On evaluating stream learning algorithms
Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that e...
Saved in:
| Published in | Machine learning Vol. 90; no. 3; pp. 317 - 346 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.03.2013
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-012-5320-9 |
Cover
| Abstract | Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time. |
|---|---|
| AbstractList | Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.[PUBLICATION ABSTRACT] Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time. |
| Author | Rodrigues, Pedro Pereira Sebastião, Raquel Gama, João |
| Author_xml | – sequence: 1 givenname: João surname: Gama fullname: Gama, João email: jgama@fep.up.pt organization: LIAAD – INESC TEC and Faculty of Economics, University of Porto – sequence: 2 givenname: Raquel surname: Sebastião fullname: Sebastião, Raquel organization: LIAAD – INESC TEC and Faculty of Science, University of Porto – sequence: 3 givenname: Pedro Pereira surname: Rodrigues fullname: Rodrigues, Pedro Pereira organization: LIAAD – INESC TEC and Faculty of Medicine, University of Porto |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27382203$$DView record in Pascal Francis |
| BookMark | eNqNkUtLLDEQRoMoOD5-gLsBEWbTWqkknc5S5PoAwY2uQyadjC2Z9Nyk24v_3gwziAhXXaUC56vUSR2Q3dhHR8gJhXMKIC8yBaV4BRQrwRAqtUMmVEhWgajFLplA04iqpij2yUHOLwCAdVNPyOwhTt2rCaMZuriY5iE5s5wGZ1Jc301Y9Kkbnpf5iOx5E7I73p6H5On6z-PVbXX_cHN3dXlfWS7EUDXUuRrtfI6AqEAxy5Xz1KCXQlLrgaNv514oPy-FEgiNbF0LyFqqULXskOCm7xhX5u2fCUGvUrc06U1T0GtXvXHVxVWvXbUqodkmtEr939HlQS-7bF0IJrp-zJpKwYTgjeI_owwZIpeyLujpF_SlH1Ms9ppiw7HmhS3U2ZYy2Zrgk4m2yx9Do2QNIqw5uuFs6nNOzv_KS37J2G4om-rjkEwXvk1uvzGXV-LCpU-z_zf0DgLLrUs |
| CitedBy_id | crossref_primary_10_1016_j_ins_2020_08_064 crossref_primary_10_1016_j_asoc_2020_106699 crossref_primary_10_1016_j_jfranklin_2019_01_043 crossref_primary_10_1016_j_neunet_2019_11_021 crossref_primary_10_1007_s00354_021_00126_2 crossref_primary_10_3390_math11020355 crossref_primary_10_1016_j_softx_2024_101733 crossref_primary_10_1016_j_engappai_2021_104509 crossref_primary_10_3390_app11052145 crossref_primary_10_1017_nws_2019_64 crossref_primary_10_1016_j_inffus_2018_02_003 crossref_primary_10_1016_j_jeconom_2024_105791 crossref_primary_10_1016_j_future_2018_06_047 crossref_primary_10_1111_coin_12208 crossref_primary_10_1007_s10618_020_00698_5 crossref_primary_10_1109_TNNLS_2021_3122531 crossref_primary_10_1109_TFUZZ_2019_2931871 crossref_primary_10_1109_TKDE_2018_2883616 crossref_primary_10_1109_TBDATA_2022_3164239 crossref_primary_10_3233_IDA_173522 crossref_primary_10_1145_2523813 crossref_primary_10_1109_TKDE_2018_2876857 crossref_primary_10_1016_j_ins_2013_12_011 crossref_primary_10_1109_TNNLS_2019_2953622 crossref_primary_10_1007_s41060_017_0043_4 crossref_primary_10_1016_j_neucom_2022_09_065 crossref_primary_10_1109_ACCESS_2024_3355959 crossref_primary_10_1109_TNSM_2020_2983921 crossref_primary_10_1016_j_csda_2023_107781 crossref_primary_10_1016_j_patcog_2018_10_024 crossref_primary_10_2139_ssrn_4123456 crossref_primary_10_1016_j_eswa_2021_115127 crossref_primary_10_1007_s13042_016_0513_3 crossref_primary_10_1007_s10664_023_10335_6 crossref_primary_10_1007_s13748_018_0142_z crossref_primary_10_1016_j_asoc_2021_107255 crossref_primary_10_1016_j_knosys_2021_107675 crossref_primary_10_1145_3170432 crossref_primary_10_1007_s10489_021_02735_2 crossref_primary_10_1109_TAI_2022_3233791 crossref_primary_10_3233_IDA_160804 crossref_primary_10_1007_s10710_014_9236_y crossref_primary_10_1016_j_omega_2023_103019 crossref_primary_10_1007_s10994_023_06454_2 crossref_primary_10_1007_s10115_013_0654_6 crossref_primary_10_1016_j_pmcj_2022_101722 crossref_primary_10_1016_j_neucom_2014_05_084 crossref_primary_10_1016_j_eswa_2024_124860 crossref_primary_10_1007_s10994_023_06353_6 crossref_primary_10_1007_s10844_017_0460_9 crossref_primary_10_1109_TII_2021_3058350 crossref_primary_10_1007_s10994_015_5515_y crossref_primary_10_3390_s20205811 crossref_primary_10_1016_j_inffus_2018_01_003 crossref_primary_10_1007_s10489_018_1254_7 crossref_primary_10_1007_s11063_016_9528_8 crossref_primary_10_1016_j_eswa_2021_114890 crossref_primary_10_1016_j_knosys_2023_111272 crossref_primary_10_1109_TNNLS_2016_2614393 crossref_primary_10_1016_j_knosys_2020_105816 crossref_primary_10_1007_s13748_014_0050_9 crossref_primary_10_1016_j_patrec_2018_10_018 crossref_primary_10_1007_s10618_022_00894_5 crossref_primary_10_1007_s10618_021_00786_0 crossref_primary_10_3233_ICA_200617 crossref_primary_10_3233_IDA_205249 crossref_primary_10_1016_j_neucom_2014_09_076 crossref_primary_10_1016_j_apenergy_2020_116177 crossref_primary_10_1007_s10994_021_06084_6 crossref_primary_10_1109_TSC_2022_3215502 crossref_primary_10_1109_TSE_2022_3150153 crossref_primary_10_1108_IJWIS_01_2021_0007 crossref_primary_10_1007_s10462_019_09696_6 crossref_primary_10_1177_1550147718808239 crossref_primary_10_2196_jmir_8073 crossref_primary_10_1007_s10462_015_9444_8 crossref_primary_10_1016_j_ins_2019_12_060 crossref_primary_10_1007_s12530_018_9241_0 crossref_primary_10_1214_18_AOS1777 crossref_primary_10_1007_s10994_023_06497_5 crossref_primary_10_1016_j_engappai_2023_106461 crossref_primary_10_1109_ACCESS_2020_2997944 crossref_primary_10_1145_3139240 crossref_primary_10_1002_widm_1160 crossref_primary_10_1016_j_knosys_2024_111681 crossref_primary_10_1007_s10619_022_07403_z crossref_primary_10_1007_s11227_022_04864_y crossref_primary_10_1016_j_icte_2020_05_011 crossref_primary_10_3233_DS_220057 crossref_primary_10_1016_j_eswa_2024_123439 crossref_primary_10_1016_j_ins_2021_05_076 crossref_primary_10_1111_exsy_12303 crossref_primary_10_1016_j_jnca_2025_104169 crossref_primary_10_1007_s12530_020_09357_y crossref_primary_10_1111_coin_12071 crossref_primary_10_1109_TKDE_2022_3200068 crossref_primary_10_1016_j_neucom_2023_126741 crossref_primary_10_1109_TNSM_2020_3016246 crossref_primary_10_1109_TSE_2022_3175789 crossref_primary_10_3390_e23070859 crossref_primary_10_1007_s41109_019_0169_5 crossref_primary_10_15388_24_INFOR562 crossref_primary_10_1007_s10994_022_06262_0 crossref_primary_10_1007_s10994_018_5719_z crossref_primary_10_1016_j_neucom_2017_10_051 crossref_primary_10_1038_s43586_023_00236_9 crossref_primary_10_1109_TKDE_2016_2551241 crossref_primary_10_1109_TNNLS_2020_2978523 crossref_primary_10_1016_j_neucom_2021_10_120 crossref_primary_10_1371_journal_pone_0095648 crossref_primary_10_1016_j_neucom_2023_126292 crossref_primary_10_1109_TKDE_2019_2960216 crossref_primary_10_1007_s00521_020_05336_1 crossref_primary_10_1007_s42484_024_00196_7 crossref_primary_10_1145_3663369 crossref_primary_10_1007_s00354_015_0401_5 crossref_primary_10_1007_s10618_017_0500_7 crossref_primary_10_3390_s24123926 crossref_primary_10_1007_s10994_019_05840_z crossref_primary_10_1109_TNNLS_2023_3265524 crossref_primary_10_1016_j_eswa_2021_115303 crossref_primary_10_1016_j_neucom_2023_126515 crossref_primary_10_1016_j_ins_2021_01_070 crossref_primary_10_3233_IDA_194515 crossref_primary_10_1093_jigpal_jzac033 crossref_primary_10_1109_ACCESS_2020_3015091 crossref_primary_10_1016_j_neucom_2017_01_078 crossref_primary_10_1155_2015_939175 crossref_primary_10_1109_TNNLS_2020_3041684 crossref_primary_10_1007_s10115_017_1022_8 crossref_primary_10_1080_10618600_2019_1617160 crossref_primary_10_1007_s10618_021_00784_2 crossref_primary_10_1016_j_inffus_2017_02_004 crossref_primary_10_1016_j_knosys_2016_04_019 crossref_primary_10_1109_ACCESS_2023_3249666 crossref_primary_10_1007_s40747_024_01524_x crossref_primary_10_1093_comjnl_bxab138 crossref_primary_10_1142_S0129065717500484 crossref_primary_10_1016_j_engappai_2014_06_001 crossref_primary_10_1016_j_neucom_2017_05_081 crossref_primary_10_1016_j_neucom_2017_04_047 crossref_primary_10_1016_j_future_2020_01_017 crossref_primary_10_1007_s10664_023_10341_8 crossref_primary_10_1109_ACCESS_2023_3245055 crossref_primary_10_1007_s12065_023_00879_3 crossref_primary_10_1109_TNNLS_2017_2771290 crossref_primary_10_1007_s10994_017_5686_9 crossref_primary_10_1111_sjos_12769 crossref_primary_10_1007_s10115_024_02300_6 crossref_primary_10_1109_ACCESS_2020_2987815 crossref_primary_10_1109_TKDE_2023_3266648 crossref_primary_10_1002_nem_1991 crossref_primary_10_1016_j_knosys_2022_109486 crossref_primary_10_1007_s10994_020_05910_7 crossref_primary_10_1109_MCE_2024_3387019 crossref_primary_10_1109_TNNLS_2013_2271915 crossref_primary_10_1145_3453443 crossref_primary_10_1016_j_patcog_2020_107743 crossref_primary_10_1109_TCYB_2018_2869476 crossref_primary_10_1007_s10586_021_03267_7 crossref_primary_10_1016_j_inffus_2021_04_011 crossref_primary_10_1016_j_neunet_2020_05_035 crossref_primary_10_3390_buildings13030580 crossref_primary_10_1109_TNNLS_2019_2951814 crossref_primary_10_1109_ACCESS_2024_3358817 crossref_primary_10_1007_s42452_019_1433_0 crossref_primary_10_1016_j_cag_2021_04_006 crossref_primary_10_1007_s42952_025_00312_8 crossref_primary_10_1145_3523055 crossref_primary_10_1016_j_asoc_2017_12_008 crossref_primary_10_1016_j_neucom_2021_01_144 crossref_primary_10_1002_widm_1536 crossref_primary_10_1016_j_patrec_2017_03_005 crossref_primary_10_3390_app10020606 crossref_primary_10_1007_s10115_014_0808_1 crossref_primary_10_1007_s10462_021_10087_z crossref_primary_10_3233_IDA_160083 crossref_primary_10_1016_j_heliyon_2022_e12584 crossref_primary_10_3390_s19081955 crossref_primary_10_1007_s10664_024_10551_8 crossref_primary_10_3390_risks10120235 crossref_primary_10_1007_s00500_014_1233_9 crossref_primary_10_1016_j_eswa_2020_113723 crossref_primary_10_1016_j_ins_2022_05_056 crossref_primary_10_1016_j_neucom_2019_07_106 crossref_primary_10_1007_s13748_017_0133_5 crossref_primary_10_1016_j_engappai_2016_10_011 crossref_primary_10_1109_ACCESS_2019_2932018 crossref_primary_10_1111_exsy_13690 crossref_primary_10_1155_2020_8361989 crossref_primary_10_1109_TNSM_2020_3037486 crossref_primary_10_1016_j_knosys_2017_09_032 crossref_primary_10_1007_s10922_023_09781_w crossref_primary_10_1145_2674026_2674028 crossref_primary_10_1007_s12530_014_9108_y crossref_primary_10_1016_j_spl_2021_109146 crossref_primary_10_1109_TCYB_2017_2748598 crossref_primary_10_1155_2019_6473160 crossref_primary_10_1016_j_neucom_2021_02_032 crossref_primary_10_1016_j_neucom_2023_126312 crossref_primary_10_1007_s10115_021_01560_w crossref_primary_10_1145_2829955 crossref_primary_10_1109_TIM_2024_3500047 crossref_primary_10_1007_s10994_024_06527_w crossref_primary_10_1007_s10618_021_00793_1 crossref_primary_10_1109_TSE_2022_3158831 crossref_primary_10_3390_info12010024 crossref_primary_10_1016_j_knosys_2022_108632 crossref_primary_10_1016_j_procs_2017_11_440 crossref_primary_10_1109_TKDE_2019_2937078 crossref_primary_10_1109_ACCESS_2017_2735378 crossref_primary_10_1109_TNNLS_2019_2899061 crossref_primary_10_1016_j_knosys_2019_105227 crossref_primary_10_1016_j_asoc_2024_111271 crossref_primary_10_1109_TNNLS_2020_3017863 crossref_primary_10_1111_exsy_13237 crossref_primary_10_1002_widm_1109 crossref_primary_10_1111_exsy_13111 crossref_primary_10_1007_s00607_020_00830_9 crossref_primary_10_3390_bdcc8020016 crossref_primary_10_1007_s10994_014_5441_4 crossref_primary_10_1007_s12559_015_9341_0 crossref_primary_10_1109_TKDE_2016_2522412 crossref_primary_10_32604_cmc_2023_035221 crossref_primary_10_1007_s10462_016_9526_2 crossref_primary_10_1109_TKDE_2014_2345382 crossref_primary_10_3390_math13050837 crossref_primary_10_1145_3447876 crossref_primary_10_1016_j_eswa_2017_11_042 crossref_primary_10_3389_frai_2021_576892 crossref_primary_10_2139_ssrn_4160595 crossref_primary_10_1109_TNNLS_2021_3132584 crossref_primary_10_1016_j_ins_2024_120555 crossref_primary_10_1109_ACCESS_2017_2714345 |
| Cites_doi | 10.2307/2981683 10.1007/s10115-006-0003-0 10.1109/TKDE.2007.190727 10.1023/A:1007424614876 10.1145/1557019.1557060 10.1093/oso/9780198538493.001.0001 10.1080/01621459.1963.10500830 10.1007/s10115-009-0206-2 10.7551/mitpress/3897.001.0001 10.1145/956750.956813 10.1137/S0097539701398363 10.1007/978-3-642-13672-6_30 10.2307/2333009 10.1007/978-3-540-28645-5_29 10.1145/1150402.1150531 10.1145/347090.347107 10.3233/IDA-2004-8305 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2012 2014 INIST-CNRS The Author(s) 2013 |
| Copyright_xml | – notice: The Author(s) 2012 – notice: 2014 INIST-CNRS – notice: The Author(s) 2013 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1007/s10994-012-5320-9 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Proquest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1573-0565 |
| EndPage | 346 |
| ExternalDocumentID | 10.1007/s10994-012-5320-9 2883793721 27382203 10_1007_s10994_012_5320_9 |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c455t-81ee62cbb20229093c49ef1a2f7571cf042fdbf59fb2fd952087ded023d1929d3 |
| IEDL.DBID | U2A |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Aug 19 21:35:31 EDT 2025 Fri Sep 05 10:27:08 EDT 2025 Fri Sep 05 13:38:02 EDT 2025 Fri Jul 25 03:09:30 EDT 2025 Wed Apr 02 07:25:20 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Oct 01 08:31:56 EDT 2025 Fri Feb 21 02:28:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Evaluation design Data streams Prequential analysis Concept drift Forgetting Streaming Event detection Error estimation Decision making Standardization Context aware Stationary condition Continuous process Hypothesis test Experimental design Sliding window Resource management Dynamic model Learning algorithm Time analysis Artificial intelligence |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-81ee62cbb20229093c49ef1a2f7571cf042fdbf59fb2fd952087ded023d1929d3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs10994-012-5320-9.pdf |
| PQID | 1284264323 |
| PQPubID | 23500 |
| PageCount | 30 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_012_5320_9 proquest_miscellaneous_1753554894 proquest_miscellaneous_1323224776 proquest_journals_1284264323 pascalfrancis_primary_27382203 crossref_primary_10_1007_s10994_012_5320_9 crossref_citationtrail_10_1007_s10994_012_5320_9 springer_journals_10_1007_s10994_012_5320_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Heidelberg – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2013 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | BifetA.HolmesG.PfahringerB.FrankE.Fast perceptron decision tree learning from evolving data streamsAdvances in knowledge discovery and data mining201029931010.1007/978-3-642-13672-6_30 JapkowiczN.ShahM.Evaluating learning algorithms: a classification perspective2011CambridgeCambridge University Press1230.68020 KolterJ. Z.MaloofM. A.Dynamic weighted majority: an ensemble method for drifting conceptsJournal of Machine Learning Research20078275527901222.68237 BishopC.Neural networks for pattern recognition1995LondonOxford University Press LiangC.ZhangY.SongQ.Decision tree for dynamic and uncertain data streamsJournal of Machine Learning Research—Proceedings Track201013209224 CormodeG.MuthukrishnanS.ZhuangW.Conquering the divide: continuous clustering of distributed data streamsICDE: proceedings of the international conference on data engineering200710361045 HerbsterM.WarmuthM.Tracking the best expertMachine Learning19983221511780912.6816510.1023/A:1007424614876 RodriguesP. P.GamaJ.PedrosoJ. P.Hierarchical clustering of time series data streamsIEEE Transactions on Knowledge and Data Engineering200820561562710.1109/TKDE.2007.190727 WidmerG.KubatM.Learning in the presence of concept drift and hidden contextsMachine Learning19962369101 ChiY.WangH.YuP. S.MuntzR. R.Catch the moment: maintaining closed frequent itemsets over a data stream sliding windowKnowledge and Information Systems200610326529410.1007/s10115-006-0003-0 PageE. S.Continuous inspection schemesBiometrika1954411/2100115888500056.3800210.2307/2333009 DomingosP.HultenG.ParsaI.RamakrishnanR.StolfoS.Mining high-speed data streamsProceedings of the ACM sixth international conference on knowledge discovery and data mining2000New YorkACM718010.1145/347090.347107 MitchellT.Machine learning1997New YorkMcGraw-Hill0913.68167 BabcockB.DatarM.MotwaniR.O’CallaghanL.MiloT.Maintaining variance and k-medians over data stream windowsProceedings of the 22nd symposium on principles of database systems2003New YorkACM234243 DemsarJ.Statistical comparisons of classifiers over multiple data setsJournal of Machine Learning Research2006713022743601222.68184 GiannellaC.HanJ.PeiJ.YanX.YuP.KarguptaH.JoshiA.SivakumarK.YeshaY.Mining frequent patterns in data streams at multiple time granularitiesNext generation data mining2003Menlo Park/CambridgeAAAI Press/MIT Press DatarM.GionisA.IndykP.MotwaniR.Maintaining stream statistics over sliding windowsSIAM Journal on Computing20023161794181319548791008.6803910.1137/S0097539701398363 HartlC.BaskiotisN.GellyS.SebagM.Change point detection and meta-bandits for online learning in dynamic environmentsConférence Francophone sur l’apprentissage automatique2007237250 Hulten, G., & Domingos, P. (2003). VFML—a toolkit for mining high-speed time-changing data streams. Technical report, University of Washington. http://www.cs.washington.edu/dm/vfml GamaJ.MedasP.CastilloG.RodriguesP.BazzanA. L. C.LabidiS.Learning with drift detectionAdvances in artificial intelligence—SBIA 20042004BerlinSpringer28629510.1007/978-3-540-28645-5_29 Kirkby, R. (2008). Improving Hoeffding trees. Ph.D. thesis, University of Waikato, New Zealand. BifetA.HolmesG.KirkbyR.PfahringerB.MOA: massive online analysisJournal of Machine Learning Research20101116011604 HoeffdingW.Probability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830 KoychevI.Gradual forgetting for adaptation to concept driftProceedings of ECAI workshop current issues in spatio-temporal reasoning2000LeipzigECAI Press101106 GamaJ.RochaR.MedasP.Accurate decision trees for mining high-speed data streamsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2003New YorkACM523528 MierswaI.WurstM.KlinkenbergR.ScholzM.EulerT.Yale: rapid prototyping for complex data mining tasksACM SIGKDD int. conf. on knowledge discovery and data mining2006New YorkACM Press93594010.1145/1150402.1150531 KearnsM.VaziraniU.An introduction to computational learning theory1994CambridgeMIT Press BifetA.GavaldàR.Learning from time-changing data with adaptive windowingProceedings SIAM international conference on data mining2007PhiladelphiaSIAM443448 HultenG.DomingosP.Catching up with the data: research issues in mining data streamsProc. of workshop on research issues in data mining and knowledge discovery2001 Ferrer-TroyanoF.Aguilar-RuizJ. S.RiquelmeJ. C.Discovering decision rules from numerical data streamsProceedings of the ACM symposium on applied computing2004New YorkACM Press649653 GamaJ.KosinaP.Learning decision rules from data streamsProceedings of the 22nd international joint conference on artificial intelligence, IJCAI201112551260 GamaJ.SebastiãoR.RodriguesP. P.Issues in evaluation of stream learning algorithmsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2009New YorkACM32933810.1145/1557019.1557060 GhoshB.SenP.Handbook of sequential analysis1991New YorkDekker0753.62046 HultenG.SpencerL.DomingosP.Mining time-changing data streamsProceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM97106 DudaR.HartP.Pattern classification and scene analysis1973New YorkWilley0277.68056 LiP.WuX.HuX.Mining recurring concept drifts with limited labeled streaming dataJournal of Machine Learning Research—Proceedings Track201013241252 StreetW. N.KimY.A streaming ensemble algorithm SEA for large-scale classificationProceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM Press377382 MoussH.MoussD.MoussN.SefouhiL.Test of Page-Hinkley, an approach for fault detection in an agro-alimentary production systemProceedings of the Asian control conference2004815818 BachS. H.MaloofM. A.Paired learners for concept driftICDM2008Los AlamitosIEEE Comput. Soc.2332 Dietterich, T. (1996). Approximate statistical tests for comparing supervised classification learning algorithms. Corvallis, technical report nr. 97.331, Oregon State University. Asuncion, A., & Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html. KatakisI.TsoumakasG.VlahavasI.Tracking recurring contexts using ensemble classifiers: an application to email filteringKnowledge and Information Systems20102237139110.1007/s10115-009-0206-2 KiferD.Ben-DavidS.GehrkeJ.Detecting change in data streamsProceedings of the international conference on very large data bases2004San MateoMorgan Kaufmann180191 DawidA. P.Statistical theory: the prequential approachJournal of the Royal Statistical Society. Series A19841472782927638110557.6208010.2307/2981683 KlinkenbergR.Learning drifting concepts: example selection vs. example weightingIntelligent Data Analysis200483281300 BassevilleM.NikiforovI.Detection of abrupt changes: theory and applications1993New YorkPrentice Hall KuhA.PetscheT.RivestR.Learning time-varying conceptsProceedings advances in neural information processing1990San MateoMorgan Kaufmann183189 A. P. Dawid (5320_CR12) 1984; 147 A. Bifet (5320_CR5) 2007 B. Ghosh (5320_CR22) 1991 M. Herbster (5320_CR25) 1998; 32 S. H. Bach (5320_CR3) 2008 G. Hulten (5320_CR29) 2001 G. Hulten (5320_CR27) 2001 J. Gama (5320_CR18) 2011 J. Demsar (5320_CR13) 2006; 7 R. Klinkenberg (5320_CR35) 2004; 8 I. Katakis (5320_CR31) 2010; 22 J. Gama (5320_CR20) 2003 5320_CR34 A. Bifet (5320_CR7) 2010 C. Bishop (5320_CR8) 1995 5320_CR14 C. Giannella (5320_CR23) 2003 H. Mouss (5320_CR43) 2004 W. Hoeffding (5320_CR26) 1963; 58 B. Babcock (5320_CR2) 2003 I. Koychev (5320_CR37) 2000 W. N. Street (5320_CR46) 2001 P. Li (5320_CR39) 2010; 13 P. Domingos (5320_CR15) 2000 J. Z. Kolter (5320_CR36) 2007; 8 C. Liang (5320_CR40) 2010; 13 M. Datar (5320_CR11) 2002; 31 D. Kifer (5320_CR33) 2004 5320_CR1 P. P. Rodrigues (5320_CR45) 2008; 20 A. Kuh (5320_CR38) 1990 G. Cormode (5320_CR10) 2007 G. Widmer (5320_CR47) 1996; 23 M. Kearns (5320_CR32) 1994 R. Duda (5320_CR16) 1973 J. Gama (5320_CR21) 2009 C. Hartl (5320_CR24) 2007 T. Mitchell (5320_CR42) 1997 A. Bifet (5320_CR6) 2010; 11 E. S. Page (5320_CR44) 1954; 41 M. Basseville (5320_CR4) 1993 I. Mierswa (5320_CR41) 2006 Y. Chi (5320_CR9) 2006; 10 5320_CR28 F. Ferrer-Troyano (5320_CR17) 2004 (5320_CR30) 2011 J. Gama (5320_CR19) 2004 |
| References_xml | – reference: MitchellT.Machine learning1997New YorkMcGraw-Hill0913.68167 – reference: Dietterich, T. (1996). Approximate statistical tests for comparing supervised classification learning algorithms. Corvallis, technical report nr. 97.331, Oregon State University. – reference: HultenG.DomingosP.Catching up with the data: research issues in mining data streamsProc. of workshop on research issues in data mining and knowledge discovery2001 – reference: HultenG.SpencerL.DomingosP.Mining time-changing data streamsProceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM97106 – reference: WidmerG.KubatM.Learning in the presence of concept drift and hidden contextsMachine Learning19962369101 – reference: BachS. H.MaloofM. A.Paired learners for concept driftICDM2008Los AlamitosIEEE Comput. Soc.2332 – reference: Hulten, G., & Domingos, P. (2003). VFML—a toolkit for mining high-speed time-changing data streams. Technical report, University of Washington. http://www.cs.washington.edu/dm/vfml/ – reference: GamaJ.SebastiãoR.RodriguesP. P.Issues in evaluation of stream learning algorithmsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2009New YorkACM32933810.1145/1557019.1557060 – reference: DomingosP.HultenG.ParsaI.RamakrishnanR.StolfoS.Mining high-speed data streamsProceedings of the ACM sixth international conference on knowledge discovery and data mining2000New YorkACM718010.1145/347090.347107 – reference: KolterJ. Z.MaloofM. A.Dynamic weighted majority: an ensemble method for drifting conceptsJournal of Machine Learning Research20078275527901222.68237 – reference: KoychevI.Gradual forgetting for adaptation to concept driftProceedings of ECAI workshop current issues in spatio-temporal reasoning2000LeipzigECAI Press101106 – reference: GamaJ.KosinaP.Learning decision rules from data streamsProceedings of the 22nd international joint conference on artificial intelligence, IJCAI201112551260 – reference: BassevilleM.NikiforovI.Detection of abrupt changes: theory and applications1993New YorkPrentice Hall – reference: KearnsM.VaziraniU.An introduction to computational learning theory1994CambridgeMIT Press – reference: GhoshB.SenP.Handbook of sequential analysis1991New YorkDekker0753.62046 – reference: Asuncion, A., & Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html. – reference: GamaJ.MedasP.CastilloG.RodriguesP.BazzanA. L. C.LabidiS.Learning with drift detectionAdvances in artificial intelligence—SBIA 20042004BerlinSpringer28629510.1007/978-3-540-28645-5_29 – reference: HerbsterM.WarmuthM.Tracking the best expertMachine Learning19983221511780912.6816510.1023/A:1007424614876 – reference: KlinkenbergR.Learning drifting concepts: example selection vs. example weightingIntelligent Data Analysis200483281300 – reference: BabcockB.DatarM.MotwaniR.O’CallaghanL.MiloT.Maintaining variance and k-medians over data stream windowsProceedings of the 22nd symposium on principles of database systems2003New YorkACM234243 – reference: GamaJ.RochaR.MedasP.Accurate decision trees for mining high-speed data streamsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2003New YorkACM523528 – reference: RodriguesP. P.GamaJ.PedrosoJ. P.Hierarchical clustering of time series data streamsIEEE Transactions on Knowledge and Data Engineering200820561562710.1109/TKDE.2007.190727 – reference: HoeffdingW.Probability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830 – reference: BifetA.HolmesG.KirkbyR.PfahringerB.MOA: massive online analysisJournal of Machine Learning Research20101116011604 – reference: PageE. S.Continuous inspection schemesBiometrika1954411/2100115888500056.3800210.2307/2333009 – reference: ChiY.WangH.YuP. S.MuntzR. R.Catch the moment: maintaining closed frequent itemsets over a data stream sliding windowKnowledge and Information Systems200610326529410.1007/s10115-006-0003-0 – reference: DawidA. P.Statistical theory: the prequential approachJournal of the Royal Statistical Society. Series A19841472782927638110557.6208010.2307/2981683 – reference: BifetA.GavaldàR.Learning from time-changing data with adaptive windowingProceedings SIAM international conference on data mining2007PhiladelphiaSIAM443448 – reference: JapkowiczN.ShahM.Evaluating learning algorithms: a classification perspective2011CambridgeCambridge University Press1230.68020 – reference: LiP.WuX.HuX.Mining recurring concept drifts with limited labeled streaming dataJournal of Machine Learning Research—Proceedings Track201013241252 – reference: Ferrer-TroyanoF.Aguilar-RuizJ. S.RiquelmeJ. C.Discovering decision rules from numerical data streamsProceedings of the ACM symposium on applied computing2004New YorkACM Press649653 – reference: StreetW. N.KimY.A streaming ensemble algorithm SEA for large-scale classificationProceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM Press377382 – reference: BishopC.Neural networks for pattern recognition1995LondonOxford University Press – reference: GiannellaC.HanJ.PeiJ.YanX.YuP.KarguptaH.JoshiA.SivakumarK.YeshaY.Mining frequent patterns in data streams at multiple time granularitiesNext generation data mining2003Menlo Park/CambridgeAAAI Press/MIT Press – reference: Kirkby, R. (2008). Improving Hoeffding trees. Ph.D. thesis, University of Waikato, New Zealand. – reference: KuhA.PetscheT.RivestR.Learning time-varying conceptsProceedings advances in neural information processing1990San MateoMorgan Kaufmann183189 – reference: LiangC.ZhangY.SongQ.Decision tree for dynamic and uncertain data streamsJournal of Machine Learning Research—Proceedings Track201013209224 – reference: DatarM.GionisA.IndykP.MotwaniR.Maintaining stream statistics over sliding windowsSIAM Journal on Computing20023161794181319548791008.6803910.1137/S0097539701398363 – reference: DemsarJ.Statistical comparisons of classifiers over multiple data setsJournal of Machine Learning Research2006713022743601222.68184 – reference: KiferD.Ben-DavidS.GehrkeJ.Detecting change in data streamsProceedings of the international conference on very large data bases2004San MateoMorgan Kaufmann180191 – reference: MierswaI.WurstM.KlinkenbergR.ScholzM.EulerT.Yale: rapid prototyping for complex data mining tasksACM SIGKDD int. conf. on knowledge discovery and data mining2006New YorkACM Press93594010.1145/1150402.1150531 – reference: MoussH.MoussD.MoussN.SefouhiL.Test of Page-Hinkley, an approach for fault detection in an agro-alimentary production systemProceedings of the Asian control conference2004815818 – reference: HartlC.BaskiotisN.GellyS.SebagM.Change point detection and meta-bandits for online learning in dynamic environmentsConférence Francophone sur l’apprentissage automatique2007237250 – reference: BifetA.HolmesG.PfahringerB.FrankE.Fast perceptron decision tree learning from evolving data streamsAdvances in knowledge discovery and data mining201029931010.1007/978-3-642-13672-6_30 – reference: CormodeG.MuthukrishnanS.ZhuangW.Conquering the divide: continuous clustering of distributed data streamsICDE: proceedings of the international conference on data engineering200710361045 – reference: DudaR.HartP.Pattern classification and scene analysis1973New YorkWilley0277.68056 – reference: KatakisI.TsoumakasG.VlahavasI.Tracking recurring contexts using ensemble classifiers: an application to email filteringKnowledge and Information Systems20102237139110.1007/s10115-009-0206-2 – volume: 147 start-page: 278 year: 1984 ident: 5320_CR12 publication-title: Journal of the Royal Statistical Society. Series A doi: 10.2307/2981683 – volume: 10 start-page: 265 issue: 3 year: 2006 ident: 5320_CR9 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-006-0003-0 – volume: 13 start-page: 241 year: 2010 ident: 5320_CR39 publication-title: Journal of Machine Learning Research—Proceedings Track – volume-title: Handbook of sequential analysis year: 1991 ident: 5320_CR22 – volume: 20 start-page: 615 issue: 5 year: 2008 ident: 5320_CR45 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190727 – start-page: 1036 volume-title: ICDE: proceedings of the international conference on data engineering year: 2007 ident: 5320_CR10 – volume: 32 start-page: 151 issue: 2 year: 1998 ident: 5320_CR25 publication-title: Machine Learning doi: 10.1023/A:1007424614876 – start-page: 815 volume-title: Proceedings of the Asian control conference year: 2004 ident: 5320_CR43 – start-page: 329 volume-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining year: 2009 ident: 5320_CR21 doi: 10.1145/1557019.1557060 – volume-title: Neural networks for pattern recognition year: 1995 ident: 5320_CR8 doi: 10.1093/oso/9780198538493.001.0001 – volume: 7 start-page: 1 year: 2006 ident: 5320_CR13 publication-title: Journal of Machine Learning Research – volume-title: Evaluating learning algorithms: a classification perspective year: 2011 ident: 5320_CR30 – volume: 58 start-page: 13 issue: 301 year: 1963 ident: 5320_CR26 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1963.10500830 – volume: 22 start-page: 371 year: 2010 ident: 5320_CR31 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-009-0206-2 – volume: 11 start-page: 1601 year: 2010 ident: 5320_CR6 publication-title: Journal of Machine Learning Research – volume-title: An introduction to computational learning theory year: 1994 ident: 5320_CR32 doi: 10.7551/mitpress/3897.001.0001 – start-page: 443 volume-title: Proceedings SIAM international conference on data mining year: 2007 ident: 5320_CR5 – ident: 5320_CR14 – start-page: 97 volume-title: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining year: 2001 ident: 5320_CR29 – start-page: 523 volume-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining year: 2003 ident: 5320_CR20 doi: 10.1145/956750.956813 – volume: 8 start-page: 2755 year: 2007 ident: 5320_CR36 publication-title: Journal of Machine Learning Research – ident: 5320_CR28 – volume: 31 start-page: 1794 issue: 6 year: 2002 ident: 5320_CR11 publication-title: SIAM Journal on Computing doi: 10.1137/S0097539701398363 – start-page: 23 volume-title: ICDM year: 2008 ident: 5320_CR3 – start-page: 180 volume-title: Proceedings of the international conference on very large data bases year: 2004 ident: 5320_CR33 – start-page: 649 volume-title: Proceedings of the ACM symposium on applied computing year: 2004 ident: 5320_CR17 – start-page: 237 volume-title: Conférence Francophone sur l’apprentissage automatique year: 2007 ident: 5320_CR24 – start-page: 299 volume-title: Advances in knowledge discovery and data mining year: 2010 ident: 5320_CR7 doi: 10.1007/978-3-642-13672-6_30 – volume: 41 start-page: 100 issue: 1/2 year: 1954 ident: 5320_CR44 publication-title: Biometrika doi: 10.2307/2333009 – volume-title: Detection of abrupt changes: theory and applications year: 1993 ident: 5320_CR4 – start-page: 377 volume-title: Proceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining year: 2001 ident: 5320_CR46 – start-page: 286 volume-title: Advances in artificial intelligence—SBIA 2004 year: 2004 ident: 5320_CR19 doi: 10.1007/978-3-540-28645-5_29 – start-page: 935 volume-title: ACM SIGKDD int. conf. on knowledge discovery and data mining year: 2006 ident: 5320_CR41 doi: 10.1145/1150402.1150531 – ident: 5320_CR34 – start-page: 183 volume-title: Proceedings advances in neural information processing year: 1990 ident: 5320_CR38 – volume-title: Next generation data mining year: 2003 ident: 5320_CR23 – start-page: 1255 volume-title: Proceedings of the 22nd international joint conference on artificial intelligence, IJCAI year: 2011 ident: 5320_CR18 – volume: 23 start-page: 69 year: 1996 ident: 5320_CR47 publication-title: Machine Learning – volume-title: Pattern classification and scene analysis year: 1973 ident: 5320_CR16 – volume-title: Proc. of workshop on research issues in data mining and knowledge discovery year: 2001 ident: 5320_CR27 – ident: 5320_CR1 – start-page: 234 volume-title: Proceedings of the 22nd symposium on principles of database systems year: 2003 ident: 5320_CR2 – start-page: 101 volume-title: Proceedings of ECAI workshop current issues in spatio-temporal reasoning year: 2000 ident: 5320_CR37 – start-page: 71 volume-title: Proceedings of the ACM sixth international conference on knowledge discovery and data mining year: 2000 ident: 5320_CR15 doi: 10.1145/347090.347107 – volume: 13 start-page: 209 year: 2010 ident: 5320_CR40 publication-title: Journal of Machine Learning Research—Proceedings Track – volume-title: Machine learning year: 1997 ident: 5320_CR42 – volume: 8 start-page: 281 issue: 3 year: 2004 ident: 5320_CR35 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2004-8305 |
| SSID | ssj0002686 |
| Score | 2.5758953 |
| Snippet | Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating... |
| SourceID | unpaywall proquest pascalfrancis crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 317 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Change detection Computer Science Computer science; control theory; systems Computer systems and distributed systems. User interface Control Data analysis Decision making models Errors Estimators Exact sciences and technology Fading Learning Mathematical models Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Software Streams |
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fKhFbNWWXmslBR9EWUw2X7sPRdqiSKGnFAXfwn5eH87ctXdH8b_vTC4bvQevb4GdJbuz85XMzvwADtNC2KxwnsU61SxzImbaC8mMs4nOhU24oYzuj0FxeZt9v8vv1mAQamHoWmWwiY2htmND_8hPyY6i8055ejb5zQg1irKrAUJDtdAK9nPTYmwdNjh1xurBxtfzwfXPzjbzosF-RNXKGfn2kOdcFNM1bXIJG4DKiuWSp9qaqCkyzS_QLpbC0S6D-hJezOuJevirRqMnTuriNWy30WX0ZSEOO7Dm6l14FZAbolaR9-Doqo5Cn-96GFHBiLqPWgSJYaRGQ9z67Nf99A3cXpzffLtkLWYCM1mez5hInCu40ZrH1MldpiaTzieK-zIvE-NRR73VPpde44PMeSxK6yx6bouxnrTpW-jV49q9g8hbDD6cQGrPs9JZERfSZKUVTiptVdqHOPCnMm1DccK1GFWPrZCJpRWytCKWVrIPx92UyaKbxirigyWmdzOomojzGBewH06hajVvWj3KSR8-dcOoM5QIUbUbz5EGRzF0KctiBQ1-x2GoJWTWh5Nwwk9e8_yqTzoh-P8e36_ewgfY5A38Bt1524fe7M_cfcQgaKYPWsn-B6iQAMM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UFFrJ94bS0p9KFYciabbLL7WKSlCNY-9KB9Cvt5Fa-5o8kh-tc7c_nwTrAivgVmNsl-zm-Zmd8AHCSZsGnmfBjpRIepE1GovZChcTbWXNiYGfLofjrPzsbpxyt-tQEnXS7MMtq9c0k2OQ3E0lTW7-fWr3j1K_LoUPwEXqUoCViOUP4ANjOOkHwAm-Pzi-PrBkHykKz4kjc1p1i1jHfezSaFbv09a_bpyVxVOFS-qXGxBkJ7v-ljeLgo5-r7NzWdrpim060mhKRaMhpSRMrX0aLWI_PjN77H_-71M3jagtfguFltz2HDlS9gqysMEbTnxEs4_FwGHY14OQkoH0XdBm2BikmgppPZ3Zf65rZ6BePTk8sPZ2FbkiE0Ked1KGLnMma0ZhERxcvEpNL5WDGf8zw2Ho8Ab7Xn0mt8kJxFIrfOIjCwCCWlTV7DoJyV7g0E3iK2cQK1PUtzZ0WUSZPmVjiptFXJEKJuIgrT8pVT2Yxp8YtpmUajwNEoaDQKOYR3fZN5Q9Zxn_Le2uz2LShZibEIf2C3m-6i3dhVQeYcMWTCULzfi3FLkp9FlW62QB2UIjLK8-weHbwmIpITMh3CUTfzK5_5818f9avt733c_iftHXjElsU-KMJuFwb13cK9RchV6712Q_0ExCQf7g priority: 102 providerName: Unpaywall |
| Title | On evaluating stream learning algorithms |
| URI | https://link.springer.com/article/10.1007/s10994-012-5320-9 https://www.proquest.com/docview/1284264323 https://www.proquest.com/docview/1323224776 https://www.proquest.com/docview/1753554894 https://link.springer.com/content/pdf/10.1007%2Fs10994-012-5320-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 90 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0565 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEB_8eLgTUe9OsX6UCPcgJ4Fkk012H6u0FqVVDnvoU9jN7lahpsW2iP-9s2kSW1APnzZhZz8yu7MzYXZ-A_A7iJgKI21cTwbSDTXzXGkYd1OtfEmZ8klqPbqdbtTuhRe39LaI4x6Xt91Ll2R-Us8Fu-Uwtha734b98mVYpRbNCzdxjzSq45dEeXpHlB7qWvVdujLf62JBGa2PxBj5YmYJLRYszspJugbfptlIvDyLwWBOD7W2YKMwIJ3GbMV_wJLOfsJmmZzBKWT1FxxfZU4J5Z31HRsTIh6dIklE3xGD_vDpYXL_ON6GXqt5c9Z2i7QIbhpSOnGZr3VEUimJZ8HaeZCGXBtfEBPT2E8NiqFR0lBuJD5wSjwWK61QOStkF1fBDqxkw0zvgmMU2heaIbUhYawV8yKehrFimgupRFADr-RPkhaY4TZ1xSB5Qzu2LE2QpYllacJr8KdqMpoBZnxGXF9getXCBgwR4uEEDspVSArhGidWpaIdFxCsPqqqUSysr0NkejhFGqxF6ySOo09o8FcNrSnGwxqclCs8N8zHsz6pNsH_v3HvS33vw3eSJ9ywt9wOYGXyNNWHaPZMZB2WWeu8DquN87vLpi07_9odLE-b3eu_9VwI8K3XvW7cvQKKtv4k |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFBU9Y26LaWp1EpVkUXiOIl9QFUfoKXAtqpA4pbasb0cluzC7grx5_rbOs7agT10e-IWyXZiz8MzznjmA3iX5lyz3FgSq1QRZnhMlOWCVEYnKuM6oZWL6B718u4J-36anS7Bn5AL465Vhj2x2aj1sHL_yLfdPorGO6Xpp9EFcahRLroaIDSkh1bQO02JMZ_YcWCur_AIN97Z_4b8fk_p3u7x1y7xKAOkYlk2ITwxJqeVUjR2tc9FWjFhbCKpLbIiqSxKtdXKZsIqfBAZjXmhjUZbp9E7EjrF996DFZYygYe_lS-7vZ-_WltA8wZrElU5I86XCHHVWfJeU5bXYRG4NGYxZxkfjOQYmWRn6Bpz7m8bsV2D1Wk9ktdXcjC4ZRT3HsND781Gn2fi9wSWTP0UHgWkiMhvHM_gw486CnXF637kElTkeeQRK_qRHPSR1JOz8_FzOLkT6q3Dcj2szQuIrEZnx3DsbSkrjOZxLipWaG6EVFqmHYgDfcrKFzB3OBqD8qb0siNpiSQtHUlL0YGP7ZDRrHrHos6bc0RvR7jsJUpjnMBG4ELpNX1c3shlB962zaijLvAiazOcYh9sRVepKPIFffDciK4dF6wDW4HDtz7z71lvtULw_zW-XLyEN7DaPT46LA_3ewev4D5toD_cfbsNWJ5cTs1rdMAmatNLeQS_71qx_gJ4Wj3p |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvEQ4o1YKCVIIKFWVhPnZR8QQpSlpVA4UKm34Ody2GYXdldV_xq_jpkkTrsHllNvkWwn9jw844xnPoCXaSFsVjjPYp1qljkRM-2FZMbZROfCJtxQRPfLYbF3lH06zo_X4E_IhaFrlWFPbDZqOzH0j3yH9lE03ilPd3x3LeLb7vDt9BcjBCmKtAY4jVZEDtzZKR7fZm_2d5HXrzgffvj-fo91CAPMZHk-ZyJxruBGax5T3XOZmkw6nyjuy7xMjEeJ9lb7XHqNDzLnsSits2jnLHpG0qb43itwtaQq7pSlPvzYWwFeNCiTqMQ5Iy8iRFTbtL2mIC-hEFACs1yyibemaobs8S2uxpLj28dqb8L1RT1VZ6dqPL5gDod34Xbnx0bvWsG7B2uuvg93AkZE1G0ZD-D11zoKFcXrUUSpKeok6rAqRpEaj5Cw858ns4dwdCm0ewTr9aR2jyHyFt0cJ7C351nprIgLabLSCieVtiodQBzoU5mudDkhaIyr86LLRNIKSVoRSSs5gK1-yLSt27Gq8-YS0fsRlLfEeYwT2AhcqDodn1XnEjmAF30zaieFXFTtJgvsg63oJJVlsaIPnhjRqRMyG8B24PCFz_x71tu9EPx_jU9WL-E5XEN1qj7vHx48hRu8wfygi3YbsD7_vXDP0POa681GxCP4cdk69RewpDuD |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UFFrJ94bS0p9KFYciabbLL7WKSlCNY-9KB9Cvt5Fa-5o8kh-tc7c_nwTrAivgVmNsl-zm-Zmd8AHCSZsGnmfBjpRIepE1GovZChcTbWXNiYGfLofjrPzsbpxyt-tQEnXS7MMtq9c0k2OQ3E0lTW7-fWr3j1K_LoUPwEXqUoCViOUP4ANjOOkHwAm-Pzi-PrBkHykKz4kjc1p1i1jHfezSaFbv09a_bpyVxVOFS-qXGxBkJ7v-ljeLgo5-r7NzWdrpim060mhKRaMhpSRMrX0aLWI_PjN77H_-71M3jagtfguFltz2HDlS9gqysMEbTnxEs4_FwGHY14OQkoH0XdBm2BikmgppPZ3Zf65rZ6BePTk8sPZ2FbkiE0Ked1KGLnMma0ZhERxcvEpNL5WDGf8zw2Ho8Ab7Xn0mt8kJxFIrfOIjCwCCWlTV7DoJyV7g0E3iK2cQK1PUtzZ0WUSZPmVjiptFXJEKJuIgrT8pVT2Yxp8YtpmUajwNEoaDQKOYR3fZN5Q9Zxn_Le2uz2LShZibEIf2C3m-6i3dhVQeYcMWTCULzfi3FLkp9FlW62QB2UIjLK8-weHbwmIpITMh3CUTfzK5_5818f9avt733c_iftHXjElsU-KMJuFwb13cK9RchV6712Q_0ExCQf7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evaluating+stream+learning+algorithms&rft.jtitle=Machine+learning&rft.au=Gama%2C+Joao&rft.au=Sebastiao%2C+Raquel&rft.au=Rodrigues%2C+Pedro+Pereira&rft.date=2013-03-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=90&rft.issue=3&rft.spage=317&rft.epage=346&rft_id=info:doi/10.1007%2Fs10994-012-5320-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |