On evaluating stream learning algorithms

Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that e...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 90; no. 3; pp. 317 - 346
Main Authors Gama, João, Sebastião, Raquel, Rodrigues, Pedro Pereira
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-012-5320-9

Cover

Abstract Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.
AbstractList Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.[PUBLICATION ABSTRACT]
Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.
Author Rodrigues, Pedro Pereira
Sebastião, Raquel
Gama, João
Author_xml – sequence: 1
  givenname: João
  surname: Gama
  fullname: Gama, João
  email: jgama@fep.up.pt
  organization: LIAAD – INESC TEC and Faculty of Economics, University of Porto
– sequence: 2
  givenname: Raquel
  surname: Sebastião
  fullname: Sebastião, Raquel
  organization: LIAAD – INESC TEC and Faculty of Science, University of Porto
– sequence: 3
  givenname: Pedro Pereira
  surname: Rodrigues
  fullname: Rodrigues, Pedro Pereira
  organization: LIAAD – INESC TEC and Faculty of Medicine, University of Porto
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27382203$$DView record in Pascal Francis
BookMark eNqNkUtLLDEQRoMoOD5-gLsBEWbTWqkknc5S5PoAwY2uQyadjC2Z9Nyk24v_3gwziAhXXaUC56vUSR2Q3dhHR8gJhXMKIC8yBaV4BRQrwRAqtUMmVEhWgajFLplA04iqpij2yUHOLwCAdVNPyOwhTt2rCaMZuriY5iE5s5wGZ1Jc301Y9Kkbnpf5iOx5E7I73p6H5On6z-PVbXX_cHN3dXlfWS7EUDXUuRrtfI6AqEAxy5Xz1KCXQlLrgaNv514oPy-FEgiNbF0LyFqqULXskOCm7xhX5u2fCUGvUrc06U1T0GtXvXHVxVWvXbUqodkmtEr939HlQS-7bF0IJrp-zJpKwYTgjeI_owwZIpeyLujpF_SlH1Ms9ppiw7HmhS3U2ZYy2Zrgk4m2yx9Do2QNIqw5uuFs6nNOzv_KS37J2G4om-rjkEwXvk1uvzGXV-LCpU-z_zf0DgLLrUs
CitedBy_id crossref_primary_10_1016_j_ins_2020_08_064
crossref_primary_10_1016_j_asoc_2020_106699
crossref_primary_10_1016_j_jfranklin_2019_01_043
crossref_primary_10_1016_j_neunet_2019_11_021
crossref_primary_10_1007_s00354_021_00126_2
crossref_primary_10_3390_math11020355
crossref_primary_10_1016_j_softx_2024_101733
crossref_primary_10_1016_j_engappai_2021_104509
crossref_primary_10_3390_app11052145
crossref_primary_10_1017_nws_2019_64
crossref_primary_10_1016_j_inffus_2018_02_003
crossref_primary_10_1016_j_jeconom_2024_105791
crossref_primary_10_1016_j_future_2018_06_047
crossref_primary_10_1111_coin_12208
crossref_primary_10_1007_s10618_020_00698_5
crossref_primary_10_1109_TNNLS_2021_3122531
crossref_primary_10_1109_TFUZZ_2019_2931871
crossref_primary_10_1109_TKDE_2018_2883616
crossref_primary_10_1109_TBDATA_2022_3164239
crossref_primary_10_3233_IDA_173522
crossref_primary_10_1145_2523813
crossref_primary_10_1109_TKDE_2018_2876857
crossref_primary_10_1016_j_ins_2013_12_011
crossref_primary_10_1109_TNNLS_2019_2953622
crossref_primary_10_1007_s41060_017_0043_4
crossref_primary_10_1016_j_neucom_2022_09_065
crossref_primary_10_1109_ACCESS_2024_3355959
crossref_primary_10_1109_TNSM_2020_2983921
crossref_primary_10_1016_j_csda_2023_107781
crossref_primary_10_1016_j_patcog_2018_10_024
crossref_primary_10_2139_ssrn_4123456
crossref_primary_10_1016_j_eswa_2021_115127
crossref_primary_10_1007_s13042_016_0513_3
crossref_primary_10_1007_s10664_023_10335_6
crossref_primary_10_1007_s13748_018_0142_z
crossref_primary_10_1016_j_asoc_2021_107255
crossref_primary_10_1016_j_knosys_2021_107675
crossref_primary_10_1145_3170432
crossref_primary_10_1007_s10489_021_02735_2
crossref_primary_10_1109_TAI_2022_3233791
crossref_primary_10_3233_IDA_160804
crossref_primary_10_1007_s10710_014_9236_y
crossref_primary_10_1016_j_omega_2023_103019
crossref_primary_10_1007_s10994_023_06454_2
crossref_primary_10_1007_s10115_013_0654_6
crossref_primary_10_1016_j_pmcj_2022_101722
crossref_primary_10_1016_j_neucom_2014_05_084
crossref_primary_10_1016_j_eswa_2024_124860
crossref_primary_10_1007_s10994_023_06353_6
crossref_primary_10_1007_s10844_017_0460_9
crossref_primary_10_1109_TII_2021_3058350
crossref_primary_10_1007_s10994_015_5515_y
crossref_primary_10_3390_s20205811
crossref_primary_10_1016_j_inffus_2018_01_003
crossref_primary_10_1007_s10489_018_1254_7
crossref_primary_10_1007_s11063_016_9528_8
crossref_primary_10_1016_j_eswa_2021_114890
crossref_primary_10_1016_j_knosys_2023_111272
crossref_primary_10_1109_TNNLS_2016_2614393
crossref_primary_10_1016_j_knosys_2020_105816
crossref_primary_10_1007_s13748_014_0050_9
crossref_primary_10_1016_j_patrec_2018_10_018
crossref_primary_10_1007_s10618_022_00894_5
crossref_primary_10_1007_s10618_021_00786_0
crossref_primary_10_3233_ICA_200617
crossref_primary_10_3233_IDA_205249
crossref_primary_10_1016_j_neucom_2014_09_076
crossref_primary_10_1016_j_apenergy_2020_116177
crossref_primary_10_1007_s10994_021_06084_6
crossref_primary_10_1109_TSC_2022_3215502
crossref_primary_10_1109_TSE_2022_3150153
crossref_primary_10_1108_IJWIS_01_2021_0007
crossref_primary_10_1007_s10462_019_09696_6
crossref_primary_10_1177_1550147718808239
crossref_primary_10_2196_jmir_8073
crossref_primary_10_1007_s10462_015_9444_8
crossref_primary_10_1016_j_ins_2019_12_060
crossref_primary_10_1007_s12530_018_9241_0
crossref_primary_10_1214_18_AOS1777
crossref_primary_10_1007_s10994_023_06497_5
crossref_primary_10_1016_j_engappai_2023_106461
crossref_primary_10_1109_ACCESS_2020_2997944
crossref_primary_10_1145_3139240
crossref_primary_10_1002_widm_1160
crossref_primary_10_1016_j_knosys_2024_111681
crossref_primary_10_1007_s10619_022_07403_z
crossref_primary_10_1007_s11227_022_04864_y
crossref_primary_10_1016_j_icte_2020_05_011
crossref_primary_10_3233_DS_220057
crossref_primary_10_1016_j_eswa_2024_123439
crossref_primary_10_1016_j_ins_2021_05_076
crossref_primary_10_1111_exsy_12303
crossref_primary_10_1016_j_jnca_2025_104169
crossref_primary_10_1007_s12530_020_09357_y
crossref_primary_10_1111_coin_12071
crossref_primary_10_1109_TKDE_2022_3200068
crossref_primary_10_1016_j_neucom_2023_126741
crossref_primary_10_1109_TNSM_2020_3016246
crossref_primary_10_1109_TSE_2022_3175789
crossref_primary_10_3390_e23070859
crossref_primary_10_1007_s41109_019_0169_5
crossref_primary_10_15388_24_INFOR562
crossref_primary_10_1007_s10994_022_06262_0
crossref_primary_10_1007_s10994_018_5719_z
crossref_primary_10_1016_j_neucom_2017_10_051
crossref_primary_10_1038_s43586_023_00236_9
crossref_primary_10_1109_TKDE_2016_2551241
crossref_primary_10_1109_TNNLS_2020_2978523
crossref_primary_10_1016_j_neucom_2021_10_120
crossref_primary_10_1371_journal_pone_0095648
crossref_primary_10_1016_j_neucom_2023_126292
crossref_primary_10_1109_TKDE_2019_2960216
crossref_primary_10_1007_s00521_020_05336_1
crossref_primary_10_1007_s42484_024_00196_7
crossref_primary_10_1145_3663369
crossref_primary_10_1007_s00354_015_0401_5
crossref_primary_10_1007_s10618_017_0500_7
crossref_primary_10_3390_s24123926
crossref_primary_10_1007_s10994_019_05840_z
crossref_primary_10_1109_TNNLS_2023_3265524
crossref_primary_10_1016_j_eswa_2021_115303
crossref_primary_10_1016_j_neucom_2023_126515
crossref_primary_10_1016_j_ins_2021_01_070
crossref_primary_10_3233_IDA_194515
crossref_primary_10_1093_jigpal_jzac033
crossref_primary_10_1109_ACCESS_2020_3015091
crossref_primary_10_1016_j_neucom_2017_01_078
crossref_primary_10_1155_2015_939175
crossref_primary_10_1109_TNNLS_2020_3041684
crossref_primary_10_1007_s10115_017_1022_8
crossref_primary_10_1080_10618600_2019_1617160
crossref_primary_10_1007_s10618_021_00784_2
crossref_primary_10_1016_j_inffus_2017_02_004
crossref_primary_10_1016_j_knosys_2016_04_019
crossref_primary_10_1109_ACCESS_2023_3249666
crossref_primary_10_1007_s40747_024_01524_x
crossref_primary_10_1093_comjnl_bxab138
crossref_primary_10_1142_S0129065717500484
crossref_primary_10_1016_j_engappai_2014_06_001
crossref_primary_10_1016_j_neucom_2017_05_081
crossref_primary_10_1016_j_neucom_2017_04_047
crossref_primary_10_1016_j_future_2020_01_017
crossref_primary_10_1007_s10664_023_10341_8
crossref_primary_10_1109_ACCESS_2023_3245055
crossref_primary_10_1007_s12065_023_00879_3
crossref_primary_10_1109_TNNLS_2017_2771290
crossref_primary_10_1007_s10994_017_5686_9
crossref_primary_10_1111_sjos_12769
crossref_primary_10_1007_s10115_024_02300_6
crossref_primary_10_1109_ACCESS_2020_2987815
crossref_primary_10_1109_TKDE_2023_3266648
crossref_primary_10_1002_nem_1991
crossref_primary_10_1016_j_knosys_2022_109486
crossref_primary_10_1007_s10994_020_05910_7
crossref_primary_10_1109_MCE_2024_3387019
crossref_primary_10_1109_TNNLS_2013_2271915
crossref_primary_10_1145_3453443
crossref_primary_10_1016_j_patcog_2020_107743
crossref_primary_10_1109_TCYB_2018_2869476
crossref_primary_10_1007_s10586_021_03267_7
crossref_primary_10_1016_j_inffus_2021_04_011
crossref_primary_10_1016_j_neunet_2020_05_035
crossref_primary_10_3390_buildings13030580
crossref_primary_10_1109_TNNLS_2019_2951814
crossref_primary_10_1109_ACCESS_2024_3358817
crossref_primary_10_1007_s42452_019_1433_0
crossref_primary_10_1016_j_cag_2021_04_006
crossref_primary_10_1007_s42952_025_00312_8
crossref_primary_10_1145_3523055
crossref_primary_10_1016_j_asoc_2017_12_008
crossref_primary_10_1016_j_neucom_2021_01_144
crossref_primary_10_1002_widm_1536
crossref_primary_10_1016_j_patrec_2017_03_005
crossref_primary_10_3390_app10020606
crossref_primary_10_1007_s10115_014_0808_1
crossref_primary_10_1007_s10462_021_10087_z
crossref_primary_10_3233_IDA_160083
crossref_primary_10_1016_j_heliyon_2022_e12584
crossref_primary_10_3390_s19081955
crossref_primary_10_1007_s10664_024_10551_8
crossref_primary_10_3390_risks10120235
crossref_primary_10_1007_s00500_014_1233_9
crossref_primary_10_1016_j_eswa_2020_113723
crossref_primary_10_1016_j_ins_2022_05_056
crossref_primary_10_1016_j_neucom_2019_07_106
crossref_primary_10_1007_s13748_017_0133_5
crossref_primary_10_1016_j_engappai_2016_10_011
crossref_primary_10_1109_ACCESS_2019_2932018
crossref_primary_10_1111_exsy_13690
crossref_primary_10_1155_2020_8361989
crossref_primary_10_1109_TNSM_2020_3037486
crossref_primary_10_1016_j_knosys_2017_09_032
crossref_primary_10_1007_s10922_023_09781_w
crossref_primary_10_1145_2674026_2674028
crossref_primary_10_1007_s12530_014_9108_y
crossref_primary_10_1016_j_spl_2021_109146
crossref_primary_10_1109_TCYB_2017_2748598
crossref_primary_10_1155_2019_6473160
crossref_primary_10_1016_j_neucom_2021_02_032
crossref_primary_10_1016_j_neucom_2023_126312
crossref_primary_10_1007_s10115_021_01560_w
crossref_primary_10_1145_2829955
crossref_primary_10_1109_TIM_2024_3500047
crossref_primary_10_1007_s10994_024_06527_w
crossref_primary_10_1007_s10618_021_00793_1
crossref_primary_10_1109_TSE_2022_3158831
crossref_primary_10_3390_info12010024
crossref_primary_10_1016_j_knosys_2022_108632
crossref_primary_10_1016_j_procs_2017_11_440
crossref_primary_10_1109_TKDE_2019_2937078
crossref_primary_10_1109_ACCESS_2017_2735378
crossref_primary_10_1109_TNNLS_2019_2899061
crossref_primary_10_1016_j_knosys_2019_105227
crossref_primary_10_1016_j_asoc_2024_111271
crossref_primary_10_1109_TNNLS_2020_3017863
crossref_primary_10_1111_exsy_13237
crossref_primary_10_1002_widm_1109
crossref_primary_10_1111_exsy_13111
crossref_primary_10_1007_s00607_020_00830_9
crossref_primary_10_3390_bdcc8020016
crossref_primary_10_1007_s10994_014_5441_4
crossref_primary_10_1007_s12559_015_9341_0
crossref_primary_10_1109_TKDE_2016_2522412
crossref_primary_10_32604_cmc_2023_035221
crossref_primary_10_1007_s10462_016_9526_2
crossref_primary_10_1109_TKDE_2014_2345382
crossref_primary_10_3390_math13050837
crossref_primary_10_1145_3447876
crossref_primary_10_1016_j_eswa_2017_11_042
crossref_primary_10_3389_frai_2021_576892
crossref_primary_10_2139_ssrn_4160595
crossref_primary_10_1109_TNNLS_2021_3132584
crossref_primary_10_1016_j_ins_2024_120555
crossref_primary_10_1109_ACCESS_2017_2714345
Cites_doi 10.2307/2981683
10.1007/s10115-006-0003-0
10.1109/TKDE.2007.190727
10.1023/A:1007424614876
10.1145/1557019.1557060
10.1093/oso/9780198538493.001.0001
10.1080/01621459.1963.10500830
10.1007/s10115-009-0206-2
10.7551/mitpress/3897.001.0001
10.1145/956750.956813
10.1137/S0097539701398363
10.1007/978-3-642-13672-6_30
10.2307/2333009
10.1007/978-3-540-28645-5_29
10.1145/1150402.1150531
10.1145/347090.347107
10.3233/IDA-2004-8305
ContentType Journal Article
Copyright The Author(s) 2012
2014 INIST-CNRS
The Author(s) 2013
Copyright_xml – notice: The Author(s) 2012
– notice: 2014 INIST-CNRS
– notice: The Author(s) 2013
DBID AAYXX
CITATION
IQODW
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1007/s10994-012-5320-9
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1573-0565
EndPage 346
ExternalDocumentID 10.1007/s10994-012-5320-9
2883793721
27382203
10_1007_s10994_012_5320_9
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c455t-81ee62cbb20229093c49ef1a2f7571cf042fdbf59fb2fd952087ded023d1929d3
IEDL.DBID U2A
ISSN 0885-6125
1573-0565
IngestDate Tue Aug 19 21:35:31 EDT 2025
Fri Sep 05 10:27:08 EDT 2025
Fri Sep 05 13:38:02 EDT 2025
Fri Jul 25 03:09:30 EDT 2025
Wed Apr 02 07:25:20 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Oct 01 08:31:56 EDT 2025
Fri Feb 21 02:28:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Evaluation design
Data streams
Prequential analysis
Concept drift
Forgetting
Streaming
Event detection
Error estimation
Decision making
Standardization
Context aware
Stationary condition
Continuous process
Hypothesis test
Experimental design
Sliding window
Resource management
Dynamic model
Learning algorithm
Time analysis
Artificial intelligence
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-81ee62cbb20229093c49ef1a2f7571cf042fdbf59fb2fd952087ded023d1929d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007%2Fs10994-012-5320-9.pdf
PQID 1284264323
PQPubID 23500
PageCount 30
ParticipantIDs unpaywall_primary_10_1007_s10994_012_5320_9
proquest_miscellaneous_1753554894
proquest_miscellaneous_1323224776
proquest_journals_1284264323
pascalfrancis_primary_27382203
crossref_primary_10_1007_s10994_012_5320_9
crossref_citationtrail_10_1007_s10994_012_5320_9
springer_journals_10_1007_s10994_012_5320_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Heidelberg
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2013
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BifetA.HolmesG.PfahringerB.FrankE.Fast perceptron decision tree learning from evolving data streamsAdvances in knowledge discovery and data mining201029931010.1007/978-3-642-13672-6_30
JapkowiczN.ShahM.Evaluating learning algorithms: a classification perspective2011CambridgeCambridge University Press1230.68020
KolterJ. Z.MaloofM. A.Dynamic weighted majority: an ensemble method for drifting conceptsJournal of Machine Learning Research20078275527901222.68237
BishopC.Neural networks for pattern recognition1995LondonOxford University Press
LiangC.ZhangY.SongQ.Decision tree for dynamic and uncertain data streamsJournal of Machine Learning Research—Proceedings Track201013209224
CormodeG.MuthukrishnanS.ZhuangW.Conquering the divide: continuous clustering of distributed data streamsICDE: proceedings of the international conference on data engineering200710361045
HerbsterM.WarmuthM.Tracking the best expertMachine Learning19983221511780912.6816510.1023/A:1007424614876
RodriguesP. P.GamaJ.PedrosoJ. P.Hierarchical clustering of time series data streamsIEEE Transactions on Knowledge and Data Engineering200820561562710.1109/TKDE.2007.190727
WidmerG.KubatM.Learning in the presence of concept drift and hidden contextsMachine Learning19962369101
ChiY.WangH.YuP. S.MuntzR. R.Catch the moment: maintaining closed frequent itemsets over a data stream sliding windowKnowledge and Information Systems200610326529410.1007/s10115-006-0003-0
PageE. S.Continuous inspection schemesBiometrika1954411/2100115888500056.3800210.2307/2333009
DomingosP.HultenG.ParsaI.RamakrishnanR.StolfoS.Mining high-speed data streamsProceedings of the ACM sixth international conference on knowledge discovery and data mining2000New YorkACM718010.1145/347090.347107
MitchellT.Machine learning1997New YorkMcGraw-Hill0913.68167
BabcockB.DatarM.MotwaniR.O’CallaghanL.MiloT.Maintaining variance and k-medians over data stream windowsProceedings of the 22nd symposium on principles of database systems2003New YorkACM234243
DemsarJ.Statistical comparisons of classifiers over multiple data setsJournal of Machine Learning Research2006713022743601222.68184
GiannellaC.HanJ.PeiJ.YanX.YuP.KarguptaH.JoshiA.SivakumarK.YeshaY.Mining frequent patterns in data streams at multiple time granularitiesNext generation data mining2003Menlo Park/CambridgeAAAI Press/MIT Press
DatarM.GionisA.IndykP.MotwaniR.Maintaining stream statistics over sliding windowsSIAM Journal on Computing20023161794181319548791008.6803910.1137/S0097539701398363
HartlC.BaskiotisN.GellyS.SebagM.Change point detection and meta-bandits for online learning in dynamic environmentsConférence Francophone sur l’apprentissage automatique2007237250
Hulten, G., & Domingos, P. (2003). VFML—a toolkit for mining high-speed time-changing data streams. Technical report, University of Washington. http://www.cs.washington.edu/dm/vfml
GamaJ.MedasP.CastilloG.RodriguesP.BazzanA. L. C.LabidiS.Learning with drift detectionAdvances in artificial intelligence—SBIA 20042004BerlinSpringer28629510.1007/978-3-540-28645-5_29
Kirkby, R. (2008). Improving Hoeffding trees. Ph.D. thesis, University of Waikato, New Zealand.
BifetA.HolmesG.KirkbyR.PfahringerB.MOA: massive online analysisJournal of Machine Learning Research20101116011604
HoeffdingW.Probability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830
KoychevI.Gradual forgetting for adaptation to concept driftProceedings of ECAI workshop current issues in spatio-temporal reasoning2000LeipzigECAI Press101106
GamaJ.RochaR.MedasP.Accurate decision trees for mining high-speed data streamsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2003New YorkACM523528
MierswaI.WurstM.KlinkenbergR.ScholzM.EulerT.Yale: rapid prototyping for complex data mining tasksACM SIGKDD int. conf. on knowledge discovery and data mining2006New YorkACM Press93594010.1145/1150402.1150531
KearnsM.VaziraniU.An introduction to computational learning theory1994CambridgeMIT Press
BifetA.GavaldàR.Learning from time-changing data with adaptive windowingProceedings SIAM international conference on data mining2007PhiladelphiaSIAM443448
HultenG.DomingosP.Catching up with the data: research issues in mining data streamsProc. of workshop on research issues in data mining and knowledge discovery2001
Ferrer-TroyanoF.Aguilar-RuizJ. S.RiquelmeJ. C.Discovering decision rules from numerical data streamsProceedings of the ACM symposium on applied computing2004New YorkACM Press649653
GamaJ.KosinaP.Learning decision rules from data streamsProceedings of the 22nd international joint conference on artificial intelligence, IJCAI201112551260
GamaJ.SebastiãoR.RodriguesP. P.Issues in evaluation of stream learning algorithmsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2009New YorkACM32933810.1145/1557019.1557060
GhoshB.SenP.Handbook of sequential analysis1991New YorkDekker0753.62046
HultenG.SpencerL.DomingosP.Mining time-changing data streamsProceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM97106
DudaR.HartP.Pattern classification and scene analysis1973New YorkWilley0277.68056
LiP.WuX.HuX.Mining recurring concept drifts with limited labeled streaming dataJournal of Machine Learning Research—Proceedings Track201013241252
StreetW. N.KimY.A streaming ensemble algorithm SEA for large-scale classificationProceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM Press377382
MoussH.MoussD.MoussN.SefouhiL.Test of Page-Hinkley, an approach for fault detection in an agro-alimentary production systemProceedings of the Asian control conference2004815818
BachS. H.MaloofM. A.Paired learners for concept driftICDM2008Los AlamitosIEEE Comput. Soc.2332
Dietterich, T. (1996). Approximate statistical tests for comparing supervised classification learning algorithms. Corvallis, technical report nr. 97.331, Oregon State University.
Asuncion, A., & Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html.
KatakisI.TsoumakasG.VlahavasI.Tracking recurring contexts using ensemble classifiers: an application to email filteringKnowledge and Information Systems20102237139110.1007/s10115-009-0206-2
KiferD.Ben-DavidS.GehrkeJ.Detecting change in data streamsProceedings of the international conference on very large data bases2004San MateoMorgan Kaufmann180191
DawidA. P.Statistical theory: the prequential approachJournal of the Royal Statistical Society. Series A19841472782927638110557.6208010.2307/2981683
KlinkenbergR.Learning drifting concepts: example selection vs. example weightingIntelligent Data Analysis200483281300
BassevilleM.NikiforovI.Detection of abrupt changes: theory and applications1993New YorkPrentice Hall
KuhA.PetscheT.RivestR.Learning time-varying conceptsProceedings advances in neural information processing1990San MateoMorgan Kaufmann183189
A. P. Dawid (5320_CR12) 1984; 147
A. Bifet (5320_CR5) 2007
B. Ghosh (5320_CR22) 1991
M. Herbster (5320_CR25) 1998; 32
S. H. Bach (5320_CR3) 2008
G. Hulten (5320_CR29) 2001
G. Hulten (5320_CR27) 2001
J. Gama (5320_CR18) 2011
J. Demsar (5320_CR13) 2006; 7
R. Klinkenberg (5320_CR35) 2004; 8
I. Katakis (5320_CR31) 2010; 22
J. Gama (5320_CR20) 2003
5320_CR34
A. Bifet (5320_CR7) 2010
C. Bishop (5320_CR8) 1995
5320_CR14
C. Giannella (5320_CR23) 2003
H. Mouss (5320_CR43) 2004
W. Hoeffding (5320_CR26) 1963; 58
B. Babcock (5320_CR2) 2003
I. Koychev (5320_CR37) 2000
W. N. Street (5320_CR46) 2001
P. Li (5320_CR39) 2010; 13
P. Domingos (5320_CR15) 2000
J. Z. Kolter (5320_CR36) 2007; 8
C. Liang (5320_CR40) 2010; 13
M. Datar (5320_CR11) 2002; 31
D. Kifer (5320_CR33) 2004
5320_CR1
P. P. Rodrigues (5320_CR45) 2008; 20
A. Kuh (5320_CR38) 1990
G. Cormode (5320_CR10) 2007
G. Widmer (5320_CR47) 1996; 23
M. Kearns (5320_CR32) 1994
R. Duda (5320_CR16) 1973
J. Gama (5320_CR21) 2009
C. Hartl (5320_CR24) 2007
T. Mitchell (5320_CR42) 1997
A. Bifet (5320_CR6) 2010; 11
E. S. Page (5320_CR44) 1954; 41
M. Basseville (5320_CR4) 1993
I. Mierswa (5320_CR41) 2006
Y. Chi (5320_CR9) 2006; 10
5320_CR28
F. Ferrer-Troyano (5320_CR17) 2004
(5320_CR30) 2011
J. Gama (5320_CR19) 2004
References_xml – reference: MitchellT.Machine learning1997New YorkMcGraw-Hill0913.68167
– reference: Dietterich, T. (1996). Approximate statistical tests for comparing supervised classification learning algorithms. Corvallis, technical report nr. 97.331, Oregon State University.
– reference: HultenG.DomingosP.Catching up with the data: research issues in mining data streamsProc. of workshop on research issues in data mining and knowledge discovery2001
– reference: HultenG.SpencerL.DomingosP.Mining time-changing data streamsProceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM97106
– reference: WidmerG.KubatM.Learning in the presence of concept drift and hidden contextsMachine Learning19962369101
– reference: BachS. H.MaloofM. A.Paired learners for concept driftICDM2008Los AlamitosIEEE Comput. Soc.2332
– reference: Hulten, G., & Domingos, P. (2003). VFML—a toolkit for mining high-speed time-changing data streams. Technical report, University of Washington. http://www.cs.washington.edu/dm/vfml/
– reference: GamaJ.SebastiãoR.RodriguesP. P.Issues in evaluation of stream learning algorithmsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2009New YorkACM32933810.1145/1557019.1557060
– reference: DomingosP.HultenG.ParsaI.RamakrishnanR.StolfoS.Mining high-speed data streamsProceedings of the ACM sixth international conference on knowledge discovery and data mining2000New YorkACM718010.1145/347090.347107
– reference: KolterJ. Z.MaloofM. A.Dynamic weighted majority: an ensemble method for drifting conceptsJournal of Machine Learning Research20078275527901222.68237
– reference: KoychevI.Gradual forgetting for adaptation to concept driftProceedings of ECAI workshop current issues in spatio-temporal reasoning2000LeipzigECAI Press101106
– reference: GamaJ.KosinaP.Learning decision rules from data streamsProceedings of the 22nd international joint conference on artificial intelligence, IJCAI201112551260
– reference: BassevilleM.NikiforovI.Detection of abrupt changes: theory and applications1993New YorkPrentice Hall
– reference: KearnsM.VaziraniU.An introduction to computational learning theory1994CambridgeMIT Press
– reference: GhoshB.SenP.Handbook of sequential analysis1991New YorkDekker0753.62046
– reference: Asuncion, A., & Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html.
– reference: GamaJ.MedasP.CastilloG.RodriguesP.BazzanA. L. C.LabidiS.Learning with drift detectionAdvances in artificial intelligence—SBIA 20042004BerlinSpringer28629510.1007/978-3-540-28645-5_29
– reference: HerbsterM.WarmuthM.Tracking the best expertMachine Learning19983221511780912.6816510.1023/A:1007424614876
– reference: KlinkenbergR.Learning drifting concepts: example selection vs. example weightingIntelligent Data Analysis200483281300
– reference: BabcockB.DatarM.MotwaniR.O’CallaghanL.MiloT.Maintaining variance and k-medians over data stream windowsProceedings of the 22nd symposium on principles of database systems2003New YorkACM234243
– reference: GamaJ.RochaR.MedasP.Accurate decision trees for mining high-speed data streamsProceedings of the ACM SIGKDD international conference on knowledge discovery and data mining2003New YorkACM523528
– reference: RodriguesP. P.GamaJ.PedrosoJ. P.Hierarchical clustering of time series data streamsIEEE Transactions on Knowledge and Data Engineering200820561562710.1109/TKDE.2007.190727
– reference: HoeffdingW.Probability inequalities for sums of bounded random variablesJournal of the American Statistical Association19635830113301443630127.1060210.1080/01621459.1963.10500830
– reference: BifetA.HolmesG.KirkbyR.PfahringerB.MOA: massive online analysisJournal of Machine Learning Research20101116011604
– reference: PageE. S.Continuous inspection schemesBiometrika1954411/2100115888500056.3800210.2307/2333009
– reference: ChiY.WangH.YuP. S.MuntzR. R.Catch the moment: maintaining closed frequent itemsets over a data stream sliding windowKnowledge and Information Systems200610326529410.1007/s10115-006-0003-0
– reference: DawidA. P.Statistical theory: the prequential approachJournal of the Royal Statistical Society. Series A19841472782927638110557.6208010.2307/2981683
– reference: BifetA.GavaldàR.Learning from time-changing data with adaptive windowingProceedings SIAM international conference on data mining2007PhiladelphiaSIAM443448
– reference: JapkowiczN.ShahM.Evaluating learning algorithms: a classification perspective2011CambridgeCambridge University Press1230.68020
– reference: LiP.WuX.HuX.Mining recurring concept drifts with limited labeled streaming dataJournal of Machine Learning Research—Proceedings Track201013241252
– reference: Ferrer-TroyanoF.Aguilar-RuizJ. S.RiquelmeJ. C.Discovering decision rules from numerical data streamsProceedings of the ACM symposium on applied computing2004New YorkACM Press649653
– reference: StreetW. N.KimY.A streaming ensemble algorithm SEA for large-scale classificationProceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining2001New YorkACM Press377382
– reference: BishopC.Neural networks for pattern recognition1995LondonOxford University Press
– reference: GiannellaC.HanJ.PeiJ.YanX.YuP.KarguptaH.JoshiA.SivakumarK.YeshaY.Mining frequent patterns in data streams at multiple time granularitiesNext generation data mining2003Menlo Park/CambridgeAAAI Press/MIT Press
– reference: Kirkby, R. (2008). Improving Hoeffding trees. Ph.D. thesis, University of Waikato, New Zealand.
