Towards an efficient collection and transport of COVID-19 diagnostic specimens using genetic-based algorithms

The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients’ requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assign...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 116; p. 108264
Main Authors Tlili, Takwa, Masri, Hela, Krichen, Saoussen
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
1872-9681
DOI10.1016/j.asoc.2021.108264

Cover

Abstract The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients’ requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin–Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm. •Efficient ambulance routing to collect COVID-19 patients specimens.•Addressing the team orienteering problem to simulate the real word situation.•Proposing hybrid genetic and memetic algorithms for solving the problem.•Algorithms effectiveness is confirmed compared to state-of-the-art approaches.•Generate specific real word instances to test the proposed algorithms.
AbstractList The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients’ requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin–Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm. •Efficient ambulance routing to collect COVID-19 patients specimens.•Addressing the team orienteering problem to simulate the real word situation.•Proposing hybrid genetic and memetic algorithms for solving the problem.•Algorithms effectiveness is confirmed compared to state-of-the-art approaches.•Generate specific real word instances to test the proposed algorithms.
The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients' requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin-Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm.
The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients' requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin-Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm.The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients' requests. The Tunisian ministry of health established a protocol planning the sample collection from the patients at their location. A triage score is first assigned to each patient according to the symptoms he is showing, and his health conditions. Then, given the limited number of the available ambulances in each area, the location of the patients and the capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing plan needs to be established so that specimens can be transferred to hospitals in short time. In this paper, we propose to model this problem as a Multi-Origin-Destination Team Orienteering Problem (MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that maximizes the collected scores of visited patients while respecting duration and capacity constraints. To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method for initial population generation and (ii) a one point crossover operator for solution recombination. The MA is an improvement of HGA that integrates an effective local search based on three different neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675% and performed better than four existing approaches. Real-case instances derived from the city of Tunis were also solved and compared with the results of an exact solver Cplex to validate the effectiveness of our algorithm.
ArticleNumber 108264
Author Tlili, Takwa
Masri, Hela
Krichen, Saoussen
Author_xml – sequence: 1
  givenname: Takwa
  surname: Tlili
  fullname: Tlili, Takwa
  email: takwa.tlili@isamm.uma.tn
– sequence: 2
  givenname: Hela
  surname: Masri
  fullname: Masri, Hela
  email: masri_hela@yahoo.fr
– sequence: 3
  givenname: Saoussen
  surname: Krichen
  fullname: Krichen, Saoussen
  email: saoussen.krichen@isg.rnu.tn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34903957$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhiNURC_wAiyQl2xyaufi2BJCQodbpUrdFLbWxJ6kPkrsYCet-vY4SoHComJlazzf_DP_-DQ7ct5hlr1mdMco4-eHHUSvdwUtWAqIglfPshMmmiKXXLCjdK-5yCtZ8ePsNMYDTZAsxIvsuKwkLWXdnGTjtb-DYCIBR7DrrLboZqL9MKCerXcpbsgcwMXJh5n4juyvvl98zJkkxkLvfJytJnFCbUd0kSzRup706DDF8xYiGgJD74Odb8b4MnvewRDx1cN5ln37_Ol6_zW_vPpysf9wmeuqruccaNPRtjUytVk1dQGlEEJzrjXDqm501cqm4bI1FXDogDWyg5pzyluDXV2y8iwrt7qLm-D-DoZBTcGOEO4Vo2o1Tx3Uap5azVObeYl6v1HT0o5odHIiwB_Sg1V_vzh7o3p_qwSvORM0FXj7UCD4HwvGWY02ahwGcOiXqArOaJKSxdrhm8dav0V-bSYliC1BBx9jwE5pO8O6kiRth6fnKP5B_2v4dxuEaS-3FoOK61_QaGxIX0EZb5_CfwJOjcuO
CitedBy_id crossref_primary_10_1016_j_health_2023_100256
crossref_primary_10_1016_j_omega_2025_103305
crossref_primary_10_1007_s13177_024_00410_7
crossref_primary_10_1111_itor_13410
crossref_primary_10_3390_sym16060697
crossref_primary_10_3390_app12199892
Cites_doi 10.1016/j.trpro.2017.03.036
10.1016/j.jbi.2021.103743
10.1016/j.asoc.2021.107809
10.1007/s10732-009-9104-8
10.1016/j.eswa.2020.114201
10.1016/j.ajem.2018.01.039
10.1080/00207543.2015.1058982
10.1016/j.eswa.2018.12.050
10.1016/j.trb.2012.03.004
10.1016/j.asoc.2021.107611
10.1016/j.cor.2020.105034
10.1016/j.asoc.2021.107561
10.1287/trsc.2019.0923
10.1287/trsc.1030.0046
10.1057/jors.2013.156
10.1016/0377-2217(94)00289-4
10.1016/j.swevo.2011.11.003
10.1016/j.cor.2020.105039
10.1287/trsc.1070.0209
10.1007/s10288-006-0009-1
10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
10.1007/s10479-016-2278-1
10.1023/A:1009642825198
10.1016/j.asoc.2020.106700
10.1023/B:ANOR.0000030690.27939.39
10.1016/j.ejor.2013.02.049
10.1016/j.ejor.2008.02.037
10.1016/j.asoc.2014.11.005
10.1016/j.asoc.2021.107210
10.1007/s10732-016-9316-7
10.1007/s10732-020-09456-8
10.3390/ijerph17072275
10.1016/j.asoc.2021.107449
10.1016/j.seps.2012.06.001
10.1016/j.cor.2017.09.003
10.1016/j.asoc.2020.106280
ContentType Journal Article
Copyright 2021 Elsevier B.V.
2021 Elsevier B.V. All rights reserved.
2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: 2021 Elsevier B.V. All rights reserved.
– notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.asoc.2021.108264
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 108264
ExternalDocumentID oai:pubmedcentral.nih.gov:8656180
PMC8656180
34903957
10_1016_j_asoc_2021_108264
S1568494621010826
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c455t-a07f0bbd94904752a3888c66cc1e457c4b97769bd4a6afa179fa56606bdef5313
IEDL.DBID UNPAY
ISSN 1568-4946
1872-9681
IngestDate Sun Oct 26 04:14:21 EDT 2025
Tue Sep 30 16:20:37 EDT 2025
Sun Sep 28 07:31:34 EDT 2025
Wed Feb 19 02:27:39 EST 2025
Wed Oct 29 21:48:51 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Fri Feb 23 02:41:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hybrid genetic algorithm
Memetic algorithm
Team orienteering problem
Ambulance routing
COVID-19 specimen transport
Language English
License 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-a07f0bbd94904752a3888c66cc1e457c4b97769bd4a6afa179fa56606bdef5313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8656180
PMID 34903957
PQID 2610082921
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_asoc_2021_108264
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8656180
proquest_miscellaneous_2610082921
pubmed_primary_34903957
crossref_citationtrail_10_1016_j_asoc_2021_108264
crossref_primary_10_1016_j_asoc_2021_108264
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_108264
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied soft computing
PublicationTitleAlternate Appl Soft Comput
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Santini (b45) 2019; 123
Baffo, Carotenuto, Rondine (b9) 2017; 22
Kumar, Susan (b21) 2021; 110
Keshtkaran, Ziarati, Bettinelli, Vigo (b28) 2016; 54
Rashed, Kodera, Shirakami, Kawaguchi, Watanabe, Hirata (b19) 2021; 117
Vansteenwegen, Souffriau, Berghe, Oudheusden (b6) 2009; 196
Saeedvand, Aghdasi, Baltes (b10) 2020; 96
Fischetti, González, Toth (b17) 1998
Bayliss, Juan, Currie, Panadero (b30) 2020; 92
Bhusare, Bansode (b34) 2014; 3
Hong, Wang, Chen (b37) 2000; 6
Chen, Pan, Chen, Liu (b4) 2020; 8
Yadav, Sohal (b35) 2017; 6
Ostrowski, Karbowska-Chilinska, Koszelew, Zabielski (b39) 2017; 253
Zahedi, Salehi-Amiri, Smith, Hajiaghaei-Keshteli (b22) 2021; 104
Campos, Marti (b42) 2014; 65
Chao, Golden, Wasil (b5) 1996; 88
Neri, Cotta (b16) 2012; 2
Wang, Li, Guan, Xu, Liu, Wang (b32) 2021; 167
Birattari (b40) 2009; vol. 197
Costa, Mei, Zhang (b33) 2020
Golden, Levy, Vohra (b31) 1987; 34
Dang, Guibadj, Moukrim (b7) 2013; 229
Keshtkaran, Ziarati (b43) 2016; 22
Singgih (b2) 2020
Zhang, Yan, Wu, Zheng (b3) 2020; 17
Orlis, Bianchessi, Roberti, Dullaert (b15) 2020; 54
Tlili, Abidi, Krichen (b11) 2018; 36
Boussier, Feillet, Gendreau (b29) 2007; 5
Wang, Shao, Tang (b38) 2020
Pacheco, Laguna (b1) 2020; 26
Campbell, Savelsbergh (b36) 2004; 38
Özdamar, Ekinci, Küçükyazici (b25) 2004; 129
Hammami, Rekik, Coelho (b13) 2020; 123
Abadi, Rahmati, Sharifi, Ahmadi (b18) 2021; 108
Silberholz, Golden (b41) 2010; 16
Cerna, Arcolezi, Guyeux, Royer-Fey, Chevallier (b20) 2021; 109
Karakatič, Podgorelec (b12) 2015; 27
Chen, Miller-Hooks (b8) 2012; 46
Mosallanezhad, Chouhan, Paydar, Hajiaghaei-Keshteli (b23) 2021; 112
Amarouche, Guibadj, Chaalal, Moukrim (b14) 2020; 123
Tassone, Choudhury (b24) 2020
Wohlgemuth, Oloruntoba, Clausen (b26) 2012; 46
Campbell, Vandenbussche, Hermann (b27) 2008; 42
Kobeaga, Merino, Lozano (b44) 2018; 90
Saeedvand (10.1016/j.asoc.2021.108264_b10) 2020; 96
Rashed (10.1016/j.asoc.2021.108264_b19) 2021; 117
Hong (10.1016/j.asoc.2021.108264_b37) 2000; 6
Wang (10.1016/j.asoc.2021.108264_b38) 2020
Abadi (10.1016/j.asoc.2021.108264_b18) 2021; 108
Baffo (10.1016/j.asoc.2021.108264_b9) 2017; 22
Chen (10.1016/j.asoc.2021.108264_b4) 2020; 8
Wang (10.1016/j.asoc.2021.108264_b32) 2021; 167
Birattari (10.1016/j.asoc.2021.108264_b40) 2009; vol. 197
Golden (10.1016/j.asoc.2021.108264_b31) 1987; 34
Ostrowski (10.1016/j.asoc.2021.108264_b39) 2017; 253
Santini (10.1016/j.asoc.2021.108264_b45) 2019; 123
Tassone (10.1016/j.asoc.2021.108264_b24) 2020
Campbell (10.1016/j.asoc.2021.108264_b27) 2008; 42
Keshtkaran (10.1016/j.asoc.2021.108264_b43) 2016; 22
Fischetti (10.1016/j.asoc.2021.108264_b17) 1998
Kobeaga (10.1016/j.asoc.2021.108264_b44) 2018; 90
Boussier (10.1016/j.asoc.2021.108264_b29) 2007; 5
Zhang (10.1016/j.asoc.2021.108264_b3) 2020; 17
Pacheco (10.1016/j.asoc.2021.108264_b1) 2020; 26
Amarouche (10.1016/j.asoc.2021.108264_b14) 2020; 123
Vansteenwegen (10.1016/j.asoc.2021.108264_b6) 2009; 196
Özdamar (10.1016/j.asoc.2021.108264_b25) 2004; 129
Neri (10.1016/j.asoc.2021.108264_b16) 2012; 2
Bayliss (10.1016/j.asoc.2021.108264_b30) 2020; 92
Zahedi (10.1016/j.asoc.2021.108264_b22) 2021; 104
Tlili (10.1016/j.asoc.2021.108264_b11) 2018; 36
Kumar (10.1016/j.asoc.2021.108264_b21) 2021; 110
Costa (10.1016/j.asoc.2021.108264_b33) 2020
Campos (10.1016/j.asoc.2021.108264_b42) 2014; 65
Chao (10.1016/j.asoc.2021.108264_b5) 1996; 88
Keshtkaran (10.1016/j.asoc.2021.108264_b28) 2016; 54
Bhusare (10.1016/j.asoc.2021.108264_b34) 2014; 3
Chen (10.1016/j.asoc.2021.108264_b8) 2012; 46
Cerna (10.1016/j.asoc.2021.108264_b20) 2021; 109
Dang (10.1016/j.asoc.2021.108264_b7) 2013; 229
Orlis (10.1016/j.asoc.2021.108264_b15) 2020; 54
Mosallanezhad (10.1016/j.asoc.2021.108264_b23) 2021; 112
Campbell (10.1016/j.asoc.2021.108264_b36) 2004; 38
Singgih (10.1016/j.asoc.2021.108264_b2) 2020
Yadav (10.1016/j.asoc.2021.108264_b35) 2017; 6
Hammami (10.1016/j.asoc.2021.108264_b13) 2020; 123
Wohlgemuth (10.1016/j.asoc.2021.108264_b26) 2012; 46
Silberholz (10.1016/j.asoc.2021.108264_b41) 2010; 16
Karakatič (10.1016/j.asoc.2021.108264_b12) 2015; 27
References_xml – volume: 108
  year: 2021
  ident: b18
  article-title: HSSAGA: Designation and scheduling of nurses for taking care of COVID-19 patients using novel method of Hybrid Salp Swarm Algorithm and Genetic Algorithm
  publication-title: Appl. Soft Comput.
– volume: 104
  year: 2021
  ident: b22
  article-title: Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b33
  article-title: Cluster-based hyper-heuristic for large-scale vehicle routing problem
  publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC)
– volume: 6
  start-page: 174
  year: 2017
  end-page: 180
  ident: b35
  article-title: Comparative study of different selection techniques in genetic algorithm
  publication-title: Int. J. Eng. Sci. Math.
– volume: 17
  year: 2020
  ident: b3
  article-title: Quarantine vehicle scheduling for transferring high-risk individuals in epidemic areas
  publication-title: Int. J. Environ. Res. Public Health
– volume: 167
  year: 2021
  ident: b32
  article-title: Two-echelon collaborative multi-depot multi-period vehicle routing problem
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 211
  year: 2007
  end-page: 230
  ident: b29
  article-title: An exact algorithm for team orienteering problems
  publication-title: 4OR
– volume: 88
  start-page: 464
  year: 1996
  end-page: 474
  ident: b5
  article-title: The team orienteering problem
  publication-title: European J. Oper. Res.
– volume: 109
  year: 2021
  ident: b20
  article-title: Machine learning-based forecasting of firemen ambulances’ turnaround time in hospitals, considering the COVID-19 impact
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 1317
  year: 2014
  end-page: 1322
  ident: b34
  article-title: Centroids initialization for K-means clustering using improved pillar algorithm
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 196
  start-page: 118
  year: 2009
  end-page: 127
  ident: b6
  article-title: A guided local search metaheuristic for the team orienteering problem
  publication-title: European J. Oper. Res.
– start-page: 1
  year: 2020
  end-page: 11
  ident: b38
  article-title: Iterative local-search heuristic for weighted vehicle routing problem
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 16
  start-page: 393
  year: 2010
  end-page: 415
  ident: b41
  article-title: The effective application of a new approach to the generalized orienteering problem
  publication-title: J. Heuristics
– volume: 129
  start-page: 217
  year: 2004
  end-page: 245
  ident: b25
  article-title: Emergency logistics planning in natural disasters
  publication-title: Ann. Oper. Res.
– volume: 27
  start-page: 519
  year: 2015
  end-page: 532
  ident: b12
  article-title: A survey of genetic algorithms for solving multi depot vehicle routing problem
  publication-title: Appl. Soft Comput.
– volume: 123
  start-page: 154
  year: 2019
  end-page: 167
  ident: b45
  article-title: An adaptive large neighbourhood search algorithm for the orienteering problem
  publication-title: Expert Syst. Appl.
– volume: 117
  year: 2021
  ident: b19
  article-title: Knowledge discovery from emergency ambulance dispatch during COVID-19: A case study of Nagoya City, Japan
  publication-title: J. Biomed. Inform.
– volume: 46
  start-page: 261
  year: 2012
  end-page: 271
  ident: b26
  article-title: Dynamic vehicle routing with anticipation in disaster relief
  publication-title: Socio-Econ. Plan. Sci.
– volume: 46
  start-page: 984
  year: 2012
  end-page: 999
  ident: b8
  article-title: Optimal team deployment in urban search and rescue
  publication-title: Transp. Res. B
– volume: 42
  start-page: 127
  year: 2008
  end-page: 145
  ident: b27
  article-title: Routing for relief efforts
  publication-title: Transp. Sci.
– volume: 54
  start-page: 470
  year: 2020
  end-page: 487
  ident: b15
  article-title: The team orienteering problem with overlaps: An application in cash logistics
  publication-title: Transp. Sci.
– volume: 253
  start-page: 519
  year: 2017
  end-page: 543
  ident: b39
  article-title: Evolution-inspired local improvement algorithm solving orienteering problem
  publication-title: Ann. Oper. Res.
– volume: 54
  start-page: 591
  year: 2016
  end-page: 601
  ident: b28
  article-title: Enhanced exact solution methods for the team orienteering problem
  publication-title: Int. J. Prod. Res.
– volume: 22
  start-page: 699
  year: 2016
  end-page: 726
  ident: b43
  article-title: A novel GRASP solution approach for the OrienteeringProblem
  publication-title: J. Heuristics
– start-page: 80
  year: 2020
  end-page: 83
  ident: b2
  article-title: Mobile laboratory routing problem for COVID-19 testing considering limited capacities of hospitals
  publication-title: 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT)
– volume: 8
  year: 2020
  ident: b4
  article-title: Vehicle routing problem of contactless joint distribution service during COVID-19 pandemic
  publication-title: Transp. Res. Interdiscip. Perspect.
– volume: 38
  start-page: 369
  year: 2004
  end-page: 378
  ident: b36
  article-title: Efficient insertion heuristics for vehicle routing and scheduling problems
  publication-title: Transp. Sci.
– volume: 123
  year: 2020
  ident: b14
  article-title: Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows
  publication-title: Comput. Oper. Res.
– start-page: 133
  year: 1998
  end-page: 148
  ident: b17
  article-title: Solving the orienteering problem through branch-and-cut
  publication-title: Solving the Orienteering Problem Through Branch-and-Cut, Vol. 10
– volume: 96
  year: 2020
  ident: b10
  article-title: Novel hybrid algorithm for team orienteering problem with time windows for rescue applications
  publication-title: Appl. Soft Comput.
– volume: 90
  start-page: 42
  year: 2018
  end-page: 59
  ident: b44
  article-title: An efficient evolutionary algorithm for the orienteering problem
  publication-title: Comput. Oper. Res.
– volume: 22
  start-page: 297
  year: 2017
  end-page: 304
  ident: b9
  article-title: An orienteering-based approach to manage emergency situatio
  publication-title: Transp. Res. Procedia
– volume: 6
  start-page: 439
  year: 2000
  end-page: 455
  ident: b37
  article-title: Simultaneously applying multiple mutation operators in genetic algorithms
  publication-title: J. Heuristics
– volume: 92
  year: 2020
  ident: b30
  article-title: A learnheuristic approach for the team orienteering problem with aerial drone motion constraints
  publication-title: Appl. Soft Comput.
– volume: 65
  start-page: 1800
  year: 2014
  end-page: 1813
  ident: b42
  article-title: GRASP with path relinking for the orienteering problem
  publication-title: J. Oper. Res. Soc.
– volume: 26
  start-page: 619
  year: 2020
  end-page: 635
  ident: b1
  article-title: Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic
  publication-title: J. Heuristics
– year: 2020
  ident: b24
  article-title: A comprehensive survey on the ambulance routing and location problems
– volume: 123
  year: 2020
  ident: b13
  article-title: A hybrid adaptive large neighborhood search heuristic for the team orienteering problem
  publication-title: Comput. Oper. Res.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: b16
  article-title: Memetic algorithms and memetic computing optimization: A literature review
  publication-title: Swarm Evol. Comput.
– volume: 110
  year: 2021
  ident: b21
  article-title: Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 307
  year: 1987
  end-page: 318
  ident: b31
  article-title: The orienteering problem
  publication-title: Nav. Res. Logist.
– volume: vol. 197
  year: 2009
  ident: b40
  publication-title: Tuning Metaheuristics - A Machine Learning Perspective
– volume: 229
  start-page: 332
  year: 2013
  end-page: 344
  ident: b7
  article-title: An effective PSO-inspired algorithm for the team orienteering problem
  publication-title: European J. Oper. Res.
– volume: 112
  year: 2021
  ident: b23
  article-title: Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 1585
  year: 2018
  end-page: 1590
  ident: b11
  article-title: A mathematical model for efficient emergency transportation in a disaster situation
  publication-title: Am. J. Emerg. Med.
– volume: 22
  start-page: 297
  year: 2017
  ident: 10.1016/j.asoc.2021.108264_b9
  article-title: An orienteering-based approach to manage emergency situatio
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2017.03.036
– volume: 117
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b19
  article-title: Knowledge discovery from emergency ambulance dispatch during COVID-19: A case study of Nagoya City, Japan
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2021.103743
– volume: 112
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b23
  article-title: Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107809
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b33
  article-title: Cluster-based hyper-heuristic for large-scale vehicle routing problem
– volume: 16
  start-page: 393
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2021.108264_b41
  article-title: The effective application of a new approach to the generalized orienteering problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-009-9104-8
– volume: 167
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b32
  article-title: Two-echelon collaborative multi-depot multi-period vehicle routing problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114201
– volume: 36
  start-page: 1585
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2021.108264_b11
  article-title: A mathematical model for efficient emergency transportation in a disaster situation
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2018.01.039
– volume: 54
  start-page: 591
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2021.108264_b28
  article-title: Enhanced exact solution methods for the team orienteering problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2015.1058982
– volume: 123
  start-page: 154
  year: 2019
  ident: 10.1016/j.asoc.2021.108264_b45
  article-title: An adaptive large neighbourhood search algorithm for the orienteering problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.050
– start-page: 80
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b2
  article-title: Mobile laboratory routing problem for COVID-19 testing considering limited capacities of hospitals
– volume: 46
  start-page: 984
  issue: 8
  year: 2012
  ident: 10.1016/j.asoc.2021.108264_b8
  article-title: Optimal team deployment in urban search and rescue
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2012.03.004
– volume: 110
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b21
  article-title: Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107611
– volume: 3
  start-page: 1317
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2021.108264_b34
  article-title: Centroids initialization for K-means clustering using improved pillar algorithm
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 123
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b13
  article-title: A hybrid adaptive large neighborhood search heuristic for the team orienteering problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105034
– volume: 109
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b20
  article-title: Machine learning-based forecasting of firemen ambulances’ turnaround time in hospitals, considering the COVID-19 impact
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107561
– volume: 54
  start-page: 470
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b15
  article-title: The team orienteering problem with overlaps: An application in cash logistics
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2019.0923
– volume: 38
  start-page: 369
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2021.108264_b36
  article-title: Efficient insertion heuristics for vehicle routing and scheduling problems
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1030.0046
– volume: 65
  start-page: 1800
  issue: 12
  year: 2014
  ident: 10.1016/j.asoc.2021.108264_b42
  article-title: GRASP with path relinking for the orienteering problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2013.156
– volume: 88
  start-page: 464
  issue: 3
  year: 1996
  ident: 10.1016/j.asoc.2021.108264_b5
  article-title: The team orienteering problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(94)00289-4
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2021.108264_b16
  article-title: Memetic algorithms and memetic computing optimization: A literature review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.11.003
– volume: 123
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b14
  article-title: Effective neighborhood search with optimal splitting and adaptive memory for the team orienteering problem with time windows
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105039
– volume: 8
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b4
  article-title: Vehicle routing problem of contactless joint distribution service during COVID-19 pandemic
  publication-title: Transp. Res. Interdiscip. Perspect.
– volume: vol. 197
  year: 2009
  ident: 10.1016/j.asoc.2021.108264_b40
– volume: 42
  start-page: 127
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2021.108264_b27
  article-title: Routing for relief efforts
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1070.0209
– volume: 5
  start-page: 211
  year: 2007
  ident: 10.1016/j.asoc.2021.108264_b29
  article-title: An exact algorithm for team orienteering problems
  publication-title: 4OR
  doi: 10.1007/s10288-006-0009-1
– volume: 34
  start-page: 307
  issue: 3
  year: 1987
  ident: 10.1016/j.asoc.2021.108264_b31
  article-title: The orienteering problem
  publication-title: Nav. Res. Logist.
  doi: 10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
– volume: 253
  start-page: 519
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.108264_b39
  article-title: Evolution-inspired local improvement algorithm solving orienteering problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2278-1
– volume: 6
  start-page: 439
  issue: 4
  year: 2000
  ident: 10.1016/j.asoc.2021.108264_b37
  article-title: Simultaneously applying multiple mutation operators in genetic algorithms
  publication-title: J. Heuristics
  doi: 10.1023/A:1009642825198
– volume: 96
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b10
  article-title: Novel hybrid algorithm for team orienteering problem with time windows for rescue applications
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106700
– volume: 6
  start-page: 174
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2021.108264_b35
  article-title: Comparative study of different selection techniques in genetic algorithm
  publication-title: Int. J. Eng. Sci. Math.
– year: 2020
  ident: 10.1016/j.asoc.2021.108264_b24
– volume: 129
  start-page: 217
  year: 2004
  ident: 10.1016/j.asoc.2021.108264_b25
  article-title: Emergency logistics planning in natural disasters
  publication-title: Ann. Oper. Res.
  doi: 10.1023/B:ANOR.0000030690.27939.39
– start-page: 133
  year: 1998
  ident: 10.1016/j.asoc.2021.108264_b17
  article-title: Solving the orienteering problem through branch-and-cut
– volume: 229
  start-page: 332
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2021.108264_b7
  article-title: An effective PSO-inspired algorithm for the team orienteering problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2013.02.049
– volume: 196
  start-page: 118
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2021.108264_b6
  article-title: A guided local search metaheuristic for the team orienteering problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2008.02.037
– volume: 27
  start-page: 519
  year: 2015
  ident: 10.1016/j.asoc.2021.108264_b12
  article-title: A survey of genetic algorithms for solving multi depot vehicle routing problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.005
– volume: 104
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b22
  article-title: Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107210
– volume: 22
  start-page: 699
  year: 2016
  ident: 10.1016/j.asoc.2021.108264_b43
  article-title: A novel GRASP solution approach for the OrienteeringProblem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-016-9316-7
– volume: 26
  start-page: 619
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b1
  article-title: Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic
  publication-title: J. Heuristics
  doi: 10.1007/s10732-020-09456-8
– volume: 17
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b3
  article-title: Quarantine vehicle scheduling for transferring high-risk individuals in epidemic areas
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17072275
– volume: 108
  year: 2021
  ident: 10.1016/j.asoc.2021.108264_b18
  article-title: HSSAGA: Designation and scheduling of nurses for taking care of COVID-19 patients using novel method of Hybrid Salp Swarm Algorithm and Genetic Algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107449
– volume: 46
  start-page: 261
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2021.108264_b26
  article-title: Dynamic vehicle routing with anticipation in disaster relief
  publication-title: Socio-Econ. Plan. Sci.
  doi: 10.1016/j.seps.2012.06.001
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b38
  article-title: Iterative local-search heuristic for weighted vehicle routing problem
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 90
  start-page: 42
  year: 2018
  ident: 10.1016/j.asoc.2021.108264_b44
  article-title: An efficient evolutionary algorithm for the orienteering problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.09.003
– volume: 92
  year: 2020
  ident: 10.1016/j.asoc.2021.108264_b30
  article-title: A learnheuristic approach for the team orienteering problem with aerial drone motion constraints
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106280
SSID ssj0016928
Score 2.379263
Snippet The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients’ requests. The Tunisian...
The speed by which the COVID-19 pandemic spread throughout the world makes the emergency services unprepared to answer all the patients' requests. The Tunisian...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108264
SubjectTerms Ambulance routing
COVID-19 specimen transport
Hybrid genetic algorithm
Memetic algorithm
Team orienteering problem
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqvbCX8T06YDISb5A2Ti5O_YjKpoE0eGBDfbMc29k6dWm1pkK88Ldz53yIaqJCvDq2Y_vufHfy7-4Ye6uQS1SqTKQclTADP8F7sBBRmQiD9ikFP1Jw8vkXeXYJn2fZbMCmXSwMwSrbu7-508Nt3baM29Mcr-bz8Tf0PCagQKLTIlCRUdptgJyqGIx-9TAPIVWor0qdI-rdBs40GC-DJ4A-YiJGYQb4m3K6b3zex1A-2FQr8_OHWSz-UFCnj9hBa1nyD83iH7OBr56wh13VBt4K8VN2exGQsmtuKu5DAgmcmxM_BFRWhe2O113Oc74s-fTr908fI6G4a3B5-ANOEZpUGGDNCTl_xZEPKRwyIq3ouFlcLe_m9fXt-hm7PD25mJ5FbdGFyEKW1ZGJ8zIuCqdAxZBniUnRR7ZSWis8ZLmFAi1GqQoHRprSoDyXBk3CWBbOlyjQ6XO2Vy0r_4JxSJ0oIfEuAwtCGZXY3HqZmRx_khZiyER32tq2GcmpMMZCd9CzG00U0kQh3VBoyN71Y1ZNPo6dvbOOiHqLqzQqjJ3j3nQU1yhu9IZiKr_crDU6nCEcOcHVHzYc0K8jxSOjZ88hy7d4o-9Aqby3v1Tz65DSe4JmtZjEQ_a-56J_2N7Rf27vJdtPKIojgM9fsb36buNfo21VF8dBeH4DfVwhvQ
  priority: 102
  providerName: Elsevier
Title Towards an efficient collection and transport of COVID-19 diagnostic specimens using genetic-based algorithms
URI https://dx.doi.org/10.1016/j.asoc.2021.108264
https://www.ncbi.nlm.nih.gov/pubmed/34903957
https://www.proquest.com/docview/2610082921
https://pubmed.ncbi.nlm.nih.gov/PMC8656180
https://www.ncbi.nlm.nih.gov/pmc/articles/8656180
UnpaywallVersion submittedVersion
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0a7QO8ML4psMpIvEGyOnGc-LHqNnV8lGla0XiKbMfZCqlbrakQPPDbuc5HtTExsadIiSPb8bF9rJxzL8AbgSgRoZCeyFwKM2YSXAcV9fKASuSnzvzozMmfJnw8Ze9Po9MtoK0XphLtazXzbTH37ey80lYu53q31YntJshAaIKn9C6PkH53oDudHA2_VnFReeIxUTuKkjjwBE9oY5SpNV0Se4xnwoA6aV3A2b82o-tk87pm8u7aLuXPH7IoLm1IB9tw3Hal1qF899el8vWvv6I83qqvD-B-Q0_JsH70ELaMfQTbbeoH0qwEj2F-UsltV0RaYqooFNhg4kBVSbss3s9I2QZOJ4ucjD5_OdzzqCBZLe7DCoizebrsAivi5PdnBMHsPJWe21ozIouzxcWsPJ-vnsD0YP9kNPaazA2eZlFUenIQ5wOlMsHEgMVRIEM8aGvOtaaGRbFmCmknFypjkstc4qKQS-SVA64yk-OqED6Fjl1Y8xwICzOas8BkEdOMCikCHWvDIxljJaGiPaDtEKa6CWvusmsUaatf-5a6YU_dsKf1sPfg7eadZR3U48bSUYuMtKElNd1Icde58b3XLYxSnLPuR4y0ZrFepXhqrTzNAbb-WQ2rTTtC_GTu32kP4iuA2xRw8cCvPkHoVHHBG7T04N0Gmv_RvRe3K_4S7gXOAVIJ119Bp7xYmx3kZaXqwx3_N-1Ddzg6_njkrocfxpN-Mz__ALhoOx0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXypstLyNxg3TjxHHWR7RQbaEtB7aoN8uxnXbRNrvqZoW48NuZcR5iVVEhro7t2J4Zz4z8zQzAG4VcolJlIuWohJnwI7wHCx6VCTdon1LwIwUnH5_Iyan4dJadbcG4i4UhWGV79zd3erit25Zhe5rD5Ww2_Iqex0goIdFp4ajI5C24LbIkJw9s_1eP8-BShQKr1Dui7m3kTAPyMngE6CQmfD9MIf6mna5bn9dBlDvraml-_jDz-R8a6uAe3G1NS_a-Wf192PLVA9jtyjawVoofwuU0QGVXzFTMhwwSODcjhgiwrArbHau7pOdsUbLxl2-HHyKumGuAefgDRiGaVBlgxQg6f86QESkeMiK16JiZny-uZvXF5eoRnB58nI4nUVt1IbIiy-rIxHkZF4VTQsUizxKTopNspbSWe5HlVhRoMkpVOGGkKQ0KdGnQJoxl4XyJEp0-hu1qUfmnwETqeCkS7zJhBVdGJTa3XmYmx5-kBR8A705b2zYlOVXGmOsOe_ZdE4U0UUg3FBrA237MsknIcWPvrCOi3mArjRrjxnGvO4prlDd6RDGVX6xXGj3OEI-c4OqfNBzQryPFI6N3zwHkG7zRd6Bc3ptfqtlFyOk9Qruaj-IBvOu56B-2t_ef23sFO5Pp8ZE-Ojz5_AzuJBTSEZDoz2G7vlr7F2ho1cXLIEi_ARN9JOA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2augd4YYzPwoaMxBu4qxPbiR-njWkgMRBa0XiKbMfZCqlbrakQ_HqunaRiTEzsNXFkOz62j-Vz7gV4pRAlKlWaqjKkMOMux3XQMFolTCM_DebHYE7-cCKPJ_z9mTjbANZ7YaJo35rpyNezkZ9eRG3lYmb3ep3YXo4MhOV4St-UAun3ADYnJ5_2v8a4qDKnXLWOojxLqJI564wyraZLY4_xTJiwIK1LJP_XZnSdbF7XTN5Z-YX--UPX9R8b0tEWfO670upQvo9WjRnZX39FebxVX-_DvY6ekv321TZsOP8AtvrUD6RbCR7C7DTKbZdEe-JiFApsMAmgitIuj89L0vSB08m8Igcfv7w7pEyRshX3YQUk2DxDdoElCfL7c4JgDp5KGrbWkuj6fH45bS5my0cwOXp7enBMu8wN1HIhGqrHWTU2plRcjXkmEp3iQdtKaS1zXGSWG6SdUpmSa6krjYtCpZFXjqUpXYWrQvoYBn7u3VMgPC1ZxRNXCm45U1olNrNOCp1hJalhQ2D9EBa2C2sesmvURa9f-1aEYS_CsBftsA_h9fqbRRvU48bSokdG0dGSlm4UuOvc-N3LHkYFztlwEaO9m6-WBZ5ao6c5wdY_aWG1bkeKvyzcnQ4huwK4dYEQD_zqG4ROjAveoWUIb9bQ_I_uPbtd8edwNwkOkChc34FBc7lyu8jLGvOim4m_AdkbNvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+efficient+collection+and+transport+of+COVID-19+diagnostic+specimens+using+genetic-based+algorithms&rft.jtitle=Applied+soft+computing&rft.au=Tlili%2C+Takwa&rft.au=Masri%2C+Hela&rft.au=Krichen%2C+Saoussen&rft.date=2022-02-01&rft.issn=1568-4946&rft.volume=116&rft.spage=108264&rft_id=info:doi/10.1016%2Fj.asoc.2021.108264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_108264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon