A comprehensive mechanistic study on the proton FLASH sparing effect in zebrafish embryos: From DNA damage to developmental abnormalities

•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation i...

Full description

Saved in:
Bibliographic Details
Published inRadiotherapy and oncology Vol. 207; p. 110848
Main Authors Bogaerts, Eva, Saade, Gaëlle, Macaeva, Ellina, Chiavassa, Sophie, Evin, Manon, Haddad, Ferid, Isebaert, Sofie, Koumeir, Charbel, Mouchard, Quentin, Potiron, Vincent, Servagent, Noël, Supiot, Stéphane, Sterpin, Edmond, Haustermans, Karin
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.06.2025
Subjects
Online AccessGet full text
ISSN0167-8140
1879-0887
1879-0887
DOI10.1016/j.radonc.2025.110848

Cover

Abstract •Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect. Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.
AbstractList Highlights•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation. •Proton FLASH reduces radiation-induced DNA damage. •Proton FLASH affects expression of genes involved in cell cycle and p53 regulation. •Proton FLASH reduces apoptosis induction in the embryonic tail. •Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect.
Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.
•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects expression of genes involved in cell cycle and p53 regulation.•Proton FLASH reduces apoptosis induction in the embryonic tail.•Natural variation in embryo batch radiosensitivity may impact FLASH sparing effect. Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.
Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities.BACKGROUND AND PURPOSEUltra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities.Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation.MATERIALS AND METHODSZebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation.No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments.RESULTSNo significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments.UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.CONCLUSIONUHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.
ArticleNumber 110848
Author Koumeir, Charbel
Potiron, Vincent
Servagent, Noël
Sterpin, Edmond
Haustermans, Karin
Evin, Manon
Macaeva, Ellina
Haddad, Ferid
Saade, Gaëlle
Chiavassa, Sophie
Supiot, Stéphane
Mouchard, Quentin
Bogaerts, Eva
Isebaert, Sofie
Author_xml – sequence: 1
  givenname: Eva
  surname: Bogaerts
  fullname: Bogaerts, Eva
  email: eva.bogaerts@kuleuven.be
  organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium
– sequence: 2
  givenname: Gaëlle
  surname: Saade
  fullname: Saade, Gaëlle
  organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
– sequence: 3
  givenname: Ellina
  surname: Macaeva
  fullname: Macaeva, Ellina
  organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium
– sequence: 4
  givenname: Sophie
  surname: Chiavassa
  fullname: Chiavassa, Sophie
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 5
  givenname: Manon
  surname: Evin
  fullname: Evin, Manon
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 6
  givenname: Ferid
  surname: Haddad
  fullname: Haddad, Ferid
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 7
  givenname: Sofie
  surname: Isebaert
  fullname: Isebaert, Sofie
  organization: Department of Oncology, KU Leuven 3000 Leuven, Belgium
– sequence: 8
  givenname: Charbel
  surname: Koumeir
  fullname: Koumeir, Charbel
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 9
  givenname: Quentin
  surname: Mouchard
  fullname: Mouchard, Quentin
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 10
  givenname: Vincent
  surname: Potiron
  fullname: Potiron, Vincent
  organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
– sequence: 11
  givenname: Noël
  surname: Servagent
  fullname: Servagent, Noël
  organization: Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
– sequence: 12
  givenname: Stéphane
  surname: Supiot
  fullname: Supiot, Stéphane
  organization: Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
– sequence: 13
  givenname: Edmond
  surname: Sterpin
  fullname: Sterpin, Edmond
  organization: Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium
– sequence: 14
  givenname: Karin
  surname: Haustermans
  fullname: Haustermans, Karin
  email: karin.haustermans@uzleuven.be
  organization: Department of Oncology, KU Leuven 3000 Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40086473$$D View this record in MEDLINE/PubMed
BookMark eNqVksGO0zAQhi20iO0uvAFCPnJJsRMndhBCqhbKIlVwWDhbrjPeusR2sJ1K5Q14axJl4YYQp5nDN_9o_n-u0IUPHhB6TsmaEtq8Oq6j6oLX65KU9ZpSIph4hFZU8LYgQvALtJowXgjKyCW6SulICClJxZ-gS0aIaBivVujnBuvghggH8MmeADvQB-VtylbjlMfujIPH-QB4iCFP7Xa3ubvFaVDR-nsMxoDO2Hr8A_ZRGZsOGNw-nkN6jbcxOPzu0wZ3yql7wDngDk7Qh8GBz6rHau9DdKq32UJ6ih4b1Sd49lCv0dft-y83t8Xu84ePN5tdoVld54LzWouGNEpxDkY1lBrSNsLUhFEBVdOpqmSVqUuqWt7UuuW1aQkVLYi2US2rrtHLRXc66PsIKUtnk4a-Vx7CmGRFOWeCli2f0BcP6Lh30MkhWqfiWf62bwLYAugYUopg_iCUyDkleZRLSnJOSS4pTWNvlzGY7jxZiDJpC15DZ-Nkp-yC_V8B3Vtvteq_wRnSMYzRTx5KKlMpibybH2H-g7ImhLJqNuHN3wX-vf8XSJPFNQ
Cites_doi 10.1371/journal.pone.0179259
10.1016/j.radonc.2022.07.011
10.1016/j.radonc.2024.110197
10.1016/j.clon.2019.04.001
10.3390/ani10061096
10.1259/bjr.20211150
10.1667/RADE-20-00060.1
10.1038/387299a0
10.1002/cbin.11117
10.3390/ijms22169053
10.1897/05-460R.1
10.1016/j.radonc.2019.02.009
10.1038/s41598-020-78017-7
10.1002/mp.15184
10.1016/j.radonc.2021.02.003
10.1073/pnas.1901777116
10.1093/mutage/get038
10.3389/fonc.2022.995612
10.3389/fonc.2019.01563
10.1038/srep33601
10.1093/rpd/ncy301
10.7555/JBR.27.20130030
10.1158/1078-0432.CCR-17-3375
10.1126/scitranslmed.3008973
10.1158/1078-0432.CCR-19-1440
10.1038/nature12111
10.3389/fonc.2021.686142
10.1016/j.radonc.2022.05.025
10.1146/annurev-cancerbio-061421-022217
10.1016/j.ijrobp.2022.01.049
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.radonc.2025.110848
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0887
EndPage 110848
ExternalDocumentID 40086473
10_1016_j_radonc_2025_110848
S0167814025001434
1_s2_0_S0167814025001434
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
E3Z
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HED
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UV1
WUQ
X7M
Z5R
ZGI
ZXP
~G-
AFCTW
AGRNS
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c455t-775c8606aa77efa611f0968f50418e36da3243f521a9765c975f90189e896a943
IEDL.DBID .~1
ISSN 0167-8140
1879-0887
IngestDate Thu Sep 04 21:34:51 EDT 2025
Mon May 19 02:16:15 EDT 2025
Sun Jul 06 05:09:03 EDT 2025
Sat Jun 21 16:54:41 EDT 2025
Thu Jun 12 23:11:06 EDT 2025
Tue Aug 26 16:42:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-775c8606aa77efa611f0968f50418e36da3243f521a9765c975f90189e896a943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40086473
PQID 3177481297
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3177481297
pubmed_primary_40086473
crossref_primary_10_1016_j_radonc_2025_110848
elsevier_sciencedirect_doi_10_1016_j_radonc_2025_110848
elsevier_clinicalkeyesjournals_1_s2_0_S0167814025001434
elsevier_clinicalkey_doi_10_1016_j_radonc_2025_110848
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Radiotherapy and oncology
PublicationTitleAlternate Radiother Oncol
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pawelke (b0055) 2021; 158
Lin (b0090) 2022; 12
Frontiers in Oncology, 2021.
Allen (b0155) 2020; 194
Reinardy (b0140) 2013; 28
Levy (b0115) 2020; 10
Vozenin, Hendry, Limoli (b0010) 2019; 31
Poirier (b0065) 2019
Koumeir (b0060) 2019; 183
Honjo, Ichinohe (b0130) 2019; 43
Limoli, Vozenin (b0085) 2023; 7
Perstin (b0110) 2022; 113
Kosmehl (b0070) 2006; 25
Chen (b0165) 2020; 10
Wilson (b0015) 2019; 9
Howe (b0030) 2013; 496
Martinez-Lopez, Póvoa, Fior (b0075) 2021; 172
Karsch (b0045) 2022; 173
Horst (b0095) 2024; 194
Favaudon (b0020) 2014; 6
Nag (b0150) 2013; 27
Vozenin (b0005) 2019; 25
Saade (b0035) 2023; 8
.
Brönnimann (b0160) 2016; 6
Pucci, Forte, Cavalieri (b0025) 2021; 22
Kacem (b0040) 2022; 175
Montay-Gruel (b0050) 2019; 116
Adrian, G., et al.
Friedl (b0080) 2022; 49
Fouillade (b0105) 2020; 26
Cooper (b0100) 2022; 95
Kubbutat, Jones, Vousden (b0145) 1997; 387
Buonanno, Grilj, Brenner (b0125) 2019; 139
Hurem (b0135) 2017; 12
Kacem (10.1016/j.radonc.2025.110848_b0040) 2022; 175
Horst (10.1016/j.radonc.2025.110848_b0095) 2024; 194
Hurem (10.1016/j.radonc.2025.110848_b0135) 2017; 12
Vozenin (10.1016/j.radonc.2025.110848_b0010) 2019; 31
Limoli (10.1016/j.radonc.2025.110848_b0085) 2023; 7
Pawelke (10.1016/j.radonc.2025.110848_b0055) 2021; 158
Wilson (10.1016/j.radonc.2025.110848_b0015) 2019; 9
Favaudon (10.1016/j.radonc.2025.110848_b0020) 2014; 6
Levy (10.1016/j.radonc.2025.110848_b0115) 2020; 10
Vozenin (10.1016/j.radonc.2025.110848_b0005) 2019; 25
Saade (10.1016/j.radonc.2025.110848_b0035) 2023; 8
Buonanno (10.1016/j.radonc.2025.110848_b0125) 2019; 139
Pucci (10.1016/j.radonc.2025.110848_b0025) 2021; 22
Karsch (10.1016/j.radonc.2025.110848_b0045) 2022; 173
Fouillade (10.1016/j.radonc.2025.110848_b0105) 2020; 26
Poirier (10.1016/j.radonc.2025.110848_b0065) 2019
Chen (10.1016/j.radonc.2025.110848_b0165) 2020; 10
Kubbutat (10.1016/j.radonc.2025.110848_b0145) 1997; 387
Nag (10.1016/j.radonc.2025.110848_b0150) 2013; 27
Honjo (10.1016/j.radonc.2025.110848_b0130) 2019; 43
Martinez-Lopez (10.1016/j.radonc.2025.110848_b0075) 2021; 172
Montay-Gruel (10.1016/j.radonc.2025.110848_b0050) 2019; 116
10.1016/j.radonc.2025.110848_b0120
Koumeir (10.1016/j.radonc.2025.110848_b0060) 2019; 183
Lin (10.1016/j.radonc.2025.110848_b0090) 2022; 12
Allen (10.1016/j.radonc.2025.110848_b0155) 2020; 194
Howe (10.1016/j.radonc.2025.110848_b0030) 2013; 496
Reinardy (10.1016/j.radonc.2025.110848_b0140) 2013; 28
Friedl (10.1016/j.radonc.2025.110848_b0080) 2022; 49
Cooper (10.1016/j.radonc.2025.110848_b0100) 2022; 95
Kosmehl (10.1016/j.radonc.2025.110848_b0070) 2006; 25
Brönnimann (10.1016/j.radonc.2025.110848_b0160) 2016; 6
Perstin (10.1016/j.radonc.2025.110848_b0110) 2022; 113
References_xml – volume: 49
  start-page: 1993
  year: 2022
  end-page: 2013
  ident: b0080
  publication-title: Med Phys
– volume: 6
  year: 2016
  ident: b0160
  publication-title: Sci Rep
– volume: 7
  start-page: 1
  year: 2023
  end-page: 21
  ident: b0085
  publication-title: Ann Rev Cancer Biol
– reference: Adrian, G., et al.,
– volume: 116
  start-page: 10943
  year: 2019
  end-page: 10951
  ident: b0050
  publication-title: PNAS
– volume: 31
  start-page: 407
  year: 2019
  end-page: 415
  ident: b0010
  publication-title: Clin Oncol (R Coll Radiol)
– volume: 25
  start-page: 35
  year: 2019
  end-page: 42
  ident: b0005
  publication-title: Clin Cancer Res
– volume: 387
  start-page: 299
  year: 1997
  end-page: 303
  ident: b0145
  publication-title: Nature
– volume: 9
  start-page: 1563
  year: 2019
  ident: b0015
  publication-title: Front Oncol
– year: 2019
  ident: b0065
  publication-title: in
– volume: 10
  year: 2020
  ident: b0165
  publication-title: Animals
– volume: 12
  year: 2022
  ident: b0090
  publication-title: Front Oncol
– volume: 173
  start-page: 49
  year: 2022
  end-page: 54
  ident: b0045
  publication-title: Radiother Oncol
– volume: 95
  year: 2022
  ident: b0100
  publication-title: Br J Radiol
– volume: 43
  start-page: 516
  year: 2019
  end-page: 527
  ident: b0130
  publication-title: Cell Biol Int
– volume: 158
  start-page: 7
  year: 2021
  end-page: 12
  ident: b0055
  publication-title: Radiother Oncol
– volume: 194
  year: 2024
  ident: b0095
  publication-title: Radiother Oncol
– reference: Frontiers in Oncology, 2021.
– volume: 22
  year: 2021
  ident: b0025
  publication-title: Int J Mol Sci
– volume: 12
  year: 2017
  ident: b0135
  publication-title: PLoS One
– volume: 8
  year: 2023
  ident: b0035
  publication-title: Adv Radiat Oncol
– volume: 25
  start-page: 2097
  year: 2006
  end-page: 2106
  ident: b0070
  publication-title: Environ Toxicol Chem
– volume: 10
  year: 2020
  ident: b0115
  publication-title: Sci Rep
– reference: .
– volume: 183
  start-page: 270
  year: 2019
  end-page: 273
  ident: b0060
  publication-title: Radiat Prot Dosim
– volume: 28
  start-page: 601
  year: 2013
  end-page: 608
  ident: b0140
  publication-title: Mutagenesis
– volume: 26
  start-page: 1497
  year: 2020
  end-page: 1506
  ident: b0105
  publication-title: Clin Cancer Res
– volume: 496
  start-page: 498
  year: 2013
  end-page: 503
  ident: b0030
  publication-title: Nature
– volume: 175
  start-page: 197
  year: 2022
  end-page: 202
  ident: b0040
  publication-title: Radiother Oncol
– volume: 6
  year: 2014
  ident: b0020
  publication-title: Sci Transl Med
– volume: 194
  start-page: 625
  year: 2020
  end-page: 635
  ident: b0155
  publication-title: Radiat Res
– volume: 172
  year: 2021
  ident: b0075
  publication-title: Jove-Journal of Visualized Experiments
– volume: 139
  start-page: 51
  year: 2019
  end-page: 55
  ident: b0125
  publication-title: Radiother Oncol
– volume: 113
  start-page: 437
  year: 2022
  end-page: 447
  ident: b0110
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 27
  start-page: 254
  year: 2013
  end-page: 271
  ident: b0150
  publication-title: J Biomed Res
– volume: 172
  year: 2021
  ident: 10.1016/j.radonc.2025.110848_b0075
  article-title: Generation of Zebrafish Larval Xenografts and Tumor Behavior Analysis
  publication-title: Jove-Journal of Visualized Experiments
– volume: 12
  year: 2017
  ident: 10.1016/j.radonc.2025.110848_b0135
  article-title: Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179259
– volume: 175
  start-page: 197
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0040
  article-title: Comparing radiolytic production of H2O2 and development of Zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2022.07.011
– volume: 194
  year: 2024
  ident: 10.1016/j.radonc.2025.110848_b0095
  article-title: Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2024.110197
– volume: 8
  year: 2023
  ident: 10.1016/j.radonc.2025.110848_b0035
  article-title: Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos
  publication-title: Adv Radiat Oncol
– volume: 31
  start-page: 407
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0010
  article-title: Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken
  publication-title: Clin Oncol (R Coll Radiol)
  doi: 10.1016/j.clon.2019.04.001
– volume: 10
  year: 2020
  ident: 10.1016/j.radonc.2025.110848_b0165
  article-title: UVB Irradiation Induced Cell Damage and Early Onset of Expression in Zebrafish
  publication-title: Animals
  doi: 10.3390/ani10061096
– volume: 95
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0100
  article-title: FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20211150
– volume: 194
  start-page: 625
  year: 2020
  ident: 10.1016/j.radonc.2025.110848_b0155
  article-title: Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation
  publication-title: Radiat Res
  doi: 10.1667/RADE-20-00060.1
– volume: 387
  start-page: 299
  year: 1997
  ident: 10.1016/j.radonc.2025.110848_b0145
  article-title: Regulation of p53 stability by Mdm2
  publication-title: Nature
  doi: 10.1038/387299a0
– volume: 43
  start-page: 516
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0130
  article-title: Cellular responses to ionizing radiation change quickly over time during early development in zebrafish
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.11117
– volume: 22
  year: 2021
  ident: 10.1016/j.radonc.2025.110848_b0025
  article-title: Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22169053
– volume: 25
  start-page: 2097
  year: 2006
  ident: 10.1016/j.radonc.2025.110848_b0070
  article-title: A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos
  publication-title: Environ Toxicol Chem
  doi: 10.1897/05-460R.1
– volume: 139
  start-page: 51
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0125
  article-title: Biological effects in normal cells exposed to FLASH dose rate protons
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.02.009
– volume: 10
  year: 2020
  ident: 10.1016/j.radonc.2025.110848_b0115
  article-title: Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78017-7
– volume: 49
  start-page: 1993
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0080
  article-title: Radiobiology of the FLASH effect
  publication-title: Med Phys
  doi: 10.1002/mp.15184
– volume: 158
  start-page: 7
  year: 2021
  ident: 10.1016/j.radonc.2025.110848_b0055
  article-title: Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2021.02.003
– volume: 116
  start-page: 10943
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0050
  article-title: Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species
  publication-title: PNAS
  doi: 10.1073/pnas.1901777116
– volume: 28
  start-page: 601
  year: 2013
  ident: 10.1016/j.radonc.2025.110848_b0140
  article-title: Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish
  publication-title: Mutagenesis
  doi: 10.1093/mutage/get038
– volume: 12
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0090
  article-title: Mechanisms of FLASH effect
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.995612
– volume: 9
  start-page: 1563
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0015
  article-title: Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01563
– year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0065
  article-title: The Injection and Chopper-Based System at Arronax C70XP Cyclotron
– volume: 6
  year: 2016
  ident: 10.1016/j.radonc.2025.110848_b0160
  article-title: Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage
  publication-title: Sci Rep
  doi: 10.1038/srep33601
– volume: 183
  start-page: 270
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0060
  article-title: The Radiobiological Platform at Arronax
  publication-title: Radiat Prot Dosim
  doi: 10.1093/rpd/ncy301
– volume: 27
  start-page: 254
  year: 2013
  ident: 10.1016/j.radonc.2025.110848_b0150
  article-title: The MDM2-p53 pathway revisited
  publication-title: J Biomed Res
  doi: 10.7555/JBR.27.20130030
– volume: 25
  start-page: 35
  year: 2019
  ident: 10.1016/j.radonc.2025.110848_b0005
  article-title: The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3375
– volume: 6
  year: 2014
  ident: 10.1016/j.radonc.2025.110848_b0020
  article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008973
– volume: 26
  start-page: 1497
  year: 2020
  ident: 10.1016/j.radonc.2025.110848_b0105
  article-title: FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-19-1440
– volume: 496
  start-page: 498
  year: 2013
  ident: 10.1016/j.radonc.2025.110848_b0030
  article-title: The zebrafish reference genome sequence and its relationship to the human genome
  publication-title: Nature
  doi: 10.1038/nature12111
– ident: 10.1016/j.radonc.2025.110848_b0120
  doi: 10.3389/fonc.2021.686142
– volume: 173
  start-page: 49
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0045
  article-title: Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2022.05.025
– volume: 7
  start-page: 1
  year: 2023
  ident: 10.1016/j.radonc.2025.110848_b0085
  article-title: Reinventing Radiobiology in the Light of FLASH Radiotherapy
  publication-title: Ann Rev Cancer Biol
  doi: 10.1146/annurev-cancerbio-061421-022217
– volume: 113
  start-page: 437
  year: 2022
  ident: 10.1016/j.radonc.2025.110848_b0110
  article-title: Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2022.01.049
SSID ssj0002037
Score 2.4715016
Snippet •Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation.•Proton FLASH reduces radiation-induced DNA damage.•Proton FLASH affects...
Highlights•Mechanistic study of zebrafish embryo response after FLASH vs. CONV irradiation. •Proton FLASH reduces radiation-induced DNA damage. •Proton FLASH...
Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110848
SubjectTerms Abnormalities, Radiation-Induced
Animals
Apoptosis - radiation effects
Cell Proliferation - radiation effects
DNA Damage - radiation effects
Dose-Response Relationship, Radiation
Embryo, Nonmammalian - radiation effects
Hematology, Oncology, and Palliative Medicine
Protons - adverse effects
Zebrafish - embryology
Title A comprehensive mechanistic study on the proton FLASH sparing effect in zebrafish embryos: From DNA damage to developmental abnormalities
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167814025001434
https://www.clinicalkey.es/playcontent/1-s2.0-S0167814025001434
https://dx.doi.org/10.1016/j.radonc.2025.110848
https://www.ncbi.nlm.nih.gov/pubmed/40086473
https://www.proquest.com/docview/3177481297
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIlVcEFA-lo9qkLiGTTZ2nHCLSldLKXsplXqz7MShi1inSrYHOHDnXzNjJ20RRaBeoiSyFccezzzLb54Ze811bBE3WPR-gkcYr0WUp02Gl8rKWPO4Mp5tscwWJ_zwVJxusf0xF4ZolYPvDz7de-vhzXTozen5ajU9JgI96TVhECeROtIE5VySrb_5cUXzmMVBN5P0van0mD7nOV6drltHQoYz4fnwdArQzeHpb_DTh6H5fXZvwI9QhiY-YFvWPWQ7H4cd8l32swRiiXf2LDDTYW0pt9fLMYPXkoXWAaI-IIUGvJ0flccL6OkwQvcZAr0DVg6-045ys-rPwK5N963t38K8a9fwbllCrdfohmDTQn3FOcJWaeMIAn_1Kq2P2Mn84NP-IhqOW4gqLsQGcbaoclzPaC2lbXSWJA2ub_JGxDzJbZrVGsFX2mC814hhRFVI0SCayAubF5kuePqYbbvW2acMTF3oOLXGiJrz2qZYxGSJzutGpMLIfMKisZfVeVDVUCPd7IsKo6JoVFQYlQkT41CoMWMUfZxCt_-PevKmerYfJmqvEtXPVKz-MKbrNX-zx__45qvRVhROVdp_0c62F71CqCY5AqpCTtiTYESXf89pbYnW--zW333O7tJToLG9YNub7sK-RMC0MXt-RuyxO-X7D4vlL6CpE98
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKkYALKt8LBQaJa9hkY8cJt1VhtcB2L22l3iw7cdpFrFMl2wMcuPdfd8ZOKIgiEJcoSmzF8YxnnuXnZ8Zecx1bxA0Wo5_gEeZrEeVpneGltDLWPC6NZ1sss_kR_3gsjrfY3rAXhmiVfewPMd1H6_7JuO_N8dlqNT4gAj3pNWESJ5E6foPd5HTMATr1m-9XPI9JHIQzSeCbig_75zzJq9VV40jJcCI8IZ6OAbo-P_0Jf_o8NNthd3sACdPQxntsy7r77NZ-v0T-gF1MgWjirT0N1HRYW9rc6_WYwYvJQuMAYR-QRAPezhbTgzl0dBqhO4HA74CVg2-0pFyvulOwa9N-bbq3MGubNbxbTqHSa4xDsGmguiIdYau0cYSBv3iZ1ofsaPb-cG8e9ectRCUXYoNAW5Q5Tmi0ltLWOkuSGic4eS1inuQ2zSqN6CutMeFrBDGiLKSoEU7khc2LTBc8fcS2XePsEwamKnScWmNExXllUyxiskTnVS1SYWQ-YtHQy-osyGqogW_2WQWrKLKKClYZMTGYQg1bRjHIKYz7f6knr6tnu36kdipR3UTF6jdv-rnmLw75D998NfiKwrFKCzDa2ea8U4jVJEdEVcgRexyc6Mffc5pccpk-_e_vvmS354f7C7X4sPz0jN2hN4HTtsu2N-25fY7oaWNe-NFxCbZjFWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+mechanistic+study+on+the+proton+FLASH+sparing+effect+in+zebrafish+embryos%3A+From+DNA+damage+to+developmental+abnormalities&rft.jtitle=Radiotherapy+and+oncology&rft.au=Bogaerts%2C+Eva&rft.au=Saade%2C+Ga%C3%ABlle&rft.au=Macaeva%2C+Ellina&rft.au=Chiavassa%2C+Sophie&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-8140&rft.volume=207&rft_id=info:doi/10.1016%2Fj.radonc.2025.110848&rft.externalDocID=S0167814025001434
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01678140%2FS0167814025X00050%2Fcov150h.gif