-title: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance publication-title: Science – volume: 4 start-page: 399 year: 2009 end-page: 403 ident: bib39 article-title: Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation publication-title: Epigenetics – volume: 289 start-page: 11095 year: 2014 end-page: 11110 ident: bib47 article-title: Tracking the subcellular fate of 20(s)-hydroxycholesterol with click chemistry reveals a transport pathway to the Golgi publication-title: J. Biol. Chem. – volume: 548 start-page: 228 year: 2017 end-page: 233 ident: bib63 article-title: Metabolic control of T publication-title: Nature – volume: 12 start-page: e0170975 year: 2017 ident: bib44 article-title: Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis publication-title: PLoS One – volume: 354 start-page: 481 year: 2016 end-page: 484 ident: bib46 article-title: Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism publication-title: Science – volume: 30 start-page: 832 year: 2009 end-page: 844 ident: bib14 article-title: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment publication-title: Immunity – volume: 145 start-page: 366 year: 2013 end-page: 374.e1-3 ident: bib17 article-title: Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals publication-title: Gastroenterology – volume: 12 start-page: 295 year: 2011 end-page: 303 ident: bib15 article-title: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 publication-title: Nat. Immunol. – volume: 404 start-page: 382 year: 2011 end-page: 387 ident: bib20 article-title: Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans publication-title: Biochem. Biophys. Res. Commun. – volume: 72 start-page: 330 year: 2002 end-page: 338 ident: bib37 article-title: Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines publication-title: J. Leukoc. Biol. – volume: 186 start-page: 3299 year: 2011 end-page: 3303 ident: bib43 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. – volume: 9 start-page: e91146 year: 2014 ident: bib32 article-title: Reactive oxygen species prevent imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function publication-title: PLoS One – volume: 110 start-page: 5133 year: 2013 end-page: 5138 ident: bib13 article-title: B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: ra16 year: 2011 ident: bib34 article-title: In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-α-induced apoptosis and proliferation by MAPKs publication-title: Sci. Signal. – volume: 196 start-page: 3287 year: 2016 end-page: 3296 ident: bib45 article-title: ATP-induced inflammation drives tissue-resident Th17 cells in metabolically unhealthy obesity publication-title: J. Immunol. – volume: 16 start-page: 85 year: 2015 end-page: 95 ident: bib38 article-title: Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue publication-title: Nat. Immunol. – volume: 196 start-page: 3287 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib45 article-title: ATP-induced inflammation drives tissue-resident Th17 cells in metabolically unhealthy obesity publication-title: J. Immunol. doi: 10.4049/jimmunol.1502506 – volume: 72 start-page: 330 year: 2002 ident: 10.1016/j.cmet.2019.07.004_bib37 article-title: Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.72.2.330 – volume: 86 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib40 article-title: MyD88 signaling in T cells is critical for effector CD4 T cell differentiation following a transitional T follicular helper cell stage publication-title: Infect. Immun. doi: 10.1128/IAI.00791-17 – volume: 21 start-page: 1 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib49 article-title: AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.026 – volume: 24 start-page: 102 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib26 article-title: Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21243 – volume: 404 start-page: 382 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib20 article-title: Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.11.127 – volume: 205 start-page: 1903 year: 2008 ident: 10.1016/j.cmet.2019.07.004_bib10 article-title: Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor publication-title: J. Exp. Med. doi: 10.1084/jem.20080397 – volume: 10 start-page: e0130893 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib30 article-title: AMP-activated protein kinase interacts with the peroxisome proliferator-activated receptor delta to induce genes affecting fatty acid oxidation in human macrophages publication-title: PLoS One doi: 10.1371/journal.pone.0130893 – volume: 42 start-page: 41 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib2 article-title: The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo publication-title: Immunity doi: 10.1016/j.immuni.2014.12.030 – volume: 191 start-page: 4029 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib61 article-title: Ablation of peroxiredoxin II attenuates experimental colitis by increasing FoxO1-induced Foxp3+ regulatory T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1203247 – volume: 4 start-page: ra16 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib34 article-title: In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-α-induced apoptosis and proliferation by MAPKs publication-title: Sci. Signal. doi: 10.1126/scisignal.2001338 – volume: 185 start-page: 6947 year: 2010 ident: 10.1016/j.cmet.2019.07.004_bib67 article-title: IL-17 regulates adipogenesis, glucose homeostasis, and obesity publication-title: J. Immunol. doi: 10.4049/jimmunol.1001269 – volume: 29 start-page: 1327 year: 1988 ident: 10.1016/j.cmet.2019.07.004_bib22 article-title: Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)38435-2 – volume: 7 start-page: e2044 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib9 article-title: AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.404 – volume: 4 start-page: 399 year: 2009 ident: 10.1016/j.cmet.2019.07.004_bib39 article-title: Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation publication-title: Epigenetics doi: 10.4161/epi.4.6.9767 – volume: 110 start-page: 5133 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib13 article-title: B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1215840110 – volume: 19 start-page: 121 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib24 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.95 – volume: 7 start-page: 42665 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib62 article-title: Circulating classical monocytes are associated with CD11c+ macrophages in human visceral adipose tissue publication-title: Sci. Rep. doi: 10.1038/srep42665 – volume: 221 start-page: 471 year: 1984 ident: 10.1016/j.cmet.2019.07.004_bib4 article-title: Glucose and glutamine metabolism in rat thymocytes publication-title: Biochem. J. doi: 10.1042/bj2210471 – volume: 62 start-page: 194 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib36 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/db12-0420 – volume: 271 start-page: 665 year: 1996 ident: 10.1016/j.cmet.2019.07.004_bib25 article-title: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance publication-title: Science doi: 10.1126/science.271.5249.665 – volume: 63 start-page: 492 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib58 article-title: Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese women with normal glucose tolerance publication-title: Metabolism doi: 10.1016/j.metabol.2013.12.002 – volume: 125 start-page: 194 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib21 article-title: Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation publication-title: J. Clin. Invest. doi: 10.1172/JCI76012 – volume: 223 start-page: 217 year: 1987 ident: 10.1016/j.cmet.2019.07.004_bib6 article-title: A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis publication-title: FEBS Lett. doi: 10.1016/0014-5793(87)80292-2 – volume: 12 start-page: e0170975 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib44 article-title: Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis publication-title: PLoS One doi: 10.1371/journal.pone.0170975 – volume: 559 start-page: 405 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib51 article-title: Reprogramming human T cell function and specificity with non-viral genome targeting publication-title: Nature doi: 10.1038/s41586-018-0326-5 – volume: 22 start-page: 1365 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib33 article-title: Carnitine palmitoyltransferase 1A has a lysine succinyltransferase activity publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.030 – volume: 108 start-page: 9548 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib35 article-title: Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012645108 – volume: 14 start-page: 187 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib5 article-title: Metformin selectively targets redox control of complex I energy transduction publication-title: Redox Biol. doi: 10.1016/j.redox.2017.08.018 – volume: 28 start-page: 504 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib50 article-title: Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.06.002 – volume: 16 start-page: e2003782 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib64 article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003782 – volume: 289 start-page: 11095 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib47 article-title: Tracking the subcellular fate of 20(s)-hydroxycholesterol with click chemistry reveals a transport pathway to the Golgi publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.540351 – volume: 15 start-page: 921 year: 2009 ident: 10.1016/j.cmet.2019.07.004_bib59 article-title: Normalization of obesity-associated insulin resistance through immunotherapy publication-title: Nat. Med. doi: 10.1038/nm.2001 – volume: 9 start-page: e91146 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib32 article-title: Reactive oxygen species prevent imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function publication-title: PLoS One doi: 10.1371/journal.pone.0091146 – volume: 11 start-page: 617 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib41 article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2015.129 – volume: 30 start-page: 832 year: 2009 ident: 10.1016/j.cmet.2019.07.004_bib14 article-title: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment publication-title: Immunity doi: 10.1016/j.immuni.2009.04.014 – volume: 27 start-page: 2505 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib53 article-title: HIV-1 infection induces strong production of IP-10 through TLR7/9-dependent pathways publication-title: AIDS doi: 10.1097/01.aids.0000432455.06476.bc – volume: 7 start-page: 274ra18 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib65 article-title: Normalization of CD4+ T cell metabolism reverses lupus publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa0835 – volume: 12 start-page: e0188474 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib28 article-title: Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells publication-title: PLoS One doi: 10.1371/journal.pone.0188474 – volume: 8 start-page: 1516 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib29 article-title: Metabolic adaptation of human CD4+ and CD8+ T-cells to T-cell receptor-mediated stimulation publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01516 – volume: 548 start-page: 228 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib63 article-title: Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism publication-title: Nature doi: 10.1038/nature23475 – volume: 186 start-page: 1162 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib27 article-title: Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes publication-title: J. Immunol. doi: 10.4049/jimmunol.1002615 – volume: 351 start-page: 275 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib56 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science doi: 10.1126/science.aab4138 – volume: 102 start-page: 1229 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib66 article-title: Fatty acid synthase regulates the pathogenicity of Th17 cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.3AB0417-159RR – volume: 34 start-page: 2637 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib42 article-title: T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.304636 – volume: 8 start-page: 2329 year: 2018 ident: 10.1016/j.cmet.2019.07.004_bib55 article-title: Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy publication-title: Theranostics doi: 10.7150/thno.21451 – volume: 306 start-page: E1378 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib52 article-title: Acylcarnitines activate proinflammatory signaling pathways publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00656.2013 – volume: 145 start-page: 366 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib17 article-title: Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.04.010 – volume: 16 start-page: 85 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib38 article-title: Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue publication-title: Nat. Immunol. doi: 10.1038/ni.3047 – volume: 80 start-page: 184 year: 1987 ident: 10.1016/j.cmet.2019.07.004_bib18 article-title: Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo publication-title: J. Clin. Invest. doi: 10.1172/JCI113046 – volume: 192 start-page: 3626 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib7 article-title: Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1302062 – volume: 111 start-page: 12163 year: 2014 ident: 10.1016/j.cmet.2019.07.004_bib54 article-title: Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1322807111 – volume: 171 start-page: 1057 year: 2017 ident: 10.1016/j.cmet.2019.07.004_bib11 article-title: Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2017.09.029 – volume: 354 start-page: 481 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib46 article-title: Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism publication-title: Science doi: 10.1126/science.aaf6284 – volume: 174 start-page: 4670 year: 2005 ident: 10.1016/j.cmet.2019.07.004_bib8 article-title: Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.174.8.4670 – volume: 186 start-page: 3299 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib43 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. doi: 10.4049/jimmunol.1003613 – volume: 44 start-page: 406 year: 2016 ident: 10.1016/j.cmet.2019.07.004_bib48 article-title: The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements publication-title: Immunity doi: 10.1016/j.immuni.2016.01.028 – volume: 39 start-page: 762 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib57 article-title: The impact of adiposity on adipose tissue-resident lymphocyte activation in humans publication-title: Int. J. Obes. doi: 10.1038/ijo.2014.195 – volume: 228 start-page: 353 year: 1985 ident: 10.1016/j.cmet.2019.07.004_bib3 article-title: Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism publication-title: Biochem. J. doi: 10.1042/bj2280353 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.cmet.2019.07.004_bib60 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 123 start-page: 4992 year: 2013 ident: 10.1016/j.cmet.2019.07.004_bib19 article-title: Macrophages, fat, and the emergence of immunometabolism publication-title: J. Clin. Invest. doi: 10.1172/JCI73658 – volume: 26 start-page: 241 year: 2007 ident: 10.1016/j.cmet.2019.07.004_bib12 article-title: A key role of leptin in the control of regulatory T cell proliferation publication-title: Immunity doi: 10.1016/j.immuni.2007.01.011 – volume: 12 start-page: 295 year: 2011 ident: 10.1016/j.cmet.2019.07.004_bib15 article-title: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 publication-title: Nat. Immunol. doi: 10.1038/ni.2005 – volume: 12 start-page: 1042 year: 2015 ident: 10.1016/j.cmet.2019.07.004_bib16 article-title: Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.014 – volume: 104 start-page: 1508 year: 2019 ident: 10.1016/j.cmet.2019.07.004_bib23 article-title: Plasma acylcarnitines and risk of type 2 diabetes in a Mediterranean population at high cardiovascular risk publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2018-01000 – reference: 31417193 - Nat Rev Endocrinol. 2019 Oct;15(10):564 |
SSID | ssj0036393 |
Score | 2.5959148 |
Snippet | Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17... Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 447 |
SubjectTerms | Adult Aged Carnitine - analogs & derivatives Carnitine - metabolism Carnitine O-Palmitoyltransferase - genetics Cells, Cultured Cross-Sectional Studies Cytokines - metabolism Diabetes Mellitus, Type 2 - metabolism fatty acid oxidation Fatty Acids - metabolism Female Gene Knockdown Techniques glycolysis Glycolysis - genetics Humans immunometabolism Inflammation - metabolism Lymphocyte Activation - immunology Male Membrane Transport Proteins - genetics metaflammation Middle Aged Obesity - metabolism Oxidation-Reduction Th17 Cells - immunology Transfection Young Adult |
Title | Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes |
URI | https://dx.doi.org/10.1016/j.cmet.2019.07.004 https://www.ncbi.nlm.nih.gov/pubmed/31378464 https://www.proquest.com/docview/2268574979 https://pubmed.ncbi.nlm.nih.gov/PMC8506657 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEA-lUPBF_O9VLRF8k-V2N8lO9rGWHq2igrZwbyHJZumK7pXeFuzX8oP4mZzJZg9PpQ8-7u4MhJ1kZpL85jeMvQqVRt9Y2UxpZzPZyiKzRSiz3LoWtLBNaSPb54fq5Fy-XarlDjuaamEIVpl8_-jTo7dOb-bpb84vu27-mZJrSWwxNbphACr4papSKuJbvpm8scAIHEH2KJyRdCqcGTFe_lsgPGVRRwLP1KztH8Hp7-TzTwzlb0FpcY_dTdkkPxwHfJ_thP4B2xv7S948ZKuFHYYbfui7hr8PA9qbKo7XHJ0AbogDp0NY_onIW0PDf_7gH793Y4slPqxQK3Y-C_zsogB-2rc4d8Y6R971PB7-c9rF8pInWM36ETtfHJ8dnWSpw0LmpVJDZuvSNsFC3roKmhBk7mTeaqt0Ax6kx-jvrPUW2qLSGs0ngpDeO1doTxeq4jHb7Vd9eMo46IAC0mlb1tKB0xQHWxAy-EbluZuxYvq1xif6ceqC8dVMOLMvhsxhyBwmp1txOWOvNzqXI_nGrdJqspjZmkIGo8Otei8n8xpcW3RhYvuwul4bTE21AllDPWNPRnNvxiEKAZi7oTZsTYSNAPF2b3_pu4vI300kgZWC_f8c7zN2h54i0E08Z7vD1XV4gZnR4A5wT3D67iAugF-z1w9K |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEYILKn_tQgEjcUPRJrEdO8dSdbULbZFgK-3Nsh1HDaLZik0l-lo8CM_EjOOsuoB64BrPSJZnPDOOP39DyFtfKIiNhUmEsibhNc8Sk_k8SY2tpWKmyk1g-zwtpmf8w0Istsjh8BYGYZUx9vcxPUTr-GUcV3N82TTjL1hcc2SLKSEMS6nukLtQDaTo2rPF-yEcM0jBAWUP0gmKx5czPcjLXXgEVGZlYPCM3dr-kZ3-rj7_BFHeyEqTHfIwlpP0oJ_xI7Ll28fkXt9g8voJWU5M113TA9dU9MR3YHB8cryiEAXgROwp_oWln5G91Vf010_66UfT91ii3RK0QuszT-fnmaSztgbn6R860qal4e8_xWMszWnE1ayekrPJ0fxwmsQWC4njQnSJKXNTeSPT2hay8p6nlqe1MkJV0knuIP1bY5yRdVYoBfZjnnHnrM2UwxtV9oxst8vW7xEqlQcBbpXJS26lVZgIa8m4d5VIUzsi2bC02kX-cWyD8U0PQLOvGs2h0Rw6xWtxPiLv1jqXPfvGrdJisJje8CEN6eFWvTeDeTVsLrwxMa1fXq001KZKSF7KckR2e3Ov58EyJqF4A2254QhrASTu3hxpm_NA4I0sgYWQz_9zvq_J_en85Fgfz04_viAPcCSg3tg-2e6-X_mXUCZ19lXYBr8B-gURdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+Acid+Metabolites+Combine+with+Reduced+%CE%B2+Oxidation+to+Activate+Th17+Inflammation+in+Human+Type+2+Diabetes&rft.jtitle=Cell+metabolism&rft.au=Nicholas%2C+Dequina+A&rft.au=Proctor%2C+Elizabeth+A&rft.au=Agrawal%2C+Madhur&rft.au=Belkina%2C+Anna+C&rft.date=2019-09-03&rft.eissn=1932-7420&rft.volume=30&rft.issue=3&rft.spage=447&rft_id=info:doi/10.1016%2Fj.cmet.2019.07.004&rft_id=info%3Apmid%2F31378464&rft.externalDocID=31378464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |