A comprehensive mechanistic study on the proton FLASH sparing effect in zebrafish embryos: From DNA damage to developmental abnormalities
•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation i...
Saved in:
Published in | Radiotherapy and oncology Vol. 207; p. 110848 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-8140 1879-0887 1879-0887 |
DOI | 10.1016/j.radonc.2025.110848 |
Cover
Abstract | •Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect.
Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities.
Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation.
No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments.
UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities. |
---|---|
AbstractList | Highlights•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation. •Proton FLASH reduces radiation-induced DNA damage. •Proton FLASH affects expression of genes involved in cell cycle and p53 regulation. •Proton FLASH reduces apoptosis induction in the embryonic tail. •Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect. Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities. •Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect. Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities. Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities.BACKGROUND AND PURPOSEUltra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities.Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation.MATERIALS AND METHODSZebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation.No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments.RESULTSNo significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments.UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.CONCLUSIONUHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities. |
ArticleNumber | 110848 |
Author | Koumeir, Charbel Potiron, Vincent Servagent, Noël Sterpin, Edmond Haustermans, Karin Evin, Manon Macaeva, Ellina Haddad, Ferid Saade, Gaëlle Chiavassa, Sophie Supiot, Stéphane Mouchard, Quentin Bogaerts, Eva Isebaert, Sofie |
Author_xml | – sequence: 1 givenname: Eva surname: Bogaerts fullname: Bogaerts, Eva email: eva.bogaerts@kuleuven.be organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium – sequence: 2 givenname: Gaëlle surname: Saade fullname: Saade, Gaëlle organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France – sequence: 3 givenname: Ellina surname: Macaeva fullname: Macaeva, Ellina organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium – sequence: 4 givenname: Sophie surname: Chiavassa fullname: Chiavassa, Sophie organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 5 givenname: Manon surname: Evin fullname: Evin, Manon organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 6 givenname: Ferid surname: Haddad fullname: Haddad, Ferid organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 7 givenname: Sofie surname: Isebaert fullname: Isebaert, Sofie organization: Department of Oncology, KU Leuven 3000 Leuven, Belgium – sequence: 8 givenname: Charbel surname: Koumeir fullname: Koumeir, Charbel organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 9 givenname: Quentin surname: Mouchard fullname: Mouchard, Quentin organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 10 givenname: Vincent surname: Potiron fullname: Potiron, Vincent organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France – sequence: 11 givenname: Noël surname: Servagent fullname: Servagent, Noël organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France – sequence: 12 givenname: Stéphane surname: Supiot fullname: Supiot, Stéphane organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France – sequence: 13 givenname: Edmond surname: Sterpin fullname: Sterpin, Edmond organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium – sequence: 14 givenname: Karin surname: Haustermans fullname: Haustermans, Karin email: karin.haustermans@uzleuven.be organization: Department of Oncology, KU Leuven 3000 Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40086473$$D View this record in MEDLINE/PubMed |
BookMark | eNqVksGO0zAQhi20iO0uvAFCPnJJsRMndhBCqhbKIlVwWDhbrjPeusR2sJ1K5Q14axJl4YYQp5nDN_9o_n-u0IUPHhB6TsmaEtq8Oq6j6oLX65KU9ZpSIph4hFZU8LYgQvALtJowXgjKyCW6SulICClJxZ-gS0aIaBivVujnBuvghggH8MmeADvQB-VtylbjlMfujIPH-QB4iCFP7Xa3ubvFaVDR-nsMxoDO2Hr8A_ZRGZsOGNw-nkN6jbcxOPzu0wZ3yql7wDngDk7Qh8GBz6rHau9DdKq32UJ6ih4b1Sd49lCv0dft-y83t8Xu84ePN5tdoVld54LzWouGNEpxDkY1lBrSNsLUhFEBVdOpqmSVqUuqWt7UuuW1aQkVLYi2US2rrtHLRXc66PsIKUtnk4a-Vx7CmGRFOWeCli2f0BcP6Lh30MkhWqfiWf62bwLYAugYUopg_iCUyDkleZRLSnJOSS4pTWNvlzGY7jxZiDJpC15DZ-Nkp-yC_V8B3Vtvteq_wRnSMYzRTx5KKlMpibybH2H-g7ImhLJqNuHN3wX-vf8XSJPFNQ |
Cites_doi | 10.1371/journal.pone.0179259 10.1016/j.radonc.2022.07.011 10.1016/j.radonc.2024.110197 10.1016/j.clon.2019.04.001 10.3390/ani10061096 10.1259/bjr.20211150 10.1667/RADE-20-00060.1 10.1038/387299a0 10.1002/cbin.11117 10.3390/ijms22169053 10.1897/05-460R.1 10.1016/j.radonc.2019.02.009 10.1038/s41598-020-78017-7 10.1002/mp.15184 10.1016/j.radonc.2021.02.003 10.1073/pnas.1901777116 10.1093/mutage/get038 10.3389/fonc.2022.995612 10.3389/fonc.2019.01563 10.1038/srep33601 10.1093/rpd/ncy301 10.7555/JBR.27.20130030 10.1158/1078-0432.CCR-17-3375 10.1126/scitranslmed.3008973 10.1158/1078-0432.CCR-19-1440 10.1038/nature12111 10.3389/fonc.2021.686142 10.1016/j.radonc.2022.05.025 10.1146/annurev-cancerbio-061421-022217 10.1016/j.ijrobp.2022.01.049 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.radonc.2025.110848 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0887 |
EndPage | 110848 |
ExternalDocumentID | 40086473 10_1016_j_radonc_2025_110848 S0167814025001434 1_s2_0_S0167814025001434 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 E3Z EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IHE J1W J5H KOM M27 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K UV1 WUQ X7M Z5R ZGI ZXP ~G- AFCTW AGRNS RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c455t-775c8606aa77efa611f0968f50418e36da3243f521a9765c975f90189e896a943 |
IEDL.DBID | .~1 |
ISSN | 0167-8140 1879-0887 |
IngestDate | Thu Sep 04 21:34:51 EDT 2025 Mon May 19 02:16:15 EDT 2025 Sun Jul 06 05:09:03 EDT 2025 Sat Jun 21 16:54:41 EDT 2025 Thu Jun 12 23:11:06 EDT 2025 Tue Aug 26 16:42:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-775c8606aa77efa611f0968f50418e36da3243f521a9765c975f90189e896a943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40086473 |
PQID | 3177481297 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3177481297 pubmed_primary_40086473 crossref_primary_10_1016_j_radonc_2025_110848 elsevier_sciencedirect_doi_10_1016_j_radonc_2025_110848 elsevier_clinicalkeyesjournals_1_s2_0_S0167814025001434 elsevier_clinicalkey_doi_10_1016_j_radonc_2025_110848 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Radiotherapy and oncology |
PublicationTitleAlternate | Radiother Oncol |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pawelke (b0055) 2021; 158 Lin (b0090) 2022; 12 Frontiers in Oncology, 2021. Allen (b0155) 2020; 194 Reinardy (b0140) 2013; 28 Levy (b0115) 2020; 10 Vozenin, Hendry, Limoli (b0010) 2019; 31 Poirier (b0065) 2019 Koumeir (b0060) 2019; 183 Honjo, Ichinohe (b0130) 2019; 43 Limoli, Vozenin (b0085) 2023; 7 Perstin (b0110) 2022; 113 Kosmehl (b0070) 2006; 25 Chen (b0165) 2020; 10 Wilson (b0015) 2019; 9 Howe (b0030) 2013; 496 Martinez-Lopez, Póvoa, Fior (b0075) 2021; 172 Karsch (b0045) 2022; 173 Horst (b0095) 2024; 194 Favaudon (b0020) 2014; 6 Nag (b0150) 2013; 27 Vozenin (b0005) 2019; 25 Saade (b0035) 2023; 8 . Brönnimann (b0160) 2016; 6 Pucci, Forte, Cavalieri (b0025) 2021; 22 Kacem (b0040) 2022; 175 Montay-Gruel (b0050) 2019; 116 Adrian, G., et al. Friedl (b0080) 2022; 49 Fouillade (b0105) 2020; 26 Cooper (b0100) 2022; 95 Kubbutat, Jones, Vousden (b0145) 1997; 387 Buonanno, Grilj, Brenner (b0125) 2019; 139 Hurem (b0135) 2017; 12 Kacem (10.1016/j.radonc.2025.110848_b0040) 2022; 175 Horst (10.1016/j.radonc.2025.110848_b0095) 2024; 194 Hurem (10.1016/j.radonc.2025.110848_b0135) 2017; 12 Vozenin (10.1016/j.radonc.2025.110848_b0010) 2019; 31 Limoli (10.1016/j.radonc.2025.110848_b0085) 2023; 7 Pawelke (10.1016/j.radonc.2025.110848_b0055) 2021; 158 Wilson (10.1016/j.radonc.2025.110848_b0015) 2019; 9 Favaudon (10.1016/j.radonc.2025.110848_b0020) 2014; 6 Levy (10.1016/j.radonc.2025.110848_b0115) 2020; 10 Vozenin (10.1016/j.radonc.2025.110848_b0005) 2019; 25 Saade (10.1016/j.radonc.2025.110848_b0035) 2023; 8 Buonanno (10.1016/j.radonc.2025.110848_b0125) 2019; 139 Pucci (10.1016/j.radonc.2025.110848_b0025) 2021; 22 Karsch (10.1016/j.radonc.2025.110848_b0045) 2022; 173 Fouillade (10.1016/j.radonc.2025.110848_b0105) 2020; 26 Poirier (10.1016/j.radonc.2025.110848_b0065) 2019 Chen (10.1016/j.radonc.2025.110848_b0165) 2020; 10 Kubbutat (10.1016/j.radonc.2025.110848_b0145) 1997; 387 Nag (10.1016/j.radonc.2025.110848_b0150) 2013; 27 Honjo (10.1016/j.radonc.2025.110848_b0130) 2019; 43 Martinez-Lopez (10.1016/j.radonc.2025.110848_b0075) 2021; 172 Montay-Gruel (10.1016/j.radonc.2025.110848_b0050) 2019; 116 10.1016/j.radonc.2025.110848_b0120 Koumeir (10.1016/j.radonc.2025.110848_b0060) 2019; 183 Lin (10.1016/j.radonc.2025.110848_b0090) 2022; 12 Allen (10.1016/j.radonc.2025.110848_b0155) 2020; 194 Howe (10.1016/j.radonc.2025.110848_b0030) 2013; 496 Reinardy (10.1016/j.radonc.2025.110848_b0140) 2013; 28 Friedl (10.1016/j.radonc.2025.110848_b0080) 2022; 49 Cooper (10.1016/j.radonc.2025.110848_b0100) 2022; 95 Kosmehl (10.1016/j.radonc.2025.110848_b0070) 2006; 25 Brönnimann (10.1016/j.radonc.2025.110848_b0160) 2016; 6 Perstin (10.1016/j.radonc.2025.110848_b0110) 2022; 113 |
References_xml | – volume: 49 start-page: 1993 year: 2022 end-page: 2013 ident: b0080 publication-title: Med Phys – volume: 6 year: 2016 ident: b0160 publication-title: Sci Rep – volume: 7 start-page: 1 year: 2023 end-page: 21 ident: b0085 publication-title: Ann Rev Cancer Biol – reference: Adrian, G., et al., – volume: 116 start-page: 10943 year: 2019 end-page: 10951 ident: b0050 publication-title: PNAS – volume: 31 start-page: 407 year: 2019 end-page: 415 ident: b0010 publication-title: Clin Oncol (R Coll Radiol) – volume: 25 start-page: 35 year: 2019 end-page: 42 ident: b0005 publication-title: Clin Cancer Res – volume: 387 start-page: 299 year: 1997 end-page: 303 ident: b0145 publication-title: Nature – volume: 9 start-page: 1563 year: 2019 ident: b0015 publication-title: Front Oncol – year: 2019 ident: b0065 publication-title: in – volume: 10 year: 2020 ident: b0165 publication-title: Animals – volume: 12 year: 2022 ident: b0090 publication-title: Front Oncol – volume: 173 start-page: 49 year: 2022 end-page: 54 ident: b0045 publication-title: Radiother Oncol – volume: 95 year: 2022 ident: b0100 publication-title: Br J Radiol – volume: 43 start-page: 516 year: 2019 end-page: 527 ident: b0130 publication-title: Cell Biol Int – volume: 158 start-page: 7 year: 2021 end-page: 12 ident: b0055 publication-title: Radiother Oncol – volume: 194 year: 2024 ident: b0095 publication-title: Radiother Oncol – reference: Frontiers in Oncology, 2021. – volume: 22 year: 2021 ident: b0025 publication-title: Int J Mol Sci – volume: 12 year: 2017 ident: b0135 publication-title: PLoS One – volume: 8 year: 2023 ident: b0035 publication-title: Adv Radiat Oncol – volume: 25 start-page: 2097 year: 2006 end-page: 2106 ident: b0070 publication-title: Environ Toxicol Chem – volume: 10 year: 2020 ident: b0115 publication-title: Sci Rep – reference: . – volume: 183 start-page: 270 year: 2019 end-page: 273 ident: b0060 publication-title: Radiat Prot Dosim – volume: 28 start-page: 601 year: 2013 end-page: 608 ident: b0140 publication-title: Mutagenesis – volume: 26 start-page: 1497 year: 2020 end-page: 1506 ident: b0105 publication-title: Clin Cancer Res – volume: 496 start-page: 498 year: 2013 end-page: 503 ident: b0030 publication-title: Nature – volume: 175 start-page: 197 year: 2022 end-page: 202 ident: b0040 publication-title: Radiother Oncol – volume: 6 year: 2014 ident: b0020 publication-title: Sci Transl Med – volume: 194 start-page: 625 year: 2020 end-page: 635 ident: b0155 publication-title: Radiat Res – volume: 172 year: 2021 ident: b0075 publication-title: Jove-Journal of Visualized Experiments – volume: 139 start-page: 51 year: 2019 end-page: 55 ident: b0125 publication-title: Radiother Oncol – volume: 113 start-page: 437 year: 2022 end-page: 447 ident: b0110 publication-title: Int J Radiat Oncol Biol Phys – volume: 27 start-page: 254 year: 2013 end-page: 271 ident: b0150 publication-title: J Biomed Res – volume: 172 year: 2021 ident: 10.1016/j.radonc.2025.110848_b0075 article-title: Generation of Zebrafish Larval Xenografts and Tumor Behavior Analysis publication-title: Jove-Journal of Visualized Experiments – volume: 12 year: 2017 ident: 10.1016/j.radonc.2025.110848_b0135 article-title: Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression publication-title: PLoS One doi: 10.1371/journal.pone.0179259 – volume: 175 start-page: 197 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0040 article-title: Comparing radiolytic production of H2O2 and development of Zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams publication-title: Radiother Oncol doi: 10.1016/j.radonc.2022.07.011 – volume: 194 year: 2024 ident: 10.1016/j.radonc.2025.110848_b0095 article-title: Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model publication-title: Radiother Oncol doi: 10.1016/j.radonc.2024.110197 – volume: 8 year: 2023 ident: 10.1016/j.radonc.2025.110848_b0035 article-title: Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos publication-title: Adv Radiat Oncol – volume: 31 start-page: 407 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0010 article-title: Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken publication-title: Clin Oncol (R Coll Radiol) doi: 10.1016/j.clon.2019.04.001 – volume: 10 year: 2020 ident: 10.1016/j.radonc.2025.110848_b0165 article-title: UVB Irradiation Induced Cell Damage and Early Onset of Expression in Zebrafish publication-title: Animals doi: 10.3390/ani10061096 – volume: 95 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0100 article-title: FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate publication-title: Br J Radiol doi: 10.1259/bjr.20211150 – volume: 194 start-page: 625 year: 2020 ident: 10.1016/j.radonc.2025.110848_b0155 article-title: Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation publication-title: Radiat Res doi: 10.1667/RADE-20-00060.1 – volume: 387 start-page: 299 year: 1997 ident: 10.1016/j.radonc.2025.110848_b0145 article-title: Regulation of p53 stability by Mdm2 publication-title: Nature doi: 10.1038/387299a0 – volume: 43 start-page: 516 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0130 article-title: Cellular responses to ionizing radiation change quickly over time during early development in zebrafish publication-title: Cell Biol Int doi: 10.1002/cbin.11117 – volume: 22 year: 2021 ident: 10.1016/j.radonc.2025.110848_b0025 article-title: Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish publication-title: Int J Mol Sci doi: 10.3390/ijms22169053 – volume: 25 start-page: 2097 year: 2006 ident: 10.1016/j.radonc.2025.110848_b0070 article-title: A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos publication-title: Environ Toxicol Chem doi: 10.1897/05-460R.1 – volume: 139 start-page: 51 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0125 article-title: Biological effects in normal cells exposed to FLASH dose rate protons publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.02.009 – volume: 10 year: 2020 ident: 10.1016/j.radonc.2025.110848_b0115 article-title: Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice publication-title: Sci Rep doi: 10.1038/s41598-020-78017-7 – volume: 49 start-page: 1993 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0080 article-title: Radiobiology of the FLASH effect publication-title: Med Phys doi: 10.1002/mp.15184 – volume: 158 start-page: 7 year: 2021 ident: 10.1016/j.radonc.2025.110848_b0055 article-title: Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage publication-title: Radiother Oncol doi: 10.1016/j.radonc.2021.02.003 – volume: 116 start-page: 10943 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0050 article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species publication-title: PNAS doi: 10.1073/pnas.1901777116 – volume: 28 start-page: 601 year: 2013 ident: 10.1016/j.radonc.2025.110848_b0140 article-title: Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish publication-title: Mutagenesis doi: 10.1093/mutage/get038 – volume: 12 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0090 article-title: Mechanisms of FLASH effect publication-title: Front Oncol doi: 10.3389/fonc.2022.995612 – volume: 9 start-page: 1563 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0015 article-title: Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold? publication-title: Front Oncol doi: 10.3389/fonc.2019.01563 – year: 2019 ident: 10.1016/j.radonc.2025.110848_b0065 article-title: The Injection and Chopper-Based System at Arronax C70XP Cyclotron – volume: 6 year: 2016 ident: 10.1016/j.radonc.2025.110848_b0160 article-title: Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage publication-title: Sci Rep doi: 10.1038/srep33601 – volume: 183 start-page: 270 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0060 article-title: The Radiobiological Platform at Arronax publication-title: Radiat Prot Dosim doi: 10.1093/rpd/ncy301 – volume: 27 start-page: 254 year: 2013 ident: 10.1016/j.radonc.2025.110848_b0150 article-title: The MDM2-p53 pathway revisited publication-title: J Biomed Res doi: 10.7555/JBR.27.20130030 – volume: 25 start-page: 35 year: 2019 ident: 10.1016/j.radonc.2025.110848_b0005 article-title: The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-3375 – volume: 6 year: 2014 ident: 10.1016/j.radonc.2025.110848_b0020 article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3008973 – volume: 26 start-page: 1497 year: 2020 ident: 10.1016/j.radonc.2025.110848_b0105 article-title: FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-1440 – volume: 496 start-page: 498 year: 2013 ident: 10.1016/j.radonc.2025.110848_b0030 article-title: The zebrafish reference genome sequence and its relationship to the human genome publication-title: Nature doi: 10.1038/nature12111 – ident: 10.1016/j.radonc.2025.110848_b0120 doi: 10.3389/fonc.2021.686142 – volume: 173 start-page: 49 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0045 article-title: Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo publication-title: Radiother Oncol doi: 10.1016/j.radonc.2022.05.025 – volume: 7 start-page: 1 year: 2023 ident: 10.1016/j.radonc.2025.110848_b0085 article-title: Reinventing Radiobiology in the Light of FLASH Radiotherapy publication-title: Ann Rev Cancer Biol doi: 10.1146/annurev-cancerbio-061421-022217 – volume: 113 start-page: 437 year: 2022 ident: 10.1016/j.radonc.2025.110848_b0110 article-title: Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2022.01.049 |
SSID | ssj0002037 |
Score | 2.4715016 |
Snippet | •Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects... Highlights•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation. •Proton FLASH reduces radiation-induced DNA damage. •Proton FLASH... Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110848 |
SubjectTerms | Abnormalities, Radiation-Induced Animals Apoptosis - radiation effects Cell Proliferation - radiation effects DNA Damage - radiation effects Dose-Response Relationship, Radiation Embryo, Nonmammalian - radiation effects Hematology, Oncology, and Palliative Medicine Protons - adverse effects Zebrafish - embryology |
Title | A comprehensive mechanistic study on the proton FLASH sparing effect in zebrafish embryos: From DNA damage to developmental abnormalities |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167814025001434 https://www.clinicalkey.es/playcontent/1-s2.0-S0167814025001434 https://dx.doi.org/10.1016/j.radonc.2025.110848 https://www.ncbi.nlm.nih.gov/pubmed/40086473 https://www.proquest.com/docview/3177481297 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIlVcEFA-lo9qkLiGTTZ2nHCLSldLKXsplXqz7MShi1inSrYHOHDnXzNjJ20RRaBeoiSyFccezzzLb54Ze811bBE3WPR-gkcYr0WUp02Gl8rKWPO4Mp5tscwWJ_zwVJxusf0xF4ZolYPvDz7de-vhzXTozen5ajU9JgI96TVhECeROtIE5VySrb_5cUXzmMVBN5P0van0mD7nOV6drltHQoYz4fnwdArQzeHpb_DTh6H5fXZvwI9QhiY-YFvWPWQ7H4cd8l32swRiiXf2LDDTYW0pt9fLMYPXkoXWAaI-IIUGvJ0flccL6OkwQvcZAr0DVg6-045ys-rPwK5N963t38K8a9fwbllCrdfohmDTQn3FOcJWaeMIAn_1Kq2P2Mn84NP-IhqOW4gqLsQGcbaoclzPaC2lbXSWJA2ub_JGxDzJbZrVGsFX2mC814hhRFVI0SCayAubF5kuePqYbbvW2acMTF3oOLXGiJrz2qZYxGSJzutGpMLIfMKisZfVeVDVUCPd7IsKo6JoVFQYlQkT41CoMWMUfZxCt_-PevKmerYfJmqvEtXPVKz-MKbrNX-zx__45qvRVhROVdp_0c62F71CqCY5AqpCTtiTYESXf89pbYnW--zW333O7tJToLG9YNub7sK-RMC0MXt-RuyxO-X7D4vlL6CpE98 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKkYALKt8LBQaJa9hkY8cJt1VhtcB2L22l3iw7cdpFrFMl2wMcuPdfd8ZOKIgiEJcoSmzF8YxnnuXnZ8Zecx1bxA0Wo5_gEeZrEeVpneGltDLWPC6NZ1sss_kR_3gsjrfY3rAXhmiVfewPMd1H6_7JuO_N8dlqNT4gAj3pNWESJ5E6foPd5HTMATr1m-9XPI9JHIQzSeCbig_75zzJq9VV40jJcCI8IZ6OAbo-P_0Jf_o8NNthd3sACdPQxntsy7r77NZ-v0T-gF1MgWjirT0N1HRYW9rc6_WYwYvJQuMAYR-QRAPezhbTgzl0dBqhO4HA74CVg2-0pFyvulOwa9N-bbq3MGubNbxbTqHSa4xDsGmguiIdYau0cYSBv3iZ1ofsaPb-cG8e9ectRCUXYoNAW5Q5Tmi0ltLWOkuSGic4eS1inuQ2zSqN6CutMeFrBDGiLKSoEU7khc2LTBc8fcS2XePsEwamKnScWmNExXllUyxiskTnVS1SYWQ-YtHQy-osyGqogW_2WQWrKLKKClYZMTGYQg1bRjHIKYz7f6knr6tnu36kdipR3UTF6jdv-rnmLw75D998NfiKwrFKCzDa2ea8U4jVJEdEVcgRexyc6Mffc5pccpk-_e_vvmS354f7C7X4sPz0jN2hN4HTtsu2N-25fY7oaWNe-NFxCbZjFWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+mechanistic+study+on+the+proton+FLASH+sparing+effect+in+zebrafish+embryos%3A+From+DNA+damage+to+developmental+abnormalities&rft.jtitle=Radiotherapy+and+oncology&rft.au=Bogaerts%2C+Eva&rft.au=Saade%2C+Ga%C3%ABlle&rft.au=Macaeva%2C+Ellina&rft.au=Chiavassa%2C+Sophie&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-8140&rft.volume=207&rft_id=info:doi/10.1016%2Fj.radonc.2025.110848&rft.externalDocID=S0167814025001434 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01678140%2FS0167814025X00050%2Fcov150h.gif |