– reference: KuhA.PetscheT.RivestR.Learning time-varying conceptsProceedings advances in neural information processing1990San MateoMorgan Kaufmann183189
– reference: LiangC.ZhangY.SongQ.Decision tree for dynamic and uncertain data streamsJournal of Machine Learning Research—Proceedings Track201013209224
– reference: DatarM.GionisA.IndykP.MotwaniR.Maintaining stream statistics over sliding windowsSIAM Journal on Computing20023161794181319548791008.6803910.1137/S0097539701398363
– reference: DemsarJ.Statistical comparisons of classifiers over multiple data setsJournal of Machine Learning Research2006713022743601222.68184
– reference: KiferD.Ben-DavidS.GehrkeJ.Detecting change in data streamsProceedings of the international conference on very large data bases2004San MateoMorgan Kaufmann180191
– reference: MierswaI.WurstM.KlinkenbergR.ScholzM.EulerT.Yale: rapid prototyping for complex data mining tasksACM SIGKDD int. conf. on knowledge discovery and data mining2006New YorkACM Press93594010.1145/1150402.1150531
– reference: MoussH.MoussD.MoussN.SefouhiL.Test of Page-Hinkley, an approach for fault detection in an agro-alimentary production systemProceedings of the Asian control conference2004815818
– reference: HartlC.BaskiotisN.GellyS.SebagM.Change point detection and meta-bandits for online learning in dynamic environmentsConférence Francophone sur l’apprentissage automatique2007237250
– reference: BifetA.HolmesG.PfahringerB.FrankE.Fast perceptron decision tree learning from evolving data streamsAdvances in knowledge discovery and data mining201029931010.1007/978-3-642-13672-6_30
– reference: CormodeG.MuthukrishnanS.ZhuangW.Conquering the divide: continuous clustering of distributed data streamsICDE: proceedings of the international conference on data engineering200710361045
– reference: DudaR.HartP.Pattern classification and scene analysis1973New YorkWilley0277.68056
– reference: KatakisI.TsoumakasG.VlahavasI.Tracking recurring contexts using ensemble classifiers: an application to email filteringKnowledge and Information Systems20102237139110.1007/s10115-009-0206-2
– volume: 147
  start-page: 278
  year: 1984
  ident: 5320_CR12
  publication-title: Journal of the Royal Statistical Society. Series A
  doi: 10.2307/2981683
– volume: 10
  start-page: 265
  issue: 3
  year: 2006
  ident: 5320_CR9
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-006-0003-0
– volume: 13
  start-page: 241
  year: 2010
  ident: 5320_CR39
  publication-title: Journal of Machine Learning Research—Proceedings Track
– volume-title: Handbook of sequential analysis
  year: 1991
  ident: 5320_CR22
– volume: 20
  start-page: 615
  issue: 5
  year: 2008
  ident: 5320_CR45
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190727
– start-page: 1036
  volume-title: ICDE: proceedings of the international conference on data engineering
  year: 2007
  ident: 5320_CR10
– volume: 32
  start-page: 151
  issue: 2
  year: 1998
  ident: 5320_CR25
  publication-title: Machine Learning
  doi: 10.1023/A:1007424614876
– start-page: 815
  volume-title: Proceedings of the Asian control conference
  year: 2004
  ident: 5320_CR43
– start-page: 329
  volume-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2009
  ident: 5320_CR21
  doi: 10.1145/1557019.1557060
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 5320_CR8
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 7
  start-page: 1
  year: 2006
  ident: 5320_CR13
  publication-title: Journal of Machine Learning Research
– volume-title: Evaluating learning algorithms: a classification perspective
  year: 2011
  ident: 5320_CR30
– volume: 58
  start-page: 13
  issue: 301
  year: 1963
  ident: 5320_CR26
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500830
– volume: 22
  start-page: 371
  year: 2010
  ident: 5320_CR31
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-009-0206-2
– volume: 11
  start-page: 1601
  year: 2010
  ident: 5320_CR6
  publication-title: Journal of Machine Learning Research
– volume-title: An introduction to computational learning theory
  year: 1994
  ident: 5320_CR32
  doi: 10.7551/mitpress/3897.001.0001
– start-page: 443
  volume-title: Proceedings SIAM international conference on data mining
  year: 2007
  ident: 5320_CR5
– ident: 5320_CR14
– start-page: 97
  volume-title: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2001
  ident: 5320_CR29
– start-page: 523
  volume-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2003
  ident: 5320_CR20
  doi: 10.1145/956750.956813
– volume: 8
  start-page: 2755
  year: 2007
  ident: 5320_CR36
  publication-title: Journal of Machine Learning Research
– ident: 5320_CR28
– volume: 31
  start-page: 1794
  issue: 6
  year: 2002
  ident: 5320_CR11
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539701398363
– start-page: 23
  volume-title: ICDM
  year: 2008
  ident: 5320_CR3
– start-page: 180
  volume-title: Proceedings of the international conference on very large data bases
  year: 2004
  ident: 5320_CR33
– start-page: 649
  volume-title: Proceedings of the ACM symposium on applied computing
  year: 2004
  ident: 5320_CR17
– start-page: 237
  volume-title: Conférence Francophone sur l’apprentissage automatique
  year: 2007
  ident: 5320_CR24
– start-page: 299
  volume-title: Advances in knowledge discovery and data mining
  year: 2010
  ident: 5320_CR7
  doi: 10.1007/978-3-642-13672-6_30
– volume: 41
  start-page: 100
  issue: 1/2
  year: 1954
  ident: 5320_CR44
  publication-title: Biometrika
  doi: 10.2307/2333009
– volume-title: Detection of abrupt changes: theory and applications
  year: 1993
  ident: 5320_CR4
– start-page: 377
  volume-title: Proceedings 7th ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2001
  ident: 5320_CR46
– start-page: 286
  volume-title: Advances in artificial intelligence—SBIA 2004
  year: 2004
  ident: 5320_CR19
  doi: 10.1007/978-3-540-28645-5_29
– start-page: 935
  volume-title: ACM SIGKDD int. conf. on knowledge discovery and data mining
  year: 2006
  ident: 5320_CR41
  doi: 10.1145/1150402.1150531
– ident: 5320_CR34
– start-page: 183
  volume-title: Proceedings advances in neural information processing
  year: 1990
  ident: 5320_CR38
– volume-title: Next generation data mining
  year: 2003
  ident: 5320_CR23
– start-page: 1255
  volume-title: Proceedings of the 22nd international joint conference on artificial intelligence, IJCAI
  year: 2011
  ident: 5320_CR18
– volume: 23
  start-page: 69
  year: 1996
  ident: 5320_CR47
  publication-title: Machine Learning
– volume-title: Pattern classification and scene analysis
  year: 1973
  ident: 5320_CR16
– volume-title: Proc. of workshop on research issues in data mining and knowledge discovery
  year: 2001
  ident: 5320_CR27
– ident: 5320_CR1
– start-page: 234
  volume-title: Proceedings of the 22nd symposium on principles of database systems
  year: 2003
  ident: 5320_CR2
– start-page: 101
  volume-title: Proceedings of ECAI workshop current issues in spatio-temporal reasoning
  year: 2000
  ident: 5320_CR37
– start-page: 71
  volume-title: Proceedings of the ACM sixth international conference on knowledge discovery and data mining
  year: 2000
  ident: 5320_CR15
  doi: 10.1145/347090.347107
– volume: 13
  start-page: 209
  year: 2010
  ident: 5320_CR40
  publication-title: Journal of Machine Learning Research—Proceedings Track
– volume-title: Machine learning
  year: 1997
  ident: 5320_CR42
– volume: 8
  start-page: 281
  issue: 3
  year: 2004
  ident: 5320_CR35
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2004-8305
SSID ssj0002686
Score 2.5758953
Snippet Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating...
SourceID unpaywall
proquest
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Change detection
Computer Science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Control
Data analysis
Decision making models
Errors
Estimators
Exact sciences and technology
Fading
Learning
Mathematical models
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Software
Streams
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fKhFbNWWXmslBR9EWUw2X7sPRdqiSKGnFAXfwn5eH87ctXdH8b_vTC4bvQevb4GdJbuz85XMzvwADtNC2KxwnsU61SxzImbaC8mMs4nOhU24oYzuj0FxeZt9v8vv1mAQamHoWmWwiY2htmND_8hPyY6i8055ejb5zQg1irKrAUJDtdAK9nPTYmwdNjh1xurBxtfzwfXPzjbzosF-RNXKGfn2kOdcFNM1bXIJG4DKiuWSp9qaqCkyzS_QLpbC0S6D-hJezOuJevirRqMnTuriNWy30WX0ZSEOO7Dm6l14FZAbolaR9-Doqo5Cn-96GFHBiLqPWgSJYaRGQ9z67Nf99A3cXpzffLtkLWYCM1mez5hInCu40ZrH1MldpiaTzieK-zIvE-NRR73VPpde44PMeSxK6yx6bouxnrTpW-jV49q9g8hbDD6cQGrPs9JZERfSZKUVTiptVdqHOPCnMm1DccK1GFWPrZCJpRWytCKWVrIPx92UyaKbxirigyWmdzOomojzGBewH06hajVvWj3KSR8-dcOoM5QIUbUbz5EGRzF0KctiBQ1-x2GoJWTWh5Nwwk9e8_yqTzoh-P8e36_ewgfY5A38Bt1524fe7M_cfcQgaKYPWsn-B6iQAMM