Large Language Models in Medicine: Clinical Applications, Technical Challenges, and Ethical Considerations
Objectives: This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine.Methods: A literature survey of peer-reviewed articles, technical reports, and expert commentary from r...
Saved in:
Published in | Healthcare informatics research Vol. 31; no. 2; pp. 114 - 124 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Society of Medical Informatics
01.04.2025
The Korean Society of Medical Informatics 대한의료정보학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2093-369X 2093-3681 2093-369X |
DOI | 10.4258/hir.2025.31.2.114 |
Cover
Abstract | Objectives: This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine.Methods: A literature survey of peer-reviewed articles, technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Key clinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety, accountability, privacy) were identified and analyzed.Results: LLMs have potential in clinical documentation assistance, decision support, patient communication, and workflow optimization. The level of supporting evidence varies; documentation support applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regarding accuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integration issues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safety from inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions.Conclusions: LLMs possess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantial technical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existing evidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizes patient safety and equity. |
---|---|
AbstractList | This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine.
A literature survey of peer-reviewed articles, technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Key clinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety, accountability, privacy) were identified and analyzed.
LLMs have potential in clinical documentation assistance, decision support, patient communication, and workflow optimization. The level of supporting evidence varies; documentation support applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regarding accuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integration issues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safety from inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions.
LLMs possess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantial technical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existing evidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizes patient safety and equity. Objectives This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine. Methods A literature survey of peer-reviewed articles, technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Key clinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety, accountability, privacy) were identified and analyzed. Results LLMs have potential in clinical documentation assistance, decision support, patient communication, and workflow optimization. The level of supporting evidence varies; documentation support applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regarding accuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integration issues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safety from inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions. Conclusions LLMs possess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantial technical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existing evidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizes patient safety and equity. This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine.OBJECTIVESThis study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language models (LLMs) in medicine.A literature survey of peer-reviewed articles, technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Key clinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety, accountability, privacy) were identified and analyzed.METHODSA literature survey of peer-reviewed articles, technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Key clinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety, accountability, privacy) were identified and analyzed.LLMs have potential in clinical documentation assistance, decision support, patient communication, and workflow optimization. The level of supporting evidence varies; documentation support applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regarding accuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integration issues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safety from inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions.RESULTSLLMs have potential in clinical documentation assistance, decision support, patient communication, and workflow optimization. The level of supporting evidence varies; documentation support applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regarding accuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integration issues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safety from inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions.LLMs possess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantial technical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existing evidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizes patient safety and equity.CONCLUSIONSLLMs possess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantial technical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existing evidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizes patient safety and equity. Objectives: This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerationsassociated with using large language models (LLMs) in medicine. Methods: A literature survey of peer-reviewed articles,technical reports, and expert commentary from relevant medical and artificial intelligence journals was conducted. Keyclinical application areas, technical limitations (e.g., accuracy, validation, transparency), and ethical issues (e.g., bias, safety,accountability, privacy) were identified and analyzed. Results: LLMs have potential in clinical documentation assistance, decisionsupport, patient communication, and workflow optimization. The level of supporting evidence varies; documentationsupport applications are relatively mature, whereas autonomous diagnostics continue to face notable limitations regardingaccuracy and validation. Key technical challenges include model hallucination, lack of robust clinical validation, integrationissues, and limited transparency. Ethical concerns involve algorithmic bias risking health inequities, threats to patient safetyfrom inaccuracies, unclear accountability, data privacy, and impacts on clinician-patient interactions. Conclusions: LLMspossess transformative potential for clinical medicine, particularly by augmenting clinician capabilities. However, substantialtechnical and ethical hurdles necessitate rigorous research, validation, clearly defined guidelines, and human oversight. Existingevidence supports an assistive rather than autonomous role, mandating careful, evidence-based integration that prioritizespatient safety and equity. KCI Citation Count: 0 |
Author | Jung, Kyu-Hwan |
Author_xml | – sequence: 1 givenname: Kyu-Hwan orcidid: 0000-0002-6626-6800 surname: Jung fullname: Jung, Kyu-Hwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40384063$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003200867$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqNUk1v1DAQjVAR_aA_gAvKESE2-GPixlzQalVgpa2Q0CJxsxx_JN56neAkoP77ejelam_4MqPnN29m_HyenYQumCx7g1EBpKw-ti4WBJGyoLggBcbwIjsjiNMFZfzXyZP8NLschh1Kp0RXpKpeZaeAaAWI0bNst5GxMflGhmaSKbnptPFD7kJ-Y7RTLphP-cq74JT0-bLvfUpG14XhQ741qp3xVSu9N6ExCZVB59djO-OJ57SJc8Xr7KWVfjCXD_Ei-_nlerv6tth8_7peLTcLBWU5LsAiA5BmBc05RkxpxC2zChSGWgPHVgJWstSaMGs5cJ5QVCpVI0ZsXdOL7P2sG6IVt8qJTrpjbDpxG8Xyx3YtMLrCCHOSyOuZrDu5E310exnvjhVHoIuNkHF0yhtBJeWSk7omQIHispbAiLKESQyVBZ60yKw1hV7e_U1v8iiIkTiYJpJp4mCaoFgQkUxLRZ_non6q90YrE8Yo_bNJnt8E16ZN_ghMUMWAVknh3YNC7H5PZhjF3g3KeC-D6aZBUIJKxkogB-rbp80eu_z7D4mAZ4KK3TBEY_9jg3ugO8kk |
Cites_doi | 10.3348/kjr.2024.0843 10.1148/radiol.241646 10.1001/jamanetworkopen.2024.0357 10.1038/s41586-024-07618-3 10.1038/s41746-024-01157-x 10.1038/s41746-023-00879-8 10.1186/s13054-023-04393-x 10.1038/s41746-023-00873-0 10.2196/63892 10.1038/s41591-024-03097-1 10.1038/s41586-023-06291-2 10.1016/S2589-7500(23)00021-3 10.1038/s41746-024-01233-2 10.1001/jamanetworkopen.2024.48723 10.1016/j.jpainsymman.2024.11.016 10.1016/j.patter.2023.100802 10.1016/j.isci.2024.109713 10.1038/s41586-025-08866-7 10.7861/futurehosp.6-2-94 10.1038/s41746-024-01039-2 10.1001/jamanetworkopen.2023.36997 10.1016/j.ebiom.2023.104512 10.1016/S2589-7500(23)00254-6 10.1038/s41591-023-02448-8 10.1038/s41591-024-02855-5 10.1038/s41591-024-03423-7 10.1038/s41551-018-0305-z 10.1016/S2589-7500(24)00061-X 10.1038/s41591-024-03425-5 10.1093/bioinformatics/btz682 10.12793/tcp.2023.31.e16 10.1038/s41586-025-08869-4 10.1038/s41467-024-53387-y 10.3389/fmed.2024.1477898 10.1001/jamainternmed.2023.1838 10.3389/frai.2025.1504805 10.1093/jamia/ocz192 10.1227/neu.0000000000002551 10.1186/s42492-023-00136-5 10.1038/s41746-022-00742-2 |
ContentType | Journal Article |
Copyright | 2025 The Korean Society of Medical Informatics 2025 |
Copyright_xml | – notice: 2025 The Korean Society of Medical Informatics 2025 |
DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA ACYCR |
DOI | 10.4258/hir.2025.31.2.114 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ : directory of open access journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2093-369X |
EndPage | 124 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10710192 oai_doaj_org_article_3a39a92bb2434315ba462cf26a148f49 10.4258/hir.2025.31.2.114 PMC12086438 40384063 10_4258_hir_2025_31_2_114 |
Genre | Journal Article |
GroupedDBID | 5-W 8JR 8XY 9ZL AAYXX ACYCR ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS CITATION EF. GROUPED_DOAJ HYE KQ8 M48 O5R O5S OK1 PGMZT RPM ADRAZ NPM 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c455t-4f0e440504d99106cd09f6fc4c14bd491fa41ca5dd26ff9499bd405ccb062fbb3 |
IEDL.DBID | M48 |
ISSN | 2093-369X 2093-3681 |
IngestDate | Fri May 09 03:29:05 EDT 2025 Wed Aug 27 01:23:36 EDT 2025 Mon Sep 15 08:25:21 EDT 2025 Thu Aug 21 18:31:01 EDT 2025 Fri Sep 05 16:17:21 EDT 2025 Thu May 22 05:05:19 EDT 2025 Wed Oct 01 06:06:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Medical Ethics Medical Informatics Applications Artificial Intelligence Clinical Decision Support Systems Natural Language Processing |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-4f0e440504d99106cd09f6fc4c14bd491fa41ca5dd26ff9499bd405ccb062fbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6626-6800 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4258/hir.2025.31.2.114 |
PMID | 40384063 |
PQID | 3205665428 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10710192 doaj_primary_oai_doaj_org_article_3a39a92bb2434315ba462cf26a148f49 unpaywall_primary_10_4258_hir_2025_31_2_114 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12086438 proquest_miscellaneous_3205665428 pubmed_primary_40384063 crossref_primary_10_4258_hir_2025_31_2_114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Healthcare informatics research |
PublicationTitleAlternate | Healthc Inform Res |
PublicationYear | 2025 |
Publisher | Korean Society of Medical Informatics The Korean Society of Medical Informatics 대한의료정보학회 |
Publisher_xml | – name: Korean Society of Medical Informatics – name: The Korean Society of Medical Informatics – name: 대한의료정보학회 |
References | ref13 ref12 ref15 ref59 Vaswani (ref1) 2017 Huang (ref6) 2019 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Ji (ref39) 2022 ref17 ref16 ref19 ref18 Goldshmidt (ref48) 2024 Minaee (ref2) 2024 ref51 Tu (ref23) 2023 Behnia (ref45) 2022 ref42 ref44 ref43 ref8 ref7 Kim (ref57) 2024 ref9 ref4 ref3 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Tonmoy (ref41) 2024 Kau (ref49) 2024 Chen (ref28) 2024 Kim (ref60) 2024 Charles (ref46) 2024 Huang (ref40) 2023 Kim (ref56) 2024 Brodeur (ref20) 2024 ref24 ref26 ref22 Saab (ref25) 2024 ref21 Zhao (ref47) 2023 ref27 Li (ref50) 2024 ref29 Rawte (ref38) 2023 |
References_xml | – ident: ref44 doi: 10.3348/kjr.2024.0843 – ident: ref59 doi: 10.1148/radiol.241646 – year: 2023 ident: ref23 – year: 2024 ident: ref46 – ident: ref33 doi: 10.1001/jamanetworkopen.2024.0357 – ident: ref58 doi: 10.1038/s41586-024-07618-3 – ident: ref54 doi: 10.1038/s41746-024-01157-x – year: 2019 ident: ref6 – year: 2022 ident: ref39 – ident: ref4 doi: 10.1038/s41746-023-00879-8 – ident: ref37 doi: 10.1186/s13054-023-04393-x – year: 2023 ident: ref40 – ident: ref51 doi: 10.1038/s41746-023-00873-0 – ident: ref34 doi: 10.2196/63892 – ident: ref27 doi: 10.1038/s41591-024-03097-1 – year: 2023 ident: ref38 – year: 2024 ident: ref41 – ident: ref8 doi: 10.1038/s41586-023-06291-2 – year: 2024 ident: ref49 – ident: ref14 doi: 10.1016/S2589-7500(23)00021-3 – ident: ref18 doi: 10.1038/s41746-024-01233-2 – ident: ref16 doi: 10.1001/jamanetworkopen.2024.48723 – ident: ref17 doi: 10.1016/j.jpainsymman.2024.11.016 – ident: ref42 doi: 10.1016/j.patter.2023.100802 – ident: ref11 doi: 10.1016/j.isci.2024.109713 – year: 2024 ident: ref25 – ident: ref22 doi: 10.1038/s41586-025-08866-7 – ident: ref13 doi: 10.7861/futurehosp.6-2-94 – year: 2023 ident: ref47 – year: 2024 ident: ref20 – ident: ref30 doi: 10.1038/s41746-024-01039-2 – ident: ref31 doi: 10.1001/jamanetworkopen.2023.36997 – ident: ref53 doi: 10.1016/j.ebiom.2023.104512 – ident: ref10 doi: 10.1016/S2589-7500(23)00254-6 – ident: ref3 doi: 10.1038/s41591-023-02448-8 – ident: ref15 doi: 10.1038/s41591-024-02855-5 – year: 2024 ident: ref57 – ident: ref9 doi: 10.1038/s41591-024-03423-7 – year: 2024 ident: ref50 – ident: ref12 doi: 10.1038/s41551-018-0305-z – ident: ref29 doi: 10.1016/S2589-7500(24)00061-X – ident: ref43 doi: 10.1038/s41591-024-03425-5 – year: 2024 ident: ref56 – year: 2022 ident: ref45 – ident: ref5 doi: 10.1093/bioinformatics/btz682 – ident: ref32 doi: 10.12793/tcp.2023.31.e16 – year: 2024 ident: ref60 – year: 2017 ident: ref1 – ident: ref21 doi: 10.1038/s41586-025-08869-4 – year: 2024 ident: ref2 – ident: ref26 doi: 10.1038/s41467-024-53387-y – ident: ref36 doi: 10.3389/fmed.2024.1477898 – ident: ref35 doi: 10.1001/jamainternmed.2023.1838 – ident: ref55 doi: 10.3389/frai.2025.1504805 – ident: ref52 doi: 10.1093/jamia/ocz192 – ident: ref24 doi: 10.1227/neu.0000000000002551 – year: 2024 ident: ref48 – ident: ref19 doi: 10.1186/s42492-023-00136-5 – ident: ref7 doi: 10.1038/s41746-022-00742-2 – year: 2024 ident: ref28 |
SSID | ssj0000507288 |
Score | 2.3484223 |
SecondaryResourceType | review_article |
Snippet | Objectives: This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using... This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using large language... Objectives This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerations associated with using... Objectives: This study presents a comprehensive review of the clinical applications, technical challenges, and ethical considerationsassociated with using... |
SourceID | nrf doaj unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 114 |
SubjectTerms | artificial intelligence clinical decision support systems medical ethics medical informatics applications natural language processing Review 예방의학 |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4UL4k2AIiM4AaHxc-PeoKIqqOVEpd4sP9ulK2-13VXVf9-xnV3tCqRekCJFmthO4plovonH3yD0gUiret6rloswasFD2bZ3zLcx2N44rpwq2e7Hv-ThCf95Kk7XSn3lnLBKD1wnbpcZpoyi1tK8B5IIa7ikLlJpAMhHXrbugRtbC6Yqq3c3oqXoJIWQvWWyJ3VJE0y03z0fZyZQKiBg_UIzW-6GUyrc_eBq0iz-C3b-nT15f5Euzc21mUzWXNPBI_RwwJT4a32Xx-heSE_Q9vGwav4U_TnK6d74aPg1iXP9s8kVHie8bLOHB35QGGVtRfszLn_ei3x_WXUFpCZ5XBLls3yo-Fl7PEMnB99_7x-2Q42F1nEh5i2PXeAA2jruASl20vlORRkdd4RbzxWJhhNnhPdUxpiZbEDaCedsJ2m0lj1HW2mawkuEjRs5aWyw0sCQNhgWvFAQzznv4CAN-ricZH1ZqTQ0hCBZIxo0orNGNCOa5p3SDfqW1bBqmFmwiwBsQw-2oe-yjQa9ByXqCzcu_fP5bKovZhpihR9wb0BXAHAb9G6pZA3fVl4wMSlMF1eaUYCHuaJX36AXVemrB-Idg9hYsgb1G-aw8cSbV9L4vPB3EzBYAIIw6KeV5dw9I6_-x4y8Rg_yoDX16A3ams8WYQdQ1dy-LR_QLdLaHPg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEvfA_Cl4LgCXCX2I4X8zYmpoG2iQcqlSfLn6y0Sqt-CMFfz52TVisgoUmVWl2dS2Kf5d_5zr8j5FUprapFraiowgGFFcrS2nFPY7C1cUI5lbLdz87lyUB8GlbDHcLWZ2ECvRjNUwR_NZtMjd-f-bgPIhhNhiFbyigg-D5Ir5FdiUGlHtkdnH8-_IpV5MA9p1ymyqTdbzVsQ5lgmjXq6aMecFT7DFlytxajxNkPS0wzj_-Cm39nTd5YNTPz84eZTC4tSce322OCi8RkiJko4_5qafvu1x88j1d72zvkVodQ88PWpO6SndDcI9fPuhj8ffL9FJPH89NuozPHamqTRT5q8nWbd3nHNgpaLsXH3-ZpHz_Jj9Y1XEBqGp-ntHuUd_VD2ysekMHxhy9HJ7Sr2ECdqKolFbEIAiBgITzgzkI6X6gooxOuFNYLVUYjSmcq75mMEXlxQFpUztlCsmgt3yO9ZtqERyQ37sBJY4OVBlTaYHjwlQLv0HkHnzIjr9dDp2ctMYcGhwbHWUMPauxBzUvN8Nx1Rt7j4G4aIqd2EkDX626Kam64MopZy_C0bVlZIyRzkUkDLmMUKiMvwTT02I3S9fj9barHcw2ex0e4N2A1gMsZebE2HQ0zFcMvpgnT1UJzBmAT64PVGXnYmtLmgUTBwdOWPCP1lpFtPfH2P83oIrGBlwy8UsFB6ZuNPf6_Rx5fqfUTcjNZZMpYekp6y_kqPAMwtrTPu9n3G8ogL84 priority: 102 providerName: Unpaywall |
Title | Large Language Models in Medicine: Clinical Applications, Technical Challenges, and Ethical Considerations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40384063 https://www.proquest.com/docview/3205665428 https://pubmed.ncbi.nlm.nih.gov/PMC12086438 https://e-hir.org/upload/pdf/hir-2025-31-2-114.pdf https://doaj.org/article/3a39a92bb2434315ba462cf26a148f49 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003200867 |
UnpaywallVersion | publishedVersion |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Healthcare Informatics Research, 2025, 31(2), , pp.114-124 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2093-369X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000507288 issn: 2093-369X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2093-369X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000507288 issn: 2093-369X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVERR databaseName: KoreaMed Open Access customDbUrl: eissn: 2093-369X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000507288 issn: 2093-369X databaseCode: 5-W dateStart: 20100101 isFulltext: true titleUrlDefault: https://koreamed.org/journals providerName: Korean Association of Medical Journal Editors – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2093-369X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000507288 issn: 2093-369X databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2093-369X dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0000507288 issn: 2093-369X databaseCode: M48 dateStart: 20100301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTQJe0PidDaogeALSJbbjxntBY2IaaJ14oNJ4smzH3sqqdEtbsf33nJ2kWkUlkCJFusRO4jvrvrMv3wG8y7gWBStEwnI7SNBD6aQwtEyc1YUyTBgRst2Hp_x4xL6d5Wcb0JW3agdwtja08_WkRvWkf3N9-wknPOLXPlpcsXcx9sSeJMf4s088-e092ELHRLyRD1u031B9pwMSKlESjOMTyous2edc38uKpwqE_uh_qtqtw6J_p1Q-WFRX6va3mkzu-KujbXjUAs34oLGMx7Bhqydwf9hupT-FXyc-Bzw-adcrY18UbTKLx1Xc3bMft6Sh2Mudbe6PcViOD_LDrhQLSlVVxiF73svbMqBNi2cwOvry4_A4aQsvJIbl-TxhLrUMkVzKSoSPKTdlKhx3hpmM6ZKJzCmWGZWXJeHOeXoblKa5MTrlxGlNn8NmNa3sS4iVGRiutNVcYZfaKmrLXGCQZ0qDRxbB-26Q5VXDryExLvEakagR6TUiaSaJ_306gs9eDcsbPTV2EEzrc9nONEkVFUoQrYn_aTbLtWKcGEe4wsjPMRHBW1SivDTj0N6fz6fyspYYQHzFZyPkQtQbwZtOyRInnN9FUZWdLmaSEsSMvsxXEcGLRunLF2IpxYCZ0wiKFXNYeePVK9X4IpB6ZwSDS0ax0w9Ly_n3iOz818fswkPfqkk4egWb83phXyOWmuteWIPohXnSg63R6feDn38AlRQdfw |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEvfA_Cl4LgCXCX2I4X8zYmpoG2iQcqlSfLn6y0Sqt-CMFfz52TVisgoUmVWl2dS2Kf5d_5zr8j5FUprapFraiowgGFFcrS2nFPY7C1cUI5lbLdz87lyUB8GlbDHcLWZ2ECvRjNUwR_NZtMjd-f-bgPIhhNhiFbyigg-D5Ir5FdiUGlHtkdnH8-_IpV5MA9p1ymyqTdbzVsQ5lgmjXq6aMecFT7DFlytxajxNkPS0wzj_-Cm39nTd5YNTPz84eZTC4tSce322OCi8RkiJko4_5qafvu1x88j1d72zvkVodQ88PWpO6SndDcI9fPuhj8ffL9FJPH89NuozPHamqTRT5q8nWbd3nHNgpaLsXH3-ZpHz_Jj9Y1XEBqGp-ntHuUd_VD2ysekMHxhy9HJ7Sr2ECdqKolFbEIAiBgITzgzkI6X6gooxOuFNYLVUYjSmcq75mMEXlxQFpUztlCsmgt3yO9ZtqERyQ37sBJY4OVBlTaYHjwlQLv0HkHnzIjr9dDp2ctMYcGhwbHWUMPauxBzUvN8Nx1Rt7j4G4aIqd2EkDX626Kam64MopZy_C0bVlZIyRzkUkDLmMUKiMvwTT02I3S9fj9barHcw2ex0e4N2A1gMsZebE2HQ0zFcMvpgnT1UJzBmAT64PVGXnYmtLmgUTBwdOWPCP1lpFtPfH2P83oIrGBlwy8UsFB6ZuNPf6_Rx5fqfUTcjNZZMpYekp6y_kqPAMwtrTPu9n3G8ogL84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Language+Models+in+Medicine%3A+Clinical+Applications%2C+Technical+Challenges%2C+and+Ethical+Considerations&rft.jtitle=Healthcare+informatics+research&rft.au=%EC%A0%95%EA%B7%9C%ED%99%98%28%EC%84%B1%EA%B7%A0%EA%B4%80%EB%8C%80%ED%95%99%EA%B5%90&rft.date=2025-04-01&rft.pub=%EB%8C%80%ED%95%9C%EC%9D%98%EB%A3%8C%EC%A0%95%EB%B3%B4%ED%95%99%ED%9A%8C&rft.issn=2093-3681&rft.eissn=2093-369X&rft.spage=114&rft.epage=124&rft_id=info:doi/10.4258%2Fhir.2025.31.2.114&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10710192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-369X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-369X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-369X&client=summon |