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UFFrJ94bS0p9KFYciabbLL7WKSlCNY-9KB9Cvt5Fa-5o8kh-tc7c_nwTrAivgVmNsl-zm-Zmd8AHCSZsGnmfBjpRIepE1GovZChcTbWXNiYGfLofjrPzsbpxyt-tQEnXS7MMtq9c0k2OQ3E0lTW7-fWr3j1K_LoUPwEXqUoCViOUP4ANjOOkHwAm-Pzi-PrBkHykKz4kjc1p1i1jHfezSaFbv09a_bpyVxVOFS-qXGxBkJ7v-ljeLgo5-r7NzWdrpim060mhKRaMhpSRMrX0aLWI_PjN77H_-71M3jagtfguFltz2HDlS9gqysMEbTnxEs4_FwGHY14OQkoH0XdBm2BikmgppPZ3Zf65rZ6BePTk8sPZ2FbkiE0Ked1KGLnMma0ZhERxcvEpNL5WDGf8zw2Ho8Ab7Xn0mt8kJxFIrfOIjCwCCWlTV7DoJyV7g0E3iK2cQK1PUtzZ0WUSZPmVjiptFXJEKJuIgrT8pVT2Yxp8YtpmUajwNEoaDQKOYR3fZN5Q9Zxn_Le2uz2LShZibEIf2C3m-6i3dhVQeYcMWTCULzfi3FLkp9FlW62QB2UIjLK8-weHbwmIpITMh3CUTfzK5_5818f9avt733c_iftHXjElsU-KMJuFwb13cK9RchV6712Q_0ExCQf7g
  priority: 102
  providerName: Unpaywall
Title On evaluating stream learning algorithms
URI https://link.springer.com/article/10.1007/s10994-012-5320-9
https://www.proquest.com/docview/1284264323
https://www.proquest.com/docview/1323224776
https://www.proquest.com/docview/1753554894
https://link.springer.com/content/pdf/10.1007%2Fs10994-012-5320-9.pdf
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEB_8eLgTUe9OsX6UCPcgJ4Fkk012H6u0FqVVDnvoU9jN7lahpsW2iP-9s2kSW1APnzZhZz8yu7MzYXZ-A_A7iJgKI21cTwbSDTXzXGkYd1OtfEmZ8klqPbqdbtTuhRe39LaI4x6Xt91Ll2R-Us8Fu-Uwtha734b98mVYpRbNCzdxjzSq45dEeXpHlB7qWvVdujLf62JBGa2PxBj5YmYJLRYszspJugbfptlIvDyLwWBOD7W2YKMwIJ3GbMV_wJLOfsJmmZzBKWT1FxxfZU4J5Z31HRsTIh6dIklE3xGD_vDpYXL_ON6GXqt5c9Z2i7QIbhpSOnGZr3VEUimJZ8HaeZCGXBtfEBPT2E8NiqFR0lBuJD5wSjwWK61QOStkF1fBDqxkw0zvgmMU2heaIbUhYawV8yKehrFimgupRFADr-RPkhaY4TZ1xSB5Qzu2LE2QpYllacJr8KdqMpoBZnxGXF9getXCBgwR4uEEDspVSArhGidWpaIdFxCsPqqqUSysr0NkejhFGqxF6ySOo09o8FcNrSnGwxqclCs8N8zHsz6pNsH_v3HvS33vw3eSJ9ywt9wOYGXyNNWHaPZMZB2WWeu8DquN87vLpi07_9odLE-b3eu_9VwI8K3XvW7cvQKKtv4k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFBU9Y26LaWp1EpVkUXiOIl9QFUfoKXAtqpA4pbasb0cluzC7grx5_rbOs7agT10e-IWyXZiz8MzznjmA3iX5lyz3FgSq1QRZnhMlOWCVEYnKuM6oZWL6B718u4J-36anS7Bn5AL465Vhj2x2aj1sHL_yLfdPorGO6Xpp9EFcahRLroaIDSkh1bQO02JMZ_YcWCur_AIN97Z_4b8fk_p3u7x1y7xKAOkYlk2ITwxJqeVUjR2tc9FWjFhbCKpLbIiqSxKtdXKZsIqfBAZjXmhjUZbp9E7EjrF996DFZYygYe_lS-7vZ-_WltA8wZrElU5I86XCHHVWfJeU5bXYRG4NGYxZxkfjOQYmWRn6Bpz7m8bsV2D1Wk9ktdXcjC4ZRT3HsND781Gn2fi9wSWTP0UHgWkiMhvHM_gw486CnXF637kElTkeeQRK_qRHPSR1JOz8_FzOLkT6q3Dcj2szQuIrEZnx3DsbSkrjOZxLipWaG6EVFqmHYgDfcrKFzB3OBqD8qb0siNpiSQtHUlL0YGP7ZDRrHrHos6bc0RvR7jsJUpjnMBG4ELpNX1c3shlB962zaijLvAiazOcYh9sRVepKPIFffDciK4dF6wDW4HDtz7z71lvtULw_zW-XLyEN7DaPT46LA_3ewev4D5toD_cfbsNWJ5cTs1rdMAmatNLeQS_71qx_gJ4Wj3p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvEQ4o1YKCVIIKFWVhPnZR8QQpSlpVA4UKm34Ody2GYXdldV_xq_jpkkTrsHllNvkWwn9jw844xnPoCXaSFsVjjPYp1qljkRM-2FZMbZROfCJtxQRPfLYbF3lH06zo_X4E_IhaFrlWFPbDZqOzH0j3yH9lE03ilPd3x3LeLb7vDt9BcjBCmKtAY4jVZEDtzZKR7fZm_2d5HXrzgffvj-fo91CAPMZHk-ZyJxruBGax5T3XOZmkw6nyjuy7xMjEeJ9lb7XHqNDzLnsSits2jnLHpG0qb43itwtaQq7pSlPvzYWwFeNCiTqMQ5Iy8iRFTbtL2mIC-hEFACs1yyibemaobs8S2uxpLj28dqb8L1RT1VZ6dqPL5gDod34Xbnx0bvWsG7B2uuvg93AkZE1G0ZD-D11zoKFcXrUUSpKeok6rAqRpEaj5Cw858ns4dwdCm0ewTr9aR2jyHyFt0cJ7C351nprIgLabLSCieVtiodQBzoU5mudDkhaIyr86LLRNIKSVoRSSs5gK1-yLSt27Gq8-YS0fsRlLfEeYwT2AhcqDodn1XnEjmAF30zaieFXFTtJgvsg63oJJVlsaIPnhjRqRMyG8B24PCFz_x71tu9EPx_jU9WL-E5XEN1qj7vHx48hRu8wfygi3YbsD7_vXDP0POa681GxCP4cdk69RewpDuD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q9UFFrJ94bS0p9KFYciabbLL7WKSlCNY-9KB9Cvt5Fa-5o8kh-tc7c_nwTrAivgVmNsl-zm-Zmd8AHCSZsGnmfBjpRIepE1GovZChcTbWXNiYGfLofjrPzsbpxyt-tQEnXS7MMtq9c0k2OQ3E0lTW7-fWr3j1K_LoUPwEXqUoCViOUP4ANjOOkHwAm-Pzi-PrBkHykKz4kjc1p1i1jHfezSaFbv09a_bpyVxVOFS-qXGxBkJ7v-ljeLgo5-r7NzWdrpim060mhKRaMhpSRMrX0aLWI_PjN77H_-71M3jagtfguFltz2HDlS9gqysMEbTnxEs4_FwGHY14OQkoH0XdBm2BikmgppPZ3Zf65rZ6BePTk8sPZ2FbkiE0Ked1KGLnMma0ZhERxcvEpNL5WDGf8zw2Ho8Ab7Xn0mt8kJxFIrfOIjCwCCWlTV7DoJyV7g0E3iK2cQK1PUtzZ0WUSZPmVjiptFXJEKJuIgrT8pVT2Yxp8YtpmUajwNEoaDQKOYR3fZN5Q9Zxn_Le2uz2LShZibEIf2C3m-6i3dhVQeYcMWTCULzfi3FLkp9FlW62QB2UIjLK8-weHbwmIpITMh3CUTfzK5_5818f9avt733c_iftHXjElsU-KMJuFwb13cK9RchV6712Q_0ExCQf7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evaluating+stream+learning+algorithms&rft.jtitle=Machine+learning&rft.au=Gama%2C+Joao&rft.au=Sebastiao%2C+Raquel&rft.au=Rodrigues%2C+Pedro+Pereira&rft.date=2013-03-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=90&rft.issue=3&rft.spage=317&rft.epage=346&rft_id=info:doi/10.1007%2Fs10994-012-5320-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon